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in health care data. The new estimators and test statistics are exten-

sions of classical maximum likelihood techniques for generalized linear

models. In contrast to their classical counterparts, the new robust

techniques show lower variability and excellent efficiency properties in

the presence of small deviations from the assumed model, i.e. when

the underlying distribution of the data lies in a neighborhood of the

model. A simulation study, an analysis on real data, and a sensitivity

analysis confirm the good theoretical statistical properties of the new

techniques.

JEL classification: C10, I10.

KEY WORDS: Deviations from the model; GLM modeling; health

econometrics; heavy tails; robust estimation; robust inference.



1 Introduction

Modeling medical expenses is an important building block in cost manage-

ment and a large research effort has been put in the analysis of this type

of data. Many papers discuss the many different aspects related to model-

ing such data. It is impossible to give a full and representative list of this

extensive literature, which includes, for example, Duan, Manning, Morris,

and Newhouse (1983), Goldman, Leibowitz, and Buchanan (1998), Manning,

Newhouse, Duan, Keeler, and Leibowitz (1987) and many others. The impor-

tance of the issue – and its policy implications – makes health economists and

other empirical researchers even more aware of the importance of a careful

statistical analysis.

¿From a statistical point of view, the goal is to estimate µ = E(Y |x),
where Y is the response (health care expenditure, length of stay, utilization

of health care services, to name a few) and x is a set of explanatory variables

(age, sex, income, out-of-pocket price, health status, etc.). The character-

istics of the distribution of Y are such that standard methodology is often

inappropriate. For instance, two main issues arise: (i) the measurements

of the outcome are positive (or nonnegative) and highly skewed, which con-

trast with the Gaussian (or at least symmetric) distributional assumption of

many standard statistical techniques and (ii) the thickness of the tail of the

distribution is often determined by a small number of heavy users.

A possible fix to the skewness problem (issue (i)) is to transform the data.

The merits of this approach have been largely discussed in the literature (see

Manning, 1998; Mullahy, 1998; Manning and Mullahy, 2001 and references

therein). While the transformed model has the advantage to fit in the setting
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of standard linear regression – which has a long tradition in health economics

– it presents several drawbacks. First of all, the interpretability of the model

coefficients is often difficult on a different scale than the original, secondly

the quality of the retransformed parameter estimates is typically poor with-

out appropriate corrections (see e.g. the nonparametric smearing estimator

of Duan, 1983) and – last but not least – the transformed data will have only

an approximate normal distribution (for example, the far-right tail of the

transformed data is typically still too long even if one assumes a log-normal

distribution1). Issue (ii) can be viewed as a particular aspect of the broader

robustness issue which arises from the fact that models are at best ideal

approximations of the underlying process and deviations from the distribu-

tional assumptions are always present in real data; for a general overview on

robust statistics see Huber (1981) and Hampel, Ronchetti, Rousseeuw, and

Stahel (1986).

Two recent papers focus on robust estimation (Marazzi and Barbati, 2003

and Marazzi and Yohai, 2004) and develop robust estimates for location-

scale models on the log-scale which can be used for typical data on health

care expenditures. Their work is based on a truncated maximum likelihood

regression where the errors are allowed to have asymmetric distribution (e.g.

Weibull).

In this paper we pursue a different approach that addresses jointly the

skewness and robustness problem (issues (i) and (ii) above) by building on

the unified framework of generalized linear models (GLM, see McCullagh and

Nelder, 1989). These models are very attractive to handle a large variety of

1See, for instance, the example of Section 3.5 in Duan, Manning, Morris, and Newhouse

(1983).
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continuous and discrete data and have already been applied in health eco-

nomics settings (e.g. Blough, Madden, and Hornbrook, 1999, Manning and

Mullahy, 2001 and Gilleskie and Mroz, 2004). Because the GLM technique is

based on maximum likelihood or quasi-likelihood, it is very sensitive to spu-

rious observations2. Cantoni and Ronchetti (2001) developed robust versions

of estimators and tests for GLM in the case of binomial and Poisson models.

Here we consider an extension of their method to other GLM settings, for ex-

ample the Gamma family. This approach is attractive because it enjoys some

interesting advantages over the existing approaches mentioned above. First,

the target value µ is modeled directly making inference straightforward and

avoiding the need of (re-)transformation. Moreover, it enables to go beyond

the location-scale family considered in the previously published robust liter-

ature and allows some flexibility through the choice of the link function (e.g.

logarithmic, inverse) and of the distribution of Y through its expectation-

variance relationship. Finally, a class of test statistics for the comparison of

nested models naturally comes along for variable selection. An additional

diagnostic feature of our robust approach is the automatic identification of

the outlying observations of the process.

Health care expenditure data often shows an important proportion of

individuals that do not incur medical expenses. In these cases, a popular ap-

proach is the well-known two-part model, where the mass at zero is modeled

separately3. The approach introduced above and described in detail below

2In fact it was noticed by Manning and Mullahy (2001) that “GLM models can yield

very imprecise estimates if the log-scale error is heavy tailed”.
3For a discussion on the appropriate use of the two-part model we refer to Jones (2000,

Sec. 4).
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concentrates on the estimation of the determinants of the level of yi|yi > 0,

the so-called Part 2 of the two-part model. This is because our work was mo-

tivated by the example in Section 5 where we only observe positive responses.

If the data at hand comes with zeros, the binary responses of Part 1 (occur-

rence or non-occurrence of medical expenses) can be modelled robustly with a

binary regression (e.g. logistic), as treated in detail in Cantoni and Ronchetti

(2001). An alternative approach would consider specific distributions that

model directly the mass at zero, either via the likelihood of an hurdle model

or via a zero-inflated distribution4. This approach can be robustified and is

subject of ongoing research.

The paper is organized as follows. In Section 2 we briefly introduce the

GLM methodology. Section 3 is devoted to a short introduction of the robust

approach and to the definition of our estimation and variable selection pro-

cedure. In Section 4 the benefits of our technique are confirmed and further

supported by a simulation study, whereas in Section 5 we present a study on

real data that motivated our work. A discussion (Section 6) closes the paper.

2 GLM modeling

We consider the modeling framework of GLM where the response variable

Yi, for i = 1, . . . , n, is drawn from a distribution belonging to the exponential

family, such that E[Yi|xi] = µi and V [Yi|xi] = v(µi) for i = 1, . . . , n and

g(µi) = ηi = xT
i β or equivalently µi = E(Yi|xi) = g−1(xT

i β) = g−1(ηi), (1)

4Both these approaches are discussed in Mullahy (1986) for count (discrete) data. They

can be extended in the same spirit to continuous data. Note that they imply overdispersion,

but they also express unobserved heterogeneity, see the discussion in Mullahy (1997).
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for i = 1, . . . , n, where β ∈ Rp is the vector of parameters, xi ∈ Rp is a set

of explanatory variables, and g(.) is the link function.

For members of the exponential family, two elements define model (1): the

link function, which can be for example logarithmic (or logit or probit), and

the mean-variance relationship. In particular, if v(µi) is constant we obtain a

non-linear homoscedastic regression model. Models with v(µi) proportional

to µi define Poisson-type distributions, possibly over-dispersed. Finally, if

v(µi) is proportional to µ2
i we obtain the Gamma, the homoscedastic log-

normal and the Weibull distributions.

Although the methodology developed here can be applied to the entire

class of GLM, the application and simulation in this paper will concen-

trate on a Gamma model with log-link and variance structure defined by

v(µi) = µ2
i /ν. It has been reported by several authors (e.g. Blough, Madden,

and Hornbrook, 1999, Gilleskie and Mroz, 2004) that this characteristic (the

variance proportional to the squared mean) is observed for many health care

expenditures data. Moreover, these models can be seen as issued from a

multiplicative model yi = exp(xT
i β) ·ui, where the error term ui has constant

variance. More specifically, we consider a parametrization of the Gamma

density function such that one parameter identifies µi, namely

fµi,ν(yi) =
ν/µi · exp(−νyi/µi) · (νyi/µi)

ν−1

Γ(ν)
, (2)

see also McCullagh and Nelder (1989, p. 30). In this case E(Yi) = µi and

V (Yi) = µ2
i /ν.
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3 Robust approach

As mentioned in the Introduction, health data often show heavy-tailed dis-

tributions, which may be due to the presence of a few heavy users. These

points highly affect the estimation and inference of the parameters of the

model. The basic idea of robust statistics is to consider the distribution of

the data as coming from a neighborhood of the postulated model. Then,

robust estimates and test statistics are constructed such that the estimated

parameters are consistent at the postulated model and stable in a neighbor-

hood of it. This means that correct estimation and inference is obtained

for the parameters of the postulated model (the one corresponding to the

majority of the data) by limiting the influence of (a small fraction of) data

points which are thought of as coming from a different population. There are

situations where these deviating points have to be considered as “representa-

tive outliers” which convey important information that has to be taken into

account. This is the case in a prediction setting, where one can expect that

some outlying costs will occur again in the future. In these cases, a modified

methodology which “corrects” the robust approach has to be considered, see

a similar idea in Welsh and Ronchetti (1998) for the case of survey sampling.

The stability of the robust technique is achieved at the price of a slight

loss of efficiency at the model. This can be viewed as an insurance premium

one is willing to pay to protect against biases and losses of efficiency due to

deviations from the assumed model.

An important mathematical tool that measures the robustness of an esti-

mator is the influence function (Hampel, 1974). For a sample z = (z1, . . . , zn)
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it is defined by

IF (z;T, F ) = lim
ε→0

(T (Fε) − T (F )

ε

)

, (3)

where T (F ) is a functional that defines the estimator T (F (n)), F (n) is the

empirical distribution function, Fε = (1 − ε)F + ε∆z, and ∆z is a distribu-

tion that puts all its mass at z. The influence function measures the effect

on the estimate of an infinitesimal contamination at the point z, standard-

ized by the amount of contamination. The maximal marginal effect of an

observation z on T is approximately ε · IF (z;T, F ). Therefore a bounded

influence function is a desirable robustness property for an estimator (see

Hampel, Ronchetti, Rousseeuw, and Stahel, 1986 for details). For instance,

the maximum likelihood estimator of a Gamma generalized linear model has

an influence function proportional to the score function, that is, proportional

to

∂ log(fµi,ν(yi))

∂β
=
∂ log(fµi,ν(yi))

∂µi

· ∂µi

∂β
=

(yi − µi)

v(µi)
· ∂µi

∂ηi

· xi,

which is neither bounded with respect to yi, nor with respect to xi. This

explains the non-robustness properties of this estimator. As we shall see,

the estimator proposed in the next Section has a bounded influence function,

therefore ensuring stability in the presence of deviations from the Gamma

model defined above.

3.1 Robust estimating equations

To address robustness (in the sense of local stability, as measured by the

influence function), Cantoni and Ronchetti (2001) suggested to estimate the

parameter β via M-estimation (Huber, 1981), that is through a set of esti-

mating equations of the form
∑n

i=1 Ψ(yi,β, ν) = 0. The idea is to build upon
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the classical estimating equations

n
∑

i=1

(yi − µi)

v(µi)
µ′

i = 0, (4)

where µ′
i = ∂µi/∂β = ∂µi/∂ηi·xi, in order to bound the influence of deviating

data points. This is obtained by introducing a function ψ that control large

deviations in the y-space and a set of weights w(xi) to downweight leverage

points. A (Mallows quasi-likelihood) estimator of the regression parameter

β of model (1) is therefore obtained by solving

n
∑

i=1

[

ψ(ri)w(xi)
1

v1/2(µi)
µ′

i − a(β)
]

= 0, (5)

where ri = (yi − µi)/v
1/2(µi) are the Pearson residuals. The correction term

a(β) = 1
n

∑n
i=1E[ψ(ri)]w(xi)

1
v1/2(µi)

µ′
i ensures Fisher consistency with re-

spect to the mean parameter µ at the model.

Note that the robust estimating equations (5) include the classical esti-

mating equations (4) as a special case, when ψ is the identity function and

w(xi) ≡ 1, in which case it holds that a(β) = 0. Other choices of ψ and w(xi)

are better suited to reach robustness. For example the weights w(xi) can be

a function of the diagonal elements of the hat matrix H = X(XTX)−1XT

(e.g. w(xi) =
√

1 −Hii) or proportional to the inverse of the Mahalanobis

distances, see Cantoni and Ronchetti (2001) for further details. A common

choice for ψ to ensure robustness is the so-called Huber’s function defined

by ψc(r) = r · min(1, c/|r|), see Panel (a) of Figure 1. This function is the

identity between −c and c, whereas values of r larger than c in absolute value

are replaced by c · sign(r). Therefore, the contribution of an observation yi to

the estimating equations (5) is preserved as in the classical case if its residual

ri is not too large, and reduced otherwise. The constant c allows one to tune
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the robustness-efficiency compromise. From a practical point of view, values

of c between 1 and 2 typically guarantee robustness with a reasonable level

of efficiency.

[Figure 1 about here.]

One can take advantage of the fact that the robust technique can provide

automatically a reliable diagnostic measure for the outlying observations by

looking at the weights computed in the robust fitting procedure. In fact, the

set of estimating equations (5) can be rewritten as
n
∑

i=1

[

w̃(ri)riw(xi)
1

v1/2(µi)
µ′

i − a(β)
]

= 0, (6)

where w̃(r) = ψ(r)/r. In this form (6) can be interpreted as the classical

estimating equations weighted and recentered to ensure consistency.

Therefore w̃ and w will give information on how each observation is han-

dled. If the Huber’s ψc function is used, then the corresponding weights w̃(r)

are plotted in Panel (b) of Figure 1.

One could argue that a similar effect could be obtained by performing di-

agnostic to identify outlying observations on the basis of a classical analysis

and then remove the unusual data points from the sample. This approach can

be unreliable because a masking effect can occur, where a single large outlier

may mask others. This means that the distorted data appear to be the norm

rather than the exception. For instance, consider a regression setting where

an outlier may have such a large effect on a slope estimated by maximum

likelihood that its residual (or any other measure used for diagnostic) will

tend to be small, whereas other observations will have corresponding rela-

tively large residuals. This behavior is due to the fact that classical estimates

are affected by outlying points and are pulled in direction of them.
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The set of estimating equations (5) does not take into account that ν

has also to be estimated. To do so, one notices that V ar((Yi − µi)/µi) = ν,

and therefore any robust estimator of the variance of (Yi − µi)/µi can be

used. If the variance is estimated by the classical (non robust) estimator,

we obtain the estimator for ν used in the GLM framework, that is ν̂ =

1/n
∑n

i=1(yi − µ̂i)
2/µ̂2

i . Alternatively, many robust estimators of variance

are available in the literature on robust statistics. We choose a simple M-

estimator (Huber’s Proposal 2), which solves
n
∑

i=1

χc

(yi − µi

µi/
√
ν

)

= 0, (7)

where χc(u) = ψ2
c (u)−θ, and θ = E(ψ2

c (u)) is a constant that ensures Fisher

consistency for the estimation of ν (see Hampel, Ronchetti, Rousseeuw, and

Stahel, 1986, p. 234).

The distributional and robustness properties of the proposed estimator

of the regression parameters can be derived. ¿From standard results on M-

estimators, we know that the influence function of the estimator defined by

the set of equations (5) at a point (x, y) is given by

IF ((x, y);T, Fβ) = M−1(ψ, Fβ)
[

ψ
( y − µ

v1/2(µ)

)

w(x)
1

v1/2(µ)
µ′ − a(β)

]

, (8)

whereM(ψ, Fβ) = 1
n
XTBX, bi = E[ψc(ri)

∂
∂µi

log h(yi|xi, µi)]
1

v1/2(µi)
w(xi)(

∂µi

∂ηi
)2

are the elements of the diagonal matrix B, and h(·) is the conditional density

or probability of yi|xi.

The influence function is bounded with respect to y for a bounded choice

of ψ, and the effect of outliers in the design is controlled with appropriate

weights w(x).

Moreover, under quite general conditions, it can be shown (see Cantoni

and Ronchetti, 2001) that the asymptotic distribution of
√
n(β̂ − β), where
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β̂ is the solution of (5), is normal with expectation 0 and variance equal to

M−1(ψ, Fβ)Q(ψ, Fβ)M−1(ψ, Fβ), where

Q(ψ, Fβ) =
1

n
XTAX − a(β)a(β)T ,

with A a diagonal matrix with elements ai = E[ψc(ri)
2]w2(xi)

1
V (µi)

(∂µi

∂ηi
)2.

This asymptotic result still holds if a
√
n-consistent estimator for ν is plugged-

in in the estimating equations (5).

3.2 Computational aspects

The set of estimating equations (5) is implicitly defined and has to be solved

numerically. Available approaches include Newton-Raphson algorithms, Fisher-

scoring algorithms or an iterative weighted least squares algorithm, whose

details can be found in Appendix B. In particular, the latter allows an easy

implementation of the robust estimator in any software which allows the

computation of weighted least squares (e.g. the regress function in Stata).

Moreover, S-PLUS code can be obtained from the authors.

At each step of any of these algorithms the estimation of ν is updated by

solving (7) and plugged in.

The expectation terms appearing in a(β), bi and ai have to be computed

explicitly at the model Fβ. This can be done for several model distribu-

tions including binomial and Poisson (see Cantoni and Ronchetti, 2001) and

Gamma (see Appendix A). For other distributions, these terms can be at

least approximated numerically.
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3.3 Robust variable selection

The approach outlined in Section 3.1 has an important added value in that

it provides a class of robust test statistics for variable selection by compar-

ison of two nested models. It is well-known that such a global strategy is

more reliable than simply looking at univariate t-test-like statistics in the full

model; see for instance Cantoni, Mills Flemming, and Ronchetti (2005). In

fact, the estimating equations (5) can be seen as the derivatives with respect

to β of the robust quasi-likelihood function
∑n

i=1QM(yi, µi), where

QM(yi, µi) =

∫ µi

s̃

φ(yi, t)w(xi)dt−
1

n

n
∑

j=1

∫ µj

t̃

E
[

φ(yj, t)w(xj)
]

dt, (9)

where φ(yi, t) = ψ
(

(yi − t)/v1/2(t)
)

/v1/2(t), s̃ such that φ(yi, s̃) = 0, and t̃

such that E[φ(yi, t̃)] = 05. Therefore to compare a model Mp with p variables

(corresponding to a parameter β = (β1, . . . , βp)) to a nested model Mp−q

with only (p− q) variables (β = (β1, . . . , βp−q, 0, . . . , 0)), a test statistic can

be constructed based on twice the difference of the quasi-likelihood functions

ΛQM = 2
[

n
∑

i=1

QM(yi, µ̂i) −
n
∑

i=1

QM(yi, µ̇i)
]

, (10)

where µ̂i and µ̇i are the estimators obtained under models Mp and Mp−q

respectively6.

Under the null hypothesis that H0 : βp−q+1 = . . . = βp = 0 and under

quite general conditions, ΛQM is asymptotically distributed as
∑q

i=1 λiN
2
i ,

where N1, . . . , Nq are independent standard normal variables, λ1, . . . , λq are

the q positive eigenvalues of the matrix Q(ψ, Fβ)
(

M−1(ψ, Fβ)−M̃+(ψ, Fβ)
)

,

5Often φ(0) = 0, therefore the choice s̃ = t̃ = yi fulfils these conditions.
6Note that ΛQM is independent of s̃ and t̃.
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and M̃+(ψ, Fβ) is such that M̃+(ψ, Fβ)11 = M(ψ, Fβ)−1
11 and M̃+(ψ, Fβ)12 =

0, M̃+(ψ, Fβ)21 = 0, M̃+(ψ, Fβ)22 = 0 (see Proposition 1 in Cantoni and

Ronchetti, 2001). Notice that in our case (Gamma model) the second set

of integrals in (9) can be computed explicitly because E[φ(yj, t)w(xj)] is

proportional to 1/t (E[ψc(rj)] being independent of µj). The statistic ΛQM

is a generalisation of the classical GLM quasi-deviance statistic (Wedderburn,

1974 and Blough, Madden, and Hornbrook, 1999), that can be obtained with

an identity function ψ and w(xi) ≡ 1.

By means of general results in Cantoni and Ronchetti (2001), the ro-

bustness properties of ΛQM can be formally assessed: the asymptotic level

and power under small deviations from the model are stable as long as an

estimator of β with bounded influence function is used.

4 Simulation results

We conduct a small simulation study to compare the classical and our new

robust approach. We generated data from a Gamma model with log-link.

We assumed that ν = 1 and µi = g−1(xT
i β), where β = (1, 0.2, 0.2, 0.2, 0.2)T

and xi = (1, xi1, . . . , xi4), with xi1 ∼ Bin(1, 0.5), xi2 is categorical (3 levels

with probabilities of 0.5, 0.35 and 0.15 respectively), xi3 and xi4 ∼ N (0, 1)7.

A thousand samples of size 1000 are generated from a Gamma model

7This design has been chosen to mimic a variety of situation arising in practice. For

instance, the binary independent variable could represent the gender of an individual, the

categorical variable could represent health status (or race or marital status, for example)

and the normal distributed variable could represent the (standardized) age or (standard-

ized) educational level (years of completed schooling).
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(see (2)) with log-link. A thousand of corresponding contaminated samples

are obtained by multiplying by 10 5% of randomly chosen responses.

For the two classes of data (contaminated and non-contaminated), we

first look at the quality of the estimated parameters by both a classical GLM

and our robust technique (with ψ = ψc, c = 1.5 and w(xi) ≡ 1).

[Figure 2 about here.]

[Figure 3 about here.]

The simulation results are displayed in Figure 2-4. The 1000 parame-

ter estimates for each βj, j = 1, . . . , 5 and their estimated standard errors

are represented with boxplots (the middle line represents the median and

the box contains 50% of the values, see Tukey, 1977). The estimated re-

gression parameters for non-contaminated data (that is, at the model) of

Figure 2 (top panels) appear to be in line with the true values (horizon-

tal lines in each plot) for both the classical and the robust technique. The

estimated standard errors (bottom panels of Figure 2) of the robust tech-

nique are slightly larger than their classical counterparts as theoretically

expected due to the small loss of efficiency incurred. The means of the

1000 estimates of the five regression parameters estimates (βj, j = 1, . . . , 5)

are (1, 0.2, 0.2, 0.2, 0.2) for both the classical and the robust technique. The

empirical standard errors of the 1000 estimates of the five regression param-

eters estimates are (5.1, 6.2, 4.2, 3.2, 3.1) · 10−2 for the classical estimates and

(5.5, 6.8, 4.5, 3.4, 3.4) · 10−2 for the robust estimates.

The results for the contaminated set of data (Figure 3) are quite different.

In fact, the intercept coefficient is not well estimated, even more so with clas-

sical GLM. Moreover, the estimated coefficients for the classical technique
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are not biased but exhibit a large (spurious) variability, and their standard

errors are overestimated. This would impact the inference of the classical

analysis by hiding significant effects. The means of the 1000 estimates of

the five regression parameters estimates are (1.36, 0.2, 0.2, 0.2, 0.2) for the

classical technique and (1.11, 0.2, 0.2, 0.2, 0.2) for the robust technique. The

empirical standard errors of the 1000 estimates of the five regression parame-

ters estimates are (9.9, 13.2, 8.6, 6.8, 6.5) · 10−2 for the classical estimates and

(5.8, 7.4, 4.9, 3.8, 3.8) · 10−2 for the robust estimates.

[Figure 4 about here.]

The large variability observed in the classical estimates under contami-

nation is the consequence of the bad estimation of the scale parameter, as

it appears in Figure 4. The classical technique is highly affected by a small

fraction (5%) of contaminated observations of the data and overestimates the

variability of the majority of the sample data. Note that if no contamination

is present, the robust and classical estimators of ν perform similarly.

An additional simulation setting with 10% contamination has also been

considered. The same behaviour (with slightly larger effects) as with 5%

contamination is observed and therefore the results are not shown here.

5 An example on Swiss data

In this section, we consider a sample of 100 patients hospitalized at the

Centre Hospitalier Universitaire Vaudois in Lausanne (Switzerland) during

1999 for “medical back problems” (APDRG 243). The outcome is the cost

of stay (in Swiss francs) and the explanatory variables are: length of stay
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(LOS, in days), admission type (ADM: 0=planned, 1=emergency), insurance

type (INS: 0=regular, 1=private), age in years (AGE), sex (SEX: 0=female,

1=male) and discharge destination (DEST: 1=home, 0=another health in-

stitution).

[Table 1 about here.]

Table 1 provides summary statistics on the expenditure and length of stay

variables both on the raw and log scales. The skewed and heavy-tail nature

of the distribution of these variables clearly appears8. The median age is

56.5 years (the youngest patient is 16 years old and the oldest is 93 years

old). Moreover, 60 individuals out of the 100 in the sample were admitted

in emergency and only 9 patients had private insurance. Also, both sexes

are well represented in the sample with 53 men and 47 women. After being

treated, 82 patients went home directly.

5.1 Fit of the model

We report the estimated parameters and their standard errors in Table 2.

Note that length of stay (on log scale) is used as a covariate which could

raise the possibility of simultaneous equations bias, as suggested by a referee.

This problem can be taken into account by a more sophisticated approach;

see Section 6. At this stage, we consider this model which illustrates well the

benefits of our robust technique.

The first two columns give the classical analysis, whereas the second set

of columns reports the results with the robust estimation via (5), where we

8Note, however, that these summaries (except the median) can be distorted by the

presence of outliers.
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used a Huber’s ψc function with c = 1.5 and w(xi) ≡ 1. If in addition weights

w(xi) =
√

1 −Hii on the design space are used, similar results are obtained

(not shown here).

[Table 2 about here.]

Only small differences appear on the values of the estimated coefficients

between the classical and the robust analysis except for INS, where there is

a difference by a factor of 10 (which is not a typo). This large difference is

certainly due to the small number of patients (only 9) with private insurance,

one of which is heavily downweighted in the robust analysis (patient 28,

w̃(ri) = 0.24). There are at the contrary major discrepancies between the

estimated standard errors of the two techniques, the ones based on the robust

approach being much smaller. This is in line with the conclusions of the

simulations study of Section 4. It is mainly due to the fact that the scale

estimate for the classical analysis is twice as large as the one from the robust

analysis. The conclusions from both analyses are the quite different: if no

doubt arises on the significance of the Intercept, log(LOS) and ADM on

both analysis, the robust analysis would suggest a significant effect also for

DEST, and less clearly for SEX. In view of the results of the simulation study

in Section 4, the robust analysis has to be considered more reliable.

To identify the observations exhibiting a different pattern than the ma-

jority of the data, we can look at the weights w̃. When fitting the full model

to the dataset at hand, we have five observations with a weight less or equal

than 0.5, namely w̃14 = 0.23, w̃21 = 0.50, w̃28 = 0.24, w̃44 = 0.42 and

w̃63 = 0.32. The particular behaviour of these observations can for example

be highlighted in the pairwise plot of the cost of stay (Y ) against log(LOS)
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(Figure 5): the pattern of the downweighted observations is different from

the pattern of the majority of the data. Note that, although surprising at

first sight, the far right point in Figure 5 received full weight because the

model is such that it allows for variability increasing with µ2
i and therefore

with xi.

[Figure 5 about here.]

5.2 Sensitivity analysis for variable selection

This example can also serve the purpose of illustrating how the p-values of

classical tests are sensitive to outliers, whereas the robust tests are more

stable. We consider the model as in Section 5.1 including all the available

variables and test whether the variable SEX is significant in the model. To

do so, we let y21 span the range of all the values of the sample (about 1′500−
45′000) on a grid of 100 points (see Figure 5). For each point of the grid, we

compute the classical and the robust p-values, that is the p-values obtained

with the test statistics (10) with a Huber’s function with c = ∞ (reproducing

the classical deviance approach) and c = 1.5 respectively.

The results are displayed in Figure 6. The difference of behavior between

the two methods is striking, even more so if one thinks that only one point

out of 100 is causing it. The p-value associated to the classical test statistics

ranges from 4.4% to 21.9%. On the other hand, the p-value of the robust

test statistics is much more stable and varies only between 4% and 8.4%. It

provides a consistent message of near significance for the SEX variable which

is based on the structure of the overwhelming majority of the data and is

not affected by a single data point.
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[Figure 6 about here.]

6 Discussion

In this paper we provide robust techniques that allow to address simulta-

neously the problem of skewed and heavy-tailed distributions as they arise

with expenditure variables in health economics. The approach is placed in

the framework of GLM and provide both estimators and test statistics for a

complete robust analysis. The effectiveness of our proposal is supported by

theoretical results, a simulation study and an example on real data for which

we also conducted a sensitivity analysis.

Further research will include the extension of the approach to take better

into account the problem of zero inflation. Also, the example of the paper

raises the issue of robust simultaneous equations for GLM that are not avail-

able at the moment. A potential approach to tackle this problem could be

based on the work of Krishnakumar and Ronchetti (1997).
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A Computations

Here we provide explicit expression for E[ψ(ri)], E[ψ(ri)
2] and E[ψ(ri)

∂
∂µi

log h(yi|xi, µi)]

when ψ = ψc is the Huber’s function with tuning constant c (see Figure 1)

and when Yi is issued from a Gamma distribution with parameters µi and ν

as defined by (2).

We first show that the variable Ri = (Yi − µi)/v
1/2(µi) has a distribution

independent of µi. The density function of Ri is given by

fν(ri) =
νν/2 exp(

√
ν(
√
ν + ri))(

√
ν + ri)

ν−1

Γ(ν)
, ri > −√

ν, (11)

which is in fact a Gamma density of the form (2) with µi =
√
ν, but with

shifted origin to −√
ν. Let us also define

G(t, κ) = exp(−√
ν(
√
ν + t))(

√
ν + t)κ1I{t>−√

ν},

where 1I{t>−√
ν} = 1 if t > −√

ν and 0 otherwise.

We then have

E
[

ψc

( Yi − µi

v1/2(µi)

)]

= E[ψc(Ri)] =

∫ ∞

−√
ν

ψc

(

ri

)

fν(ri)1I{Ri>−√
ν}dri

= c
(

P (Ri > c) − P (Ri < −c)
)

+

∫ c

−c

rifν(ri)1I{Ri>−√
ν}dri. (12)

The integral in (12) can be computed by

∫ c

−c

rifν(ri)1I{Ri>−√
ν}dri =

=

∫ c

−c

(
√
ν + ri)fν(ri)1I{Ri>−√

ν}dri −
√
νP (−c < Ri < c) =

=
ν(ν−1)/2

Γ(ν)

[

G(−c, ν) −G(c, ν)
]

,

where integration by parts has been used in the last step.
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Similarly, we obtain:

E
[

ψ2
c

( Yi − µi

v1/2(µi)

)]

= E[ψ2
c (Ri)] =

∫ ∞

−∞
ψ2

c (ri)fν(ri)1I{Ri>−√
ν}dri

= c2
(

P (Ri < −c) + P (Ri > c)
)

+ P (−c < Ri < c)

+
ν(ν−1)/2

Γ(ν)

[

G(−c, ν + 1) −G(c, ν + 1)
]

+
νν/2

Γ(ν)

(ν + 1

ν
− 2

)

[

G(−c, ν) −G(c, ν)
]

.

For the computation of the third term, we first notice that ∂
∂µi

log fµi,ν(Yi) =

(Yi − µi)/(µ
2
i /ν) =

√
νRi/µi. This term will depend on µi. We then use the

same reasoning as above to compute

E[ψc(Ri)
∂

∂µi

log fµi,ν(Yi)] =

√
ν

µi

E[ψc(Ri)Ri]

=
νν/2c

µiΓ(ν)

[

G(−c, ν) +G(c, ν)
]

+

√
ν

µi

P (−c < Ri < c)

+
νν/2

µiΓ(ν)

[

G(−c, ν + 1) −G(c, ν + 1)
]

+
ν(ν+1)/2

µiΓ(ν)

(ν + 1

ν
− 2

)

[

G(−c, ν) −G(c, ν)
]

.

B Iterative weighted least squares algorithm

In the following we show that solving the set of estimating equations (5)

amounts to implement an iterative weighted least squares algorithm that, at

each step, regresses Z = Xβt−1 + dt−1 on X with weights given by diag(B),

where dt−1 = (d1, . . . , dn) has elements

di =
ψ(ri) − E(ψ(ri))

E(ψ(ri)ri)
v1/2(µi)

∂ηi

∂µi

,

and B is defined by (8).
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In fact, given a value βt−1 we can obtain an updated value βt by the

Fisher-scoring based rule βt = βt−1 + H−1(βt−1)U(βt−1), i.e. H(βt−1)βt =

H(βt−1)βt−1+U(βt−1), where U(β) is the left-hand side of (5) andH(βt−1) =

E
(

− ∂U(β)/∂β |β=βt−1

)

= nM(ψ, Fβ) = XTBX.

Moreover, we have that H(βt−1)βt−1 + U(βt−1) = XTBZ because

[

H(βt−1)βt−1 + U(βt−1)
]

j
=

p
∑

k=1

n
∑

i=1

bixijxikβ
t−1
k +

+
n
∑

i=1

ψ(ri)w(xi)
1

v1/2(µi)

∂µi

∂ηi

xij −
n
∑

i=1

E(ψ(ri))w(xi)
1

v1/2(µi)

∂µi

∂ηi

xij

=
n
∑

i=1

[

xT
i β

t−1 +
ψ(ri) − E(ψ(ri))

E(ψ(ri)ri)
v1/2(µi)

∂ηi

∂µi

]

bixij

=
n
∑

i=1

Zibixij = [XTBZ]j,

which concludes the computations.
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Figure 1: Huber’s ψc(r) function and Huber’s weights w̃(r) = ψc(r)/r.
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Figure 6: p-values for testing whether the variable SEX is significant in the
model of Table 2 when letting y21 range between 1’500 and 45’000.
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Variable Median St. dev. Min Max Skewness Kurtosis
cost 9’689.75 7’981.35 1’584.20 42’117.90 1.67 3.53
log(cost) 9.1788 0.7197 7.3678 10.6482 -0.2432 -0.2717
LOS 10 10.1015 2 64 2.0556 6.5103
log(LOS) 2.3025 0.8312 0.6931 4.1589 -0.2258 -0.5592

Table 1: Summary statistics on the expenditure and length of stay variables
both on the raw and log scales.
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Classical Robust
variable coeff. st. err. coeff. st. err.
Intercept 7.2338 0.1469 7.2523 0.1049
log(LOS) 0.8222 0.0280 0.8391 0.0200

ADM 0.2136 0.0500 0.2221 0.0357
INS 0.0933 0.0791 0.0093 0.0565
AGE -0.0005 0.0013 -0.0010 0.0009
SEX 0.0951 0.0500 0.0727 0.0357

DEST -0.1043 0.0693 -0.1230 0.0495
scale: 0.0496 scale: 0.0243

Table 2: Coefficient estimates and standard errors from a classical and a
robust analysis.
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