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1. Introduction

This paper presents a geometric approach to discrete time multiperiod mean variance portfolio

optimization that largely simplifies the mathematical analysis and the economic interpretation

of such model settings. Using a geometric approach to dynamic mean variance optimization we

obtain closed form solutions for an optimization problem where the mean variance objective is

defined as a function of the surplus of final aggregate assets and liabilities (AL), each modelled

by a distinct state variable. In this setting, the asset-only mean variance problem recently

solved in Li and Ng (2000) follows as a special solution that can be represented in terms of

simple products of single period orthogonal returns. Specifically, we show that multiperiod

mean variance optimal policies can be decomposed in an orthogonal set of basis strategies,

each having a clear economic interpretation. This implies that the corresponding multi period

mean variance frontiers are spanned by an orthogonal basis of dynamic returns. Precisely, in a

multi period model the optimal strategy is a linear combination of a single multi period global

minimum second moment strategy and a sequence of local excess return strategies which expose

the dynamic portfolio optimally to each single-period asset excess return. This decomposition

is a multi period version of Hansen and Richard (1987) orthogonal representation of single-

period mean variance frontiers. This largely simplifies the economic interpretation of the

implied dynamic optimal policies and allows to extend the basic intuition of the standard

Markowitz model to the multi period setting in a natural way.

A first challenge in multiperiod mean variance portfolio selection derives directly from the

definition of the mean variance objective within a dynamic setting, which makes a direct

application of dynamic programming techniques cumbersome because of the lack of separability

(in the dynamic programming sense) of the mean variance objective. Indeed, some authors

(eg. Chen, Jen, and Zionts (1971)) reported enormous difficulties in solving a pure multiperiod
2
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mean-variance optimization1. Actually, the dynamic mean variance asset only problem has

been only recently solved in Li and Ng (2000) by embedding mean variance portfolio selection

into a mean-second moment portfolio optimization.

A second challenge in multi-period mean variance portfolio choice is related to the financial

interpretation behind the optimal policies obtained in a dynamic model. Indeed, while for

the asset only case closed form solutions have been provided by Li and Ng (2000) under

the i.i.d. assumption, the economic structure and the financial interpretation of the implied

policies and minimum variance frontiers (MVF) is not transparent and is not directly reconciled

with the basic intuition provided by the standard (static) Markowitz solution. The geometric

decomposition developed in this paper for the implied optimal policies and MVF identifies the

similarities and the differences between the solutions of a static and a dynamic mean variance

portfolio selection problem. As in Li and Ng (2000) this is achieved by writing the mean

variance portfolio selection model as an equivalent mean second moment problem. However,

by contrast with their paper we make strong use of orthogonal projections to disentangle

the different basis objects and returns arising in the multi period mean variance portfolio

optimization. This provides a financial interpretation of the desired optimal policies and mean

variance frontiers which is the direct analogue to the static Markowitz model when mean

variance frontiers are represented by linear combinations of orthogonal returns as in Hansen

and Richard (1987).

A third challenge in multi period mean variance portfolio optimization arises when either

intertemporal constraints or further state variables are included in the functional form for the

underlying wealth dynamics. In this paper we focus on a particular case of this model class

by considering portfolios where liabilities are explicitly included as a second relevant state

1On the other hand, a large literature has analyzed multiperiod portfolio choice by maximizing some time-
additive expected utility of final wealth and/or multiperiod consumption; see for instance the classical papers
of Smith (1967), Chen et al. (1971), Mossin (1968), Merton (1969), Merton (1971) and Samuelson (1969). Work
extending the classical Merton (1969, 1971) portfolio model is Cvitanic and Karatzas (1992), Grossman and Vila
(1992), He and Pages (1993), He and Pearson (1991a), He and Pearson (1991b), Karatzas, Lehoczky, Shreve,
and Xu (1991), Shreve and Xu (1992a), Shreve and Xu (1992b), Tepla (1998), Vila and Zariphopoulou (1994),
Zariphopoulou (1989).
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variable, in excess of the aggregate value of total assets. Assets and liabilities jointly determine

the relevant surplus of a financial intermediary. Therefore, this problem is of major relevance

for many financial institutions like pension funds or banks where both sides of the balance sheet

have to be considered in order to develop an integrated asset liability management. Moreover,

as is typically the case in dynamic portfolio optimization, the inclusion of a further state

variable drastically enhances the computational complexity in obtaining closed form solutions.

Multi period mean variance problems for portfolio of assets and liabilities are not an exception

to this rule. However, when adopting our geometric approach to portfolio optimization we

are able to provide closed form expressions for the implied solutions and MVF. Furthermore,

we can still decompose the associated optimal returns in a way that highlights the economic

intuition for each term in the solution. In this decomposition, the asset only solution can be

identified as a specific term of the more general assets-and-liabilities optimal portfolio. We

illustrate the usefulness of our geometric representation of multi-periods optimal policies and

mean variance frontiers by discussing the following specific issues related to AL portfolios: The

impact of taking liabilities into account on the implied mean variance frontiers, the impact of

the investment horizon and the determination of the optimal initial funding ratio.

The remainder of the paper is organized as follows. Section 2 introduces a set of equiva-

lent AL portfolio selection models. Section 3 derives explicit solutions for the implied optimal

policies and MVF frontiers, as well as some orthogonal representations of these objects in

terms of some underlying basis returns. Section 4 illustrates the usefulness of our geomet-

ric representations by analyzing some specific issues related to AL portfolios while Section 5

concludes.

2. The Model

Consider an investor2 at time t = 0 equipped with an initial wealth x0 and initial liabilities

l0. The investor is allowed to rebalance her portfolio over T consecutive transaction periods

2In the sequel we simply call the financial institution under scrutiny, as for instance a pension fund or the
treasurer of a bank, the ”investor”.
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at dates 0, 1, ..., T − 1. Her objective is to maximize the expected value of the final surplus,

i.e. the difference between assets and liabilities at the final date T , defined as ST := xT − lT ,

subject to a variance bound and to some random dynamics for assets and liabilities, specified

below.

Without loss of generality but for simplicity of notation we define our model initially using

two assets and two liabilities. In a second step we will focus on the exogenous liabilities case

which allows for analytical formulas in the i.i.d. setting. Finally, we discuss in a short section

the case where the investor can choose from an arbitrary number of assets. It turns out, that

when adopting our geometric formalism based on projections the extension from the two assets

case to the more general model setting is straightforward.

Given two assets and two liabilities, the first asset return3 (R0
t ) and the first liability return

(Q0
t ) are used as benchmark returns for the second asset return (R̃t) and second liability return

(Q̃t), respectively. The AL return processes can be cross-sectionally and temporally correlated.

We denote the expectation operator by E and the expectation operator conditional on time

t by Et. Collecting all return processes in the vector Rt = (R0
t , R̃t, Q

0
t , Q̃t)

′, we assume the

matrices

Et(RtR
′
t) = covt(Rt) + Et(Rt)Et(R

′
t) , t = 0, .., T − 1 ,

of conditional second moments at time t to be positive definite.

For a given value of aggregate assets xt at time t, ut is defined as the amount invested in the

asset return R̃t. The remainder xt − ut is invested in the benchmark return R0
t . Analogously,

given the liabilities lt at time t, the amount invested in the liability return Q̃t is vt, while lt−vt

is the amount invested in the liability return Q0
t . Then, the assets and liabilities dynamics can

be written as

(2.1) xt+1 = R0
txt +R1

tut , lt+1 = Q0
t lt +Q1

t vt,

3We define the return as the t + k-measurable random number Rt,t+k for which Rt,t+k = Pt+k/Pt holds, given
the price P of a financial instrument. Since we only consider one-period returns, we drop the second time index.
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with R1
t = R̃t −R0

t and Q1
t = Q̃t −Q0

t as the excess return over the benchmark asset and the

benchmark liability, respectively.

A standard formulation of the optimization problem of our investor is

(P1) :

{
maxu,v E(ST )

s.t. var(ST ) ≤ σ and (2.1)
,

for σ > 0. Problem (P1) covers not only theoretically challenging but also practically relevant

cases. For example, situations where

• the number of assets and liabilities is (in principle) arbitrary,

• both assets and liabilities are allowed to be stochastic with arbitrary correlations,

• the implied optimal portfolio can determine optimal positions in the presence of both

assets and liabilities,

• the optimal solutions provide a dynamically optimal portfolio strategy.

As an alternative, the portfolio selection problem (P1) can be posed in a different form. It

is well known that (P1) is equivalent to problems (P2) and (P3) below:

(2.2) (P2) :

{
minu,v var(ST )

s.t. E(ST ) ≥ ε and (2.1)
,

for ε ≥ 0 and

(2.3) (P3) :

{
maxu,v [E(ST ) − wvar(ST )]

s.t. (2.1)
,

for some strictly positive risk aversion parameter w. Indeed, if φ∗ = (u∗, v∗)′ solves (P3), then

it solves also (P1) for the final surplus variance implied by φ∗ and (P2) for the final surplus

expected value implied by φ∗. Further, at the solution φ∗ of (P3) the identity

w =
∂E(ST )

∂var(ST )

holds true (see Li and Ng (2000)). As a consequence, from a mathematical point of view we

are free in the choice of which problem to solve in order to provide a solution to either (P1),

(P2) or (P3)4.

4Notice, however, that (P1)-(P3) are economically not fully equivalent. Indeed, from a more practical viewpoint
(P3) is the most demanding one, as it requires the explicit quantification of the investor’s trade-off between risk
and return (quantified by the parameter w).
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A serious difficulty in solving problems (P1)-(P3) directly, is their non-separability in the

sense of dynamic programming. Indeed, it is well-known that conditional expectations satisfy

the tower property,

(2.4) Es(Et(·)) = Es(·) , t > s ,

while conditional variances do not. Therefore, in the sequel we adopt a more indirect approach

that embeds (P1)-(P3) into a new model which is separable. Following Li and Ng (2000), the

approach for finding a solution to multiperiod mean-variance problems of the form (P1)-(P3)

is to introduce an alternative optimization problem (P4) such that:

• The solution of (P4) provides a solution of (P3) (and hence also of (P1) and (P2)).

• (P4) is a linear-quadratic optimization problem, i.e. a standard problem in dynamic

programming.

It turns out that

(P4) :

{
maxu,v

[
E(λST − wS2

T )
]

s.t. (2.1)

satisfies both of the above requirements. When comparing (P3) with (P4), we remark first that

(P4) is defined using an extra parameter λ. Second, (P4) is accessible to dynamic programming

because second conditional moments satisfy the tower property (2.4). For the set of solutions

to (P3) and (P4), respectively, Li and Ng (2000) show for the assets-only case that:

• any solution of (P3) is also a solution of (P4),

• if φ∗ is a solution to (P4) for given (λ∗, w), then it is also a solution to (P3) for:

(2.5) λ∗ = 1 + 2wE(ST )|φ∗ .

Therefore, solving (P4) for arbitrary λ provides a systematic way of determining the corre-

sponding solution of (P3) by imposing condition (2.5). Remark that in our asset-liability

optimization problem the same functional form for the (linear) state dynamics and the (qua-

dratic) objective function as in the asset-only case arise. Therefore, Theorem 1 and 2 in Li

and Ng (2000) can be applied with only slight modifications to cover also mean variance AL
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portfolio problems. For completeness, the next proposition summarizes the relevant results

required for the subsequent AL analysis5.

Proposition 2.1. Consider the function

Ũ
(
E(ST ), E

(
S2

T

))
= E(ST ) − w · var (ST )

and write φ∗(w, λ) for a solution of (P4) and φ∗(w) for a solution of (P3), respectively.

1. Ũ is a convex function of E(ST ) and E
(
S2

T

)
.

2. Let

d(φ,w) :=
dŨ

dE(ST )
= 1 + 2w E(ST )|φ .

Then φ∗(w) solves (P4) for a pair (λ,w) satisfying λ = d(φ∗(w), w).

3. The condition

(2.6) λ = λ∗ := d(φ∗(w, λ), w)

is necessary for φ∗(w, λ) to be a solution of (P3).

Making use of Proposition 1, we focus in the sequel exclusively on Problem (P4) to provide

solutions to the multiperiod AL Problem (P1). Specifically, for computing a solution of (P1)

for a specific risk aversion parameter w, one first has to provide the solution φ∗(w, λ∗) of (P4).

Moreover, note that the multiperiod MVF implied by (P1) and (P4) are the same, because

(P1) and (P4) induce the same solution sets.

3. Two-Assets Optimization with Exogenous Liabilities

A special case of Problem (P4) arises in the often relevant case where the structure of

liabilities is not under the control of the financial institution under scrutiny, but rather implies

a dynamic constraint on the final portfolio’s surplus. This problem is a multiperiod version

of the static problem in Sharpe and Tint (1990) and Keel and Müller (1995). Thus, in the

remainder of the paper we focus on unconstrained AL optimizations of the general form (P4),

where no explicit constraints on the surplus St at any date t are active and where the liabilities

5All proofs are in the Appendix. The proof of Proposition 1 is given for completeness.
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dynamics are exogenous, i.e. the structure of liabilities cannot be optimized. The methodology

presented below can be naturally extended to account for intertemporal portfolio constraints

on AL and for endogenous liabilities dynamics (see Leippold, Trojani, and Vanini (2002)).

However, such a more general problem will not allow for fully explicit formulas of the implied

AL optimal policies and MV frontiers, also in the simplest situation of i.i.d. returns. To express

the optimal policies for the AL portfolio problems considered in the paper, the following matrix

notation is introduced.

Notation 3.1. Let γ = λ
2w

and for t = 0, .., T − 1 define:

I =

(
1
−1

)
, Dt =

(
R0

t 0
0 Q0

t

)
, Gt =

(
R1

t 0
0 Q1

t

)
,

zt =

(
xt

lt

)
, dt =

(
ut

vt

)
.(3.7)

The matrix Dt is the benchmark return matrix and Gt the excess return matrix relative

to the benchmark for the asset and the liability, respectively. Notice, that the exogenous

liabilities case follows, with the above notations, by imposing the constraint lt = 0 for the

amount invested in the second liability return Q̃t, i.e. dt = (ut, 0)
′. On the other hand,

Notation 3.1 can be used without crucial modifications to handle also more general model

settings (see again Leippold, Trojani and Vanini (2002)) and allows us to fully exploit the

quadratic structure of our AL problems in the proofs presented in the appendix.

3.1. Basic Problem and General Solution

By imposing the constraints vT−k = 0, k = 1, .., T , the relevant optimization problem with

exogenous liabilities can be written as:

(3.8)

{
maxu

[
E(γST − S2

T )
]

s.t. (2.1) , vT−k = 0 , k = 1, .., T
.

Let e′1 = (1, 0) and define recursively for k = 1, 2, .., T, the matrix sequence of excess returns

as

(3.9) De
T−k =

[
R0e

T−k 0
0 Q0e

T−k

]
,
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where

R0e
T−k = R0e

T−k+1R
0
T−k −

ET−k

(
R0e

T−k+1R
1
T−kR

0e
T−k+1R

0
T−k

)

ET−k

[(
R0e

T−k+1R
1
T−k

)2] R0e
T−k+1R

1
T−k ,

Q0e
T−k = Q0e

T−k+1Q
0
T−k −

ET−k

(
R0e

T−k+1R
1
T−kQ

0e
T−k+1Q

0
T−k

)

ET−k

[(
R0e

T−k+1R
1
T−k

)2] R0e
T−k+1R

1
T−k ,

where the initial matrix De
T ∈ R

2×2 is the identity matrix. The optimal AL policy is defined by

the quadruplet (x− u∗T−k, u
∗
T−k, lT−k, 0), where the first component is the optimal investment

in the benchmark asset, the second one the optimal investment in the second asset and the

third one the optimal investment in the benchmark liability. The fourth component is zero by

construction in the current setting, so that for the exogenous liabilities problem under scrutiny

only u∗T−k really needs to be determined. The optimal policy to (3.8) is provided by the next

proposition.

Proposition 3.2. Given the optimization problem (3.8), the optimal policy for k = 1, 2, .., T,

equals (xT−k − u∗T−k, u
∗
T−k, lT−k, 0), where

u∗T−k = γ
e′1ET−k(D

e
T−k+1GT−k)

′
I

e′ET−k

(
G′

T−kD
e′

T−k+1II
′De

T−k+1GT−k

)
e1

−
e′1ET−k

(
G′

T−kD
e′

T−k+1II
′De

T−k+1DT−k

)
zT−k

e′ET−k

(
G′

T−kD
e′

T−k+1II
′De

T−k+1GT−k

)
e1

.(3.10)

The optimal policy u∗T−k in Proposition 3.2 is a linear combination of a state-independent

portfolio weighted by a risk aversion related term (the coefficient γ) and a state-dependent

portfolio related to the contemporaneous level of assets and liabilities. The optimal coefficients

of these two basis portfolios are described by a function of the second moments in the excess

returns matrices DeG and DeD. In order to clarify the structure of the optimal policy in

Proposition 3.2 we therefore first consider the one- and two-period model setting in some more

detail. With the insights gained from this preliminary analysis, we then introduce a geometric

symbology based on orthogonal projections which allows us to fully understand the structure

of the AL optimal policies and MVF also within a general multiperiod model.
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3.2. Single-Period Optimization

For k = 1, Proposition 3.2 provides the solution to the static problem in Sharpe and Tint (1990)

and Keel and Müller (1995). The optimal one-period policy directly follows from (3.10),

u∗T−1 = γ
e′1E(GT−1)

′I

e′1E
(
G′

T−1II
′GT−1

)
e1

−
e′1E

(
G′

T−1II
′DT−1

)
zT−1

e′1E
(
G′

T−1II
′GT−1

)
e1

= γ
E(R1

T−1)

E
((
R1

T−1

)2)

︸ ︷︷ ︸
State Independent

−
E
(
R1

T−1R
0
T−1

)
xT−1 − E

(
R1

T−1Q
0
T−1

)
lT−1

E
((
R1

T−1

)2)

︸ ︷︷ ︸
State Dependent ALM MSM Portfolio

.

The optimal portfolio consists of a state-dependent portfolio yielding a minimum second mo-

ment (MSM) surplus at time T (see below) and a state-independent portfolio (weighted by the

risk aversion term γ). The implied optimal surplus at time T is

ST = xT−1R
0
T−1 − lT−1Q

0
T−1 + u∗T−1R

1
T−1

= xT−1R
0e
T−1 − lT−1Q

0e
T−1 + γR1e

T−1,(3.11)

where

R0e
T−1 = R0

T−1 −
E
(
R1

T−1R
0
T−1

)

E
((
R1

T−1

)2) R1
T−1 = R0

T−1 −

〈
R0

T−1, R
1
T−1

〉
〈
R1

T−1, R
1
T−1

〉R1
T−1,

Q0e
T−1 = Q0

T−1 −
E
(
R1

T−1Q
0
T−1

)

E
((
R1

T−1

)2) R1
T−1 = Q0

T−1 −

〈
Q0

T−1, R
1
T−1

〉
〈
R1

T−1, R
1
T−1

〉R1
T−1,

R1e
T−1 =

E(R1
T−1)

E
((
R1

T−1

)2)R
1
T−1 =

〈
ll, R1

T−1

〉
〈
R1

T−1, R
1
T−1

〉R1
T−1,(3.12)

We denote by 〈·, ·〉 the scalar product in the space L2 of square integrable random variables and

by ll the risk free payoff of 1 at time T . Hence, the returns R0e
T−1, Q

0e
T−1 in (3.11) are orthogonal

projections of benchmark assets and liability returns on their orthogonal complement relatively

to the asset excess return R1
T−1, while R1e

T−1 is an orthogonal projection of the pay-off ll on

the asset excess return. This suggests that for an extension of the static result (3.11) to

the multiperiod setting a geometric notation based on orthogonal projections would highlight

the general structure behind multiperiod AL portfolio problems. We introduce the relevant

definitions below.
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Definition 3.3. Let P : L2 → L2 be an orthogonal projection, that is P is self-adjoint and

P
2 = P.

1. We denote by PMT−k
(X) the orthogonal projection of a vector XT−k ∈ L2 on a finite di-

mensional subspace MT−k ⊂ L2. In particular, we will write PYT−k
(X) for the orthogonal

projection of XT−k on the space spanned by YT−k ∈ L2.

2. For a subspace M ⊂ L2, we write M⊥ for the orthogonal complement of M , that is the

space of all vectors Y ∈ L2 satisfying 〈Y,X〉 = 0 for all X ∈M . Similarly, Y ⊥ denotes the

orthogonal complement of the vector space generated by Y . Hence, for any two vectors

X,Y ∈ L2 it follows:

X = PY (X) + PY ⊥ (X) .

Equipped with these definitions, we rewrite the equations in (3.12) in a more compact form

(see Figure 1):

(3.13) R0e
T−1 = P

R
1,⊥
T−1

(
R0
)
, Q0e

T−1 = P
R

1,⊥
T−1

(
Q0
)
, R1e

T−1 = PR1
T−1

(ll) .

In particular, (3.13) stresses the fact that the optimal final surplus ST has been decomposed

in (3.11) as a linear combination of two L2-orthogonal pay-offs, namely xT−1PR
1,⊥
T−1

(
R0
)
−

lT−1PR
1,⊥
T−1

(
Q0
)

and PR1
T−1

(ll). The pay-off difference

xT−1PR
1,⊥
T−1

(
R0
)
− lT−1PR

1,⊥
T−1

(
Q0
)

is the one-period global MSM final surplus, which is obtained as the difference between a

one period assets-only and a one-period liabilities-only MSM pay-off (corresponding to γ = 0,

lT−1 = 0, and γ = 0, xT−1 = 0, respectively). On the other hand, PR1
T−1

(ll) is the asset excess

return which is nearest to the fictive risk-free pay-off ll (in L2 norm). Notice, that while the

global MSM pay-off xT−1PR
1,⊥
T−1

(
R0
)
− lT−1PR

1,⊥
T−1

(
Q0
)

is the final surplus of a portfolio with

a generally non zero initial position in both assets and liabilities (xT−k, lT−k > 0), the pay-off

PR1
T−1

(ll) is an asset excess return and can be generated by a zero initial cost portfolio investing

only in the available asset returns R0
T−1 and R̃T−1.
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Figure 1. Geometry of the projections.

The orthogonal decomposition (3.11) represents the MVF for ST , which is defined below for

completeness.

Definition 3.4. A final surplus ST belongs to the MVF if its variance is minimal for some

targeted final expected surplus.

We set

ST−1,0 = xT−1PR
1,⊥
T−1

(
R0
)
− lT−1PR

1,⊥
T−1

(
Q0
)
,

for the MSM surplus and define

AT−1 =
1

E
(
PR1

T−1
(ll)
) − 1,

BT−1 =
E (ST−1,0)

E
(
PR1

T−1
(ll)
) ,

CT−1 =
[E (ST−1,0)]

2

E
(
PR1

T−1
(ll)
) + E

(
S2

T−1,0

)
.(3.14)

The explicit expression for the MVF associated to the static version of problem (3.8) is given

in the next proposition.
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Proposition 3.5. Any surplus ST on the MVF is of the form

ST = xT−1PR
1,⊥
T−1

(
R0
)
− lT−1PR

1,⊥
T−1

(
Q0
)

+ γPR1
T−1

(ll) , γ ∈ R .

The MVF in (E (ST ) , var (ST ))-space is given by

var (ST ) = AT−1 · [E (ST )]2 − 2BT−1 · E (ST ) + CT−1 ,

with AT−1, BT−1, CT−1, defined in (3.14).

We note that while BT−1 and CT−1 depend on Q0
T−1, the MVF curvature parameter AT−1

does not. As a consequence, in a static AL optimization with exogenous liabilities the implied

MVF if affected by liabilities in only two ways. First, through a “vertical” shift caused by the

parameter CT−1 and, second, by a “sidewise” shift caused by the parameter BT−1. Therefore,

the introduction of liabilities induces a pure translation of the MVF in the mean-variance

space, caused by a modified global MSM surplus ST−1,0. The direction of the translation of

the AL MVF depends on Q0
T−1 only through the first and second moments of ST−1,0, which

can be computed explicitly. A similar structure arises in the multiperiod setting below.

3.3. Two-Period Optimization

To clarify the differences between single-period and multiperiod optimizations we consider

next the two-period problem. Thanks to the geometric notation (3.13), the structure behind

the solution for the more general case will be evident. For k = 2 the optimal policy is

u∗T−2 = γ
ET−2(R

0e
T−1R

1
T−2)

ET−2

((
R0e

T−1R
1
T−2

)2)

︸ ︷︷ ︸
State Independent

−
ET−2

(
R0e

T−1R
1
T−2R

0e
T−1R

0
T−2

)
xT−2 − ET−2

(
R0e

T−1R
1
T−2Q

0e
T−1Q

0
T−2

)
lT−2

ET−2

((
R0e

T−1R
1
T−2

)2)

︸ ︷︷ ︸
State Dependent ALM MSM Portfolio

.
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Recall that the expressions R0e
T−1, Q

0e
T−1 contain expectations with respect to information avail-

able at time T − 1. In analogy to the single-period case we decompose the optimal surplus at

time T as

ST =
(
xT−2R

0
T−2 + u∗T−2R

1
T−2

)
R0e

T−1 − lT−2Q
0
T−2Q

0e
T−1 + γR1e

T−1

= xT−2R
0e
T−2 − lT−2Q

0e
T−2 + γ

(
R1e

T−2 +R1e
T−1

)
,(3.15)

where6

R0e
T−2 = R0

T−2R
0e
T−1 −

〈
R1

T−2R
0e
T−1, R

0
T−2R

0e
T−1

〉
〈
R1

T−2R
0e
T−1, R

1
T−2R

0e
T−1

〉R1
T−2R

0e
T−1 ,

Q0e
T−2 = Q0

T−2Q
0e
T−1 −

〈
R1

T−2R
0e
T−1, Q

0
T−2Q

0e
T−1

〉
〈
R1

T−2R
0e
T−1, R

1
T−2R

0e
T−1

〉R1
T−2R

0e
T−1 ,

R1e
T−2 =

〈
ll, R1

T−2R
0e
T−1

〉
〈
R1

T−2R
0e
T−1, R

1
T−2R

0e
T−1

〉R1
T−2R

0e
T−1 .(3.16)

Comparing (3.16) with (3.12), we see that the returns R0e
T−2, Q

0e
T−2, R

1e
T−2 are more complicated

projections than in the static case. Specifically, by Definition 3.3 we have:

R0e
T−2 = P

(R1
T−2

R0e
T−1)

⊥

(
R0

T−2R
0e
T−1

)
= P

(R1
T−2

R0e
T−1)

⊥

(
R0

T−2PR
1,⊥
T−1

(
R0
))

,

Q0e
T−2 = P

(R1
T−2

R0e
T−1)

⊥

(
Q0

T−2Q
0e
T−1

)
= P

(R1
T−2

R0e
T−1)

⊥

(
Q0

T−2PR
1,⊥
T−1

(
Q0
))

,

R1e
T−2 = P(R1

T−2
R0e

T−1)
(ll) .

Hence,
{
R0e

T−2, Q
0e
T−2

}
and R1e

T−2 are orthogonal sets of returns. Moreover, by the law of

iterated expectations,

〈
R1

T−2R
0e
T−1, R

1
T−1

〉
=

〈
R1

T−2PR
1,⊥
T−1

(
R0
)
, R1

T−1

〉
= 0 ,

〈
R0

T−2R
0e
T−1, R

1
T−1

〉
=

〈
R0

T−2PR
1,⊥
T−1

(
R0
)
, R1

T−1

〉
= 0 ,

〈
Q0

T−2Q
0e
T−1, R

1
T−1

〉
=

〈
Q0

T−2PR
1,⊥
T−1

(
Q0
)
, R1

T−1

〉
= 0 ,

implying

span
{
R0e

T−2, Q
0e
T−2, R

1e
T−2

}
⊥ R1

T−1 .

6For simplicity, we use the notation 〈·, ·〉 for the scalar product conditioned on the information at time T − 2
(eg. also Hansen and Richard (1987)). No confusion should occur.
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As a consequence, (3.15) is an orthogonal decomposition of ST in a linear combination of three

L2-orthogonal returns xT−2R
0e
T−2 − lT−2Q

0e
T−2, R

1e
T−2 and R1e

T−1. Therefore, the same general

geometric structure as for the single-period case arises: Single projections are replaced by

compositions of projections on suitable subspaces of random variables measurable with respect

to information at time T − 1 and T − 2, respectively. Precisely, xT−2R
0e
T−2 − lT−2Q

0e
T−2 is now

the two-period global MSM return for AL portfolios, obtained as the difference between a two-

period asset-only and a two-period liabilities-only MSM payoff. Further, R1e
T−2 is the projection

of the final risk free pay-off ll of the space of two-period asset excess returns orthogonal to the

final period excess return R1
T−1. This space is generated by the two-period asset excess return

R1
T−2R

0e
T−1. R1

T−2 is the asset excess return of a zero initial cost investment from T − 2 to

T − 1, while R0e
T−1 is the return on the one-period MSM asset only portfolio. Therefore, R1e

T−2

can be interpreted as the two-period asset excess return of a particular asset-only - zero initial

cost - strategy which is exposed to the second asset risk only in the transaction period from

T − 2 to T − 1. Roughly speaking, this portfolio produces a ”local” exposure to the second

asset return relatively to the benchmark asset return over the time span from T − 2 to T − 1.

Therefore, we can interpret R1e
T−2 as a ”local”, two-period, excess asset return. Summarizing,

the final surplus ST has been decomposed as the orthogonal sum of a two-period MSM surplus

xT−2R
0e
T−2 − lT−2Q

0e
T−2 and two ”local” asset excess returns R1e

T−2 and R1e
T−1. An analogous

decomposition arises in the general multiperiod setting below.

Since the MVF implied for the two-period model can be represented by a linear combination

of orthogonal pay-offs, the same arguments and proofs as for the static case readily apply

with comparative statics for the two-period MVF that can be computed explicitly. However,

compared to the single period case, a major difficulty shows up. When calculating the MVF,

some non-linear nested difference equations for R0e, R1e and Q0e
0 have to be solved. Considering

the difference equations further, it appears that a convolution operator over time characterizes

the non-linear part.
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Having clarified the basic geometric structure of the solutions in the simplified two-period

setting we now discuss the general multiperiod case.

3.4. Multiperiod Optimization

For arbitrary k, the optimal policy u∗T−k is again a linear combination of a state dependent

and a state independent portfolio. We omit the explicit expression corresponding to (3.10),

since it follows from the above arguments. Iterating the same arguments as for the two-period

model, the orthogonal decomposition generalizing (3.11) and (3.15) to the k-period setting is

obtained by decomposing the optimal final surplus as

ST = xT−kR
0e
T−k − lT−kQ

0e
T−k + γ

k−1∑

i=0

R1e
T−k+i ,(3.17)

where

R0e
T−k = P

(R1
T−k

R0e
T−k+1)

⊥

(
R0

T−kR
0e
T−k+1

)
,

Q0e
T−k = P

(R1
T−k

R0e
T−k+1)

⊥

(
Q0

T−kQ
0e
T−k+1

)
,

R1e
T−k+i = P(R1

T−k+i
R0e

T−k+i+1)
(ll) .

Hence, the set of T -time pay-offs

{
xT−kR

0e
T−k − lT−kQ

0e
T−k, R

1e
T−k, ..., R

1e
T−2, R

1e
T−1

}
,

is an orthogonal system whose span contains the k-period MVF. We call the set B = {R0e
T−k,

Q0e
T−k, R

1e
T−k,...,R

1e
T−2, R

1e
T−1} a dynamic basis of the model. Recall that for any j = 1, .., k −

1, R0e
T−k+j is a k − j-period asset only MSM return. Therefore, the return R1e

T−k+i can be

interpreted for any i = 0, .., k − 1 as a ”local”, k − i-period, asset excess return (cf. again the

discussion in Section 3.3 for the two-period setting). Summarizing, the final surplus ST is thus

decomposed in an orthogonal sum of a k-period MSM surplus xT−kR
0e
T−k − lT−kQ

0e
T−k and k

”local” asset excess returns R1e
T−k, .., R

1e
T−1.
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Expression (3.17) yields an easily interpretable representation for the multiperiod MVF

implied by the underlying model parameters. Indeed, setting

ST−k,0 = xT−kR
0e
T−k − lT−kQ

0e
T−k , ST−k,e =

k−1∑

i=0

R1e
T−k+i ,

and

(3.18) AT−k =
1

E (ST−k,e)
− 1 , BT−k =

E (ST−k,0)

E (ST−k,e)
, CT−k =

[E (ST−k,0)]
2

E (ST−k,e)
+ E

(
S2

T−k,0

)
,

the implied k-period MVF is determined in the next proposition.

Proposition 3.6. Any surplus ST on the k-period MVF is of the form:

(3.19) ST = ST−k,0 + γST−k,e , γ ∈ R ,

and the MVF in (E (ST ) , var (ST ))-space is given by

(3.20) var (ST ) = AT−k · [E (ST )]2 − 2BT−k · E (ST ) + CT−k ,

with AT−k, BT−k, CT−k defined in (3.18).

Using the above decomposition of the optimal surplus, the contribution of taking liabilities

into account in the assets optimization can be immediately disentangled:

ST = xT−kR
0e
T−k + γST−k,e − lT−k

k−1∏

i=0

Q0
T−k+i

︸ ︷︷ ︸
(A)

− lT−k

(
Q0e

T−k −
k−1∏

i=0

Q0
T−k+i

)

︸ ︷︷ ︸
(B)

.

(A) is the optimal surplus when neglecting liabilities in the portfolio optimization and (B) is the

excess surplus when taking liabilities into account. Whereas (A) depends on the initial levels

of assets and liabilities, the moments of the asset return processes as well as the investor’s risk

aversion, the excess surplus (B) only depends on the initial level of liabilities and the joint

moment structure of both assets and liabilities, but not on the risk aversion.

In principle, given a times series model for returns, the pay-offs in (3.19) can be made more

explicit in order to obtain the implied optimal policy and the MVF in (3.20). For the i.i.d.

benchmark case the following closed-form expressions hold for the dynamic basis B.
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Proposition 3.7. If returns are i.i.d. it follows for i = 0, .., k − 1:

R0e
T−k =

k−1∏

i=0

P
R

1,⊥

T−k+i

(R0) ,

R1e
T−k+i = PR1

T−k+i
(ll)

k−1∏

j=i+1

PP
R

1,⊥
T−k+j

(R0) (ll) ,

Q0e
T−k =

k−1∏

i=0

Q0
T−k+i −

k−1∑

i=0


PR1

T−k+i

(
Q0
) k−1∏

j=i+1

PP
R

1,⊥
T−k+j

(R0)

(
Q0
) i−1∏

j=0

Q0
T−k+j


 .

The explicit expressions in Proposition 3.7 can readily be calculated because they are simple

products and (or) linear combinations of projections of single-period AL returns. For instance,

the return R0e
T−k equals

R0e
T−k =

k−1∏

i=0

P
R

1,⊥

T−k+i

(R0) =
k−1∏

i=0

E
[
R0

T−k+i

∣∣R1,⊥
T−k+i

]
,

which is a product of prediction errors of R0
T−k+i using the instrument R1

T−k+i, i = 0, . . . , k−1.

Given the explicit expressions for the dynamic basis in Proposition 3.7, the explicit structure

of the optimal strategy u∗T−k is obtained.

Corollary 3.8. If returns are i.i.d. the optimal policy u∗T−k for problem (3.8) is given by

u∗T−k = γu1
T−k −

(
ux

T−kxT−k − ul
T−klT−k

)
,

where

u1
T−k =

〈
ll, R1

T−1

〉
〈
R1

T−1, R
1
T−1

〉 ·

〈
ll,P

R
1,⊥
T−1

(R0)
〉k−1

〈
P

R
1,⊥
T−1

(R0),P
R

1,⊥
T−1

(R0)
〉k−1

,

ux
T−k =

〈
R0

T−1, R
1
T−1

〉
〈
R1

T−1, R
1
T−1

〉 ,

ul
T−k =

〈
Q0

T−1, R
1
T−1

〉
〈
R1

T−1, R
1
T−1

〉 ·

〈
Q0

T−1,PR
1,⊥
T−1

(R0)
〉k−1

〈
P

R
1,⊥
T−1

(R0),P
R

1,⊥
T−1

(R0)
〉k−1

.

In Corollary 3.8 the part ux
T−kxT−k of the optimal policy is proportional to the total assets

value xT−k at any time T − k. Notice, that the coefficient ux
T−k is time-invariant and depends
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only on the (second) moments of the assets return process. Similarly, the part ul
T−klT−k is pro-

portional to the total value of liabilities lT−k. However, the coefficient ul
T−k is time-dependent

and depends on the joint (second) moment structure of the AL return process. Finally, the

state independent, but risk-aversion dependent, deterministic assets portfolio γu1
T−k is (as

ul
T−k) time-variant and depends (as ux

T−k) only on the moments of the assets return process.

By contrast to ux
T−k, in u1

T−k both the first and the second moments of the assets return

process are present.

Clearly, whenever ul
T−k is zero for all k, the presence of liabilities does not affect the implied

optimal solution. Two cases can be identified for which the optimal portfolio composition is

independent of liabilities. The first case requires the scalar product of the benchmark liability

return and the excess asset return to be zero, i.e.,

(3.21)
〈
Q0

T−1, R
1
T−1

〉
= 0.

The second condition requires the benchmark liability return to be orthogonal to P
R

1,⊥
T−1

(R0),

which is the part of benchmark asset return orthogonal to the excess asset return. Specifically,

this boils down the condition

(3.22) 0 =
〈
Q0

T−1, R
0
T−1

〉 〈
R1

T−1, R
1
T−1

〉
−
〈
R0

T−1, R
1
T−1

〉 〈
R1

T−1, Q
0
T−1

〉
,

which can be interpreted as a singularity condition on the matrix
[ 〈

R0
T−1, Q

0
T−1

〉 〈
R0

T−1, R
1
T−1

〉
〈
R1

T−1, Q
0
T−1

〉 〈
R1

T−1, R
1
T−1

〉
]

of AL returns second moments. Corollary 3.8 also identifies clear conditions for a myopic

strategy to be optimal also in the multiperiod setting. Indeed, from the definition of u1
T−k and

ul
T−k we see that a myopic strategy can be optimal also in the multiperiod model if and only

if

〈ll,PR1⊥
T−1

(R0)〉 = 〈Q0
T−1,PR1⊥

T−1
(R0)〉 = 〈PR1⊥

T−1
(R0),PR1⊥

T−1
(R0)〉 .

As a consequence, for a given arbitrary joint moment structure of assets and liabilities the

myopic strategy yields typically a suboptimal dynamic portfolio in the multiperiod context.
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Moreover, the final assets value of an optimal and a myopic strategy can be computed explic-

itly using our projection formalism, and the differences between the final pay-offs of the two

strategies can be clearly identified, as in the next immediate corollary.

Corollary 3.9. If returns are i.i.d., the final asset value for the myopic investor, xm
T , is given

by

xm
T = xT−k

k∏

i=1

PR1⊥
T−k

(R0) + lT−k

k−1∑

i=0


PR1

T−k+i
(Q0)

k−1∏

j=i+1

PR1⊥
T−k+j

(R0)
i−1∏

j=0

QT−k+j




+γ
k−1∑

i=0


PR1

T−k+i
(ll)

k−1∏

j=i+1

PR1⊥
T−k+j

(R0)


 ,

whereas the final asset value implied by a dynamically optimal strategy, x∗T , is given by

x∗T = xT−k

k∏

i=1

PR1⊥
T−k

(R0) + lT−k

k−1∑

i=0


PR1

T−k+i
(Q0)

k−1∏

j=i+1

PP
R1⊥

T−k+j

(R0)(Q
0)

i−1∏

j=0

QT−k+j




+γ
k−1∑

i=0


PR1

T−k+i
(ll)

k−1∏

j=i+1

PP
R1⊥

T−k+j
(R0)(ll)


 .

Comparing the final asset values xm
T and x∗T in Corollary 3.9, the differences arise only be-

cause of the different projections PP
R1⊥

T−k+j
(R0)(R

0), PP
R1⊥

T−k+j
(R0)(R

0) in xm
T and PP

R1⊥
T−k+j

(R0)(ll),

PP
R1⊥

T−k+j
(R0)(Q

0) in x∗T , respectively. More specifically, the following features hold:

• In the simple case, where there are no liabilities, lT−k = 0, and the investor is arbi-

trarily risk averse, i.e. γ → 0, the investor is not concerned about time-diversification

effects arising from multiperiod optimization. The myopic strategy coincides with the

dynamically optimal strategy. However, as soon as there are non-zero liabilities, the two

strategies diverge, even when γ → 0.

• For xT−k → ∞ (“unbounded wealth”), lT−k → 0, the accumulation of assets (xm
T /xT−k

and x∗T /xT−k, respectively) is equal for both the myopic and the dynamically optimal

strategy. The final assets return corresponds to the one of the global assets-only MSM

strategy. In this case, the investor is indifferent between the two strategies, at least in an

approximate way.
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• The difference of the two strategies only enters in the parts, which are dependent on the

current value of liabilities lT−k and the risk aversion γ. However, the part that depends

on the current asset value xT−k remains unaffected, i.e. the assets-only MSM portfolio is

the same for both strategies.

To study the behavior of the MV frontiers in a general multiperiod AL setting, we also

need an explicit expression for the surplus variance in terms of E(ST ). The next corollary

accomplishes this task and provides explicit expressions for the implied MVF in the i.i.d. case.

Corollary 3.10. If returns are i.i.d., the k-period MVF in (E (ST ) , var (ST ))-space is given

by:

var (ST ) = AT−k · [E (ST )]2 − 2BT−k · E (ST ) + CT−k , k = 1, .., T ,

where AT−k, BT−k, CT−k are defined in (3.18) and the following explicit expressions hold true:

〈
ll, R1e

T−k+i

〉
=

〈
ll,PR1

T−1
(ll)
〉〈

ll,PP
R

1,⊥
T−1

(R0) (ll)

〉k−i−1

,

〈
ll, R0e

T−k

〉
=

〈
ll,P

R
1,⊥
T−1

(
R0
)〉k

,

〈
ll, Q0e

T−k

〉
= 〈ll, Q0

T−1〉
k −

k−1∑

i=0

〈ll, Q0
T−1〉

i
〈
ll,PR1

T−1

(
Q0
)〉〈

ll,PP
R

1,⊥
T−1

(R0)

(
Q0
)〉k−i−1

,

and

〈
R0e

T−k, R
0e
T−k

〉
=

〈
R0

T−1,PR
1,⊥
T−1

(
R0
)〉k

,

〈
Q0e

T−k, R
0e
T−k

〉
=

〈
Q0

T−1,PR
1,⊥
T−1

(
R0
)〉k

,

〈
Q0e

T−k, Q
0e
T−k

〉
=

〈
Q0

T−1, Q
0
T−1

〉k

−
k−1∑

i=0

〈
Q0

T−1, Q
0
T−1

〉i 〈
Q0

T−1,PR1
T−1

(
Q0
)〉〈

Q0
T−1,PP

R
1,⊥
T−1

(R0)

(
Q0
)〉k−i−1

.

Since all required scalar products in Corollary 3.10 can be expressed as sums and powers

of simple scalar products of single-period returns and projections of single period returns,

computation of the desired multiperiod frontiers becomes a straightforward task in applications.

In Section 4 we illustrate the usefulness of the representation in Corollary 3.10 by quantifying
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the impact of the investment horizon on the AL multiperiod MVF in some numerical examples

and by characterizing analytically the set of inial funding ratios.

3.5. Several Assets

When using the geometric projections formalism introduced above, the generalization of the

solutions for a two assets-one liability model to a general setting with an arbitrary number of

assets becomes a straightforward task. In this section we briefly show how this can be achieved

without modifying the basic geometric structure of the previous sections.

First, we extend the asset return processes to an R
(n+1)-valued process given by:

(R0
t , R̃

1
t , R̃

2
t , .., R̃

n
t )′t=0,..,T−1 .

Then, we define by Rt = (R1
t , R

2
t , .., R

n
t ) the row vector of the extended matrix of assets excess

returns,

R =
(
Ri

j

)
1≤i≤n , 0≤j≤T−1

,

with Ri
j = R̃i

j − R0
j . By ui

t we denote the amount of current total assets value xt that is

allocated to the asset with return R̃i
t at time t. The implied assets and liabilities dynamics for

the multi-assets case is

xt+1 = R0
txt + Rtut , lt+1 = Q0

t lt +Q1
t vt ,

with u′t =
(
u1

t , .., u
n
t

)
. Hence, the state dynamics for assets and liabilities can be written in

matrix form as

zt+1 = Dtzt +Gtdt ,

with Dt defined in Notation 3.1 and Gt, dt given by

Gt =

[
Rt 0

01×n Q1
t

]
, dt =

(
ut

vt

)
.

Formally, the relevant multiperiod portfolio problem is of the same general form as in (3.8):

(3.23)

{
maxu,v

[
E(γST − S2

T )
]

s.t. (2.1) , vT−k = 0 , k = 1, .., T
,
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with the only difference that now the control variable u is a vector valued process. Define now

recursively for k = 1, 2, .., T, the following matrix sequence of excess returns

De
T−k =

[
R0e

T−k 0
0 Q0e

T−k

]
,

where

R0e
T−k = R0

T−kR
e0
T−k+1

−RT−kR
e0
T−k+1

[
E
(
R′

T−kR
e0
T−k+1RT−kR

e0
T−k+1

)]−1
E
(
R′

T−kR
e0
T−k+1R

0
T−kR

e0
T−k+1

)
,

Q0e
T−k = Qe0

T−k+1Q
0
T−k

−RT−kR
e0
T−k+1

[
E
(
R′

T−kR
e0
T−k+1RT−kR

e0
T−k+1

)]−1
E
(
R′

T−kR
e0
T−k+1Q

0
T−kQ

e0
T−k+1

)
,

for an initial identity matrix De
T ∈ R

2×2. With these definitions, the optimal policy to the n

assets - one liability problem in (3.23) is immediately obtained as for the simpler case analyzed

in the previous sections.

Proposition 3.11. For k = 1, 2, .., T, the optimal policy d∗′T−k =
(
u∗

′

T−k, 0
)

for problem (3.23)

is given by:

u∗T−k = γ
[
E
(
R′

T−kR
0e
T−k+1RT−kR

0e
T−k+1

)]−1
E(R′

T−kR
0e
T−k+1)

−
[
E
(
R′

T−kR
0e
T−k+1RT−kR

0e
T−k+1

)]−1
E(R′

T−kR
0e
T−k+1I

′DT−kD
e
T−k+1)zT−k .

For the implied optimal surplus at time T it follows:

ST = R0e
T−kxT−k +Q0e

T−klT−k + γ

k−1∑

i=0

PMT−k+i
(ll) ,(3.24)

where MT−k+i is the linear span of the vector RT−k+i weighted by the orthogonal returns

R0e
T−k+i+1. Following the same arguments as for the case with two assets, the same geometric

structure for the optimal portfolio policy arises.

Corollary 3.12. If returns are i.i.d. the optimal policy d∗′T−k =
(
u∗

′

T−k, 0
)

for problem (3.23)

is given by:

u∗T−k = γu1
T−k −

(
ux

T−kxT−k − ul
T−klT−k

)
,
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where

u1
T−k =

[
E
(
R′

T−1RT−1

)]−1
E
(
R′

T−1ll
)
·

〈
ll,PM⊥

T−1
(R0)

〉k−1

〈
PM⊥

T−1
(R0),PM⊥

T−1
(R0)

〉k−1
,

ux
T−k =

[
E
(
R′

T−1RT−1

)]−1
E
(
R′

T−1R
0
T−1

)
,

ul
T−k =

[
E
(
R′

T−1RT−1

)]−1
E
(
R′

T−1Q
0
T−1

)
·

〈
Q0

T−1,PM⊥

T−1
(R0)

〉k−1

〈
PM⊥

T−1
(R0),PM⊥

T−1
(R0)

〉k−1
.

and PMT−1
denotes the projection on the linear span generated by RT−1.

As expected, the same basic geometric structure as for the two assets case arises. Specifi-

cally, ux
T−kxT−k is now a vector of allocations proportional to the current assets value xT−k,

with weights ux
T−k that are time invariant and that depend only on the joint second moment

structure of assets returns. The portfolio part ul
T−klT−k is defined by time varying weights

ul
T−k that depend on the joint second moment structure of assets and liabilities. Finally, u1

T−k

depends again on the first two moments of assets returns. Moreover, notice that in the time

varying coefficients defining the time varying part of ul
T−k and u1

T−k, projections are now on

the space orthogonal to all assets excess returns.

Using Corollary 3.12 we can easily derive for the implied AL-MVF analogous features as the

ones proved for the simple two-assets model. We omit the corresponding proofs and results

since they are identical to those presented in the previous sections (cf. for instance Proposition

3.6), basically only with projections on the space spanned by R1
T−1 in the two assets model

that are replaced by projections on the space spanned by the n − 1 dimensional set RT−1 in

the multi assets context.

4. Applications

In this section we illustrate the usefulness of a geometric approach to multiperiod mean

variance portfolio selection by analyzing in some numerical example a few specific issues related

to the multi period optimization of AL portfolios. We illustrate (i) the time diversification

effects arising through a dynamic policy selection, (ii) the impact of the investment horizon



26 MARKUS LEIPPOLD, FABIO TROJANI AND PAOLO VANINI

on the dynamically optimal portfolio weights, and (iii) the determination of an optimal initial

funding ratio for AL portfolios.

4.1. Time Diversification and MVF

We consider a model with i.i.d. returns and an investment horizon of one year split into

h transaction periods. We compare the MVF implied by a dynamically optimal investment

strategy and the one implied by a static strategy that fixes the optimal portfolio once at the

beginning of the investment period. This helps in quantifying the time diversification effects

deriving from adopting a dynamically optimal AL strategy in mean variance portfolio selection,

given an a priori moment structure of the AL return process.

The dynamic strategy rebalances the portfolio h times according to the optimal portfolio

weights calculated by the dynamically optimal multiperiod strategy of the previous sections

(cf. Corollary 3.8) and uses h i.i.d returns with the associated first and second moments to

model the implied AL dynamics. By contrast, the static strategy optimizes the portfolio once

at the beginning of the investment horizon and based on yearly returns with the associated

first and second moments. In this case no portfolio rebalancing occurs after the initial date.

We fix the inial assets and liabilities as x0 = l0 = 1. The vector of expected returns of the

two assets and the benchmark liability, respectively, is µ = (µ1, µ2, µ3)
′, so that the expected

excess asset return, E(R1), is given by µ2 − µ1. In our examples the vector of yearly mean

returns is

µ = (1.03, 1.13, 1.04)′

The matrix of second moments returns is obtained from a yearly covariance matrix Σ given by

Σ =




0.0040 0.0026 0.0006
0.0026 0.0589 0.0149
0.0006 0.0149 0.0100


 .

To obtain the relevant moment matrices for a dynamic strategy optimizing over h transaction

periods we first write each yearly return as R =
∏h

i=0Ri and then compute the relevant

moments using the i.i.d assumption. Figure 2 plots the implied MVF for h = 1, 2, 12, 360.
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Figure 2. Dynamically Optimal Strategy vs. Static Strategy. The MVF
through point C is the frontier implied by a one-year surplus optimization. The
frontier through point B is the frontier of a one-year surplus optimization with
one rebalancing after six months (i.e. h = 2). The frontier through point A
is the frontier with monthly rebalancing (i.e. h = 12). Finally, the frontier
plotted with a straight line is the MVF implied by a strategy that rebalances
daily the AL portfolio (i.e. h = 360).

For the given parameter choice, the MVF are basically shifted to the left when h increases.

Specifically, point C, B, A, on the different frontiers show that for the given level of expected

surplus the implied variance decreases from about 0.047 to about 0.042 and 0.038, respectively,

when going from a static optimization to one with 2 and 12 subperiods, respectively. Finally,

the MVF implied by h = 360 (the straight frontier in Figure 2) is very near to the one

implied by h = 12. Therefore, in this example it seems that for practical purposes a dynamic

optimization involving no more than 12 subperiods would produce a mean variance performance

that is essentially indistinguishable from the one obtained by an almost continuous optimal

rebalancing.
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4.2. Investment Horizon and MVF

This section quantifies in some numerical example the dependence of the dynamically optimal

AL portfolio structures on the given time horizon. We achieve this by considering an investment

horizon composed by T = 36 transaction periods and by analyzing the dynamics of the implied

MFV for the terminal surplus as a function of a decreasing time horizon T − k (an increasing

current time k). Specifically, we focus on the changes in curvature of the MVF that are implied

by the dynamically optimal strategy when the investment horizon T − k shrinks to 0.

Recall that the MVF at time k for the time horizon T is given by

var (ST ) = AT−k · [E (ST )]2 − 2BT−k · E (ST ) + CT−k .

As already noted, we restrict ourselves to the discussion of the curvature parameter AT−k.

Using Proposition 8 the dynamics of the curvature parameter AT−k in terms of AT−s, s ≥ k,

are

AT−k =
1 − ψs

1 − ψk
AT−s +

ψ

1 − ψ

(1 − ψs)(1 − ψs−1) − (1 − ψk)(1 − ψk−1)

(1 − ψk)
,(4.25)

where

ψ =
〈ll,P

R
1,⊥
T−1

(R0)〉2

〈P
R

1,⊥
T−1

(R0),P
R

1,⊥
T−1

(R0)〉
.

For the given time horizon T we determine the initial curvature A0 and compute recursively

AT−k assuming xT−k = lT−k = 1 and for k = 1, .., 30. The dynamics of the implied MVF are

plotted in Figure 3 under the simplifying assumption BT−k = B0 and CT−k = C0, k = 1, .., 30.

The curvature parameter AT−k is an increasing function of the relevant investment horizon

T − k. Graphically, this induces in Figure 3 a flatter MVF in mean-variance space at longer

horizons. Therefore, the dynamically optimal portfolio strategy perceives a less favorable mean

variance trade-off at the beginning of the investment period, which becomes better as times

goes on. Intuitively, this induces a more cautious portfolio structure at the beginning of the

investment period, when compared with investment dates short before the final date T .
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Figure 3. Impact of the investment horizon on the curvature of the MVF. The
figure shows the evolution of the MVF for a 36-period optimization problem.
We only plotted the first 30 MVF.

4.3. Iso-Moment Curves and Optimal Funding Ratios

In Proposition 3.6 the efficient frontier depends on the initial AL structure only through the

expectations:

E (ST−k,0) = xT−k

(〈
ll, R0e

T−k

〉
−

1

fT−k

〈
ll, Q0e

T−k

〉)
,

E
(
S2

T−k,0

)
= x2

T−k

(
〈
R0e

T−k, R
0e
T−k

〉
+

1

f2
T−k

〈
Q0e

T−k, Q
0e
T−k

〉
−

2

fT−k

〈
R0e

T−k, Q
0e
T−k

〉
)
,

where fT−k = lT−k/xT−k. Therefore, for a given level of initial assets xT−k the correspond-

ing efficient frontier can be parameterized by the initial funding ratio fT−k. On the other

hand, different levels of initial assets can imply the same efficient frontier when adapting the

corresponding funding ratios in an appropriate way. As a consequence, an important issue

for portfolios of assets and liabilities is to characterize the optimal trade-off between initial

assets and liabilities that is available to an investor with given risk aversion parameter γ.

Specifically, an assets and liabilities investor can then be interested in the following ”inverse”

problem. Given a desired expected final surplus E(ST ), what are the initial assets xT−k and



30 MARKUS LEIPPOLD, FABIO TROJANI AND PAOLO VANINI

liabilities lT−k necessary to obtain a minimal variance when adopting an optimal portfolio

strategy? This is the issue of characterizing the optimal funding ratio for portfolios of assets

and liabilities.

To answer this question it is sufficient to consider the iso-variance curves in (xT−k, lT−k)-

space that are implied by a given expected final surplus or, equivalently, the implied iso-second

moment curves in (xT−k, lT−k)-space. Using the orthogonal decomposition in (3.19) it follows:

E
(
S2

T

)
= x2

T−k

〈
R0e

T−k, R
0e
T−k

〉
+ l2T−k

〈
Q0e

T−k, Q
0e
T−k

〉
− 2xT−klT−k

〈
R0e

T−k, Q
0e
T−k

〉

+γ2 〈ST−k,e, ST−k,e〉 .(4.26)

Consider now an investor selecting an optimal policy and note that all moments on the RHS of

(4.26) are determined by the moments structure of the underlying assets and liabilities return

process. The form of the iso-second moment curves implied by (4.26) depends on the second

moment matrix:

Ψ =

[ 〈
R0e

T−k, R
0e
T−k

〉
−
〈
R0e

T−k, Q
0e
T−k

〉

−
〈
R0e

T−k, Q
0e
T−k

〉 〈
Q0e

T−k, Q
0e
T−k

〉
]
.

Since Ψ is positive definite, the iso-second moment curves are ellipses (for the relevant case

where R0e
T−k, Q

0e
T−k are not perfectly correlated.). For a positive (negative) scalar product

〈
R0e

T−k, Q
0e
T−k

〉
, they are rotated counter-clockwise, (clockwise). The symmetry center of these

ellipses is (0, 0). On the other hand, the iso-first moment curves in (xT−k, lT−k)-space are

straight lines implied by level sets of the form:

{
(xT−k, lT−k) ∈ R

2 : xT−k

〈
ll, R0e

T−k

〉
− lT−k

〈
ll, Q0e

T−k

〉
+ γ 〈ll, ST−k,e〉 = δ

}
,

δ ∈ R. Hence, the optimal initial AL structure implied by a targeted expected surplus δ can be

obtained geometrically as a tangency point between iso-first moment and iso-second moment

curves (see Figure 4). The set of optimal initial AL structures for different surplus targets is a

straight line in the (xT−k, lT−k)-space with a pendency equal to the implied optimal funding

ratio, which is determined as

f∗T−k =
〈Q0e

T−k, Q
0e
T−k〉〈ll, R

0e
T−k〉 − 〈R0e

T−k, Q
0e
T−k〉〈ll, Q

0e
T−k〉

〈R0e
T−k, Q

0e
T−k〉〈ll, R

0e
T−k〉 − 〈R0e

T−k, R
0e
T−k〉〈ll, Q

0e
T−k〉

.
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Figure 4. Iso-First Moment and Iso-Second Moment Curves. The first graph
shows iso-second moment curves as a function of time k. The investment horizon
is fixed to T = 120. In the second graph iso-first and iso-second moment
curves are plotted for a fixed k but for different levels of targeted first and
second moments. Point A has lower first and second moments than point B.
The tangency points between iso-first and iso-second moment curves define the
optimal initial AL structures and lie on a straight line.

In the i.i.d case f∗T−k can be immediately determined using Corollary 3.10.

5. Conclusions

We presented a geometric approach to discrete time multiperiod mean variance portfolio

optimization that simplifies the mathematical analysis of these models and highlights their

economic structure. We applied it to a surplus optimization problem in a multiperiod mean

variance portfolio selection model including assets and liabilities. Closed form solutions have

been obtained in the benchmark i.i.d. setting, which have been used to quantify specific

issues like the impact of the investment horizon on the implied dynamic AL portfolio and the

determination of the optimal initial funding ratio. Future research aims at incorporating in

the model an endogenous liabilities optimization and some form of intertemporal constraint
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on, for instance, the downside risk of the AL surplus (cf. for example Leippold, Trojani and

Trojani (2002)).

6. Appendix

In this appendix we provide the proofs of all propositions in the paper.

Proof of Proposition 2.1. To prove Proposition 2.1 we adopt arguments as in Li and Ng

(2000). Convexity of Ũ in E(ST ) and E(S2
T ) is obvious. To prove 2., assume that φ∗ solves

(P3) and that it is not a solution of (P4) for the parameter choice (d(φ∗, w), w). There then

exists a policy φ such that

(6.27) −wE(S2
T (φ)) + d(φ∗, w)E(ST (φ)) > −wE(S2

T (φ∗)) + d(φ∗, w)E(ST (φ∗)) ,

or, in matrix notation:

(6.28) (−w, d(φ∗, w))

(
E(S2

T (φ))
E(ST (φ))

)
> (−w, d(φ∗, w))

(
E(S2

T (φ∗))
E(ST (φ∗))

)
.

By convexity of Ũ it then follows

Ũ(E(S2
T (φ), E(ST (φ)) − Ũ(E(S2

T (φ∗), E(ST (φ∗))

≥ ∇Ũ(E(S2
T (φ∗), E(ST (φ∗))

[(
E(S2

T (φ))
E(ST (φ))

)
−

(
E(S2

T (φ∗))
E(ST (φ∗))

)]
,

denoting by ∇ the gradient operator. Since for strategy φ∗ it follows ∂Ũ
∂E(S2

T
)

= −w and

∂Ũ
∂E(ST ) = d(φ∗, w), the gradient ∇Ũ equals (−w, d(φ∗, w)). Hence:

Ũ(E(S2
T (φ), E(ST (φ)) − Ũ(E(S2

T (φ∗), E(ST (φ∗))

≥ (−w, d(φ∗, w))

[(
E(S2

T (φ))
E(ST (φ))

)
−

(
E(S2

T (φ∗))
E(ST (φ∗))

)]

> 0 .

Therefore, φ∗ can not be an optimal policy for (P3), a contradiction. This proves 2. To prove

3., denote Problem (P4) by A(λ,w), making the dependence on (λ,w) explicit. Furthermore,

define

ΦA(λ,w) = {φ |φ is a solution of A(λ,w)} .
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For fixed w, the union
⋃

λ ΦA(λ,w) is the set of all solutions to (P4) parameterized by λ.

In other words,
⋃

λ ΦA(λ,w) equals the union over λ of all solutions φ(λ,w) of (P4). As a

consequence, by 2 of the proposition, a solution φ̃ of (P3) can be always expressed as

φ̃ = φ̃(λ) ∈
⋃

λ

ΦA(λ,w) , λ = d(φ̃, w) .

Hence, φ̃ can be also equivalently obtained by solving the problem:

max
λ

Ũ(E(S2
T (λ,w)), E(ST (λ,w)))

= max
λ

[
−wE(S2

T (λ,w)) + w (E(ST (λ,w))2
]

+ E(ST (λ,w)) .

The first-order conditions for the optimal λ∗ (say) are:

−w
∂E(S2

T (λ∗, w)))

∂λ
+ (1 + 2wE(S∗

T (φ∗)))
∂E(ST (λ∗, w))

∂λ
= 0 ,

given φ∗ ∈ ΦA(λ,w). On the other hand, if φ∗ ∈ ΦA(λ,w), the optimality condition for (P4)

gives:

−w
∂E(S2

T (λ∗, w))

∂λ
+ λ∗

∂E(ST (λ∗, w))

∂λ
= 0 .

These two optimality conditions imply proportionality of the vectors (−w, (1 + 2wE(S∗
T (φ∗)))

and (−w, λ∗). This gives the condition for λ∗ in 3, concluding the proof of Proposition 1.

Proof of Proposition 3.2. We first rewrite the problem in matrix form using the notations

(3.7) and e′1 =
(

1 0
)
. This gives the problem:

{
maxdE[γI′zT − 1

2z
′
T II′zT ]

s.t. I′zt+1 = I′Dtzt + I′Gtdt , dt = ute1 , t = 0, 1, . . . , T − 1
.

The Bellman principle for T − 1 implies the optimization problem (omitting for simplicity

current time indices T − 1 and writing E(·) for ET−1(·))

max
u

E

[
γI′ (Dz +Ge1u) −

1

2
(Dz +Ge1u)

′
II′ (Dz +Ge1u)

]
,

taking into account the constraint d′ =
(
u 0

)
. A maximization with respect to u gives:

d∗ = γ
E(e′1G

′I)

E [e′1G
′II′Ge1]

e1 −
E (e′1G

′II′Dz)

E [e′1G
′II′Ge1]

e1 .
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Hence, the optimal surplus at time T is decomposed as a linear combination of two L2-

orthogonal pay-offs, that we denote by S0e and R1e, respectively:

ST = I′ (Dz +Gd∗) = I′
(
Dz −

E (e′1G
′II′Dz)

E [e′1G
′II′Ge1]

Ge1

)

︸ ︷︷ ︸
S0e

+ γ
E(e′1G

′I)

E [e′1G
′II′Ge1]

I′Ge1
︸ ︷︷ ︸

R1e

,

where

S0e = I′Dz −
E (e′1G

′II′Dz)

E [e′1G
′II′Ge1]

I′Ge1 = R0x−Q0l −R1E
(
R1R0

)
x− E

(
R1Q0

)
l

E
[
(R1)2

] = I′Dez ,

with:

De =

[
R0e 0
0 Q0e

]
, R0e = R0 −

E
(
R1R0

)

E
[
(R1)2

]R1 , Q0e = Q0 −
E
(
R1Q0

)

E
[
(R1)2

]R1 .

Remark that the returns R0e, Q0e, R1e are unaffected by the value of the state vector z while

the ”surplus” S0e is. For the value function at time T − 1 it follows (denoting by 〈·, ·〉 the

T − 1-conditional scalar product in L2):

J (z) = E

[
γI′ (Dz +Ge1u

∗) −
1

2
(Dz +Ge1u

∗)′ II′ (Dz +Ge1u
∗)

]

= γ
[〈

ll, S0e
〉

+ γ
〈
ll, R1e

〉]
−

1

2

[
γ2
〈
R1e, R1e

〉
+
〈
S0e, S0e

〉]

=
γ2

2

〈
ll, R1e

〉
+ γ

〈
ll, S0e

〉
−

1

2

〈
S0e, S0e

〉

=
γ2

2
I′CI + γI′Bz −

1

2
z′Az ,

where in the third equality we used the identity

(6.29)
〈
R1e, R1e

〉
=
E(e′1G

′I)E(I′Ge1)

E [e′1G
′II′Ge1]

=
〈
ll, R1e

〉
,

and A, B, C, are given by:

A = E
(
De′II′De

)
, B = E (De) , C =

1

E [e′1G
′II′Ge1]

E (Ge1)E(e′1G
′) .

For the value function at time T −2 it follows (omitting current time indices T −2 and writing

E(·) for ET−2(·)):

J (z) = max
u

E

[
I′CT−1I + γI′De

T−1 (Dz + uGe1) −
1

2
(Dz + uGe1)

′De′
T−1II

′De
T−1 (Dz + uGe1)

]
,
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using the law of iterated expectations. Optimizing with respect to u gives the optimal policy

d∗ =
γE(e′1G

′De′
T−1I)

E
[
e′1G

′De′
T−1II

′De
T−1Ge1

]e1 −
E
(
e′1G

′De′
T−1II

′De
T−1Dz

)

E
[
e′1G

′De′
T−1II

′De
T−1Ge1

]e1

=
γE(e′1

(
De

T−1G
)′

I)

E
[
e′1
(
De

T−1G
)′

II′De
T−1Ge1

]e1 −
E
(
e′1
(
De

T−1G
)′

II′De
T−1Dz

)

E
[
e′1
(
De

T−1G
)′

II′De
T−1Ge1

]e1 .

As a consequence, the return

S0e
T−1 = I′De

T−1zT−1 = I′De
T−1 (Dz +Gd∗) ,

can be decomposed as a further linear combination of two L2-orthogonal pay-offs (that we

denote again by S0e and R1e, respectively):

S0e
T−1 = S0e + γR1e ,

with

R1e =
E(e′1

(
De

T−1G
)′

I)

E
[
e′1
(
De

T−1G
)′

II′De
T−1Ge1

]I′De
T−1Ge1 ,

and

S0e = I′De
T−1


Dz −G

E
(
e′1
(
De

T−1G
)′

II′De
T−1Dz

)

E
[
e′1
(
De

T−1G
)′

II′De
T−1Ge1

]e1




= I′De
T−1Dz − I′De

T−1Ge1
E
(
e′1
(
De

T−1G
)′

II′De
T−1D

)

E
[
e′1
(
De

T−1G
)′

II′De
T−1Ge1

]z

= R0e
T−1R

0x−Q0e
T−1Q

0x−R0e
T−1R

1E
(
R0e

T−1R
1R0e

T−1R
0
)
x− E

(
R0e

T−1R
1Q0e

T−1Q
0
)
l

E
[(
R0e

T−1R
1
)2]

= I′Dez ,

where:

De =

[
R0e 0
0 Q0e

]
,

with

R0e = R0e
T−1R

0−
E
(
R0e

T−1R
1R0e

T−1R
0
)

E
[(
R0e

T−1R
1
)2] R0e

T−1R
1 , Q0e = Q0e

T−1Q
0−

E
(
R0e

T−1R
1Q0e

T−1Q
0
)

E
[
(R1)2

] R0e
T−1R

1 .

Hence, the value function for time T − 2 is

J (z) = E

[
I′CT−1I + γI′Dez −

1

2
z′De′II′Dez

]
=
γ2

2
I′CI + γI′Bz −

1

2
z′Az ,
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where

A = E
(
De′II′De

)
, B = E (De) , C = CT−1 +

1

E [e′1G
′AGe1]

BE (Ge1)E(e′1G
′)B′ .

The expression for C is derived from the same type of identity as in (6.29):

〈
R1e, R1e

〉
=
E(e′1

(
De

T−1G
)′

I)E
(
I′De

T−1Ge1
)

E
[
e′1
(
De

T−1G
)′

II′De
T−1Ge1

] =
〈
ll, R1e

〉
,

with 〈·, ·〉 denoting the T − 2-conditional scalar product in L2. Therefore, JT−2 is of the same

functional form as JT−1 and the optimal rules for T − k, k > 2, follow recursively in the same

way as for T − 2. This concludes the proof of the proposition.

Proof Proposition 3.5. Clearly, a final surplus ST has minimum variance var (ST ) for a

targeted expected value E (ST ) if and only if it has minimum second moments E
(
S2

T

)
for the

same targeted expected value. Using the orthogonal decomposition (3.11) it then follows for

any surplus ST on the MVF:

E (ST ) = E (ST−1,0) + γE
(
R1e

T−1

)
,

E
(
S2

T

)
= E

(
S2

T−1,0

)
+ γ2E

[(
R1e

T−1

)2]
.

Solving for γ it follows:
(
E (ST ) − E (ST−1,0)

E
(
R1e

T−1

)
)2

=
E
(
S2

T

)
− E

(
S2

T−1,0

)

E
[(
R1e

T−1

)2] =
var (ST ) + [E (ST )]2 − E

(
S2

T−1,0

)

E
[(
R1e

T−1

)2] .

Noting that

E
[(
R1e

T−1

)2]

[
E
(
R1e

T−1

)]2 =
1

E
(
R1e

T−1

) ,

we finally get:

var (ST ) =
(E (ST ) − E (ST−1,0))

2

E
(
R1e

T−1

) − [E (ST )]2 + E
(
S2

T−1,0

)

=

(
1

E
(
R1e

T−1

) − 1

)
[E (ST )]2 − 2

E (ST−1,0)

E
(
R1e

T−1

) E (ST ) +
[E (ST−1,0)]

2

E
(
R1e

T−1

) + E
(
S2

T−1,0

)
.

This concludes the proof of the proposition.
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Proof of Proposition 3.6. The proposition is proved with conceptually identic arguments

as for Proposition 3.5. Using the orthogonal decomposition (3.17) it follows for any surplus

ST on the MVF:

E (ST ) = E (ST−k,0) + γE (ST−k,e) ,

E
(
S2

T

)
= E

(
S2

T−k,0

)
+ γ2E

(
S2

T−k,e

)
.

Solving for γ it follows:

(
E (ST ) − E (ST−k,0)

E (ST−k,e)

)2

=
E
(
S2

T

)
− E

(
S2

T−k,0

)

E
(
S2

T−k,e

) =
var (ST ) + [E (ST )]2 − E

(
S2

T−k,0

)

E
(
S2

T−k,e

) .

Orthogonality of
{
R1e

T−1, R
1e
T−2, ..., R

1e
T−k

}
and the identities E

(
R1e

T−i

)
= E

[(
R1e

T−i

)2]
, i =

1, .., k, imply:

E
(
S2

T−2,e

)

(E (ST−k,e))
2 =

E

[(∑k
i=1R

1e
T−i

)2
]

(∑k
i=1E

(
R1e

T−i

))2 =

∑k
i=1E

(
R1e

T−i

)
(∑k

i=1E
(
R1e

T−i

))2 =
1

E (ST−k,e)
.

Hence:

var (ST ) =
(E (ST ) − E (ST−k,0))

2

E (ST−k,e)
−
(
[E (ST )]2 − E

(
S2

T−k,0

))

=

(
1

E (ST−k,e)
− 1

)
[E (ST )]2 − 2

E (ST−k,0)

E (ST−k,e)
E (ST ) +

[E (ST−k,0)]
2

E (ST−k,e)
+ E

(
S2

T−k,0

)
,

as stated. This concludes the proof of the proposition.

Proof of Proposition 3.7. We have under the i.i.d. assumption:
〈
R0e

T−k+1R
1
T−k, R

0e
T−k+1R

0
T−k

〉
〈
R0e

T−k+1R
0
T−k, R

0e
T−k+1R

0
T−k

〉 =

〈
R0e

T−k+1, R
0e
T−k+1

〉
〈
R0e

T−k+1, R
0e
T−k+1

〉
〈
R1

T−1, R
0
T−1

〉
〈
R1

T−1, R
1
T−1

〉 =

〈
R1

T−1, R
0
T−1

〉
〈
R1

T−1, R
1
T−1

〉 .

Hence, for R0e
T−k:

R0e
T−k =

(
R0

T−k −

〈
R1

T−1, R
0
T−1

〉
〈
R1

T−1, R
1
T−1

〉R1
T−k

)
R0e

T−k+1 = P
R

1,⊥

T−k

(
R0
)
R0e

T−k+1 =
k−1∏

i=0

P
R

1,⊥

T−k+i

(
R0
)
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Similarly for R1e
T−k+i, using this last result:

R1e
T−k+i =

〈
ll, R1

T−k+iR
0e
T−k+i+1

〉
〈
R1

T−k+iR
0e
T−k+i+1, R

1
T−k+iR

0e
T−k+i+1

〉R1
T−k+iR

0e
T−k+i+1

=

〈
ll, R1

T−1

〉
〈
R1

T−1, R
1
T−1

〉R1
T−k+i

〈
ll, R0e

T−k+i+1

〉
〈
R0e

T−k+i+1, R
0e
T−k+i+1

〉R0e
T−k+i+1

= PR1
T−k+i

(ll)
k−1∏

j=i+1

PP
R

1,⊥
T−1

(R0) (ll) .

For Q0e
T−k we first have:

Q0e
T−k = P

(R1
T−k

R0e
T−k+1)

⊥

(
Q0

T−kQ
0e
T−k+1

)

= Q0
T−kQ

0e
T−k+1 − PR1

T−k
R0e

T−k+1

(
Q0

T−kQ
0e
T−k+1

)

= Q0
T−kQ

0e
T−k+1 − PR1

T−k
R0e

T−k+1

(
Q0

T−kP
(R1

T−k+1
R0e

T−k+2)
⊥

(
Q0

T−k+1Q
0e
T−k+2

))

= Q0
T−kQ

0e
T−k+1 − PR1

T−k
R0e

T−k+1

(
Q0

T−kQ
0
T−k+1Q

0e
T−k+2

)

= Q0
T−kQ

0e
T−k+1 − PR1

T−k
R0e

T−k+1

(
k−1∏

i=0

Q0
T−k+i

)
,

because by construction

R0e
T−k+1 ⊥ R1

T−k+1R
0e
T−k+2 .

Further:

PR1
T−k

R0e
T−k+1

(
k−1∏

i=0

Q0
T−k+i

)
=

〈
R1

T−kR
0e
T−k+1,

∏k−1
i=0 Q

0
T−k+i

〉

〈
R1

T−kR
0e
T−k+1, R

1
T−kR

0e
T−k+1

〉 R1
T−kR

0e
T−k+1

=

〈
R1

T−k

∏k−1
i=1 P

R
1,⊥

T−k+i

(
R0
)
,
∏k−1

i=0 Q
0
T−k+i

〉

〈
R1

T−k

∏k−1
i=1 P

R
1,⊥

T−k+i

(R0) , R1
T−k

∏k−1
i=1 P

R
1,⊥

T−k+i

(R0)
〉

×R1
T−k

k−1∏

i=1

P
R

1,⊥

T−k+i

(
R0
)

= PR1
T−k

(
Q0
) k−1∏

i=1

PP
R

1,⊥
T−k+i

(R0)

(
Q0
)
.

Therefore:

(6.30)

Q0e
T−k = Q0

T−kQ
0e
T−k+1−PR1

T−k

(
Q0
) k−1∏

i=1

PP
R

1,⊥
T−k+i

(R0)

(
Q0
)

= Q0
T−kQ

0e
T−k+1−PR1

T−k

(
Q0
)
AT−k+1,
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say. Hence, Q0e
T−k satisfies a linear first order difference equation with solution given by:

Q0e
T−k = Q0

T−kQ
0e
T−k+1 − PR1

T−k

(
Q0
)
AT−k+1

= Q0
T−k

(
Q0

T−k+1Q
0e
T−k+2 − PR1

T−k+1

(
Q0
)
AT−k+2

)
− PR1

T−k

(
Q0
)
AT−k+1

= Q0
T−kQ

0
T−k+1Q

0e
T−k+2 −Q0

T−kPR1
T−k+1

(
Q0
)
AT−k+2 − PR1

T−k

(
Q0
)
AT−k+1

=
k−1∏

i=0

Q0
T−k+i −

k−1∑

i=0




i−1∏

j=0

Q0
T−k+j


PR1

T−k+i
(R0)

(
Q0
)
AT−k+1+i ,

giving the claim of the proposition.

Proof of Corollary 3.8-3.10. Given the i.i.d. assumption it follows for R0e
T−k:

E
(
R0e

T−k

)
=

k−1∏

i=0

〈ll,P
R

1,⊥

T−k+i

(
R0
)
〉 = 〈ll,P

R
1,⊥
T−1

(
R0
)
〉k .

Further:

〈
R0e

T−k, R
0e
T−k

〉
=

k−1∏

i=0

〈P
R

1,⊥

T−k+i

(
R0
)
,P

R
1,⊥

T−k+i

(
R0
)
〉 = 〈P

R
1,⊥
T−1

(
R0
)
,P

R
1,⊥
T−1

(
R0
)
〉k ,

and

E
(
R1e

T−k+i

)
=
〈
ll,PR1

T−k+i
(ll)
〉 k−1∏

j=i+1

〈
ll,PP

R
1,⊥
T−k+i+j

(R0) (ll)

〉
=
〈
ll,PR1

T−1
(ll)
〉〈

ll,PP
R

1,⊥
T−1

(R0) (ll)

〉k−1

Moreover (eg. 6.30):

E
(
Q0e

T−k

)
=

〈
ll, Q0

T−kQ
0e
T−k+1 − PR1

T−k

(
Q0
)
AT−k+1

〉

=
〈
ll, Q0

T−k

〉 〈
ll, Q0e

T−k+1

〉
−
〈
ll,PR1

T−k

(
Q0
)〉

〈ll, AT−k+1〉

=
〈
ll, Q0

T−k

〉k
−

k−1∑

i=0




i−1∏

j=0

〈
ll,Q0

T−k+j

〉


〈
ll,PR1

T−k+i

(
Q0
)〉

〈ll, AT−k+i+1〉

=
〈
ll,Q0

T−1

〉k
−

k−1∑

i=0

〈
ll,Q0

T−1

〉i 〈
ll,PR1

T−1

(
Q0
)〉

〈ll, AT−k+i+1〉 .

Reminding that:

〈ll,AT−k+i+1〉 =
k−1∏

j=i+1

〈
ll,PP

R
1,⊥
T−k+i

(R0)

(
Q0
)〉

=

〈
ll,PP

R
1,⊥
T−1

(R0)

(
Q0
)〉k−i−1

,
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the result for E
(
Q0e

T−k

)
is obtained. Now, for

〈
R0e

T−k, Q
0e
T−k

〉
:

〈
R0e

T−k, Q
0e
T−k

〉
=

〈
k−1∏

i=0

P
R

1,⊥

T−k+i

(
R0
)
, Q0

T−kQ
0e
T−k+1 − PR1

T−k

(
Q0
)
AT−k+1

〉

=
〈

P
R

1,⊥
T−1

(
R0
)
, Q0

T−1

〉 〈
R0e

T−k+1, Q
0e
T−k+1

〉

=
〈

P
R

1,⊥
T−1

(
R0
)
, Q0

T−1

〉k

,

because
〈

k−1∏

i=0

P
R

1,⊥

T−k+i

(
R0
)
,PR1

T−k

(
Q0
)
AT−k+1

〉
=
〈

P
R

1,⊥

T−k

(
R0
)
,PR1

T−k

(
Q0
)〉 〈

R0e
T−k+1, AT−k+1

〉
= 0 .

Finally, to compute
〈
Q0e

T−k, Q
0e
T−k

〉
we first remark (eg. again (6.30)):

〈
Q0e

T−k+1, AT−k+1

〉
=

〈
Q0

T−k+1Q
0e
T−k+2 − PR1

T−k+1

(
Q0
)
AT−k+2, AT−k+1

〉

=
〈
Q0

T−k+1Q
0e
T−k+2, AT−k+1

〉
,

because:

〈
PR1

T−k+1

(
Q0
)
AT−k+2, AT−k+1

〉
=

〈
PR1

T−1

(
Q0
)
,PP

R
1,⊥
T−1

(
Q0
)〉

〈AT−k+2, AT−k+2〉 = 0 .

This gives

〈
Q0e

T−k+1, AT−k+1

〉
=

〈
Q0

T−k+1Q
0e
T−k+2, AT−k+1

〉

=

〈
k−1∏

i=1

Q0
T−1, AT−k+1

〉
=

〈
Q0

T−1,PP
R

1,⊥
T−1

(
Q0
)〉k−1

Moreover

(6.31) 〈AT−k+1, AT−k+1〉 =

〈
PP

R
1,⊥
T−1

(
Q0
)
,PP

R
1,⊥
T−1

(
Q0
)〉k−1

.

Together with the identity
〈

PR1
T−k

(
Q0
)
,PR1

T−k

(
Q0
)〉

=
〈
Q0

T−k,PR1
T−k

(
Q0
)〉

this yields:

〈
Q0e

T−k, Q
0e
T−k

〉
=

〈
Q0

T−kQ
0e
T−k+1 − PR1

T−k

(
Q0
)
AT−k+1, Q

0
T−kQ

0e
T−k+1 − PR1

T−k

(
Q0
)
AT−k+1

〉

=
〈
Q0

T−k, Q
0
T−k

〉 〈
Q0e

T−k+1, Q
0e
T−k+1

〉

−
〈

PR1
T−k

(
Q0
)
,PR1

T−k

(
Q0
)〉

〈AT−k+1, AT−k+1〉 .
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Using the notation

C =

〈
PP

R
1,⊥
T−1

(R0)

(
Q0
)
,PP

R
1,⊥
T−1

(R0)

(
Q0
)〉

,

the solution to this first order difference equation is
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the result follows.
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