Hes '
o

Electrical Engineering
Department at HES-SO: Systémes industriels

Mains driven transmitter & portable receiver
for visible light communication
Indoor positioning

Master’s thesis to obtain the degree of
Master in Industrial Sciences: Electronics-ICT
offered by: Jelle Smets and Rob Holvoet

Promotor: Mr. Frangois Corthay Academic year: 2012 - 2013

Acknowledgements

We could not accomplish this master’s thesis without the help of lots of people. Hereby we
would like to thank all those people who helped us to bring this thesis work to a good end.

Special thanks to Francois Corthay as our promotor at HES-SO Valais/Wallis in Sion . For
the good advice he gave us, and to encourage us to try different ways to do things and look
for new/other solutions. His close and enthusiast accompaniment was a great help for us.

We got a great help from Olivier Walpen and Steve Gallay who gave us advice about lots of
different things and did the routing and the etching of our boards, what made it possible to
move on faster.

Médard Rieder helped us to design an anti-aliasing filter before the ADC. He recommended
a program where you can easily design a filter with a certain cut-off frequency. He also
shared his experience about the problems we had with the ADC (sampling noise, input
spikes...).

We would also like to thank Oliver Gubler, Silvan Zahno and Darko Petrovic for there
enthusiastic help whenever we needed it. Silvan Zahno helped us when we had problems
with the Ethernet code.

Many thanks to Didier Blatter for the help, advice and information about designing the
transformer circuit.

For information and advice about LEDs and photodiodes we could count on the help from
Frederic Truffer.

Dominique Gabioud helped us when we had problems to send a UDP packet from the PC
to the FPGA. We had to add manually the IP address and MAC address of the FPGA in the
ARP table so we could send messages to the FPGA.

The HES-SO Valais/Wallis in Sion was a great school to do research and we got every
support we needed both in terms of information, help, enthusiasm, advice or provision of
professional equipment.

All of this wouldn’t be possible if we didn’t found a place in Sion to sleep, cook or relax.
We got a warm welcome from the family Dayer who shared their house with us and showed
us around.

Abstract (English)

Names: Rob Holvoet , Jelle Smets
Contact: robholvoet@hotmail.com, jelle.smets @hotmail.com

Title: Mains driven transmitter and portable receiver for visible light communication:
indoor positioning.

The possibilities of Visible Light Communication (VLC) for indoor positioning are being
studied in this work. The placement of several LEDs on the ceiling can have a dual purpose:
first, the lighting in the room and second the transmission of binary sequences. The binary
sequences are send at a high frequency and are thus invisible for the human eye. A light
receiving device can detect these sequences and measure their amplitude. The different
amplitudes are in function of the distances. This property allows to calculate the position of
the receiver in the room.

For the sending part, a stand-alone prototype is created to be connected to the mains in a
room. A transformer circuit (Flyback) is used to drive the led. Two different possibilities
to implement the binary sequence in the emitted light are investigated. Once by using the
switch of the transformer circuit and once by placing a switch in series with the LED. An
FPGA is used to generate the binary sequence.

For the receiving part, a photodiode is used with an analog circuitry to detect, filter
and amplify the transmitted light sequences. An ADC is used to digitalize the received
information. This makes it possible to send the data to a digital device. Software can then
be used to process the data.

Key words: Visible Light Communication (VLC), indoor positioning, flyback converter,
optical receiver, correlation filter.

Abstract (Francais)

Noms: Rob Holvoet , Jelle Smets
Contact: robholvoet@hotmail.com, jelle.smets @hotmail.com

Titre: Emetteur alimenté par le secteur et récepteur portable pour la communication par la
lumiere visible: détermination du placement a I’ intérieure.

Les possibilités de la communication par la lumiere visible (Visible Light Communication,
VLC) ont été étudiées pour le calcul de position a I’intérieur d’une piece. La fixation
de plusieurs lampes & LEDs au plafond peut avoir deux buts: premierement, 1’éclairage
dans une chambre et deuxiemement la transmission de séquences binaires. Les séquences
binaires sont envoyées a une haute fréquence et sont donc invisibles pour les yeux humains.
Un appareil optique peut détecter les séquences et mesurer leurs amplitudes. Les amplitudes
différentes sont une fonction des distances. Cette propriété permet de calculer la position
du récepteur dans la picce.

Pour I’émetteur, un prototype autonome a été développé. Il est alimenté par le secteur.
Un transformateur est utilisé pour piloter la LED. Deux possibilités différentes pour
implémenter la sequence binaire sur la lumiére envoyée ont été examinées: la premicre
consiste a utiliser I’interrupteur du circuit a transformateur “flyback”™ et I’autre a plager un
interrupteur en série avec le LED. Un circuit programmable FPGA est utilisé pour générer
la séquence binaire.

Pour ce qui est du récepteur, une photodiode est utilisée avec un circuit analogique pour
détecter, filtrer et amplifier la sequence binaire envoyée. Un convertisseur A/D est utilisé
pour numériser I’information recue. Il est alors possible d’envoyer ces données a un
appareil numérique ot un programme peut servir a traiter ces données.

Mots-clés: communication par la lumiere visible, détermination du placement a I’
intérieure, convertisseur flyback, récepteur optique, filtre de corrélation.

Abstract (Nederlands)

Namen: Rob Holvoet , Jelle Smets
Contact: robholvoet@hotmail.com, jelle.smets @hotmail.com

Titel: Verzender op netspanning en draagbare ontvanger voor communicatie met zichtbaar
light: Indoor positiebepaling.

In deze paper zullen de mogelijkheden bestudeerd worden van communicatie met zichtbaar
licht (Visible Light Communication, VLC) voor indoor positiebepaling. Het plaatsen van
LEDs aan het plafond heeft hier een dubbele functie: enerzijds de verlichting van de
ruimte en anderzijds het verzenden van binaire sequenties. De binaire sequenties worden
verzonden op een hoge frequentie en zijn dus niet waarneembaar door het menselijke oog.
Een optische ontvanger kan deze sequenties detecteren en hun amplitude bepalen. De
verschillende amplitudes zijn namelijk in functie van de afstanden. Deze eigenschap laat
toe om de positie te bepalen van een ontvanger in een kamer.

Als zender wordt een autonoom prototype gemaakt die onmiddellijk verbonden wordt op de
netspanning. Voor het voeden van de led wordt er gebruik gemaakt van een transformator
circuit (Flyback). Twee verschillende mogelijkheden worden bekeken om de binaire
sequenties te implementeren in het uitgestraalde licht. De mogelijkheid om de schakelaar
van de transformator circuit zelf te gebruiken wordt enerzijds onderzocht en anderzijds
wordt de mogelijkheid bekeken om de schakelaar in serie te zetten met de LED. Er wordt
gebruik gemaakt van een FPGA om de binaire sequenties te genereren.

Wat de ontvanger betreft wordt gebruik gemaakt van een fotodiode samen met een analoog
circuit om de verzonden licht sequenties te detecteren, filteren en versterken. Een ADC
wordt gebruikt om de ontvangen informatie te digitaliseren. Dit maakt het mogelijk om de
data te verzenden naar een digitaal apparaat. Software kan dan gebruikt worden om de data
te verwerken.

Trefwoorden: communicatie met zichtbaar light, indoor positiebepaling, flyback converter,
optische ontvanger, correlatie filter

Contents

(I__Introduction| 1
2 Preparation and Research| 3
[2.1 ~ Choice of emitting LED and receiving photodiode| 3
2.1.1 TIntroduction|. oL 3

212 LEDI. . . . o 3

213 Photodiodel 5

214 Conclusionl« oo 10

B LED IR rcuit 12
3.1 Introduction] 12
3.2 Power Supply Topologies| 13
3.3 Flyback Converter|., 13

34 LESRI 15
B4.1 Firsttests| 15

342 Fmal LESR| o 15

BS LEDHeasInK o v oot e et e 15
3.6 Testingcircuit 1f Lo 16
BT Tesls . . . oottt 17

3.7 Testingcircuit2] 18
[3.7.1 Twistedpaircablel 18

BZ2 Testsd 19

3.73 VHDL ofsender FPGAl 19

AT : it 2
4.1 Introduction| L 21
4.2 Powersupply| 22
4.3 Current-voltage converter] 23

vi

4.4 Ambient hightfilter] o o oo

W A D

4.6 Anti-aliasing filter]. Lo
47 ADCl. . . . e

2 I re Ethern mmunicationl L.

|6 Processing with Python |
6.1 Receivingthedatal. oL
6.2 Processingthedata]
(6.3 Positioning|

2 Position calculation|.

8 Future work|

[AList of Main Switch Mode Power Supply (SMPS) Topologies |

B Calculah I el Ted1 k]

|C Ambient light rejection circuit |

[D_Simulations|

[E.2 General findings|.
[E.3 Changing the dutycycle]

[F Correlation with an n-bit register]

37
37
37

42
42
44
48
48
50
52

53

54

57

59

61

66
66
68

70
70
70
70
74
74

77

2 hematic2l
[H.2.1 Ambient light rejectioncircuat|
[H2.2 Highpassfilterf

I Code

920
90
91
92
92

93
93
96
97
98
99
100
101
105
105
105
106
107
107
107
107
108

113

I.L1 VHDL Codel. o
1.1 ADC . .

I.L1.3 Sequence generation for LEDs|
L2 PythonCode|.

[L2.2 Maimnscriptlo e e e e

I.2.4 Functionstesting|,

List of Figures

[2.T Two approaches for generating white emission from LEDs.[11]]]. 3
[2.2 Differentkinds of white Tight.[9] 4
2.3~ Typical Color Spectrum.[3] 5
[2.4 Spectrum of warm-white LED in comparison with the range of the photodiode| 6
235 Photodiode BPW2TIRI. ottt 6
2.6 Short Circuit Current vs. Illuminancel 8
[2.7 Relative Spectral Sensitivity vs. Wavelength| 8
28 Photodiode ST223T . . . o v v oo 9
[2.9 " Sensitivity vs. Wavelength| oo oo 10
[2.10 Model of photodiode| 10
[2.1T Main characteristics of the BXRA-30E0740-A-003] 11
[2.12 Other characteristics of the BXRA-30E0740-A-00 [3]| 11
3.1 TEDDRIVER] 12
B2 VICCircuit] o 13
[3.3 Flyback Converter Circuit[7]]o 14
B4 3-bItLESRI 15
3.5 Blockdiagram I{. o 17
3.6 Blockdiagram?2|. o 18
[3.7 Result twisted paircable (bm)[. oL, 19
13.8 Signal from on-board FPGA (yellow) and current trough LED (green), . . . 20
3.9 Blockdiagrams| 20
4.1 Block diagramreceiver|., 21
4.2 Step-up converter (1.2Vto3.3V)| L. 22
4.3 Step-up converter (1.2VtoSV)| L. 23
4.4 Current-voltage converter | 24
4.5 RChighpassfilter| 25

4.6 Output receiver with RC-filter| 26

|47 Ambient light filter circuit with capacitor| 26
[4.8 Output receiver with condensator| 27
Recetvercircuit]|.o 27

|4.10 Creating a virtual ground for single supply operation| 28
@.11 LC filter with fo—orr =500 kHz and Z;,, = Z,,, =50 Q. 29
.12 LC filter with f.,—orr = 500 kHz and Z;,, = Z,,, =50 Q (PCB)| 29
[4.13 Spectrum LC filter measured with network analyzer (50 €2 mput and output |
mpedance) | L e e e e e e e 30

|4.14 Simulation spectrum LC filter with Z;,, =1 Q and Z,,, =300 Q|. 30
[4.15 Signal before and after filter at 2,3 m (square wave)|. 31
|4.16 Signal before and after filterat 2,3 m (LFSR)| 31
|4.17 Simulation spectrum LC filter with Z;,, = 1 Q and Z,,, = 300 € (redesign)| . 32
|4.18 Signal before and after filter at 2,3 m (LFSR) with new LC filter| 32
4.19 Timing diagram 12-bit ADC| 33
.20 Signals CSand SDATA|. 34
421 FPGAboard| 34
[4.22 THD (dB) vs. Source impedance (€2)| 35
{4.23 Input signal ADC when driven by FPGA (LFSR at23m)|. 35
|4.24 Input signal ADC when driven by FPGA measured with probe with ground |
I 36
425 PCBrecewver| oL e 36
[5.1 Structure to send and receive packets over Ethernet| 38
[5.2 Structure to write the samples in RAM and read from RAM| 39
5.3 Received UDP packets in Wireshark |. 40
5.4 Construction of receiver and connection tothe PC| 41
|6.1 Network adapterson PC|, 42
62 ARPtablel. 43
[6.3 Sending a UDP packetto FPGA | 44
|6.4 Block diagram of the maincode| 44
|6.5 Graph received samples (bit sequence of 1023 bits)] 45
|6.6 Graph received samples after correlation filter (bit sequence of 1023 bits)| . 47
|6.7 Auto-correlation for a 10-bit sequence|. Lo 47
|6.8 Comparison between received signal and 1deal signal | 48

|6.9 Fitting correlation value vs. radius for first LED| 50

[6.10 1ntersection pointsof 2 circles|, 50

|6.11 Position calculation (graphical view)| 52
|7.1 ~ Graphical view of the position of the receiver in the room| 53
B.I Thermalcircuit[4]]. o 59
|C.1 Ambient light rejectioncircuit| L. 61
[C.2 Closed-loopsystem|. 62
[C3 Feedbackecircuit| oo 62
|C.4 Closed-loop system with addition| 63
[C.5 Bodeplot Hn(S)|« o o o o 64
ID.1 Testbench ADCI. 66
D.2 Simulation ADCT 67
ID.3 Testbench Ethernedl 0 .. 68
[D.4" Simulation sending Ethernet frames| 69
|[E.1 Rectified voltage(Yellow) and input current(green), 71
|[E.2 Primary current(Yellow) and secondary current(green)| 71
|[E.3 Primary current(green) and rectified input voltage(Yellow)[. 72
|[E.4 Primary current(Yellow) and secondary current(green), 72
|[E.5 Voltage over the LED (Yellow) and current through the LED(green)| 73
|[E.6 Voltage over the LED (Yellow) and current through the LED(green)] 73
|[E.7 extra circuitry on breadboard |. Lo 75
|[E.8 Current through LED(Yellow) and voltage over the LED (17.8V to |

30.7V)(green)| e 75
[E.9 Current through LED(Yellow) and signal from FPGA (green)|. 76
|[E.10 Current through LED(Yellow) and signal at gate(green)), 76

|[F.1 Graph received signal after correlation filter (6-register LESR), one LED |

burning| 78
|[F.2 Graph received signal after correlation filter 1 (6-register LESR), 5 LEDs |
burning| 78
|[E.3 Graph received signal after correlation filter 2 (6-register LESR), 5 LEDs |
burning | 79

|[F.4 Graph received signal after correlation filter 3 (6-register LESR), 5 LEDs |

burning| 79

F3

Graph received signal after correlation filter 1 (/-register LFSR bit LESR),

SLEDsburning|. o 80
|[F.6 Graph received signal after correlation filter 2 (7-register LESR), 5 LEDs |
burning| 80
|[E.7 Graph received signal after correlation filter 3 (/-register LESR), 5 LEDs |
burning | L 81
|[E.8 Graph received signal after correlation filter 1 (8-register LESR bit LESR), |
SLEDsburning|. 81
|[E.9 Graph received signal after correlation filter 2 (8-register LESR), 5 LEDs |
burning| L 82
|[F.10 Graph received signal after correlation filter 3 (8-register LESR), 5 LEDs |
burning| 82
|[F.11 Graph received signal after correlation filter 1 (9-register LESR), 5 LEDs |
burning | L. 83
|[F.12" Graph received signal after correlation filter 2 (9-register LFSR), 5 LEDs |
burning | L 83
|[F.13 Graph received signal after correlation filter 3 (9-register LESR), 5 LEDs |
burning| 84
|[F.14 Graph received signal after correlation filter (10-register LESR), one LED |
burning| e 85
|[F.15 Graph received signal after correlation filter 1 (10-register LESR), 5 LEDs |
burning | L. 85
|[F.16 Graph recerved signal after correlation filter 2 (10-register LESR), 5 LEDs |
burning| 86
|[F.17 Graph received signal after correlation filter 3 (10-register LESR), 5 LEDs |
burning| L. 86
|[F.18 Graph received signal after correlation filter (11-register LESR), one LED |
burning| 87
|[F.19 Graph received signal after correlation filter (12-register LESR), one LED |
burning| e e e 87
|[F.20 Graph received signal after correlation filter (13-register LESR), one LED |
burning| L e 88
|[F.21 Graph received signal after correlation filter (14-register LESR), one LED |
burning| L. e 88
|[F.22 Graph received signal after correlation filter (15-register LESR), one LED |
burning| 89
|G.1 Graph received signal after correlation filter (10-bit LESR), one LED |
burning| L. 91

|G.2 Graph received signal after correlation filter (10-bit LESR), 5 LEDs burning | 91

|G.3 Graph received signal after correlation filter (10-bit LFSR), one LED |

burning| 92
|[H.1 PCB sender schematic 1, without unneeded parts| 93
[H.2 Bridge rectifier and reservoir capacitors | 96
H.3 Snubber|. 97
[H4 Mostet with mosfetdriver| 98
[H.5 Power switchchip| 99
|[H.6 Feedback circuit for powerswitch| 100
[H7 PCBrecewver| e 101
|[H.8 Comparison output signal with different cut-off frequency of HPF| 105
IH.9 PCB receiver with some modifications| 106

List of Tables

[2.1 ~ Characteristics of BPW2IR photodiode| 6
[2.2 Characteristics of S1223 photodiode| 9
3.1 Comparative table between different switchuses|. 17

1 M rements radi I rrelation val itheach LEDI. 49

XV

Symbols

Acronyms

List of symbols and acronyms

feur—ofr Cut-off frequency

ADC
ARP
ESR
FIFO
FPGA
LED
LFSR
LSB
MII
MSB
RAM
THD
UDP
VLC
PD

Analog-to-digital converter
Address Resolution Protocol
Equivalent Series Resistance
First in, first out
Field-programmable gate array
Light Emitting Diode

Linear Feedback Shift Register
Least Significant Bit

Media Independent Interface
Most Significant Bit

Random Accessible Memory
Total Harmonic Distortion
User Datagram Protocol
Visible Light Communication
Photodiode

XVi

Chapter 1

Introduction

LEDs are semiconductor devices that emit light when biased in the forward direction of the
p-n junction. LEDs present many advantages over traditional light sources, including lower
energy consumption, longer lifetime, improved robustness and smaller size. A significant
attribute of LEDs is their ability to switch on and off thousands of times per second. No
other lighting technology has this capability. This switching occurs at ultra-high speeds,
so far beyond what the human eye can detect, that the light appears to be constantly on.
These embedded signals are emitted from the LEDs in the form of binary code; ’off’
equals zero and on’ equals one. This is what they call visible light communication (VLC).
When VLC equipment and devices are placed throughout a building of geographical area,
a comprehensive wireless communication network can be created.

This thesis talks about a stand alone transmitter and a receiver that can be connected to
a computer. The transmitter can be build in the ceiling and only needs 230 AC voltage
to transmit digital information. The receiver will be a device to plug in a digital port
of the computer. It receives information from the emitted light and send it to the PC.
The transmitted information will give the receiver the possibility to determine his current
position in a room by looking at the amplitude of the signals he receives from multiple
LEDs. It can also be used to transmit other digital information/files.

1 Introduction 2

The structure of this report is as follows:

In chapter [2| the choice of the used LED and photodiode for the transmission is explained.
Then we split the hardware research for the transmitting circuitry (chapter 3) and the
receiving circuitry (chapter [4).

Chapter [3] contains information starting with some research about the chosen components
and topologies. Further on it talks about the first circuitry and tests until the final board and
his operation.

Chapter [talks about the different parts of the receiver. First, we will tell how to supply the
circuit. Afterwards, we will explain the receiver circuit starting from the photodiode until
the ADC used to digitalize the analog signal.

In chapter [5] we have a look how the connection with the PC is made. This contains the
VHDL code used to process the data from the receiver circuitry in the FPGA and send it
to the PC. At the side of the PC, we use some software to obtain that information. The
processing in software is explained in chapter[6]

The final result of our thesis is presented in chapter[7] The things we couldn’t do due to the
time limit and the ideas we have in mind for future work are given in chapter 8]

Source code, schematics, calculations, documentation and extensive test results are found
in the appendices.

Chapter 2

Preparation and Research

2.1 Choice of emitting LED and receiving photodiode

2.1.1 Introduction

To start this project, we first had to look for the proper LED and photodiode that we would
use. We need those specifications to know what spectrum we will use to transceive, what
electrical circuit we need to control the LED and to process the received data through the
photodiode.

2.1.2 LED

As we are researching an application for indoor use and we want to use LEDs to illuminate
a room and to transmit data, we will work with white light. Two approaches are generally
used to generate white light with LEDs. The first approach is to combine light from, e.g.,

! ! j ! ! ! Blue LED plus yellow phosphor
AAA AN]

Figure 2.1: Two approaches for generating white emission from LEDs.[11]

red, green and blue (RGB) LEDs [11]]. Typically, these triplet devices consist of a single
package with three emitters and combining optics, and they are often used in application
where variable color emission is required. These devices are attractive for VLC as they

2 Preparation and Research 4

offer the opportunity for transmitting different data on each LED. The other technique is to
use a single blue LED which is coated with, or sometimes embedded in, a layer phosphor
that emits red-shifted light upon absorbing a portion of blue light emitted by the LED. The
red-shifted emission mixes additively with the nonabsorbed blue component to create the
required white color (see Figure 2.T)). At present, the later approach is often favored due to
the lower complexity and cost. Nevertheless, in single-chip devices the phosphor typically
limits the speed of overall optical response. Because our design is only a prototype and
the limiting factor for data transmitting speed will be determined by the receiver circuit
(limited bandwidth), we don’t have to take this factor into account.

In the domain of white light you can choose 3 main types of white light LED’s : Cool,
Warm and Natural White LEDs (see Figure [2.2))

LED Usion

LED Light Example Kelvin Scale

- 10,000K
7000k 10000K +: Blue Sky

9,000K

8,000K

H 7,000
4000K ¢ 6000K : Cloud
} i 6,000K I SSIJOK-NM(:CnnIWlimLED

5,000K

5700K

3500K = —————— 4800K : Direct Sunlight
SO0k P e 00 o e LED
3000K 3;6081¢ 3000K : Haloge
— j_ 2800K cIncaratescent
2800K-3200K : Warm White LED

2,000K | 2800K-3200K : Warm White LED

= = 1900K: Candlelight

2700K 1.000!(__

LEDColor Temperature Correlation Example

Figure 2.2: Different kinds of white light.[9]

With traditional incandescent or halogen bulbs you could not choose the colour of the light
that the bulb produced as this was down to pure physics. Traditional bulbs work by passing
electricity through a wire that glows hot. This glow produces the light that can be seen.
Because LED bulbs are a completely different technology and much more technically
advanced it is possible to choose the colour of the light that you want.

The colour temperature of light can be measured as a number on the Kelvin scale. This is
represented by a number followed by the symbol *K’. High colour temperatures of over
5000 K are said to be cool colours and often have a blue tone to them. Whereas low colour

2 Preparation and Research 5

temperatures of 2,500 - 3,200 are said to be warm colours and have yellow or orangey tones
to them.[13]]

In domestic lighting, 75 - 80 % of customers buy warm white LED bulbs as they offer
the closest match to their old incandescent or halogen bulbs that they are replacing. The
light given off by a warm white LED bulb can be described as soft and warm with a slight
yellow hint to it.

Some customers purchase cool white LED bulbs if they want the brightest light possible or
if they want to achieve a modern look to a room. This particularly suits colour schemes that
are bright and bold and use primary colours, or even colour schemes that are predominantly
white where a clean minimal look is required.

In commercial lighting the majority of customers opt for cool white bulbs. These give a
brighter light but you should be careful to ensure that the colour temperature is not too
high, or in practical terms the light not too cool, otherwise the effect may seem very harsh
or displeasing to the eye.

These 3 main different white LEDs have a different Intensity division in the spectral
band.(See Figure [2.3)

Figure 4: Typical Color Spectrum

1.0
= /\ ——Cool White
%08 e \\arm White [
§ \ Neutral White
£0.6
o
=
50.4 1
5]
Toz2
0.0 T |

400 450 500 550 600 650 700 750 800
Wavelength

Figure 2.3: Typical Color Spectrum.[3]

2.1.3 Photodiode

The first part of a VLC receiver, is a photosensitive element. Mostly, a photodiode is used
at the input of the receiver. The current through the photodiode, is proportional to the light
falling on it. The more light it receives, the larger the current will be.

The photodiode has to operate in the same spectrum as the LED. We tested two photodiodes:

2 Preparation and Research 6

the BPW21R photodiode from Vishay and the S1223 photodiode from Hamamatsu. We will
discuss both diodes and give the most important characteristics.

e In figure[6.8] you can see the spectrum of the chosen warm-white LED in comparison
with the range of the BPW21R photodiode [12] (see figure 2.5). As you can see, the
photodiode is sensitive in the wavelength spectrum of the LED.

Wavelength Characteristics at Rated Test Current, Tj=25°C

Figure 4: Typical Color Spectrum

1.2

1.0
1 i \ ——Cool White
0] amwne]|
= / \ Neutral White
£06 ‘
e ||
504 1 |
[}
o2

0.0 range photodiode

400 550 600 650 700
420 1m Wavelength 613mm

Figure 2.4: Spectrum of warm-white LED in comparison with the range of the photodiode

Figure 2.5: Photodiode BPW21R

Hereby, We summarized the most important characteristics of the photodiode
BPW21R in table 2.1k

Table 2.1: Characteristics of BPW21R photodiode

2 Preparation and Research 7

Parameter Value Unit
Sensitive area 7.5 mm?
Short circuit current at 1 klux | 9 UA
Sensitivity 9 ﬂ]—AX
Wavelength of peak sensitivity | 565 nm
Range of spectral bandwidth | 420 to 675 | nm
Viewing angle + 50 °
Rise time 3.1 us
Fall time 3.0 us
Diode capacitance if Vg=0V | 1.2 nF

The photodiode has a large sensitive area, what is interesting to capture enough light
from the LED. The current will increase pretty fast when more light is falling on
the diode because of its high sensitivity. The highest sensitivity takes place on a
wavelength of 565 nm, which is in the spectrum of the LED. The rise time and fall
time of a photodiode is defined as the time for the signal to rise or fall from 10% to
90% or 90% to 10% of the final value respectively. The bandwidth of the photodiode
can be estimated using the formula:

035 . 035 .
BW ~ Lrise ~ m ~ 1129 kHZ

The BPW2IR has also a wide viewing angle, so it can pick up light from several
directions. The capacitance of the diode can play an important role at higher
frequencies.

In the figure below, you can see the graph of the short circuit current in function of
the illuminance. As expected from a photodiode, the current is proportional to the
incident light. An interesting thing to see, is that the photodiode has to be in short
circuit for linear working.

The relative spectral sensitivity versus the wavelength is shown in figure We
see that the range of spectral bandwidth (where S(A)e] = 0.5) goes from 420 nm to
675 nm, as already mentioned in the characteristics. They also show the spectral
response of the human eye V) Eye. The human eye is also a photosensitive element.
It is most sensitive at a wavelength of 560 nm. The BPW21R photodiode gives thus
an approximation to the spectral response of the human eye.

2 Preparation and Research 8

10°

102 d

M,
‘i.

101

AN

100 A

h N

10-1 .

A

10-2 A

I, —Short Circuit Current (mA)

S

103 A

104 LL
102 101 100 101 102 103 104 105 10°

04 8476 Ep — llluminance (Ix)

Figure 2.6: Short Circuit Current vs. [lluminance

2
>
@ 1.0
£ oo /AN
; 7 11
C.g 0.6 /
5 / 1\
% 0.4 / \
1_ ’/ \
:E e . V, Eye /3§ \\
6 J

0 |

350 450 550 650 750

94 8477 A —Wavelength (nm)

Figure 2.7: Relative Spectral Sensitivity vs. Wavelength

e The BPW2IR photodiode is a good choice as a receiver for the visible light
communication, but can give some problems at higher frequencies because of the
limited bandwidth and the capacitance. So, we also searched for another photodiode
to encounter these problems. We found the S1223 photodiode from Hamamatsu [6]

(see figure [2.8).

We summarized the most important characteristics of the S1223 photodiode in

2 Preparation and Research 9

=

Figure 2.8: Photodiode S1223

table

Table 2.2: Characteristics of S1223 photodiode

Parameter Value Unit
Sensitive area 6.6 mm?
Short circuit current at 100 lux | 6.3 UA
Sensitivity at 660 nm 0.45 %
Wavelength of peak sensitivity | 960 nm
Range of spectral bandwidth 320to 1100 | nm
Bandwidth 30 MHz
Diode capacitance if Vg=20V | 10 pF

If we compare these characteristics with the characteristics of the other photodiode,
we can notice some things:

The range of spectral bandwidth is larger. The photodiode is also sensitive in the
infrared region. The diode is most sensitive in this region, but he is also sensitive in
the spectrum of the LED. So, we can also use this photodiode as a receiver because
we will filter the ambient light. This photodiode is more appropriate at higher
frequencies because of the higher bandwidth and the smaller capacitance. The rise
time can now be estimated using the formula:

.~ 035 o 035
trlse ~ BW " 30MHz 11.667 ns

In figure[2.9] you can see the spectral response of the photodiode.
As already mentioned, the diode is most sensitive in the infrared region.

If we want to simulate a circuit with a photodiode in LT Spice, a photodiode is
not available in the component library. So, we will use an equivalent model that
represents the photodiode. First, we used a normal diode in parallel with a current

2 Preparation and Research 10

4 (Typ. Ta=25 'C)
06 //\\
05 -~

m \

02 / \
0.1 J

v
]
1
"

PHOTO SENSITIVITY (A/W)

0 L
200 400 600 800 1000

WAVELENGTH (nm)

Figure 2.9: Sensitivity vs. Wavelength

source to model the photoelectric effect. The more light falling on the photodiode,
the more current will flow through it. However, the results from the simulations and
the measurements were not very similar. Then we modified the model by placing a
capacitor in parallel with the diode and the current source. The capacitor represents
the photodiode capacitance. You can find this value in the datasheet. Now the results
were much better. Simulations and measurements were very similar. Eventually we
can also add the dark resistance of the diode. But this is usually very high (= 30
GQ), so this is not very necessary. Finally we used the model below in LT Spice to
represent the photodiode.

PULSE(3e-7 5e-7 1e-9 1e-9 1e-9 5e-6 10e-6)

Figure 2.10: Model of photodiode

2.1.4 Conclusion

Because of the lowcost, the lower complexity and since we will transmit data over the
whole visible spectrum, we chose the blue led with yellow phosphor coating approach.
Whereas we want to implement our application in daily life, we chose to work with warm

2 Preparation and Research 11

light. The warm light has the closest match to the old incandescent of halogen bulbs that
they are replacing and it has more intensity around 565 nm. After a chat with Frederic
Truffer who works in the light department of the HES-SO in Sion we decided to use the
BXRA-30E0740-A-00 star array led. This BXRA reaches a Typical Pulsed Flux of 860 Im.
This should be enough to be detect by the photodiode at a distance of several metres. The
characteristics of the chosen LED are listed in figures and[2.12]

We chose to work with the S1223 photodiode because of the high bandwidth and the small
capacitance. We will transmit data at 200 Sg’gﬁd, so that the photodiode has enough time to
respond to the incoming light. Because of the high sensitivity and the large sensitive area,
the distance between the LED and the photodiode should be no problem. The photodiode
has a sensitive range that lies in the wavelength spectrum of the LED. If we consider this, the

S1223 photodiode should be an appropriate photodiode for the visible light communication.

Values for test with testcurrent 350 mA

Typical Pulsed Flux

860 Im

dij 2526
Typical DCFl

ypica ux o
Tcase 702C
Vi (Typ) 28,1V
Power (Typ) 9,8 W
Effi

o 88 Im/W

(Typ at Tj 252C)

Figure 2.11: Main characteristics of the BXRA-30E0740-A-00 [3]]

Characteristics Minimum Typical Maximum

Color Temperature 2870 3045 3220 K
Viewing angle 120 Degrees
Typical Center Beam e o
Candle Power

Forward Voltage at test ¢ 25,3 28,1 30,9 Vv
DC Forward Current 500 mA
Peak Pulsed Current 700 mA
Reverse Voltage -45 V

Figure 2.12: Other characteristics of the BXRA-30E0740-A-00 [3]]

Chapter 3

LED driver circuit

3.1 Introduction

To power the LED with the mains we first need to convert the 230 V¢ to a DC voltage and
control the current through the LED. On the market you can buy a readily available LED
driver, for our led we could use the 3-Watt MagTech LED Driver LO3U-350 (see Figure

B3.1).

Z-Watt MagTech LED Driver Features:
¢ 100 ~ 277VAC Input

e 4 ~12VDC Qutput

350maA Output Current

« 1~ 3 Watts Output Power

e 1.57"L®1.57"Wx0.87"H

+ UL and CE Certified

« Short Circuit & Overload Protection

Figure 3.1: LED DRIVER

We could use this driver or make our own driver and use this together with a switch for our
VLC application (see Figure[3.2)).

Most drivers use Switch Mode Power Supply (SMPS) topologies where the output voltage
or current is determined by the frequency at what a switch is turned on and off. We wonder
if it is possible to use this switch instead of an extra switch after the AC/DC converter to
send information in a VLC application and control the output current at the same time. So
we will construct our own LED driver and control the current through the LED. At first
we will investigate the possibilities of sending data by controlling the switch of a Switch
Mode Power Supply with an FPGA. The use of a switch after the LED driver will also be

12

3 LED driver circuit 13

ACIDC
~230 ¥

£/

LED DRIVER

Figure 3.2: VLC Circuit

investigated.

3.2 Power Supply Topologies

There are a lot of Power Supply Topologies we could use for our application. We must use
an Switch Mode Power Supply as we want to control the switch for sending our data. In
general this method is more interesting in comparison with series-controlled regulators that
don’t use a switch, looking at the power loss. A list with a short description of these SMPS
topologies is given in appendix [Al

We will use the flyback converter due to his low cost, simplicity of design, small size
and intrinsic efficiency. Other advantages of the flyback transformer over circuits with
similar topology include isolation between primary and secondary and the ability to provide
multiple outputs.

3.3 Flyback Converter

A flyback converter is a transformer-isolated converter based on the basic buck boost
topology. The basic schematic and switching waveforms are shown in Figure 3.3] In a
flyback converter, a switch (Q;) is connected in series with the transformer (77) primary.
The transformer is used to store the energy during the ON period of the switch, and provides
isolation between the input voltage source V;y and the output voltage Voyr. In a steady state
of operation, when the switch is ON for a period of Tyy, the dot end of the winding becomes
positive with respect to the non-dot end. During the Tpy period, the diode D; becomes
reverse-biased and the transformer behaves as an inductor. The value of this inductor is
equal to the transformer primary magnetizing inductance Ly, and the stored magnetizing
Ly
Therefore, the current in the primary transformer (magnetizing current /) rises linearly

from its initial value I; to Ipk, as shown in[3.3|D). As the diode D; becomes reverse-biased,
the load current (Ipyr) is supplied from the output capacitor (Cp). The output capacitor

energy from the input voltage source Vjy.E, = % -I,%K <Ly & Ipg =

3 LED driver circuit 14

) Vi

(F)

=
z
S
-
;
U
— =

(A} = Flyback converter power circuit

(B) = Gate pulse for the MOSFET Q,

{C) = Voltage across the primary winding
(D) = Current through MOSFET Q4

{E) = Current through the diode D,

(F) = Voltage across the MOSFET Q,

Figure 3.3: Flyback Converter Circuit[7]]

value should be large enough to supply the load current for the time period Tpy, with
the maximum specified drop in the output voltage. At the end of the Tpy period, when
the switch is turned OFF, the transformer magnetizing current continues to flow in the
same direction. The magnetizing current induces negative voltage in the dot end of the
transformer winding with respect to non-dot end. The diode D; becomes forward-biased
and clamps the transformer secondary voltage equal to the output voltage. The energy stored
in the primary of the flyback transformer transfers to secondary through the flyback action.
This stored energy provides energy to the load, and charges the output capacitor. Since
the magnetizing current in the transformer cannot change instantaneously at the instant the
switch is turned OFF, the primary current transfers to the secondary, and the amplitude of
the secondary current will be the product of the primary current and the transformer turns
ratio, Np/Ng.

3 LED driver circuit 15

34 LFSR

To control the mosfet for sending signals with the LED we need a certain signal to be
generated. We chose to use a semi-random generated signal. For this we use a shift register
expanded with xor functions (this is an example of an LFSR).

3.4.1 First tests

For the first tests we chose to work with a 3-bit LFSR (figure [3.4). This LFSR generates a
bit sequence of 0,0,1,0,1,1,0.

me

—D Q D Q D Q ont_lfer

|— F [>
clock

Figure 3.4: 3-bit LFSR

]
\
o
|

1
\
ol
ol
|

We can program this LFSR in an FPGA. We used an FPGA board available at school with
a Spartan XC3S500E FPGA from Xilinx on it to do the testing.

3.4.2 Final LFSR

As will be explained in the further text, we will only need a semi-random LFSR to be
generated by a FPGA we will mount on the board. To be able to detect these LFSRs, we
will use correlation. Later on we will test the response for LESRs with different lengths.
We always use maximum feedback xor combinations to generate a binary sequence with a
length of 2"~ bits, where m is the length of the used register. [8

3.5 LED Heatsink

When a voltage is applied across the junction of an LED, current flows through the junction
generating light. It is a common misconception that LEDs don’t generate heat. While

Ia list of tabs for maximal feedback can be found on |http://www.newwaveinstruments.com/
resources/articles/m_sequence_linear_feedback_shift_register_lfsr.htm

http://www.newwaveinstruments.com/resources/articles/m_sequence_linear_feedback_shift_register_lfsr.htm
http://www.newwaveinstruments.com/resources/articles/m_sequence_linear_feedback_shift_register_lfsr.htm

3 LED driver circuit 16

essentially no heat is generated in the light beam (unlike conventional light sources), heat
is generated at the junction of the LED Array and must be effectively managed. As LEDs
are not 100 % efficient at converting input power to light, some of the energy is converted
into heat and must be transferred to the ambient. The amount of heat generated from
the LED Array that must be transferred to the ambient may be conservatively estimated
to be 85 % of the power that is applied to the LED Array and is calculated as in Equation [3.1]

Py=V;-1;-0.854 3.1)

Where:

Py is the thermal power to be dissipated

V is the forward voltage of the device

I is the current flowing through the device

The power calculation should be made for maximum dissipated power, which is computed
using the Maximum V at the drive current desired.

Heat generated at the LED junction must be transferred to the ambient via all elements that
make up the thermal management solution. These elements include the LED Array, the
thermal interface material used between the LED Array and heat sink, the heat sink, the
luminaire enclosure (if applicable), and other components that come in contact with the
lighting assembly. These elements transfer heat to the ambient. We will use a heat sink
to manage the temperature at the case of the LED array. The calculation of the maximum
needed thermal resistance of the heat sink is included in appendix

We chose to use the SA-LED-151E - HEATSINK, LED, 50.8MM of OHMIT which have
a thermal resistance of 3.2°C/W, which is way below the maximum of 11.85°C/W. This
heat sink should keep the LED junction on a temperature below 70.5°C and the casing on a
temperature below 57.01°C.

3.6 Testing circuit 1

For the first tests, we designed a transformer circuit (schematic included in annex [H.IJ
where we implement a power switch chip for the start up cycle and also to do the first tests.
With a switch we can turn of the function of the POWER switch and give the control of
the flyback to the FPGA. For the feedback of the power switch we use an analog feedback
circuit, for the feedback to the FPGA we can expand our PCB with a ADC to measure the
current through the LED. By reading this current, the FPGA will interact by changing the
duty cycle of the control signal for the transformer switch when needed.

3 LED driver circuit 17

3.6.1 Tests
First test

For the first test, we only looked at the functionality of the transformer operating with the
power switch chip. The block diagram is given in fig 3.5] The results are discussed in

appendix [E.1]

~230% Rectifier

Figure 3.5: Block diagram 1

As seen in appendix a custom made transformer should be calculated to have a
maximum efficiency and maximum luminance. Due to the restriction of time and great
advantages (shown in table [3.1)) of the topology when placing a switch in serie with a LED
driver (see following sections) we will continue by using the topology where we place a
switch after the flyback.

Table 3.1: Comparative table between different switch uses

Property H using switch of flyback using switch in series with LED
Transformer custom made general transformer can be used
with tolerance in values
Design multiple feedbackloops needed, | relatively simple design
change of flyback switch after
startup, larger circuitry and more
components
Transmission frequency || fixed and determined by | can be chosen by the user
transformer

Second test

We choose to obtain the same circuitry, only using the power switch chip and placing a
capacitor in parallel with the LED as load storage. A switch will be used to generate current
pulses trough the LED. For this tests we use a external programmed FPGA (We place it on

3 LED driver circuit 18

the same ground of our circuitry) to control the switch. This is shown in block diagram|[3.6]
The results are shown in appendix [E.5]

~230V Rectifier

Figure 3.6: Block diagram 2

As the results of the second test met our expectations, we designed a new circuitry that will
be discussed in the next paragraph.

3.7 Testing circuit 2

For the new circuit, we will mount an FPGA on the board. We will use one FPGA to
generate the binary sequences for all the different LEDs to obtain a lower cost and a
synchronization of the different LEDs. We expect that the synchronisation of the LEDs
will make it easier to distinguish the different bit sequences in the received signal. We used
the Actel igloo AGL 060V5 -VOG100. Because of his PROM memory we don’t have to
program it every time we power it. The Actel igloo don’t support complicated designs, what
we don’t need as we just want to generate LFSRs. This FPGA was used in a previous project
at HES-SO Valais/Wallis what makes it easier to implement it in our design. We used that
previous design as a template for our application. We used only a part of testing circuit 1
and added the FPGA, a DC/DC converter(to power the FPGA), a mosfet (as switch in serie
with the LED) and an extra storage capacitor for a normal working of the Flyback. The
schematic is added in appendix [H.3] We use one schematic for the PCBs with and without
FPGA. All the components with * (snm) don’t have to be mounted on the PCBs without
FPGA. The VHDL code and block diagrams used to program the FPGA can be found in
section

3.7.1 Twisted pair cable

To drive the MOSFETs of the different LED circuits, we need to transport a blockwave
on different places in the room. To transport these signals we have to look how we can
transport them without great distortion or noise. The simplest way to do this is to send
through a twisted pair cable. We test the deformation of the signal on a twisted pair cable of
6 meter (largest distance of 2 LEDs in a room). The result is given in figure We see a

3 LED driver circuit 19

ringing effect et the end of the cable. As this ringing only lasts for about 300 ns and our bit
period is 5 us, this signal is only used as switch and we already have noise and peaks in our
transmitted light signal (which are not detected by the receiver). This result is sufficient.
We will connect the output of the FPGA directly with the mosfets in series with the LED.
If we would work on a higher frequency, we would have to take this ringing into account.

IS0-X 3012 12160370 Wed Apr 24 120317 2013
2.00 200V

1 2.00%/

(b) signal transmitted at FPGA (green curve),
(a) signal transmitted at FPGA (green curve), signal at the end of the cable (yellow curve)
signal at the end of the cable (yellow curve) (zoom in)

Figure 3.7: Result twisted pair cable (6m)

3.7.2 Tests

We regulate the potentiometer to get a current of maximum 500 mA through the LED and
program the FPGA to generate LFSRs. In figure[3.8]you can see the current trough the LED
in comparison with the signal sent by the FPGA. We can see that we have some ripple and
spikes on the current signal. We won’t try to prevent this because this has no effect on the
received signal by the receiver circuit. To regulate the LEDs on the same intensity we can
look on the oscilloscope with a current probe. But we will check on every board by looking
at Vaux (here 16.5 V). We checked and tested the resistance of the potentiometer and it was
each time around 15 kQ.

3.7.3 VHDL of sender FPGA

As already mentioned we generate sequences with a FPGA. For each led we need a different
LFSR (3.94). The MSB of the LFSR is sent to the mosfet of each LED which get in
conduction (1) or isolation(0) mode. When the MOSFET is in conduction mode, current
flows through the LED and the LED emits light. When the MOSFET is in isolation mode,
no current can go through the LED so the LED is not illuminating. For the readability of the
code we wrote all the LFSRs in one block and used this for every LED. The correct LFSR
is chosen by the number of the LED the block gets as a generic. The code can be found in

appendix [L.1.3]

3 LED driver circuit 20

1S0-% 30124, MYS1350227. Tue May 21 16:41:23 2013

T 10,005/

0.0:1
1.00:1

Figure 3.8: Signal from on-board FPGA (yellow) and current trough LED (green)

We also did some tests in appendix |G| to send data over these LFSRs by just inverting the
sequences. The block diagram is shown in figure [3.9b] The second clock represent a clock
with a frequency of zfi’j’jfm where n is the length of the register of the LFSR and m is a
natural value. We did the tests by shifting a sequence and ’xor’ed this with the output we

already had. The code is not included in this report because of its simplicity.

Clock2 ————— DATA

LFSR1 ——— LED1 LFSR1 3 R > LED1
;-FSRE—-“ LED2 /T.FSRE 2 xor > LED2
Clock — LFSR3 ——> LED3 Clock —» LFSR3 3 R » LED3
\‘,_Fsm—b LED4 _FSR# Hﬂ; XOR » LED4
—
>

LFSRS —— LEDS LFSRS

=
o
-
Al

LEDS

(@) LFSR sending sequence (b) LFSR sending sequences generation with data.
generation

Figure 3.9: Block diagrams

Chapter 4

The receiver circuit

4.1 Introduction

We already discussed the photodiode we will use for the visible light communication. As
mentioned before, the short-circuit current through the photodiode is proportional to the
incident light. If we want to know the bits that are transmitted, we have to use several
blocks. First of all, we will use a current-voltage converter, so that the voltage is also
proportional to the incoming light. We also need a high pass filter to filter out the ambient
light and the 100 Hz frequency components coming from the lighting in the building. Since
the signal we will receive is weak, we will have to use an amplifier. Then, we also need
an ADC to digitalize the received signal. Before the ADC, an anti-aliasing filter is needed.
Finally, the digital samples have to be transmitted to a PC so we can use software to make
some calculations and to find the position. We will use an Ethernet cable for the connection.

The block diagram of the receiver circuit is shown below. We will discuss the several
blocks and the power supply as well in this chapter. The Ethernet connection and the data
processing on the PC will each be discussed in a separate chapter.

Ambient LPF
PD -V light filler {f ~ AMP (anti- - ADC
converter + HPF aliasing)

FPGA = Ethernet - PC

1y
{

1R

Figure 4.1: Block diagram receiver

21

4 The receiver circuit 22

4.2 Power supply

Since we want to make a handheld device, a possibility to supply the circuit is a battery.
A normal battery delivers a voltage of 1.2 V or 1.5 V, what is not enough for the power
supply. We can use a step-up converter (boost converter) to obtain a larger voltage. There
are several good chips you can use for this purpose. We found a circuit to boost the 1.2 V to
3.3 V in the datasheet of the MCP 1640 of Microchip ﬂ This 3.3V can be enough to supply
the circuit. You can see the circuit of the step-up converter in figure

Vour
3.3V @ 100 mA

Figure 4.2: Step-up converter (1.2V to 3.3V)

We have to put some components around the MCP 1640 chip. The input capacitor of
4.7 uF is recommended to decouple the voltage source. For low power applications, this
capacitance is sufficient at the input. We have to use an X5R ceramic capacitor with a low
ESR. The inductor of 4.7 uH is an essential element for a step-up converter. It is a buffer for
electrical energy and it is needed if we want a higher output voltage than the input voltage.
To achieve a high efficiency, we also need an inductor with a low ESR. To calculate the
values of the resistors (voltage divider), the datasheet gives the formula:

v,
Rrop = Rporrom - (2F - 1)

If we want Vpyr = 3.3V, and with Vrg = 1.21 V and Rgorrom = 300 kQ, we find: Rrop =
518.18 kQ = 510 kQ.

The output capacitor of 10 uF ensures a stable output voltage during sudden load transients
and reduces the voltage ripple. To have a low ripple, we need a condensator with a low
ESR. Again, we can use an X5R ceramic capacitor.

The question is now whether this voltage is enough to supply the op-amps we will use in our
circuitry. So, we first searched for the op-amps and see what supply they need. We chose
the AD817AN op-amp (see further). This op-amp cannot be supplied with a single 3.3 volt.
We supplied it with a single 5 volt. Another way to supply the circuit had to be used.

We also found a step-up converter to boost 1.2 volt to 5 volt (see below). When we build the

Ihttp://wwl.microchip.com/downloads/en/DeviceDoc/22234B. pdf

http://ww1.microchip.com/downloads/en/DeviceDoc/22234B.pdf

4 The receiver circuit 23

circuit on a breadboard (with low ESR inductor and short connections), the circuit worked
when there was no load. Once we connected the receiver, the voltage dropped to 3.5 volt
what is not enough to supply our circuit. The step-up converter can’t deliver enough current
for a proper working of the receiver circuit.

-ve IN—ﬁ
= >~ 1oo0uF
0.7-5% +

+ve IN -
z2auH +5
1N581
S) 5 7. Output

Vv

8 1
+
"'—2MAX'?—|I' ;L 1
100uF 1uF
3 756 ¢

L_ 4 5
1u1=';[

Figure 4.3: Step-up converter (1.2V to 5V)

Then we tried to feed our circuit with the 5 volt from the USB port. This power supply is
inherently unstable and depends on the load of the computer. Normally the supply can vary
between 4.75 and 5.25 volt. But it can also be possible that the voltage drops to 4.4 volt or
even lower. When we tried this to power our circuit, it worked. This 5 volt is used to supply
the op-amps. This supply is not so critical, so our circuit will also work properly even if we
don’t have a stable supply voltage.

4.3 Current-voltage converter

To convert the current from the photodiode in a voltage, we have to use a current-voltage
converter. A common way to do this, is to use an op-amp for it, as shown in figure In
an ideal op-amp the voltage on the minus pin is the same as the voltage on the plus pin.
So, the photodiode is in short circuit. If we look to the graph of the short circuit current vs.
illuminance (see figure [6.5), we see that the current is proportional to the incoming light if
the photodiode is in short circuit.

To have an idea about the current through the photodiode and the voltage after the I-V
converter, we set up the circuit of figure #.4] (with Ry = 100 kQ, an LM324 op-amp and
the BPW21R photodiode) on a breadboard and did some measurements. To determine the
current, we can measure the voltage across the resistor. First, we looked what the voltage
was in the office with infalling sunlight and with a fluorescent lamp at about two metres
from the photodiode (Vg1 jigns). Then, we looked what the voltage was when no light was
falling on the diode, V&1 no—1igh:- We found:

VR1,light = 0.3V

4 The receiver circuit 24

1

ATATAY
v
I Rl
— U
+
s
£

Figure 4.4: Current-voltage converter

R,

VRl,noflight ~S5SmV
The current through the photodiode is (almost) equal to the current through R;:

0.3V
Light = 1o02g =3 HA
SmV
In()—light = lo(r)nkg =50 nA

The output voltage Vp = - Vg;.

VR1,tighe = -0.3V
VR no—tlight = -5 mV

4.4 Ambient light filter

The photodiode will also pick up ambient light and light coming from the lighting in the
building. Those have to be filtered out. The lighting in the building are fed from the net of
230 Vrums at 50 Hz. Due to the rectification, there will be radiation of 100 Hz frequency
components that can influence the working of the photodiode. So, we need a high pass
filter with a cut-off frequency f.y_off above 100 Hz to filter the ambient light and the
components of 100 Hz. Our first thought was to build a simple RC high pass filter (see
figure after the current-voltage converter. 2]

The formula for f.y_ofr 1s then as follows:

feut—oft = 2 R-C

4 The receiver circuit 25

Yin C YouT

Figure 4.5: RC high pass filter

If we take foy—or=200 Hz and R=100 Q, then we find: C=7,9577 uF. We take the standard
value C=10 uF.
The cut-off frequency becomes: foy_of=159,155 Hz. This value is good to filter the
unwanted light.

If we make the circuit, the results are very poor. The bandwidth of the photodiode is large
enough for the 100 kHz signal, so the problem must be something else. The characteristics
of the LM324 op-amp aren’t good enough for a square wave of 100 kHz. Two important
characteristics of an op-amp are the bandwidth and the slew-rate. We found for the LM324
op-amp:

e Bandwidth: 1 MHz

e Slew rate: 0.4 ¥
us
If we use another op-amp (AD817AN), the results are better:

e Bandwidth: 50 MHz

e Slew rate: 350 %

In first instance, the op-amp is supplied with + 15 volt. If we switch the LED on and off at
100 kHz, we get a signal at the output of the receiver as you can see in figure

We can see that the DC component is filtered out, but there is oscillation at the transition
from low to high, so the circuit is not ideal to filter the ambient light.

Another thought for the filtering was to put a capacitor (10 nF) between the photodiode and
the minus pin of the op-amp as you can see in figure 4.7]

Now we get a signal like you can see in figure

The signal is better, but we can still see some high frequency components in the signal. The

original rectangular shape is not so good visible anymore, the edges are flattened.
We chose to look for another way to filter the ambient light. After some research we

4 The receiver circuit 26

Fast Debug 4> Channels
All

Figure 4.6: Output receiver with RC-filter

s
Wiy
A

W

=
I Rl
Vo
|
Z

Figure 4.7: Ambient light filter circuit with capacitor

I

came to the circuit of figure B.9] We use a feedback circuit that cancels out frequency
components below a certain frequency. You can find more explanation about the circuit and
the calculation of the transfer function and the cut-off frequency in appendix [C]

Until now, we always supplied the op-amps with + 15 volt. We need three connectors to
provide this supply. It should be easier to work with a single supply so we just need two
connectors. Since we want to make a portable device, we will use lower voltages. The
ADS817AN op-amp needs at least a 5 volt single supply, so we will use this voltage to feed
the op-amps.

4 The receiver circuit 27

TS0-X 30124, M¥51350227: Mon Mar 25 16:33.56 2013
1 2

Fast Debug 4> Channels
All

Figure 4.8: Output receiver with condensator

4.7
c2
M
- L
) B3 Al
12 g R4 I
M % R2
Ig
T 10k
(A=
Rl
I
F ey
T Y

ot

Figure 4.9: Receiver circuit

By using a single positive supply, negative voltages cannot be generated. We will use
a virtual ground instead of the normal ground. This special ground is usually a voltage
reference half way between 0 volt and the supply voltage. In our case, the virtual ground
will be 2.5 volt and can be made with a voltage divider and a voltage follower as shown in

figure [LO]

Now we can just use this virtual ground instead of the normal ground. If we want to go

4 The receiver circuit 28

Figure 4.10: Creating a virtual ground for single supply operation

from dual to single supply operation, we have to replace the normal ground by the virtual
ground.

4.5 Amplifier

Since the signal is too weak after filtering, we will use an amplifier. The amplification is
needed if we want to use the full range of the ADC. After some measurements, we took
an inverting op-amp with a gain of 100. Before the amplifier we put a high pass filter with
Seut—off = m = 31.2 Hz and a gain of 1. We did this because we still had an
offset after the ambient light rejection circuit. We also tried to use two op-amp stages with
each a gain of 10, but the results weren’t so good. We still had an offset and there was more
noise in the signal. So, we decided to use a high pass filter with a gain of 1 and an inverting

amplifier with a gain of 100.

When we simulated the ambient light rejection circuit, no offset was visible. We just had a
DC offset of 2.5 volt because we are working with a virtual ground.

We also tried to build a high pass filter with a gain of 100, but an offset was still visible.

4.6 Anti-aliasing filter

It is recommended to use a low pass filter before the ADC to prevent aliasing. The Nyquist
theorem says that the sample rate must be minimum twice the highest frequency component
in the analog signal, if we want to reconstruct it properly. As we want to sample at 1 MHz,
we will use a filter with a cut-off frequency of maximum 500 kHz.

The easiest and most common way to make a low pass is just to use a simple RC filter. In
this case, it’s not a good idea. RC filters are cheap, but at higher frequencies LC filters are
a better choice. LC filters don’t make use of resistors, so they don’t dissipate power (in
the ideal situation). We want a high order low pass filter with a steep attenuation curve to
prevent aliasing. We chose to work with a 7th order filter (4 inductors and 3 capacitors)

to have enough attenuation at 1 MHz. A 7th order filter has an attenuation of 7 - 20 % =

4 The receiver circuit 29

140 %. To calculate the values of the components, we used the program RFSim99 at the
recommendation of Mr Rieder Médard. In this program we can calculate and simulate the
filter we need. We have to give the filter type (Butterworth or Chebyshev), the cut-off
frequency, the order of the filter and the input and output impedance. We chose for a
7th order Butterworth filter with a cut-off frequency of 500 kHz and an input and output
impedance of 50 Q. In the beginning, we chose this impedance because the spectrum can
be easily measured with a network analyzer (optimized for input and output impedance of
50 Q). Later on, we replaced the input and output impedance with these of our circuit and
looked how the spectrum of the filter changed. Once we have the calculated values, we took
the nearest standard values. Finally, we had a result as you can see in figure . T1]

CU33uH | T T33wH |
.. -5%,#5% | . -5%,+5%) .
E.EnF":' 1EI-nF"':_

Figure 4.11: LC filter with f..,—orr = 500 kHz and Z;, = Z,,; = 50 Q

With the help of Mr Rieder Médard, we built the filter (figure and measured the
frequency spectrum of the filter with a network analyzer. The result can you see in
figure f.13] We can see that the filter is ideal to prevent anti-aliasing. We have a cut-off
frequency (3 dB attenuation) of 474 kHz and at 1 MHz (sample rate), we have an attenuation
of 36 dB.

Figure 4.12: LC filter with f.;_o s = 500 kHz and Z;;, = Z,,; = 50 Q (PCB)

The problem is that the output and input impedance of the filter is supposed to be 50 Q. In
our circuit, this is not the case. The question is how the filter will react if we deviate from

4 The receiver circuit 30

3 ES071C Network Analyzer [SEE
i ate

[1 Start akHz AW 70 kHz

Figure 4.13: Spectrum LC filter measured with network analyzer (50 Q input and output impedance)

these impedances. The input impedance in our circuit is low (= 1 Q), because the filter
comes after an op-amp stage. The output impedance is determined by the voltage divider
to buffer the ADC and is about 300 Q. We simulated the filter with LT Spice with those
impedances and had a look at the frequency spectrum (figure 4.14). We can see that there
are some peaks above 0 dB in the spectrum which can cause oscillation. Nevertheless, we
built the filter on a PCB to see what it gives. To built a good filter, it is also important to use
inductors and capacitors with a low ESR so the losses are as low as possible.

Figure 4.14: Simulation spectrum LC filter with Z;,, = 1 Q and Z,,, = 300 Q

We made the whole circuitry an a PCB (from the photodiode to the ADC) and had a look at

4 The receiver circuit 31

the signal before and after the filter (after the voltage divider). First, we switched the light
on and off on the rhythm of a 100 kHz square wave at a distance between the LED and the
receiver of 2,3 m. The results are shown in the picture below. The green curve represents
the signal before the filter and the yellow curve after the filter. As you can see, the high
frequency components and the noise are filtered out. The square wave has become almost a
sine wave.

1350227 Fridpr 121
ans/

Default/Erase

Figure 4.15: Signal before and after filter at 2,3 m (square wave)

If we want to see for oscillation, we drive the LED with a 3-bit LFSR as discussed in chapter
3. Now we can see some oscillation in the signal. If the signal goes from low to high or
vice versa, an overshoot occurs. As this is not very desirable, we tried to rebuilt the filter.

Fridpr 1216:4821 2013

Imped BW Limit
1M Ohrn

Figure 4.16: Signal before and after filter at 2,3 m (LFSR)

Again, the RFSim99 program was used. Now we tried to build a filter with Z;, = Z,,, = 300
Q and afterwards we adapted the input and output impedance to respectively 1 Q and 300 Q
and simulated it in LT Spice. Now we have a spectrum as shown below. The characteristics

4 The receiver circuit 32

of the filter are much better. There is almost no oscillation anymore. The filter can be found
in the schematic of the receiver in appendix

Figure 4.17: Simulation spectrum LC filter with Z;,, = 1 Q and Z,,; = 300 Q (redesign)

We changed the filter on the PCB and looked at the signal when we drive the LED with an
LFSR. We can see that the high frequency components are filtered and there is almost no
oscillation. We will use this filter in our circuit.

NS0 30124, WIYS1380227: Mon Apr 22 18.06:41 2013
[!

5.0002/

Figure 4.18: Signal before and after filter at 2,3 m (LFSR) with new LC filter

4.7 ADC

If we want to send the information to a computer, we need to digitalize the data. We chose
to work with a 12-bit resolution ADC. With 12 bits, we can get 2!? = 4096 possible digital
values at the output of the ADC. If we supply it with 3.3 volt, the input range goes then
from O volt to 3.3 volt. If we supply it with 5 volt, the input range goes then from 0 volt to 5

4 The receiver circuit 33

volt. As the FPGA is also supplied with 3.3 volt, the ADC also has to be supplied with this
voltage, because we are sending data from the ADC to the FPGA. The FPGA doesn’t accept
signals with an amplitude of 5 volt. So, we have a resolution of 231531/1 =805.86 uV. We need
a high resolution if we want to accurately measure the amplitude of the input signal.

The ADC consists of a successive approximation register with internal track-and-hold. The
conversion rate is determined from the serial clock (SCLK) and can be up to 1 MSPS. The
timing diagram for the ADC can you see in the figure below.

Hold Track

cs \). / .

‘._ ty—=

tconverT

e laat
g
’ 7 B
SCLKI % 1 2 3 12 13 14 15 16 Yo N

4 5
“ L ‘l “ tquier —
ety tg it~ ’-47 {1y

SDATA () [0 = TRI-STATE

3 leading zero bits 12 data bits

Figure 4.19: Timing diagram 12-bit ADC

A conversion process begins on the falling edge of CS. This process takes 16 periods of
SCLK. On the first three falling edges of SCLK, a zero is transmitted. After this, the 12
data bits are clocked out on the rythm of SCLK, beginning with the MSB of the digital
value. When the process is done, CS is brought back high and the output returns in tri-state.
CS must stay high during tgy 7 before a new conversion process can begin.

We drived the ADC by programming an FPGA so the signals CS and SCLK are properly
sent like shown in the timing diagram. We chose to work with fsczx = 22 MHz and toy 7
= ﬁ = 272.727 ns. For one sample we need 16 periods of SCLK for the conversion and
6 periods of SCLK when CS is high. In this case, we have a sample rate of % =1 MSPS.
The datasheet mentions that fgcrx should be maximum 20 MHz. But thus we tried it with
22 MHz and it also worked. If we drive the ADC, we have a serial output as shown below.
The upper signal is the CS signal, the signal below is the serial output. In appendix you
can find the code we used to program the FPGA. The simulation of the ADC can also be

found in annex

We used an FPGA board (see figure below) available at school with a Spartan XC3S500E
FPGA from Xilinx on it to generate the signals CS and SCLK.

The board has to be supplied with a single 5 volt. On the right side, there are two 26-pin
connectors so we can connect the FPGA with another circuit. We used this connector to
exchange data between the receiver and the FPGA. There are also some possibilities to

4 The receiver circuit 34

TS0 30124, WIY51350225: Th Jun 0 155000 2013
12 v/

00 N

Agilent

Figure 4.20: Signals CS and SDATA

connect the board to a PC. There is an RS232 port, an Ethernet port and a USB port. The
schematic of the board and the UCF file can be found at the Wikipedia website of HES-SO
Valais/Wallis B We will also use this board for the connection to the PC. This will be
explained in the next chapter.

Figure 4.21: FPGA board

Every ADC contributes to the increase of noise at the input, the so-called sampling noise.
The datasheet mentioned that the ADC will deliver best performance when driven by a
low-impedance source. The voltage divider before the ADC (and after the filter) has to be
done with low resistances. We chose the values 51 Q and 240 Q so that we have the full
range (0 — 3.3 volt) at the input of the ADC at small distances between the LED and the
receiver (less than 50 centimeters). The input of the ADC sees the 240 Q of the voltage

Zhttp://wiki.hevs.ch/uit/index.php5/Hardware/FPGAEBS

http://wiki.hevs.ch/uit/index.php5/Hardware/FPGAEBS

4 The receiver circuit 35

divider (see the schematic of the receiver in appendix [H.2) in parallel with some other
resistances. But the 240 Q will determine the source impedance of the ADC. If we look
to the graph THDvs. Source impedance (see figure [4.22)), 240 © should be low enough to
prevent distortion.

ADC121S101 THD vs. Source Impedance
-50

Vop=27V | || !
fsampLe = 600 KSPS A
-60 fiy=100k "

|
fin=200 kHz | | |4
-70

Vs
e //’ L
i vl
-80 v
il 1

Q) [——

A\
h ¥

N,

Hz

7K BN

THD (dB)

Y

fr=10 kHz tﬁ hHZ

il

10 100 k 10k
SOURCE IMPEDANCE (Q0)

I

Figure 4.22: THD (dB) vs. Source impedance (£2)

The datasheet also says that the sampling will cause input current pulses that result in
voltage spikes at the input. Every time that the ADC goes from track mode to hold mode or
vice versa (see figure [4.19), a spike will occur. When we drive the ADC, we see the signal
below at the input.

NS0 30124, WIYE1350227: Mon Apr 22 20:38:23 013
1 7

Figure 4.23: Input signal ADC when driven by FPGA (LFSR at 2,3m)

We can clearly see some additional noise and spikes at the charging and discharging moment

4 The receiver circuit 36

of the sampling capacitor. There is a negative spike when going from hold to track mode
and a positive spike when going from track to hold mode (see timing diagram). The spikes
have an amplitude between 100 and 275 mV and they last for a time between 10 and 50
ns. When making the measurement of the signal with the probe, the loop we make with the
ground wire should be as small as possible. Otherwise, the signal will look like below (see
figure @.24). So, we removed the probe tip and the ground wire and measured the signal
directly, without making use of the ground wire.

V0230124, MYS1360227: Fridpr 16 1831602013
1 2

0.0s 5.0002/

Figure 4.24: Input signal ADC when driven by FPGA measured with probe with ground wire.

As the signal seen on the oscilloscope is maybe not the real signal (because of the
capacitance of the probe), we want to send the data to a computer and plot it in a software
program such as Matlab, Octave or Python. Another thing we are interested in, is the
influence of the spikes for the sampling value.

The final schematic of the receiver (from the photodiode to the ADC) is added in
appendix [H.2] The circuit on PCB is shown in the picture below.

Figure 4.25: PCB receiver

Chapter 5

Connection to the PC

5.1 Introduction

As we have now the data from the ADC, we want to visualize it on the computer to see
how the sampled signal looks like. To make the connection, we have several possibilities:
RS232, USB, Ethernet, ... Since we are clocking out the data at a frequency of 22 MHz, the
link we will using should be fast enough.

RS232 is intended for data rates up to 20 kbps. So, this is too slow for our application.
USB 2.0 can be used for speeds up to 480 Mbps.

Ethernet can reach speeds up to 100 Mbps.

Since the driving of the Ethernet port is already available in VHDL at HES-SO
Valais/Wallis, we chose to work with Ethernet for the FPGA-PC communication. If we
want to send data on an Ethernet link, we have to encapsulate it with a header. This packet
is called an Ethernet frame. In the header, you can find the MAC address of the sender and
the receiver, the IP address of sender and receiver, a CRC,... The data should be at least 46
bytes and maximum 1500 bytes.

5.2 Structure Ethernet communication

The structure to send and receive Ethernet packets with the samples of the ADC included,
can be seen in figure [5.1] The block on the right represents the ADC. We get an analog
input value, this is converted into serial data (SDATA) with the signals SCLK and CS,,. In
the UDPApplication block, we find the ADC controller that converts the serial data into
parallel data. The parallel data is stored in RAM and put in a frame at certain moments
(explanation see further). In this block, we decide the destination UDP port, IP address
and MAC address. If we want to send a frame, the data and some information for the
header (UDP port, IP address, MAC address) is given to the UDP Fifo block. The data is
processed via a FIFO structure. This block gives the data to the MIIto RAM block that is an
interface between the UDP Fifo block and the Ethernet controller on the FPGA board (or

37

5 Connection to the PC 38

the Ethernet controller on the computer). The two blocks on the left are just used for testing
purposes. They represent the MII (Media Independent Interface) sender and receiver on the
computer side to send and receive Ethernet frames.

MIl Sender

/

MIl to RAM > UDP Fifo

ADC

A
A

UDP Application

A
k.

\

MIl Receiver

Figure 5.1: Structure to send and receive packets over Ethernet

We don’t have to change the UDP Fifo block and the MI1Ito RAM block. In our case, we
just have to adapt the UDPApplication block that determines which data we put in RAM
and when we want to send a new frame.

To write the samples from the ADC in the Dual Port RAM and to send them in a frame, we
used the structure as shown in figure[5.2]

The ADC controller drives the ADC and gets the serial data that represents the taken
samples. To put the samples in RAM, we used an interface between the ADC controller and
the RAM: ADCtoRAM. This block writes the samples in RAM. When CS,, becomes high,
a new sample is available. To put the 12-bit samples easily in RAM, we added four zeros
before each sample so we have 16 bits (two bytes). Because the RAM is byte addressable,
it’s easier to work with 16 bits than with 12 bits. The signal writeEnA is high during two
clock periods. During the first clock period, the eight MSB’s of the sample are stored in
RAM. During the second clock period, the eight LSB’s are stored in RAM. The signal
addressA is incremented once we have stored a new byte. If half of the RAM is stored with
new samples, the signal sendFrame is brought to 01 for one clock period. If sendFrame =
01, the first half of the RAM is read and sent via txData. While reading from the RAM, we
can keep on writing in the other half of the RAM. If send Frame = 10, the second half of the
RAM is transmitted. Meanwhile we can keep on writing in the first half of the RAM.

The code we used for the different blocks can be found in appendix [.1.2] Once we had
written the code, we could program the FPGA and make the connection to the PC with an
Ethernet cable. There are two types of Ethernet cables: a straight through Ethernet cable
and a crossover Ethernet cable. Normally we should need a crossover Ethernet cable to

5 Connection to the PC 39

DUAL PORT g
&
RAM £
g
000...00 F
Discard controller ADC to RAM ADC controllor
control signal
to write
samples o
[~ in RAM samples from ADC with ADC
100...00 <: : <:
controls data
that is
transmitted
111...11

@ txData

Figure 5.2: Structure to write the samples in RAM and read from RAM

make the connection between the FPGA and the PC. But the Ethernet controller on the
FPGA board can automatically detect which cable we are using. So no distinction should
be made. We chose to work with a straight through cable because they are more common.
If there is data transport over the cable, we can see two status LEDs blink. The left LED is
constantly on and is a speed indicator. If this LED is on, it means that we have a 100 Mbps
connection. The other LED blinks if there is some activity on the cable. We used a CAT 5e
Ethernet cable which is fast enough for the 100 Mbps data transport.

Now we have connection with the PC, we can see the received packets in Wireshark as
shown in figure [5.3] We can see the IP address given by the FPGA (169.254.111.1). The
destination IP address is put to 0.0.0.0, because the FPGA doesn’t know our IP address yet.
We first have to send a frame to the FPGA, so he can store our IP and MAC address. We
put 1024 data bytes (512 samples) in one packet and every second we received almost 2000
packets. Now we can see the packets in Wireshark, we can use software to process the data.

connections

5 Connection to the PC 40

No. Time Source

Protocol Length Info B
uop 1

Destination
10.000000000 192.168.111.1 0.0.0.0 066 Source : discard Destination port: =
2 0.000527000 192.168.111.1 0.0.0.0 ubpP 1066 Source : discard Destimation port
3 0.001051000 192.168.111.1 0.0.0.0 ubp 1066 Source : discard Destination port
4 0.001580000 192.168.111.1 0.0.0.0 UDP 1066 source i discard Destination port
5 0.002115000 192.168.111.1 0.0.0.0 ubP 1066 source : discard Dpestination port
6 0.002640000 192.168.111.1 0.0.0.0 ubpP 1066 source : discard Destination port:
7 0.003167000 192.168.111.1 0.0.0.0 UDP 1066 source : discard Destination port:
8 0.003696000 192.168.111.1 0.0.0.0 uoP 1066 source i discard Destination port:
9 0.004220000 192.168.111.1 0.0.0.0 ubpP 1066 Source : discard Destination port
10 0.004759000 192.168.111.1 0.0.0.0 ubpP 1066 source : discard Destimation port
11 0.005281000 192.168.111.1 0.0.0.0 UDP 1066 source : discard Dpestination port
12 0. 005805000 192.168.111.1 0.0.0.0 uoP 1066 source i discard Dpestination port
13 0.006331000 192.168.111.1 0.0.0.0 ubpP 1066 Source : discard Destimation port
14 0.006861000 192.168.111.1 0.0.0.0 ubp 1066 Source : discard Destination port: discard
15 0. 007387000 .1 0.0.0.0 UDP 1066 source i discard Destination port iscard P
< i '

Frame 1: 1066 bytes on wire (8528 bits), 1066 byres captured (8528 bits) on interface 0

Ethernet II, Src: Hes-50_39:02:01 (ed:af:al:39:02:01), Dst: f4:7b:60:8e:08:00 (F4:7b:60:8e:08:00)
Internet protocol version 4, src: 192.168.111.1 (192.168.111.1), Dst: 0.0.0.0 (0.0.0.0)

User Datagram Protocol, src Port: discard (9), Dst port: discard (9)

pata (1024 bytes)

Profile: Default

Figure 5.3: Received UDP packets in Wireshark

The construction of the receiver and the Ethernet connection to the PC is shown in figure[5.4}
The receiver circuit is connected with the FPGA board. The FPGA drives the ADC on the
PCB and sends UDP packets to the Ethernet connector. When a connection with the PC is
established, we can see the LEDs blinking on the connector. The supply for the receiver
circuit and the FPGA board is done with a USB cable.

How we send a packet from the PC to the FPGA, is explained in the next chapter.

5 Connection to the PC

41

Figure 5.4: Construction of receiver and connection to the PC

Chapter 6

Processing with Python

6.1 Receiving the data

We chose to work with Python to process the data from the ADC. We use a socket so we can
send and receive UDP packets. There is a library socket that we can import in the program.
Before receiving the samples, we first have to send a UDP packet to the FPGA so he can
store the IP address and MAC address of the PC. As we have several interfaces (network
adapters) on the computer, we first have to bind the socket to the interface we want. In the
Command window, we can see the several interfaces and their IP addresses (see figure 6. 1)
via the command arp -a. As we want to use the Ethernet adapter, we bind to IP address
169.254.227.40. Once we bind to the socket, we can send data to the FPGA and we can
choose a UDP port. The Python code we used to send a UDP packet to the FPGA, can be
found in appendix Later on, we put this code in a function and we call it in the main
program. The structure of our code is explained in the next paragraph.

r 5
@ C\Windows\system32\cmd.exe | (5|

Windows IP-configuratie

Ethernet-adapter voor LAN-verhinding:

Uerbindingsspec. DNS—achtervoegsel:
Link-local IPv6-adres : feBA::99eB:d%a:54%e:e328x18
Autonatisch geconf.IPuvd4-adres : 169.254.227.48

: 255.255.8.8
Standaardgateway B

Draadloos LAN-adapter voor Draadloze netwerkverbhinding 3:

e e+« o« o . . .t medium ontkoppeld
Uerhindingsspec. DNS—achtervoegsel:

Draadloos LAN-adapter voor Draadloze netwerkverbinding:

Verbindingsspec. DHS8-achtervoeg: H .ch
Link-local IPv6-adres : feB@::d@76:74d@:56082:beelxll

Figure 6.1: Network adapters on PC

Firstly, we didn’t see the packet in Wireshark so no packet was sent to the FPGA. When
we looked in the ARP table of the Ethernet interface, the IP address and MAC address of

42

6 Processing with Python 43

the FPGA couldn’t be seen. So, we added manually the IP address and MAC address of the
FPGA to the ARP table via the command: arp -s 169.254.111.1 e4-af-al-39-02-01.
This operation needs administrator rights. If we now look to the ARP table (see figure[6.2)),
we can see that the addresses are added.

@B C:\Windows\system32\cmd.exe — ool o |

Microsoft Windows [versie 6.1.76811
Copyright (c> 2889 Microsoft Corporation. Alle rechten voorbehouden.

C:\UsersiJelle>arp —a

Interface: 169.254.227.480 —— Bxa
Internetadres Fysiek adres
169.254.111.1 B2
169.254.255.
224.0.8.22
224.8
239 255,
239.255.
255265,

224.8.1.

239 .255.255. 1
239 .255.255. B0-5e—7f-ff-fa
239.255.255. A0-5e—7f—ff-fd
255.255.255. £f—£F—FE-F£—£F

C:\Users Jelle}

Figure 6.2: ARP table

If you look at figure you can see the packet in Wireshark, so the packet is sent to the
FPGA. If the FPGA receives the UDP packet properly, the destination IP and MAC address
in the FPGA are changed to those of the PC as we can see in Wireshark. When the FPGA
receives a UDP packet, a LED on the FPGA board is blinking.

Now we can send a packet to the FPGA, we can start receiving the ADC samples.

We bind the socket to UDP port 9 because the frames are send to this port. We can receive
packets from all IP addresses who send a packet to port 9. The processing of the received
samples is explained in the next paragraph.

6 Processing with Python

44

No. Time
10098 5.296604000
10099 5.297129000
10100 5.297659000
10101 5.298187000
10102 5.298716000
10103 5.299245000
10104 5.299882000

Source
160.254.111.1

Protocol Length Info

uop
uoP
uDP
uop.
uop
uDP
uoP

1066 Source port:
1066 source port:
1066 source port:
1066 source port:
1066 source port:
1066 source port:
1066 source port:
136 Source port:

discard
discard
discard
discard
discard
discard
discard

Destination port:
Destination port:
Destination port:
Destination port:
Destination port:
Destination port:

discard
discard
discard
discard
discard
discard

10106 5. 300296000
10107 5.300826000
10108 5.301351000
10109 5. 301879000
10110 5.302407000
10111 5.302933000
10112 5.303458000
10113 5.303988000
10114 5.304515000
10115 5.305043000
10116 5.305572000
10117 5.306101000

169.254.111.1

169.254.227.40
169,254, 227.40
160.254.227.40
169.254.227.40
169.254.227.40
169.254,227.40
160.254.227.40
169.254.227.40
169.254,227.40
160.254.227.40
169.254.227.40
169.254.227.40

uDP
uDP
uop.
uoP
uDP
woP
uop
uDP
uoP
uop
uoP
uDP.

1066 source port:
1066 source port:
1066 source port:
1066 source port:
1066 source port:
1066 source port:
1066 source port:
1066 source port:
1066 source port:
1066 Source port:
1066 source port:
1066 source port:

discard
discard
discard
discard
discard
discard
discard
discard
discard
discard
discard
discard

pestination port: di
Destination port: di
Destination port: di
Destination port: di
pestination port: di
Destination port: di
Destination port: di
pestination port: di
Destination port: di
Destination port: di
Destination port:

discard

User Datagram Protocol, Src Port: 52756 (52756), Dst Rort: discard (9)

© pata (94 bytes)

Data: 48656c6c6F20776F726c6420564¢4320436F6d6d75626063. ..

[Length: 94]

77 6f 72 &

ed af al 30 02 01 b& 70
00 7a 0a bc 00 00 80 11
6f OL ce 14 00 09 00 &6

c 64
69 63 61 74 69
69 6F 6e 20 66

6F Ge 20
69 6c 74 65 72 20 5
6e 20 45 74 68 65 72 Ge 65 74 2C 21
20 6d 65 73 73 61 67
20 74 6F 20 46 50 47 41

67 65 20 74 6F 20 7

4 7b 60 e 08 00 45 00
00 00 a9 fe e3 28 a9 fe .
a6 9e 48 65 6c 6C 6F 20 O

65 6e 64

@ ¥ File: "ChUsers\Jelle\AppData\Locah Temp\w.. |Pa: [Profile: Default

i
jcation

to FPGA

£ lhello
VL ¢ Commun
Correlat
don filt er Pytho

message to send

ame 10105: 136 bytes on wire (1088 bits), 136 bytes captured (1088 bits) on interface 0
hernet Iz, Src: Compalin_7h:60:8e (b8:70:f4:7b:60:8e), Dst: Hes-So_39:02:01 (e4:af:al:39:02:01)

6.2 Processing the data

Figure 6.3: Sending a UDP packet to FPGA

To make the code more readable, we chose to work with a main script where we call the
functions we want to implement. The functions are defined in a separate file and can be

imported by the main.
The block diagram of the main is shown below.

send UDP
packet to
FPGA

generate
sequences
for correlation

—_

receive n
packets from
FPGA

calculate
samples

filter samples
with different
sequences

N

calculate mean
of the peaks after|
correlation filter

calculate radiuses|
from each LED

calculate
position
+ plot position

Figure 6.4: Block diagram of the main code

The main script starts with sending a UDP packet so the FPGA knows our IP address and
MAC address. Then, we calculate the bit sequences sent by the LEDs. These bit sequences
are used to filter the received data.
Because the time between the samples of the ADC is 1 us (ﬁ) and the time between the
bits in the sequences is 5 us, we get 5 samples for 1 bit. We repeat each bit in the generated
sequence 5 times to match the generated and the received sequences. If we have for instance

the bit sequence 0 1 1, we used a function to make 00000 11111 11111.

We can also determine in the main on how many packets we want to do the calculations. In
one packet, 1024 bytes (512 samples) are included. As we have 5 samples per bit, we have

6 Processing with Python 45

about 100 bits in one packet. This is not enough if we send a long bit sequence.

In appendix [F, we tested several bit sequences: going from a 6-register LFSR sequence (2°
- 1 = 63 bits) till a 15-register LFSR sequence (215 - 1 =32767). The results are discussed
in the appendix. For the indoor positioning, we chose to work with a 10-register LFSR
sequence (2'° - 1 = 1023). Now, we can start receiving the data. Every time a new packet
arrives, we put the 1024 data bytes in a bytearray. To make it easier to do calculations, we
convert the bytearray in a list of integers. Since we want to have the value of the samples
(which are two bytes), we calculate the samples and store them in a list of 512 elements. If
we have for instance 06 FF, we can calculate the sample via 255 + 6 - 16> = 1791. Now we
have calculated the samples, we can also calculate the corresponding analog values as seen

. . . _valuesample _ valuesample
on the oscilloscope with the formula : = - 3.3 volt = 5o (FFF) 3.3 volt. In our
d: 1791

example we find: 7555 - 3.3 volt = 1.44 volt. If we want to represent the samples in a graph,
we have to determine what the time is between two successive samples. This is given by the
sample frequency: 1 MHz. So, the time between two samples is ﬁl-lz =1 us. As we could
still see some spikes in the graph, we wrote a function to reduce the peaks. In the graph
below, you can see the sampled data from one packet (512 samples). The largest peaks are
filtered out.

Signal receiver

signal (V)

LA

00100 00101 00102 00103 00104 00105
time (s)

Figure 6.5: Graph received samples (bit sequence of 1023 bits)

Afterwards, we used the function 1filter to filter the received signal with each of the bit
sequences sent by the LEDs. The functiony = 1filter (b, a, x) requires three arguments.
b represents the array representation of the nominator coefficients of the filter. a represents
the array representation of the denominator coefficients. x represents the input array that
we want to filter. In the Z domain, we can write y in function of x:

Y(Z) — b0+b1'271+"' . X(Z)

ao+ar-z 1+

In time domain, the different samples of y are been calculated with the formula:

6 Processing with Python 46

ao-yn=bo - xXn+by-Xp_1+---ap - yp—1----
If a = [1], we can rewrite the formula:
Yn=bo Xy +by Xy 1+

If we want to have peaks after the correlation filter, we should flip the bit sequences before
doing the filtering. This is explained in following example:

The input signal: x = [2 -2 2 2 2]

If we want to do the correlation with the bit sequence b = [1 0 1 1 1], we will see
whether it is best to do the filtering with this sequence or with the inverted sequence bi,y, =
[1 110 1].

Using the above formula, we can calculate the output y in both cases. We find:

y =1[2 -2 4 2 4]
Yiw = [2 0 2 2 8]

If we use the non-inverted bit sequence for the filtering, we can’t notice a very clear peak.
If we use the inverted sequence for the filtering, we can see a clear peak (with value 8) at
the end of the sequence. So if we want to correlate the received signal with a bit sequence,
we have to invert the bit sequence.

This correlation filter results in peaks at a certain frequency (according to the length of the
bit sequences). If we apply this function for filtering the samples as seen in the graph before,
we get a result as shown in figure

We also wrote a function for an auto-correlation: we filtered the ideal signal with itself. If
we do this for a 10-register LFSR sequence, we get a result as you can see in figure
There is no noise and the peaks all have the same value. We can only see some noise in the
first period because the bit sequence isn’t recognized yet.

To determine an eventual time shift in the received signal, we also wrote a function that
plots the received signal and the ideal bit sequence under each other. You can only use this
if one LED is burning. To synchronize both signals, we searched for the number of most
successive ones in each of the signals. Once we know this (and the index where this occurs),
we can shift both signals so we can see an eventual time shift. In figure[6.8] you can see this
for a 10-register LFSR sequence. If we compare both signals, no time shift is visible.

This function and the function for the auto-correlation can be found in appendix We
wrote these functions in a separate file functions_test.py.

The amplitude of the peaks depends on the intensity of the bit sequence falling on the

6 Processing with Python 47

Signal after correlation filter 1

400

signal (V)

100]

Figure 6.6: Graph received samples after correlation filter (bit sequence of 1023 bits)

Signal after correlation filter 1

2500|

2000|

1500

signal (v)

1000

500

¥oo0 0005 0010 0015 0020 0025 0030
time (5)

Figure 6.7: Auto-correlation for a 10-bit sequence

receiver. As the peaks don’t have all the same amplitude, we wrote a function that returns
the mean of all the peaks. We filtered the received signal with each of the bit sequences and
calculate the mean of the peaks. These results can then be used to calculate the position as
discussed in the next paragraph.

The code of the main script and the file where we put all the functions can be found in

appendix [[.2.2]

6 Processing with Python 48

Figure 6.8: Comparison between received signal and ideal signal

6.3 Positioning

6.3.1 Radius calculation

Once we have done the correlation, we have 5 values representing the mean of the peaks
after the filtering with each of the 5 bit sequences. Starting from these values, we should
calculate the position of the receiver. For the indoor positioning, we assume a constant
height (height of the desks), so we just have two dimensions. We did some measurements
to determine the link between the correlation values and the radiuses from each LED. If we
are under the LED, the radius is zero metres. The larger the radius from the LED, the smaller
the correlation value corresponding to the LED. We did this measurement for each of the
5 LEDs when all LEDs are burning. The results are shown in the table. The radius varies
from O to 3.4 metres. We stopped at 3.4 metres because from that distance the correlation
peak values are almost the same as the noise we receive.

On these measurement points, we we fit a function we can use in Python to calculate the
radiuses starting from the correlation values. We used Logger Pro for the fitting. The
best fitting was obtained with a 5th order polynom. We did this for each LED to find the
coefficients of the polynom. The result from the fitting of the first LED are shown below.

We found as coefficients of a Sth order polynom (y =A+B-x+C-x>+D-x> + E-x* + F -x°)
for the first LED:

A =5.668

B =-0.05907
C =0.0003756
D =-1.253e-6
E =2.028e-9

F=-1.268e-12

6 Processing with Python

49

Table 6.1: Mecasurements radius versus correlation value with each LED

radius [m]
0
0,2
0,4
0,6
0,8
1
1,2
1,4
1,6
1,8
2
2,2
2,4
2,6
2,8
3
3,2
34

LED 1
corr. value
540,3
539,85
524,82
459.4
414,37
360,77
315,53
268,51
216,24
177,96
142,07
118,8
104,81
90,72
81,18
69,56
61,15
52,98

LED 2
corr. value
815,84
790,3
739,84
644,85
582,06
488,95
416,21
360,8
285,86
232,83
187,07
148,8
122,17
106,16
79,3
58,83
51,48
42,15

LED 3
corr. value
586,89
568,21
560,13
508,07
439,35
374,84
315,06
270,51
215,9
173,2
132,45
107,43
91,79
80,39
72,54
61,63
48,57
42,89

LED 4
corr. value
667,78
661,3
628,54
573,38
503,93
439,79
377,7
318,86
272,25
210,29
172,82
149,28
126,39
100,39
84,08
66,59
55,24
43,25

LED 5
corr. value
728,81
670,13
613,55
577,46
502,2
434,13
362,63
315,24
258,74
208,87
166,79
134,57
108,83
87,21
75,63
65,29
54,76
54,64

6 Processing with Python

50

File Edit Experiment Data Analyze Inset Options Page Help

D@E&[Ereer -BMHEGARXLZ|ETL0 [0

No device connected.

Data Set
correlatu)n
L m | |
1| 5403 0/
2 | 53985 0.2
3| 52482 04
4 459 4 0.6 34
5 | 41437 08|
6 | 36077 1
7| 31553 12
8 268,51 14 Auto Fit for: Data SAEU aui‘ajcen -
o | o624 18 LS = B CXE DI BHCS
T e 15 & 3 ooares w7 2asE005
11| 14207 2 o7 202E
12 1188 22 E ; uzzﬁszsgruuuugﬁq—/ sgsﬂszwguﬂuu?
| PR RSk Qosram
15[8118 28 | £
16| 6956 3| 3
A7 61,15 32| | &
18| 5208 34 | Z
19|
20 |
21
2|
2
24 | 1
25
26|
27
26|
29 |
30 |
31
32| e
33 \
0| 0 | | A
35 | 200 400
T T — & correlation

600

Figure 6.9: Fitting correlation value vs. radius for first LED

In the next paragraph, we explain how we compute the position starting from these radiuses.

6.3.2 Position calculation

After finding the horizontal distance between each led and the receptor.We can compute 2

intersections points with 2 radiuses represented by figure[6.10]

Y

Fy
| 5=310137
»=4.99328

¥

0 3 8

Figure 6.10: intersection points of 2 circles

6 Processing with Python 51

The first step is to calculate coefficients N, A, B and C to compute coordinates x and y of
both intersection points:

- (oo
2(yo—y1)

2
A:1+<x0 xl)
Yo—N1

B =2y <x°_x1> _ON (xo_xl) —2x
Yo —)1 Yo —)1

C =x3+y5+N?— R} —2y0N

After calculating these 4 coefficients, the x and y coordinates can be calculated by following
formulas:

2A

X0 — X1
Yig=N-—x2
Yo — Y1

If 2 luminous sources have the same y-coordinates, previous formulas are not valid because
of division by zero. Therefore if yo = y;, we must use below equations:

<—B +VB2 = 4AC>
X1p =

A=1 ;B= -2y, :C=x3+x° —2x3x+y? — R}
i <R%—R3—x%+x(2)>
2()6()—)(1)
—B++vB?2—4AC
2= 24

As multiple light sources are used in this project, we must repeat the operation with all the
possible combinations. To find the receptors position, we must find the position of the points
we are interested in, we assume that the correct points are those who are to closest to each
other. Finally, those calculated points are necessarily not at the same place. Therefore, to
refine the calculating and to find the receptor position, we must take the geometric average
of each point. The written function in Python that computes the receptor position and middle
points presented above can be found in appendix [[.2.3]

In figure [6.11] you can see the LEDs (blue dots) with the radius around where the receiver
can be for 1 led. At every intersection of 2 LED radius circles the calculated intersection
points are shown (black and orange triangles). We will only use the orange triangles to
calculate the geometric average as these are the closest to each other. Only the intersection
points of the LEDs that are closer than 2.5m to the receiver are shown. Because the longer
the distance from the LED the less accurate the measurement. We only do the calculations
with the most accurate values.

6 Processing with Python 52

5
K K . .
o . M o
5 : ",
. . . : .
. 4 L4 .,
4.0 > * H -
7
M g . N .,
. ? . J .
N
: . .
§ N B N 5
. 3 A Y
: - 1
cd . : 5
B
.3 H
+ . " -
H H
. * - +
: . B H
.3 R 3
35 PR d .
: B B H
2 : B :
; -+ ., -
B :
. . .
- - - +
H . :
1. . B b
- .t - N -
. H . :
. e . !
*. b oes B :
. % . $
. . .
3.0 B 4 : * Fa
" . S
., K H
. RS $
. . e &
‘. ".~ Lt K
.., - e Lett E
.. .. . B
tes - o;; &
ART TN sarett Y . !
B ., . 5
B
+
2.5 N . o
. . .
™, -
] ’.' - .c‘]
. o 5
. 5
Y . %
teas i
3 -
4 £
ey, ottt
o Tt erttt
. RS TR PSPPSR
FE
.
200 : P
H -
.
: .
.
1 2 3 4 5

Figure 6.11: Position calculation (graphical view)

6.3.3 Data Transmission

Until now, the bit sequences sent by the LEDs were just used to calculate the position.
Moreover, we can also transmit data via the LEDs. If we invert the bit sequence during
certain periods, we can transmit zeros and ones. If we use the same correlation filter, we
will see positive peaks and negative peaks as well. A positive peak represents a digital zero,
a negative peak represents a digital one, or vice versa. We tried this possibility, the results
are discussed in appendix [G|

Chapter 7

Result

For this master’s thesis, we had to design a sender and a receiver for Visible Light
Communication so we can determine the position in a room. The sender can be plugged
into the mains and the transmitted binary sequences can be controlled by an FPGA.

The receiver is designed to receive at 200 Sle(l’(if;d. We used an Ethernet connection to send
the samples of the received signal taken by the ADC to the PC. To process the data and
calculate the position, Python was used.

We can also transmit data besides the indoor positioning by inverting some periods of the
sent bit sequence. The final result of the Python code is showed below. You can see the
position of the receiver, marked with a red dot. You can see the walls of the room and
the position of the LEDs (marked with blue dots). You can also see the coordinates of the

calculated position.

SMOPUIM

1 Position: (3.09, 3.82)

Figure 7.1: Graphical view of the position of the receiver in the room

53

Chapter 8

Future work

Because of the limited time wherein we had to do our research and developing we couldn’t
do all possible tests we have in mind relating the subject of this report. Hereby we give a
list of future work that can be done additionally to this report.

e More accurate tests can be done to determine the accuracy of the system, and
increasing the precision of the positioning.

e Test can be done with different LEDs to look at the different responses of the receiver.

e The use of lenses can be investigated, both on the LEDs or on the photodiode to have
a larger working area.

e The LEDs are now controlled by 1 FPGA, test can be done to look if there is any
change when using 2 asynchronous FPGAs.

e A smaller circuit can be made to develop a device that can be implemented in a lamp
holder.

e Tests of indoor positioning can be done on a greater scale, in a big room, over the
whole building.

e Software can be updated to do dynamic positioning.
e Tests an measurements can be done to do 3D positioning.

o Next to the positioning, data(files) can be sent. This can be done by sending the same
information over all the LEDs or different information over each LED.

o The frequency can be increased by changing the receiver circuit: using high frequency
op-amps with very high slew rates, an anti-aliasing filter with a higher cut-off
frequency and a faster ADC (ADC with parallel output).

54

8 Future work 55

e The receiver can be made smaller to make a small device that can be easily plugged in
a USB or Ethernet port. Therefore the possibility to do Power Over Ethernet (POE)
or sending the data over a USB connection have to be investigated.

e The LEDs can be placed more spread in the room, so a more accurate positioning can
be done in the corners. Now, the LEDs are placed rather centrally in the room, what
means that the signal at the receiver is very low if we are in the corners. We can also
use more LEDs for a more accurate positioning.

(1]

(2]

(3]

(4]

[5]

[6]

[7]

[8]

[9]
[10]

[11]

[12]
[13]

Bibliography

Bode/Nyquist Plot Java Applet. http://www.williamsonic.com/BodeNyquist/
index.html. .

Bastien Bagnoud. Indoor positioning Visible Light Communications. Technical report,
HES-SO Valais/Wallis. Bachelor’s thesis.

Bridgelux. Bridgelux ES Star Array Series. Product Data Sheet DS23, 101 Por tola
Avenue, Livermore, March 2011. Datasheet.

Bridgelux. Effective Thermal Management of Bridgelux LED Arrays. Product Data
Sheet DS23, 101 Por tola Avenue, Livermore, January 2011. Datasheet.

Burr-Brown. OPT202-Photodiode with on-chip amplifier. . Datasheet.
Hamamatsu. Si PIN Photodiode S1223 series. . Datasheet.

Microchip Technology Inc. Switch Mode Power Supply (SMPS) Topologies (Part
I). ANI10, 2355 West Chandler Blvd. Chandler, Arizona, USA, Oktober 2007.
Application Note.

New Wave Instruments. |http://www.newwaveinstruments.com/resources/
articles/m_sequence_linear_feedback_shift_register_lfsr.htm. .

LEDFusion. www.ledfusion.com.au. .

Single Supply Op-amps. http://www.swarthmore.edu/NatSci/echeevel/Ref/
SingleSupply/SingleSupply.html. .

E. Schubert and J. Kim. Solid-State Light Sources Getting Smart. volume 308
1274-1278, 2005. Book.

Vishay Semiconductors. BPW2IR Silicon PN Photodiode. . Datasheet.

Burton & Sons Trading. , Lumen House, 3 Darin Court, Crownhill Industrial Estate,
Milton Keynes, Buckinghamshire, MK8 OAD, United Kingdom.

56

http://www.williamsonic.com/BodeNyquist/index.html
http://www.williamsonic.com/BodeNyquist/index.html
http://www.newwaveinstruments.com/resources/articles/m_sequence_linear_feedback_shift_register_lfsr.htm
http://www.newwaveinstruments.com/resources/articles/m_sequence_linear_feedback_shift_register_lfsr.htm
www.ledfusion.com.au
http://www.swarthmore.edu/NatSci/echeeve1/Ref/SingleSupply/SingleSupply.html
http://www.swarthmore.edu/NatSci/echeeve1/Ref/SingleSupply/SingleSupply.html

Appendix A

List of Main Switch Mode Power
Supply (SMPS) Topologies

Boost Converter A basic SMPS topology in which energy is stored in a inductor when
a switch is ON, and is transferred to the output when the switch is OFF. It converts an
unregulated input voltage to a regulated output voltage higher than the input.

Buck Converter A basic SMPS topology in which a series switch chops the input voltage
and applies the pulses to an averaging LC filter, which produces a lower output voltage
than the input.

Flyback Converter (FBT) An isolated Buck-Boost SMPS topology in which, during the
first period of a switching cycle, the energy is stored in a magnetizing inductance of the
transformer. Then, during the second period, this energy is transferred to a secondary
winding of the same half-bridge resonant converter where the load is connected in series
with the resonant tank capacitor, C, and into the load.

Forward Converter A Buck-derived SMPS topology in which energy is transferred to the
secondary of a transformer winding and into the load, when the switching transistor is ON.

Full-Bridge Converter An SMPS topology in which four switches are connected in a
bridge configuration to drive the primary of a transformer. This is also known as an
H-Bridge Converter.

Half-Bridge Converter A SMPS topology similar to a full-bridge converter in which only
two switches are used. The other two are replaced by capacitors.

Half-Bridge LL.C Resonant Converter A SMPS half-bridge topology where the series
resonant tank consisting of the inductor, L, and the capacitor, C, which is used to generate

57

A List of Main Switch Mode Power Supply (SMPS) Topologies 58

another resonant frequency with transformer magnetizing inductance.

Half-Bridge Resonant Converter A half-bridge converter using an LC resonant tank to
reduce the switching losses in the MOSFET.H-Bridge Phase-Shift ZVT Converter.

H-Bridge Phase-Shift ZVT Converter A full-bridge converter using the phase-shift
ZVS technique is known as an H-Bridge Phase-Shift ZVT topology. In this topology, the
parasitic output capacitor of the MOSFETs and the leakage inductance of the switching
transformer are used as a resonant tank circuit to achieve zero voltage across the MOSFET
at the turn-on transition.S

LLC Resonant Converter A full-bridge converter with an LC resonant tank, which is used
to reduce switching losses and the phase shift between the two leg gate pulse defined in the
output power flow.

Parallel Resonant Converter (PRC) A half-bridge resonant converter where the load is
connected in parallel with the resonant tank capacitor.

Push-Pull Converter An SMPS topology which is using usually a center-tap transformer
and two switches that are driven ON and OFF alternately.

Series Resonant Converter (SRC) A half-bridge resonant converter where the load is
connected in series with the resonant tank capacitor, C.

Appendix B

Calculations to determine the needed
heat sink

The heat flow can be modelled by analogy to an electrical circuit where heat flow
is represented by current, temperatures are represented by voltages, heat sources are
represented by constant current sources, absolute thermal resistances are represented by
resistors and thermal capacitances by capacitors. The diagram shows an equivalent thermal
circuit for a semiconductor device with a heat sink. So our LED application can be seen as
the circuit in Figure

Q
Tj LED Array
(junction and

Rejc metal core board)

T

¢ Thermal

R6ch ey s

Th

Heat Sink

I:{eha

Tamb —/'
Ambient

Drawing Not To Scale

Figure B.1: Thermal circuit[4]

Where

Q is heat flowing from hot to cold, through the LED

T; is the temperature at the junction of the device

T, is the temperature at the case of the LED Array

T}, is the temperature at the point where the heat sink is attached to the LED Array

59

B Calculations to determine the needed heat sink 60

T.mp 1s the ambient air temperature

RO is the thermal resistance from junction to case of the LED Array

RO, is the thermal resistance between the case of the LED Array and the heat sink
ROy, is the thermal resistance of the heat sink

As mentioned in [3.1 we calculate Q:

Q=V;, -1;-0.85=30.9-0.35-0.85 =9.19 (B.1)

From the datasheets we know:
RO, = 1.75°C/W
RO, =~ 0.001°C/W (depends on thickness of the paste layer — we take a thickness of

Imm)
T; — Tymp = 150°C — 25°C = 125°C

T; — Tomp . ROy, — T; — Tump — (ROjc +RO.,) 125°C —(1.751-9.19)°C
ha — -

=11.85°C/W.
Rﬂjc + RO, + RO, 0 9.19 /

(B.2)

We can conclude that the maximum thermal resistance of the heat sink is about 11.85°C/W.

We chose to use a heat sink with a thermal resistance of 3.2°C/W. In equation B.3| &
you can see the calculations for the temperature of the LED junction and the LED casing.

0=

Tj - Tamb
= =T;=(RO;.+ RO ROy,) - Tmp = 70.5°C B.3
Q Rejc ‘|‘R6ch +Rehu Jj (je + ch T+ ha) Q + Lymp ()
1. — Tomp _ _ o
0 = T, = (RO + ROpa) - O+ Ty, = 57.01°C (B.4)

- Rech + Reha

Appendix C

Ambient light rejection circuit

The circuit we have used to filter the ambient light, is shown in figure [C.I} We
found inspiration in the datasheet of the OPT202 photodiode [5]. They mentioned some
applications and one of them was a circuit to reject unwanted steady-state background light.
We did some adjustments on the circuit and we came to the result below.

4.
c2
M
- S
¥ R3 /J7
1% g R4
N g R2
If
T 10k
(&>
Rl
I.
jig}
“"-a,__\\u
Hx“u —a ¥

ot

Figure C.1: Ambient light rejection circuit

When light is falling on the photodiode, current flows through it. The current is then
converted in a voltage. The feedback circuit cancels out low-frequency background signals.
At the output, we will have the AC signal we are interested in.

The circuit can be represented as the general structure of a closed-loop system as shown in

61

C Ambient light rejection circuit 62

figure[C.2]

X(s) —-(+g)—>z(s) o) 2R v
L H(s)

Figure C.2: Closed-loop system

A

One can easily find the general expression for the transfer function of a closed-loop system:

Hi o (8) = % = %}Y)H(s)

Now we can identify this structure with the ambient light rejection circuit.

X(s) is the input variable, the current through the photodiode I;,,. Y(s) is the output variable,
the voltage at the output of the op-amp V,,,. G(s) is the forward transfer function, the
transfer function of the current-voltage converter. H(s) is the transfer function of the
feedback circuit. Z(s) is the output of the substraction, the current I'.

The transfer function of the current-voltage converter can be easily calculated as we known
that: V,,;, =-R1 - I'. So, G(s) =- R1.

Now, we have to calculate the transfer function of the feedback circuit as shown in
figure|C.3

Rz .
3 R4
L W f
- NI + o A
R3 = |
2], ===
||
[
2
R

Figure C.3: Feedback circuit

Resistor R4 is put on ground, because the voltage at node A is 0 volt. To calculate the
transfer function H(s), we replace the capacitors by their Laplace equivalent ﬁ and ﬁ
v, is the voltage at the output of the op-amp. We can calculate the voltage at the minus pin

and the plus pin of the op-amp:

C Ambient light rejection circuit 63

R3 ’
Vipig = ———— + V)
min R3+s«é2 o
1

P i
plus = goy L

Since these voltages are equal to each other, we can say that:

* Vout

R3 . riél

T Vo = T " Vout
R3+-5 R4~
1 1
Vo _ w1 R3tsm
Vout RZ-}-% R3
Vo _ 1 R3:5:C2+1

Vouw _ R25CI+1 ~ R3s5C2

/

L/ 1
il e ww B O Sl wores))

If we take: R2 =R3 =R and C1 = C2 = C, we can rewrite the formula:

= e o 1y L
~ R-s-C+1 R-s-C

Vout

!
Vo _ 1 RsC+l
< Vour R-s:C+1 R-s-C
!
Yo _1
A Vour R-s:C

/
If we look to the circuit, we can say that: Iy = %.

_ I _ 1
= H©) = 7= erra

This transferfunction represents a non-inverting integrator.

Now we know G(s) and H(s), so we can calculate H;,(s).

I'=1 r + I, (Kirchhoff’s current law in node A), so we have to add the input current and the
feedback current. In the general structure of a closed-loop system, we will do an addition
instead of a subtraction as shown in the figure below.

e I -|:®), o) Z{s)3(s) J Ve

J
't His) |

Figure C.4: Closed-loop system with addition

G(s)

= Hio(8) = 7=505.10)
< Hip(s) = ﬁ

_ —R1-s:C-R-R4
& | Hiot(8) = RiscrRRE

C Ambient light rejection circuit

64

This represents the transfer function of a first-order inverting high pass filter with a gain in
the pass band of R2.
We take the following values for the components:

R1 =10kQ

R2=R3=R=1MQ

Cl1=C2=C=4.7nF

R4 =1.2kQ

Using a Java Applet [[1] we can see the bode plot of the transfer function:

Bode Plot | Nyquist Plot

78

7z

B

&0

54

48

42

36

30

Gain (dE)

180

135

90

45

a

-45

-90

-135

-180

Freq. (Hz)
T T T T T T T

1 3 10 a0 100 300 1000 3000 10000
5,981173E3 ~9,990138E3-3, 138912E21
dlecadesyy,| | 9,120108E3 -9,990435E3-3,091188E21
9,261187E3 -9,990724E3-3, 044187E21
~55400,0: hoEEay 9,404449E3 -9, 991005E3-2, 997898E21
9,549926E3 -9,991276E53-2, 85231821
5.64 10000 Denominator 9,697654E3 -9,99154E3-2,907413E2i
3,247667E3 -9,991795E3-2, 863197E21

Hz =1 StartFreg. 1 ~9,992043E3-2,819651E21

Figure C.5: Bode plot H;,(s)

We can see that we have a gain of 80 dB (20-1og(10 000)) in the passband and that we have
a cut-off frequency about 300 Hz.
We can derive a general formula for the cut-off frequency feu—off-

= | Hiot(i*®) | 0=0uorr = RTIZ

54

54

R1 ~(x)(-ut,(,ff'C~R~R4

— RI1

SqrtR12+(Ocu—of s CRREE — /2

(OJC-M,Off~C-R~R4)2

R12+(0cyi—off-C-R-R4)?

=1
-2

C Ambient light rejection circuit 65

& (Ocu—offC-R-RA)? =1 - (R1> + (®cu—ofs - C-R-R4)?)
2

1 (Qurogy-C-R-RAP =L - RIZ
2 _ __RI?
A (Dcutfoff - (C~R~R4)2
R1

= Ocur—off = TRRG

= | fou—off = 70K TR
If we fill in the values for the components, we find: f.;—orr = 282.19 Hz. This frequency
is good enough to filter the DC environmental light and the 100 Hz components from the
lighting in the building.

Appendix D

Simulations

In this chapter, we will discuss our simulation results.

D.1 ADC

In the figure below, you can see the test structure of the ADC in HDL Designer. We have
an ADC controller and the ADC itself. The tester generates input values for the ADC.
The ADC is controlled via the signals CS,, and SCLK. The ADC gives a serial output at
the rythm of SCLK for the analog input. The ADC controller converts the serial data to
parallel data (signal ADC) and also gives an integer representation of it (signal voltage) for
the readability.

AD_DA_TEST
AD_DA adc1215101
adc1215101Controller I_ad0
I_dut -

2deBiclb = adeBicis - (posivive |

AD_DA_test
adc121S101Controller_tester
I_tester

clockErequency = clockFrequency
2deBitHD = adcBitlb

Figure D.1: Testbench ADC

66

D Simulations 67

The result of the testing is shown below. First, we can see the analog input vin in integer
representation. When CS,, becomes low, a new sample is taken and we can see the serial
output (signal sdata) at the rythm of SCLK. When CS, becomes high, the parallel data is
computed (signal ADC) and the integer representation voltage is shown. We see that this
value is the same as the input value, so the ADC controller works.

" fadc121510 tcontroller_tbjresst
[ade121s101contraller_thjdock
“ fadc121510 Lcontroller_tbjin

fadc121510 fcontroller_th_dut/adc.
fadc121s10 1contraller_thyi_dutfsck
fade121s10 tcontroller_thyi_dut/voltage
fadc121510 1contraller_thyi_dutfadc_i
fadc121s101controller_tbfi_dut/voltage_i
fadc121510 1contrller_thjsdata
fadc121510 tcontroller_thjcs_n

Figure D.2: Simulation ADC

D Simulations 68

D.2 Sending Ethernet frames

In figure you can see the test structure for sending and receiving Ethernet frames. The
ADC determines which data is put in the Ethernet frames when we want to send one. On the
right, we have the ADC who communicates with the UDPApplication block. This block
transmits the data that is stored in RAM and creates a header around it (MAC address, IP
address, UDP port...). The next block is the UDPFifo block. The data is processed via a
FIFO structure. The miiToRAM block is used as the interface to connect the FIFO block
with the Ethernet controller on the FPGA board. The two blocks on the left, miiSender and
miiReceiver are used to simulate the behaviour for sending and receiving Ethernet frames
on the computer side.

MII Sender

/

MIl to RAM

A
A
A
Y

UDP Fifo «— UDP Application

\

ADC

MIl Receiver

Figure D.3: Testbench Ethernet

In figure you can see what happens when we send a frame. When we want to send an
Ethernet frame, the signal send Frame is brought to 01 or 10 (depending on which part of
the RAM we want to send) for one clock period. The content of the RAM is read via signal
addressb and the data is transmitted to the FIFO. When the FIFO is full, we stop writing
for a while until there is place again. We can see that the MIIReceiver on the computer
side receives the data. When there is a frame, mii_txen is brought high so the data can be
received.

D Simulations 69

sending a frame

4 fudpfifo_th/u_afffofil
“ ucfifo_thlu_4/ffonrite
B ucpffo_tbjrxdata

Jucfifo_thju_djudpnriteaddress
Judpfifo_tbfuu_4fudpwritedata
Judofifo_tbjuu_/sendudpframe
Judpfifo_tbju_fudpready
Jucpfifo_thju_Hfudpwrite
T
Judofifo_th/u_ipwiteaddress
Judofifo_th/u_ipwitedata
fudofifo_tfu_t/sendipframe
Judpfifo_tbju_4fipready
fucfifo_th/u_ipwrite
[— Ethernet -Tx
< Judpfifo_thju_ajethready
fudpfifo_tbju_tfethwrite

o’

mil_txen

Judoifo_th/mil_txd
Judpfifo_thju_S/u_8/bedata
Jucofifo_th/uu_Su_Sfwitegranted
fudofifo_th/u_S/u_S/banr
Jucpfifo_th/u_Su_Sfwriterequest
Judpfifo_thju_Sfu_8fisselected
Judpfifo_tbju_Sfu_8/edata
Judbfifo_thiu_Sfu_8fcs_n

addressb ucfifo_th/u_Sfu_8/eck

— fudofifo_th/u_Sju_Sfaddress:
Judpfifo_tb/u_s/u_8/adc.
Judpfifo_tbju_Sju_8/addressa
Judpfifo_tbju_S/u_8/dataina
Judpfifo_tbfu_5fu_8fwriteena

sendFrame Judofifo_thiu_Sfu_Sfena

— Judofifo_th/u_s/u_8/sendframe
Judofifo_thjuu_5fu_Bfes_n_internal
Jucfifo_thiu_Su_8/u_/sendframe
Jucofifo_th/uu_Sju_Sfu_t/ade
Judpfifo_thju_Sfu_8fu_s/writeena
Judpfifo_thfu_5fu_BJu_1frameounter

4 . fudpfifo_tbju_Sfu_8fu_1fdiscardstate
~ judpifo_tb/u_S/u_8/u_1/begin_counter

Cursor 1 [29,479763 us

Figure D.4: Simulation sending Ethernet frames

Appendix E

Tests of sending circuit

E.1 Results Test 1 of circuit 1

During this test we look at the functionality of the transformer operating with the power
switch, to look what reference voltage we need for the feedback and how the circuit is
reacting.

E.2 General findings

In general we can see that the rectified voltage of 320V has a ripple of 5V, what also has
influence on the input current (current through the transformer) as shown in figure [E.1]
Whereas this has not real influence on the function of our transformer we won’t try to
compensate this behaviour.

If we look closer at the input and output current(figure we can see that the circuit
behaves like expected for a flyback converter. Both currents have some ripple. Whereas this
has no big influence on the emitted light, this ripple will be ignored.

E.3 Changing the duty cycle

We can regulate the duty cycle of the power switch by changing the value of a resistance in
the feedback loop. This is possible by the implemented potentiometer (P1). If we want to
keep the output voltage low, the power switch will stay isolated for multiple periods (Figure
@]). As we are not interested in this behaviour, we look at the behaviour where the power
switch is always switching at a frequency of 100 kHz and changing the duty cycle.

During the test shown in figure we got a Vayx of 16.9 V and a duty cycle less then 20
%. This is way to low where as we want to use a duty cycle of 50% at least to use maximum
illuminance for our led. When changing the resistance value in the feedback loop we don’t
get a lot of change in the duty cycle, only Vsyx goes up. This is due to the related Power

70

E Tests of sending circuit 71

1

1505 30

28, MY52180370: Mon Apr 08 08:18:55 2013
[2 0w/

10.0:1
1.00:1

0 Tue Apr 16 11:30:16 2013

Figure E.2: Primary current(Yellow) and secondary current(green)

dissipation of secondary and auxiliary of the transformer. Whereas the secondary side of
the transformer behave like a current source (because we don’t use a capacitor as rectifier),
the output voltage over the LED will always be around 30 V when conducting the current.
At the auxiliary side of the transformer this power dissipation is related to the winding ratio
Ns — B — 18 " Aq we are limited at the auxiliary side for power dissipation we can’t go

NZILI)C P(UL’C - 10'
up with the duty cycle if we don’t dissipate more energy at the auxiliary side.

To have more power dissipation at the auxiliary we connect a high power potentiometer of

E Tests of sending circuit 72

130K 301

[

28, MY52180370: Mon Apr 08 081925 2013
2 0w/

10.0:1
1.00:1

[Tue Apr 16 11:47:33 2013

e S e LB i i

Figure E.4: Primary current(Yellow) and secondary current(green)

125t0 0 Q..) 5
\% 16
Pup = ~45 = —_ — oW
“rR 125
N
Psec: aux'ﬁix::SﬁW

The LEDs use normally 9 W when in typical use, with a duty cycle of 50 % this should be
4.5 W, what can be achieved by lowering the resistance at auxiliary. This permits us to raise

E Tests of sending circuit 73

the duty cycle. In figure [E.5| we can see the output current through and output voltage over
the LED. The voltage over the potentiometer at the auxiliary of 125 Qis 13 V.

Tue Apr 16 11:2527 2013

0.0:1
1.00:1

Figure E.5: Voltage over the LED (Yellow) and current through the LED(green)

In Figure we went up to an auxiliary voltage of 15.6 V. We didn’t go higher because
the current peaks at the secondary are up to 600 mA. This is already at the limits of the
maximum ratings of our LEDs. So this time the duty cycle is limited by the LED maximum
ratings.

Tue Bpr 16 11:26:55 2013

M

A
\/

(VA
/
U\.

va_ﬂl‘f.’m o

Figure E.6: Voltage over the LED (Yellow) and current through the LED(green)

E Tests of sending circuit 74

E.4 Conclusion

To get a higher efficiency of our circuit we need to have another winding ratio between
auxiliary and secondary. We can also give the feedback from the secondary and don’t use
the Auxiliary. The power supply for the other components can be created serial or parallel
with the LED (that’s harder to achieve a high efficiency). If we want to lower the current
peak to our LED we need to have a higher primary inductance so the currents at primary
and secondary charges and discharges the transformer slower. We can easily calculate this
without taking losses and other side effects into account with the following formulas.

o Aiprim
Vprim — Lprimi

on

Aiprim : Nprim = Aisec 'Nsec

Where as the transformer at secondary side is seen as current supply, the voltage at the
secondary side is determined by the characteristics of the LED. This voltage is around 30

V when using current peaks around 700mA. For choosing the winding ratio we will respect
the general formula: ‘;’,’ﬂ = % = % = k what gives a winding ratio of 10,6. Using this

in previous equations we can calculate L, for a duty cycle of 50% at a frequency of 100
kHz and with a current peak through the LED of 700 mA.

ton 5
L= Vyrin o =320V 050 = 2423mH
k 10.6

E.5 Results Test 2 of circuit 1

During this tests we worked with circuitry 1 and expanded it with the extra components
on a breadboard. The schematic of the extra circuitry is shown in figure The used
mosfet was an IRF2804 , this has a Vg threshold voltage between 2 and 4 V. The voltage
we get from the FPGA did not reach the threshold voltage of the mosfet, so we used a
simple offset circuit shown in to give an offset to the signal from the FPGA. With the
potentiometer in the feedback loop we could control the current true the LED and made the
current go from 0 A to 600 mA. This gives a Vyyx around 17 V what is still in the limits
of the POWERSWITCH chip Vce. The results of the voltage over the LED, the current
through the LED and the signal from the FPGA are shown in figures and

Considering the figures, we notice the presence of spikes on the signal due to the flyback
current peaks. This is not really seen at the Receiver circuit at a frequency of 100 kHz, so
we wont try to eliminate this ripple. Because this new circuitry is working like we wanted
a new PCB is made.

E Tests of sending circuit 75

D1 J4

LS4148
N |:| Load

&

>+ N[]x

S~ 0| [®

°STe el 2

= .

] IRF2804 g7 FPGA_MOS_DRIVE_}——T
S o D

‘ 2T c34
)
<]

{ MOSGATE

(a) extra circuitry at secondary (b) offset circuit

Figure E.7: extra circuitry on breadboard

0:1
10.0:1

Figure E.8: Current through LED(Yellow) and voltage over the LED (17.8V to 30.7V)(green)

E Tests of sending circuit 76

150-% 301 19135256 2013

28, MYB2180370: Fri Apr
1 5]

T T Agilent

LIS

Figure E.9: Current through LED(Yellow) and signal from FPGA (green)

1S0-% 30124, MYS2180370: Fri Apr 1913:52:27 2013
0 2 1.0

Figure E.10: Current through LED(Yellow) and signal at gate(green))

Appendix F

Correlation with an n-bit register

In this chapter, we will discuss the results from the correlation filter using an n-register
LFSR (with n going from 6 to 15). We will investigate whether the correlation is better for
longer sequences.

We used one or five LEDs that were sending an n-bit sequence and filtered the received
signal with the sent bit sequence(s). We always used enough packets so we could see
several peaks. The results are discussed below.

F1 n=6

We started sending a 6-register LFSR sequence by one LED. If we filtered the received
signal with the sent bit sequence, we can see several peaks (see figure[F.I). The bit sequence
is thus recognized. The values of the peaks are located between 20 and 25. The noise is
small and is located around zero.

If all 5 LEDs are burning, the several sent bit sequences are not so easy to distinguish. If
we place the receiver near the first three LEDs, the bit sequences sent by these LEDs are
still recognized as you can see in the figures below. We can see that the noise is increased.
The values of the peaks are located around 30. These values depends on several factors:
the distance (and angle) between sender and receiver, the sent bit sequence, the number of
LEDs that are burning, illumination of the LEDs,... .

If we filtered the received signal with the sequence sent by the other two LEDs, we couldn’t
see clear peaks because these LEDs are located too far from the receiver.

77

F Correlation with an n-bit register

Signal after correlation filter 1

signal (V)
5

| A Ay b/

~Yooo 0005 0010 015 0020 0075 5030
time (s)

Figure F.1: Graph received signal after correlation filter (6-register LFSR), one LED burning

Signal after correlation filter 1

signal (V)

000 0601 6002 6003 G004 5005 6006
time (s)

Figure F.2: Graph received signal after correlation filter 1 (6-register LFSR), 5 LEDs burning

F Correlation with an n-bit register 79

Signal after correlation filter 2

10|

oo 0001 0002 5003 0008 0005 6006
time (s)

Figure F.3: Graph received signal after correlation filter 2 (6-register LFSR), 5 LEDs burning

Signal after correlation filter 3

~Hoao 0001 0002 0005 0008 0005 0006
time (5)

Figure F.4: Graph received signal after correlation filter 3 (6-register LFSR), 5 LEDs burning

F Correlation with an n-bit register 80

F2 n=7

If we used a 7-register LESR sequence sent by the 5 LEDs, the filtered signal is shown
below. The values of the peaks are higher than when we are sending a 6-register LFSR
sequence (about 50). The noise is also increased, but the peaks are better visible.

Signal after correlation filter 1

signal (v)

Figure F.5: Graph received signal after correlation filter 1 (7-register LFSR bit LFSR), 5 LEDs
burning

Signal after correlation filter 2

0,000 0002 0,008 0006 0008 0010 o012
time (5

Figure F.6: Graph received signal after correlation filter 2 (7-register LFSR), 5 LEDs burning

F Correlation with an n-bit register 81

Signal after correlation filter 3

Figure F.7: Graph received signal after correlation filter 3 (7-register LFSR), 5 LEDs burning

F3 n=8

When sending an 8-register LFSR sequence, we can also see an increase of the values of
the peaks (about 90), and an increase of the noise.

Signal after correlation filter 1

Figure F.8: Graph received signal after correlation filter 1 (8-register LFSR bit LFSR), 5 LEDs
burning

F Correlation with an n-bit register 82

Signal after correlation filter 2

~Ho00 5005 5010 G015 0620 G025

Figure F.9: Graph received signal after correlation filter 2 (8-register LFSR), 5 LEDs burning

Signal after correlation filter 3

120

signal (V)

"0.:000 0,005 0010 0015 0,020 0025
time (s)

Figure F.10: Graph received signal after correlation filter 3 (8-register LFSR), 5 LEDs burning

F4 n=9

When sending a 9-register LFSR sequence, we can also see an increase of the values of
the peaks (about 170). It takes more time for Python to do the calculations and to plot the
several graphs.

F Correlation with an n-bit register 83

Signal after correlation filter 1

150|

100|

signal (V)

%00 005 6010 015

0020 0075 6030 0035 6040
time ()

Figure F.11: Graph received signal after correlation filter 1 (9-register LESR), 5 LEDs burning

Signal after correlation filter 2

150|

100|

signal (V)

Hooo 0005 6010 G015 0020

G025 5030 0035 6030 G045

Figure F.12: Graph received signal after correlation filter 2 (9-register LESR), 5 LEDs burning

F Correlation with an n-bit register

84

Signal after correlation filter 3

150,

“Hooo 0005 G010 0015 0020

0025 0030 0035 0040 0045
time (s)

Figure F.13: Graph received signal after correlation filter 3 (9-register LFSR), 5 LEDs burning

F Correlation with an n-bit register 85

F5S n=10

When we sent a 10-register LFSR sequence by one LEDs, very clear peaks are visible. The
noise is again located around zero and the values of the peaks are located between 300 and
400.

Signal after correlation filter 1

signal (V)

i TR N

~¥ooo 0005 6010 o015
time (5)

Figure F.14: Graph received signal after correlation filter (10-register LFSR), one LED burning

When all LEDs are burning and we filtered the received signal with the first three sequences,
we get a result as seen below. We get high peaks, located around 400.

Signal after correlation filter 1

300

signal (V)

Figure F.15: Graph received signal after correlation filter 1 (10-register LFSR), 5 LEDs burning

F Correlation with an n-bit register 86

Signal after correlation filter 2

00|

200

signal (V)

Figure F.16: Graph received signal after correlation filter 2 (10-register LFSR), 5 LEDs burning

Signal after correlation filter 3

signal (V)

Figure F.17: Graph received signal after correlation filter 3 (10-register LFSR), 5 LEDs burning

F6 n=11

Because the calculations in Python took too long, we started plotting just one graph. One
LED was burning and we filtered the received signal with the sent bit sequence. Peaks are
located around 800.

F Correlation with an n-bit register 87

Signal after correlation filter 1

~%%00 005 5010 G015 6020 0025

Figure F.18: Graph received signal after correlation filter (11-register LFSR), one LED burning

F7 n=12

When sending a 12-register LFSR sequence, peaks are located around 1500.

Signal after correlation filter 1

1200

Figure F.19: Graph received signal after correlation filter (12-register LESR), one LED burning

F8 n=13

When sending a 13-register LESR sequence, the values of the peaks are above 3000. The
calculations in Python took several minutes.

F Correlation with an n-bit register 88

Signal after correlation filter 1

1500

Figure F.20: Graph received signal after correlation filter (13-register LFSR), one LED burning

F9 n=14

When sending a 14-register LFSR sequence, we get peaks above 6000.

Signal after correlation filter 1

signal (V)

Figure F.21: Graph received signal after correlation filter (14-register LFSR), one LED burning

F10 n=15

When sending a 15-register LFSR sequence, there was a peak above 12000. The last peak
is less high. Maybe, the sequence was too long and there was a little shift in the signal.
Because the calculations took more than 15 minutes, we decided not to try any higher bit
sequences.

F Correlation with an n-bit register 89

Signal after correlation filter 1

Figure F.22: Graph received signal after correlation filter (15-register LFSR), one LED burning

F.11 Conclusion

After testing several bit sequences, we can draw some conclusions. Peaks are becoming
higher when sending longer bit sequences. The longer the bit sequence, the more visible
the peaks are and the bigger the resolution. So, it should be best to work with a bit sequence
as long as possible. Nevertheless, the calculations took longer and longer when sending
longer bit sequences. For the indoor positioning, we decided to work with a 10-register
LFSR sequence to have a rather high resolution and not to wait too long for the calculations.
The calculations took about 15 seconds when working with a 10-register LFSR sequence.

Appendix G

Data transmission

In this chapter, we will discuss the possibility to transmit data next to the possibility to
determine the position. If we invert the bit sequence during some periods, we will see
positive and negative peaks after the correlation filter. So we can distinguish a digital one
and a digital zero.

We will send a sequence of 1023 bits (10-register LESR). We want to send the 12-bit data
110110100100. We will discuss two possibilities: we can transmit one bit during one period

of the 10-register LFSR sequence or we can transmit one bit during several periods of the
10-register LFSR.

G.1 One sequence per bit

First, we tried to transmit a data bit during one period of the 10-register LFSR sequences.
To transmit the 12-bit data, we need thus 12 periods of the bit sequence. The result after
the correlation filter is shown below. A positive peak represents a digital zero, a negative
peak represents a digital one. As can be seen, not all peaks are clearly visible. Some peaks
can barely be seen because they are not larger than the noise. We can only see a clear peak
when we send two successive ones or two successive zeros.

90

G Data transmission 91

Signal after correlation filter 1

Figure G.1: Graph received signal after correlation filter (10-bit LFSR), one LED burning

G.2 Two sequences per bit

Then, we tried to transmit a data bit during two periods of the 10-register LFSR sequence.
We invert the bit sequence during two periods if we want to send a digital one. In this case,
we should see two negative peaks. The result after the correlation filter is shown below. If
we send a digital one or zero, only one peak is visible. If we send two successive ones or
zeros, only three peaks are visible. So, one peak isn’t visible. Now, we can recognize the
sent data: 110100100110. If we have for instance 3 successive negative peaks, we have
send 11.

Signal after correlation filter 1

signal (V)

Figure G.2: Graph received signal after correlation filter (10-bit LESR), 5 LEDs burning

G Data transmission 92

G.3 Five sequences per bit

Finally, we also tried to transmit a data bit during five periods of the 10-register LFSR
sequence. Now we can see 4 peaks per bit, the fifth peak is a little bit visible. If we have for
instance 9 clear positive peaks, we have send 00. We can also recognize the sent data.

Signal after correlation filter 1

signal (V)
o

Figure G.3: Graph received signal after correlation filter (10-bit LFSR), one LED burning

G.4 Conclusion

We can send data besides the indoor positioning by looking at negative and positive peaks
after the correlation filter. A negative peak represents a digital one, a positive peak
represents a digital zero. If we send a bit during one period of the bit sequence, not all
peaks are visible. The sent data can’t be recognized. If we send a bit during multiple
periods of the bit sequence, we can recognize the sent data. There is always one peak that
isn’t very good visible. So, if we want to transmit data besides the positioning, we need
minimum two periods of the bit sequence to transmit a bit. In this case, there is at least one
clear peak per bit.

Appendix H

Schematics

H.1 Shematic 1

This section contains the schematic of the first designed circuit and accompanying
explanations. The PCB of this circuit is shown below. Only the components for the first
tests are mounted.

Figure H.1: PCB sender schematic 1, without unneeded parts

93

2 3 4 5 6 7 8 9 10
A
PT2
B8
325VDC [vDc+ hﬁ
A
m < 6 Mesure de courant
I © o
s g IS espace 2cm
°T s ol N PT4
@ s Nuwm g TR1 L
o8 o . wger] o
58 OF4907 c 034
A
N
TS il 5 L 68 D3
2 TR 3TH [woewe 5| gl|lg Load
230VAC " 1 " ") PTS « j& c
c BIAS ‘- J7
S—T8 GND 1 1o M
UDRAIN EE25 74032
[voc-]
[voRIVER] Co— 4 —
u4 o s
Hvs PT8 °Q
J3 Sy e Q2 2
Y 2 N ouTl-& 1 — 5 L ' m
Moo : &N w2 2 D
Q| | MIC442@XN M m
VDC— M
PT3
> E
o
[
2 W 8
=}
WH
vDC—
<h0 th Umj\mm O:NOCﬁﬁ DES 12.03.2013 Didier Blatter & Rob Holvoet F
Thesis Sheet1 | Rev | vie
HAUTE ECOLE VALAISANNE 173 | B vi_eisch
_ 8 9 10

6 _ 7

VAUX
VDC+
s[13 e
x| |~
B
eV m:w
| |
> o
m/MW/W MHHW UDRAIN
4:k
N |~ 1
14 [Te]
GND c
[+1ev] 1_GNo veg—2 i ’ & BIAS
@ C&Sw
NC us3 i FSQ321 = &
fveomp)21 ! J8 fow=55kHz Bo=§ = S s
g ti |6 cmd_sw_ 1, °cl= gl|° mc —
NO 5| 3 GND 2 %mo -
TS12A12511DCNR |~ souder
=2 D
{ VAUX
INEES I
9| |IR PT12
E . u13 DM 42&0
U “W 15V : 13,1k % E
$LE e Tk - z |
o+ SFHBT56— x 2 R ~[1% 2 E
1| EE o[
GND B w htd e ﬁw
o 0
P —
[a) z P GND
B[|~
PT11 —]
Dz2 &L 1.23Vdc SR
LMV431
R86
| S—
a5 1k2 VLC LED DRIVER CIRCUIT DES | 12.03.2013 Didier Blatter & Rob Holvoet|
Thesis Sheet2 | Rev | Vi@
Path
HAUTE ECOLE VALAISANNE 23 m%s%n V1_@.sch
_ 7 _ 8 9 10

6

2

H Schematics 96

H.1.1 Rectifier

To get an DC voltage we rectify the mains 230 V AC to a 320 V DC. First we rectify with
the DF04424A bridge rectifier and use C1 as a reservoir capacitor to smooth the rectified
AC output from the bridge. C2 is used as reserve for possible occurring current peaks. The
choice of values of the capacitors are based on previous circuits made at HES-SO.

325VDC |vDC+

)]

u3

(]

o |2

2|10

T
o5 =
——<¢ A e ol o
z (&> 5:EAB=4
] P 2

J1

Figure H.2: Bridge rectifier and reservoir capacitors

H Schematics 97

H.1.2 Snubber

Snubbers are used to prevent the ringing on the drain of the used MOSFET. This design is
also based on previous designs at HES-SO. In our first PCB we won’t place the resistors
nor the capacitor but implement the possibility to place them on a later stage. The zener
diode D36 is a zener diode to limit the voltage over the MOSFET in OFF-MODE to 460 V
(320+120).

PT2

& G
-
)
] E T —= g
e U'EQJ ®
c W _L
= glﬁ
\
R4 UFﬁB?

68 D3

Figure H.3: Snubber

H Schematics 98

H.1.3 Mosfet and mosfet driver

For a flyback converter, a mosfet is needed to do the switching. Mosfets that are able to
function with a drain-source voltage over 400 V need a high gate-source voltage to do the
switching. That is why a mosfet driver is needed. R8 and R3 are pull down resistors . R2
limits the peak currents due to the parasitic capacitances of the mosfet. The smaller the

resistance, the faster the mosfet responses.

VNRIVER

VDRIVER

S ™ D

FCP2@N6@

IN ouT

ol o [oo|—

GND
GMND NC

MIC4428XN

20k
| S
R8
20k
R3

PT3

Figure H.4: Mosfet with mosfet driver

H Schematics 99

H.1.4 Power switch chip and analog switch

With the switch we can choose to turn the chip on or off. This is controlled by the FPGA.
We need about 10 V to POWER the switch. We get this from V4yx with a zener diode of 10
V. normally the chip gets power from Vyx. Only for the start up Vapyx is 0. That is why he
got pin VSTR, during start up he uses this voltage to load C33 and C43. This current may
not get lost to Power other components on Vyyx, that is why we implement diode D37.

A 2
L e 8 ; 3
a 1"k emd sw y - o=
M : r J
TS124125110CNR [nouder
)
i

Figure H.5: Power switch chip

025,
|

tagu 5w 5
]

H Schematics 100

H.1.5 Feedback circuit

To let the chip know what voltage we get from the transformer and let him adjust his duty
cycle we need a feedback circuit. The circuit we use is a typical feedback circuit with
optocoupler. We implemented a potentiometer instead of fixed resistance to be able to
adjust the feedback and so adjust the output voltage of the flyback.

{valix
o~
: @l R
{vcong] 13 *e83
4 1
15V« 131k
o] e B S{_L| 1k 5 &
o« SFHE156— A 2 Q o
s l 3 Ko E!!E
{Gno— P e 5
==
oz
IR
rAlET GND|
Dzz2 1.23vde
LMV431
RB6
| P |
k2

Figure H.6: Feedback circuit for powerswitch

H Schematics 101

H.2 Schematic 2

Here you can find the schematic of the receiving part.

The PCB of this circuit is shown below.

Figure H.7: PCB receiver

9
E
als oLz
c4 TS oTm
||
J1 A..Gs fpoo] [ponol
EY EY EY
> M
U3 |o = LT
92 6 R6 [v_ReF]
#IN [[
[aGND] N c
3:% AD817AN bS] ~ - S w 3 " S « 3
P4 N wlls < — S =) — S =)
o vl |= o ® o ¥ o @ o o]
AGND E
R4 AGND AGND [AGND] AGND
1
| S
B 1ok 5.1k
R8
< >3
s Lz
2 OTm S
24N o U2 c7
AGND [AGND ; Q- & : 5.1k
» mD 3 Ly 1@n — 2
< AD817AN R9
uiz
[V_REF] V_REF] [AGND %4 AD817AN
AGND
Y
gl§ gla
N 3
[S]
- ™
=
x ~|
- |® |
R—w N\ Ut v_rer]
+IN
x % c ~| AD817AN
o [M [
o8 oL
IAGND
AGND IAGND
Receiver circuit DES | 11/04/2013 Jelle Smets
§Title 2} receiver | REV | Vi@
Path
HAUTE ECOLE VALAISANNE 5 | e e
3 4 5 6 _ 7 _ 8] 10

5]
U6
3 Vo 1
o LE3S lem. wxﬁm
O o OT°8
[acND] [acND] [AcNo]
J3
u7 1
oo e 23
4
Vin SDATA[2 7 m\mﬁ
2 {oND m\wﬁ
[aanio] ADCS7476 e €
) 16 \mn
17
) 18 —<
19
e
‘ R
) =9
p m»ww\ﬁﬁ
2%

Emom?mﬁ O.:wOC.; DES 11/04/2013 Jelle Smets
§Title 2} regulator | Rev | vie
HAUTE ECOLE VALAISANNE o5 | Patht

1 2 3 4 5 6 _ 7 _ 8 9

L1

L3
| 2

. L4
47u

L2
-2 —-2
47u lﬁ 150u
c

%

c18

o
—

o "
I>DZD

2.2n

150u

c20

L,

%

PT1

Receiver circuit DES | 11/04/2013 Jelle Smets
{Title 2} filter | Rev | vie
HAUTE ECOLE VALAISANNE 35 wwm.ﬁrm%

3 4 5 6 _ 7] 10

H Schematics 105

H.2.1 Ambient light rejection circuit

The first part of the receiver is the photodiode with a current-voltage converter and an
ambient light filter in the feedback loop. This part is already extensively discussed in

appendix [C|

H.2.2 High pass filter

The next op-amp stage is a high pass filter with a gain of 1 and fiu—orf = W(lmﬁ =
31.2 Hz. This filter is used because we still had a DC component after the ambient light
rejection circuit. Firstly, we used a high pass filter with fi,,_, s = 3.12 kHz. But in the bit
sequence at the output of the receiver we could notice a fluctuation of the DC offset (see
figure [H.8a). This phenomenon occurs because we used an RC high pass filter with a too
high cut-off frequency. The lower the time constant R-C, the more fluctuation will occur.
So, we chose to work with a higher time constant (lower cut-off frequency). The difference
between both is shown in figure It is clear that there is less fluctuation in the output
signal. Because the cut-off frequency of the high pass filter is below 100 Hz, other lighting
in the building will influence the signal of the receiver. But as the LEDs are also intended
for the lighting in the room (so no other lights will be present), this is not really a problem.

MYS1350205 Mon Jun 3 1813252013 M50 30124 MY51350225 Tue Jun 04 17:3806 2013
? W00z S v 0y 2

Wikl A0 0 1 0
il l i

e WA A 0

i i Il g i
! /“/‘i{ /’ MHH\VW'M "MW,‘ lmu‘:rf‘vrW"’M ‘/HM’ / }}

.
FastDebug 3 Channel Fast Debug
All

(a) Signal output receiver with fos—orfr,npr =3.12 (b) Signal output receiver with fou_ofrupr =
kHz 31.2Hz

Figure H.8: Comparison output signal with different cut-off frequency of HPF

H.2.3 Amplifier

Then we use an inverting amplifier with a gain of 100, so we can detect the LED from
farther distances and to use the full range of the ADC.

H Schematics 106

H.2.4 Voltage reference

Normally, op-amps need a dual supply for proper working. But since we want a single
supply, we will use a voltage reference of 2.5 volt who acts as a virtual ground. The virtual
ground replaces the normal ground in single supply op-amp circuits.

In the schematics, you can see that the reference was firstly made with two resistors of 100
k€ and the supply voltage of 5 volt. As the 5 volt from the USB port is not so stable, we
chose to make the reference with the 3.3 volt after the voltage regulator. This voltage is
stable. We cut the path to the 5 volt and soldered a wire to the 3.3 volt. We also changed
the upper resistor to 33 kQ, so we had again a voltage of about 2.5 volt as the reference.

= Vier = 193 - 3.3 volt = 2.48 volt

The result of these modifications on the PCB can you see in the picture below. We also
brought the photodiode higher and removed the 5 volt connectors. You can see that we have
soldered two wires from the USB port to supply the circuit.

Figure H.9: PCB receiver with some modifications

H Schematics 107

H.2.5 LC filter

After the op-amp stages, we use an LC low pass filter with f.,;—orr ~ 500 kHz to prevent
aliasing. After the filter, a diode and a voltage divider are used. To make sure that the signal
going to the ADC is always positive, we use a diode after the filter. To have the full range
of the ADC, we use a voltage divider.

H.2.6 Voltage regulator

As the FPGA is supplied with 3.3 volt and the data we will send to the FPGA should be
between 0 and 3.3 volt, we decided to supply the ADC also with 3.3 volt. Because the

circuitry is supplied with 5 V, a voltage regulator is needed to have a stable 3.3 volt to feed
the ADC.

H.2.7 Separation between analog and digital ground

For a proper working of the circuit, we will provide two separate ground planes: one analog
ground plane and one digital ground plane. Then we connect the two ground planes at one
single point with a 0 € resistor.

H.2.8 Connection to the FPGA board

For connecting the ADC with the FPGA, we provide a 26-pin connector so we can easily
exchange signals between the ADC and the FPGA.

H Schematics 108

H.3 Shematic 3

This section contains the schematic of the second designed sender circuit. The PCB of this
circuit is shown below.

switching oSt

Figure H.10: PCB sender schematic 2, with FPGA mounted

2 3 4 5 6 7 8 9 10
[RECTIFIER + FLYBACK + VLC MOS |
325VDC |[vDC+ TR1
J4
a UF4007 b _ls ﬂw \ \ c
(] ['q
o2 W—w 1.5KE220CA D3 BW1e40 | o
5|45 0 L Load
: ' ; 5385 2(|8 oe
oy & 3 4 58385 DRAIN , ST PST e
: CJ\N " 5-k [Bias]) ‘u- S J7
T x| |o [voc-] 1 y y _.m&fg ¢
EE25 74032 Q.o
GND .Dlﬂ
VSTR] M
[voc] s
HM,
i
g
mm,
g
AUXILIARY
_ [POWER MOS CHIP |
[vaux]
UF4@07 us
o < [Bias]
7 b2 o) ——— e o
" S w0 > 3 [voc-] * fsyne DRAN|-®
2“”% 2“.”%% X E‘uﬂm
oT o7 SELF 4 , UF4007
8 [voc-} GND vee =—1d VAUX
FSQ321 . u D4
vl Qi in
I<D0\ QJ\W mJ\z
3
=
VDC—
<h0 th UE7<mE O:MOCiH DES 21.05.2013 Rob Holvoet
Thesis Sheet? | Rev | vie
HAUTE ECOLE VALAISANNE 174 | S werp._ Main_LED_ GAS.sch
2 3 4 5 6 _ 7 _ 8] 10

1 2 3 4 5 6 7 8 9 10
A
[FEepBackLoor | | Measure points
— PT8 PT7 PT6 PT5 PT4 PT3 PT2 PTI
@ o] (o} Q (] o]
[\
IS
(vcomP] U9 R1
4 1
15V : 13.1k
8 gl e s “Wf 1K _ 3
[3) < SFH615A < 2 -ﬂhIQ
— N | oTY
o~ 3
(voc-] O - ~ | s " e
L STz
M m VDC—
Dz2 1.23vdc
LMV431
1k2
c 1
LS
\VDC— NU
D
[be/be corverer] [DECOUPLING CAPACITORS |
v | L2 u w3 B3]
! om-2 2 14VN o m \m) m
10 uH (snm)) vourl8 [53v) i /_M\ s (m.\ o /_M.\
. = —VIN cam |2 o % (6] _._u- O %
Hoydt * anle— 0 N |2 |8
[eno] GND [eno]
TMR1210(snm)

single out —> common devien —Vout

F <ﬁ0 ﬁmU Uﬂi<mm OZMOC; DES 21.05.2813 Rob Holvoet
Thesis Sheet? | REV | V1.0
HAUTE ECOLE VALAISANNE v | e Main_ LED_ 0AS.sch
1 2 3 4 5 6 7 _ 8 g 10

FPGA POWER

[DECOUPLING CAPACITORS |

+3.3V

ud s
5]
vee I8 JTAG_TDI|
. vee 0037 [JTAG_TDO = = = =
Ve TCK JTAG_TCK] € € € 1S
£ vee I —— s 5 5 5 S
G VCCIBO TRST JTAG_RST 5“””\ ~ T O - g
ST Wi GND | © c © c © c © s
9 IS]) IS])
.m VCCIB1 GND[—3g—1 [S] [S] [S] S
Q VMVe GND 38— 2 2 2 2
© VMV GND 7
VMV GND GND
= VPUMP GND 58— [ono]
£ £ WJTAG GNDQ|—22
~ | &0 | € VCOMPLF GNDQ!
— A VCCPLF +3.3V]
o c O s ~
S S AGL@6@V5—VQG108@(snm) €
] S c
M @
GND GND Wn.\
S
S
GND -

oD
FPGA |/0

U4:3
<—{I051RSB1 1069RSB1 28
27
4
—5 2 FPGA PROG
JTAG_ 101 4 2
JTAG_ 102 4> {1055RS8B1 1073RSB1 (22
LH)O\,OM 2 I056RSB1 1074RSB1
FPGA_MOS_DRIVE_L® 43 1057RSB1 1075RSB1
FPGA_ MOS_DRIVE_ L1 42I058RSB1 1077RSB1
FPGA_MOS_DRIVE_ L2 45—|I059RSB1 1083RSB1
FPGA_MOS_DRIVE_ L3 35 ||/06BRSB1 10B4RSB1 SUR 10-G.....
FPGA_MOS_DRIVE_ L4 35{I061RSB1 I0B5RSB1
FPGA_MOS_DRIVE_L5 > {1062RSB1 1086RSB! CLK
FPGA_MOS_DRIVE_L6 3 m J8
FPGA_MOS_DRIVE_L7 > 2 .
FPGA_MOS_DRIVE_L8 : £ 5
FPGA_MOS_DRIVE_L9 2l 2 £ JiAG_lo1) |
FPGA_MOS_DRIVE_L10) 32 {1067RSB1 1095RSB1 r— [JTAG_TMs
I068RSB1 : TAG_102) =
) — AG_TCK
AGLO6OV5—VQG188(snm) ¢ fme_rer
4 JTAG_TDO]
8 JTAG_103
b} [JTAG_TOI
U4:2 1
: — - ~ - —
I008RSB0 1021RSBO |22 ol E m ~ m m oM E
I001RSBO 1022RSB0—25 Clleol 6|66 2]
I002RSB0 1023RSBO|—JZ zlleel |yl
I003RSBO 1024RSBO|—2S X g S s ~
1004RSB0 1025RSB0 25 - > pd > -
I005RSBO 1026RSBO|—22
I006RSB0 1027RSB0 7 GND GND GND GND GND GND
I007RSB@ 1029RSB@ 69
|I00BRSB@ 1031RSB@ 65
I009RSB@ 1035RSBO 64
1036RSBO 63
I039RSB@ 62
|040RSBO 61
I015RSB0 1042RSBO|—o 2
I017RSBO 1043RSBO|—S2
I018RSB@ 1045RSB@ 58
I019RSB@ 1046RSBO 57
|026RSB0 1049RSE0 VLC LED DRIVER CIRCUIT DES | 21.05.2813 Rob Holvoet
AGLO60V5—VQG108(snm) :
Thesis Sheet3 | rev | vie
Path}
HAUTE ECOLE VALAISANNE 3/4 | Ontwerp_Main_LED_ GAS.sch
2 3 4 _ 5 6 _ 7 _ 8 9 18

POWER 1.5V

a2l

N e |-
]
[

NR/FB

GND

4

1u’

C30
1uF(snm)

[5)
z
S

TPS79915DDCTG4(snm}3

1@nF(snm)
Cc29
1uF(snm)

Q
z
S}
Q
z
[S}

FPGA CLOCK

u3

j
L]

VDC OUT)

CTRL GND

2

C33
10@nF (nm)

[2)
z
S

A@ZIAm:;

FPGA_ MOS_ DRIVE_ L

LED connectors

[FPGA_MOS_DRIVE_L1

(i—C
lsnm)
J2
[FPGA_MOS_ DRIVE_L2 5
lsnm)! C
J3
[FPGA_MOS_DRIVE_L3 >—C
(snm)f
J5
[FPGA_MOS_DRNVE_L4 7
fsnm)! C
J6
[FPGA_MOS_DRNE_L5 >—C
(snm)T C
J9
[FPGA_MOS_DRIVE_L6 5
1o
snm)!
J1o
[FPGA_MOS_DRIVE_L7 >
(snm)T C
J11
[FPGA_MOS_DRIVE_L8 >—C
1o
snm)!
J12
[FPGA_MOS_ DRIVE_ L9 >
(snm)! C
J13
[FPGA_MOS_DRIVE_L10 > —C
‘\.‘ﬁ
lsnm)
J14
GND
<h0 hmo Umf<mm O:MOCfH DES | 21.05.2013 Rob Holvoet
Thesis Sheet4 | rRev | vie
HAUTE ECOLE VALAISANNE 44 | Sxiverp_Moin_LED_ 645 sch
6 _ 7 _ 9 18

Appendix |

Code

I.1 VHDL Code

I.1.1 ADC

ADC controller

LIBRARY ieee;
USE ieee.numeric_std. all;
USE ieee.std_logic_1164 . all;

ARCHITECTURE RTL OF adc121S101Controller IS
signal clock_i_CS: std_ulogic;
signal logic_voltage : std_ulogic_vector(adcBitNb+3 downto 0);
signal enable : std_ulogic;
signal ADC.i : std_ulogic_vector (adcBitNb—1 downto 0);
signal voltage_i : natural RANGE 0 TO 4096;
signal counter_dds_rising : unsigned(ddsBitNb—1 downto 0);
signal counter_dds_rising_i : unsigned(ddsBitNb—1 downto 0);

signal sclk_i : std_ulogic;
signal sclk_i2 : std_ulogic;

113

| Code 114

constant cs_high : integer := 6; — determines during
— how many periods of SCLK °CS’ should stay high
constant cs_low : integer : adcBitNb+4; — determines

— during how many periods of SCLK ’CS’ should stay low
constant step : unsigned(ddsBitNb—1 downto 0) :=
to_unsigned (341,ddsBitNb);

— step we use for DDS: we have a 10 bit counter (1024
— different values)

— frequency divider by three: f = (341/1023) x f(clk) =
— (1/3) * f(clk)

BEGIN

— increments the step to the counter on the rising edge of
— the clock
— the counter counts: 0,341,682,1023,341,...
— 1f the counter i1s 1023, we add 342. Otherwise the
— counter counts: 0,341,682,1023,340,681,...
process (reset, clock)
begin
if (reset="1") then
counter_dds_rising <= (others => ’0’);
elsif rising_edge (clock) then
if counter_dds_rising = to_unsigned(1023,ddsBitNb)

then
counter_dds_rising <= counter_dds_rising +
step + 1;

else
counter_dds_rising <= counter_dds_rising +
step ;

end if;

end if;
end process;

— delay of half a clock period by triggering on the falling edge
— of the clock
process (reset, clock)
begin
if(reset="1") then
counter_dds_rising_i <= (others => '0’);
elsif falling_edge (clock) then
counter_dds_rising_i <= counter_dds_rising;
end if;
end process;

| Code

115

sclk_i <= counter_dds_rising (counter_dds_rising “high) and

counter_dds_rising_i(counter_dds_rising *high);

process (reset, clock)
begin
if(reset="1") then
sclk_i2 <= ’0°;
elsif rising_edge (clock) then
sclk_i2 <= sclk_i;
end if;
end process;

enable <= sclk_i and (not sclk_i2);

process (reset, clock)

variable counter_low : integer range 0 to (adcBitNb+4);

variable counter_high : integer range 0 to 6;

begin
if (reset="1") then
clock_i_cs <= ’17;
counter_low := 0O;
counter_high := 0;
elsif rising_edge (clock) then
if (enable=’1’) then

if (counter_low < cs_low) then

’

clock_i_cs <=
counter_low :=

0’;

counter_low +1;

if counter_high < (cs_high —1) then

counter_high := 0;
else
clock_i_cs <=
counter_high
else
counter_low
end if;
end if;

end if;

i}

1°;
counter_high + 1;

0;

| Code 116

end if;
end process;

CS_n <= clock_i_cs;

process (reset, clock)
variable SCLK_counter : integer range —1 to (adcBitNb+3);
begin
if (reset = ’1°) then
SCLK_Counter := adcBitNb+3;
logic_voltage <= (others => ’0);
ADC. <= (others => ’0’);
voltage_i <= 0;
elsif rising_edge (clock) then
if (clock_i_CS = ’0’) then
if (enable="1") then
logic_voltage (SCLK_counter) <= SDATA;
SCLK_Counter := SCLK_Counter —1;
end if;
elsif (clock_i_CS = ’1’)then
SCLK_Counter := adcBitNb+3;
ADC. <= logic_voltage (logic_voltage *high—3
downto 1);

voltage_i <= to_integer (unsigned (ADC.i));
end if;

end if;
end process;

ADC <= ADC.i;
voltage <= voltage_i;
sclk <= sclk_i;

END ARCHITECTURE RTL;

| Code 117

1.1.2 Ethernet

Dual port RAM

— This architecture represents a dual port RAM. We write to RAM
— via port A and read from RAM via port B

USE std.textio.all;

ARCHITECTURE bhv OF bramDualportWritefirst IS
— Define ramContent type
type ramContentType is array(0 to (2xxaddressBitNb)—1) of
bit_vector (dataBitNb—1 DOWNIO 0) ;

— Declare ramContent signal
signal ramContent: ramContentType;

BEGIN

— Port A

— We write the samples in RAM via port A
process (clockA)
begin

if clockA’event and clockA="1" then

if enA = ’1’ then
if writeEnA = ’1° then
ramContent(to_integer (unsigned (addressA))) :=
to_bitvector (datalnA ,’0’);

end if;
end if;
end if;

end process;

— Port B
— when we want to send a frame, we read the data from RAM via port B
process (clockB)
begin
if clockB’event and clockB="1" then
dataOutB <= to_stdulogicvector(ramContent(to_integer
(unsigned (addressB))));
end if;
end process;

END ARCHITECTURE bhv;

| Code 118

Controller

— This architecture controls the data we put in a frame

— when we want to send. When it gets a pulse ’sendFrame’,

— the RAM is read and send. It also determines the UDP port,
— the destination IP address and the destination MAC address.

ARCHITECTURE RTL OF udpApplDiscardController IS

signal ramCounter: unsigned (addressB ’range);
signal functionSelected : std_ulogic;

type discardStateType is (

idle , waitGrant, sendl, send, waitFifo, waitSendEnd);
signal discardState: discardStateType;

signal begin_counter: std_ulogic; — determines

— where we should start reading (begin or halfway RAM)
constant halfRam : unsigned(addressB "range) := shift_left
(resize (”1”,addressB ’length),addressB *length —1);

constant max : natural := 10000000; — determines how

— long the LED blinks when a UDP packet is received

BEGIN

functionSelected <= ’1’ when unsigned (udpPortln) = portld
else ’0°’;
isSelected <= functionSelected;

— When there is a packet for UDP port ’portld’, our block is selected.

readEn <= functionSelected;
—— When there is a packet for us, we can read it.

— When the FPGA receives a valid UDP packet on port ’portld ’,
— a led will blink.
process (clock ,reset)
variable ledCounter : natural;
begin
if reset = ’1° then
ledUdp <= ’0’;
ledCounter <= O0;
elsif rising_edge (clock) then
if udpDataValid = ’1° and ledCounter = 0 and
udpPortln = std_ulogic_vector(to_unsigned (portld,
udpPortln length)) then

| Code 119

ledUdp <= ’1°7;

ledCounter := ledCounter + 1;
elsif ledCounter = max then

ledUdp <= ’07;

ledCounter := O0;
elsif ledCounter > 0 then
ledCounter := ledCounter + 1;

end if;
end if;
end process;

countRamAddresses: process(reset, clock)
begin
if reset = ’1° then
ramCounter <= (others => ’07);
elsif rising_edge (clock) then
if ramCounter = 0 then
if discardState = sendl then
ramCounter <= ramCounter + 1;
end if;
else
if ramCounter < frameLength—1 then
if discardState = send then

if txFull = ’0° then
ramCounter <= ramCounter + 1;
else
ramCounter <= ramCounter — 1;
end 1if;
elsif discardState = waitFifo then
if txFull = ’0’ then
ramCounter <= ramCounter + 1;
end if;
end if;
else
ramCounter <= (others => ’07);
end if;
end if;

end if;
end process countRamAddresses;

process (clock ,reset)

| Code 120

begin
if reset = ’1’° then
begin_counter <= ’07;
elsif rising_edge (clock) then
if sendFrame = ”01” or sendFrame = 710" then
begin_counter <= not begin_counter;
end if;
end if;
end process;

discardSequencer: process(reset, clock)
begin
if reset = ’1’° then
discardState <= idle;
elsif rising_edge (clock) then
case discardState is
when idle =>

if sendFrame = ”01” or sendFrame = ”10” then
discardState <= waitGrant;
end if;
when waitGrant =>
if writeGranted = 1’ then
discardState <= sendl;
end if;

when sendl =>
discardState <= send;
when send =>
if ramCounter = 0 then
discardState <= waitSendEnd;
elsif txFull = "1’ then
discardState <= waitFifo;
end if;
when waitFifo =>
if txFull = 0’ then
discardState <= send;

end if;
when waitSendEnd =>
if sendFrame = 700 then
discardState <= idle;
end if;
end case;

end if;

| Code 121

end process discardSequencer;

— write to UDP
writeRequest <= 1’ when
(discardState waitGrant) or

(discardState = sendl) or
(discardState = send) or
(discardState = waitFifo)

else ’0°’;

txWr <= not txFull when discardState = send

else 707;
— If ’begincounter’ = ’0’, we read from the first part of

— the RAM. Otherwise, the second part is read.
addressB <= std_ulogic_vector (ramCounter) when begin_counter

= 0’ else std_-ulogic_vector (ramCounter+halfRam) ;

destUdpPort <= std_ulogic_vector (to_unsigned (portld ,
destUdpPort’length));

udpPortOut <= std_ulogic_vector(to_unsigned (portld,
udpPortOut ’length));

— If we send a UDP packet to port ’portld’ from the PC, the
— FPGA will send to the IP address and MAC address of the PC.
process (clock ,reset)
begin
if reset = ’1’° then
destlpAddress <= sourcelpAddress;
destMacAddress <= sourceMacAddress;
elsif rising_edge (clock) then

if udpPortln = std_ulogic_vector(to_unsigned/ (
portld , udpPortln’length)) and udpDataValid = ’1°
then

destlpAddress <= sourcelpAddress;
destMacAddress <= sourceMacAddress;
end if;
end if;
end process;

— we bring ’begin_counter’ outside, so we can see on the
oscilloscope whether the FPGA alternately reads from
— the first and the second part of RAM (this signal should

| Code 122

— be a square wave with a duty cycle of 50 %).
beginc <= begin_counter;

END ARCHITECTURE RTL;

ADC to RAM

— This architecture receives the 12 bit samples from the ADC
— controller and stores them in RAM

ARCHITECTURE adc_to_ram OF adc_to_ram IS

constant halfRam : unsigned(addressA 'range) := shift_left
(resize (”1”,addressA ’length),addressA ’length —1);

constant fullRam : unsigned(addressA 'range) := (others =>
07);

signal cs_n_i : std_ulogic;

signal cs_n_i2 : std_ulogic;

signal writeEnA_i : std_logic;

signal addressA_i : unsigned(addressBitNb—1 downto 0);
BEGIN
enA <= ’17;

— delay ’cs_.n’ 1 clock period
process (clock ,reset)
begin
if reset="1" then
cs_.n_i <= 07,
elsif rising_edge (clock) then
cs_n_i <= cs_n;
end if;
end process;

— delay ’cs_.n’ another clock period
process (clock ,reset)
begin
if reset="1" then
cs_n_i2 <= ’07;
elsif rising_edge (clock) then
cs_n_i2 <= cs_n_i;
end if;
end process;

| Code 123

writeEnA_i <= cs_n and not(cs_n_i2);

— writeEnA_i is high for 2 clock periods,

— in the first period we write the first byte of the sample,
— in the second period we write the second byte of the sample.

— writes samples to RAM
process (clock ,reset)
variable counter : integer;
begin
if reset="1" then
addressA_i <= (others => ’0’);
datalnA <= (others => ’0’);
counter := 0;
elsif rising_edge (clock) then
if (writeEnA_i = ’1’) then
if counter = 0 then
datalnA <= (’0°,’0°,°0°,°0") & ADC
(ADC’ high downto 8);
— put 4 zeros before sample to store 16
— bits (2 bytes) in RAM

counter := 1;

addressA_i <= addressA_i + 1;
elsif counter = 1 then

datalnA <= ADC(7 downto 0);

counter := 0;

addressA_i <= addressA_i + 1;
end if;
if (addressA_i = halfRAM) then

sendFrame<="01";
— when we are halfway the RAM, the content

— of the first part is send
elsif addressA_i = fullRam then

sendFrame<="10";
— when we are at the end of the RAM, the

— content of the second part is send
else
sendFrame <="00";
end if;
end if;
end if;
end process;

— control signals to dual port RAM

| Code 124

addressA <= std_ulogic_vector (addressA_i —1);
writeEnA <= writeEnA_i;

END ARCHITECTURE adc_to_ram;

| Code 125

I.1.3 Sequence generation for LEDs

ARCHITECTURE gen OF bitgen IS
signal bitledl_sig : std_-logic_vector ((L—1) downto 0);

constant L : integer := L_array length;
BEGIN

Pl : process (reset, clock)

begin

if(reset = ’1’) then
bitledl_sig <= L_array;
elsif rising_edge(clock) and clock_divl100k =’1" then

if L = 4 then

case lednumber is
when 1 => bitledl_sig <= bitledl_sig ((L-2) downto 0) &
(bitled1_sig(L—1) xor bitledl_sig(L—-2));
when others => bitledl_sig <= (bitledl_sig ((L—2) downto 0) &
bitled1_sig (L—1));

end case;

elsif L = 5 then

case lednumber is
when 1 => bitledl_sig <= bitledl_sig ((L-2) downto 0) &
(bitled1_sig(L—1) xor bitledl_sig(L-3));
when 2 => bitledl_sig <= bitledl_sig ((L-2) downto 0) &
(bitled1_sig(L—1) xor bitledl_sig(L—2) xor
bitled1l_sig (L—3) xor bitledl_sig(L—4));
when 3 => bitledl_sig <= bitledl_sig ((L—2) downto 0) &
(bitled1_sig(L—1) xor bitledl_sig(L—2) xor
bitledl _sig (L—3) xor bitledl_sig(L—5));
when others => bitledl_sig <= (bitledl_sig ((L—2) downto 0) &
bitled1l_sig(L—-1));

end case;

elsif L = 6 then

case lednumber is
when 1 => bitledl_sig <= bitledl_sig ((L-2) downto 0) &
(bitled1_sig(L—1) xor bitledl_sig(L—-2));
when 2 => bitledl_sig <= bitledl_sig ((L—2) downto 0) &
(bitled1_sig(L—1) xor bitledl_sig(L—2) xor

| Code 126

bitledl _sig (L—3) xor bitledl_sig(L—6));
when 3 => bitledl_sig <= bitledl_sig ((L-2) downto 0) &
(bitled1_sig(L—1) xor bitledl_sig(L—2) xor
bitled1l_sig (L—4) xor bitledl_sig(L—-5));
when others => bitledl_sig <= (bitledl_sig ((L—2) downto 0) &
bitledl_sig(L—1));

end case;

elsif L = 7 then

case lednumber is
when 1 => bitledl_sig <= bitledl_sig ((L—2) downto 0) &
(bitledl_sig(L—1) xor bitledl_sig(L—2) xor
bitledl _sig (L—3) xor bitledl_sig(L—4));
when 2 => bitledl_sig <= bitledl_sig ((L-2) downto 0) &
(bitled1_sig(L—1) xor bitledl_sig(L—2) xor
bitled1l_sig (L—3) xor bitledl_sig(L—6));
when 3 => bitled1_sig <= bitledl_sig ((L—2) downto 0) &
(bitled1_sig(L—1) xor bitledl_sig(L—2) xor
bitled1l _sig (L—4) xor bitledl_sig(L—6));
when 4 => bitledl_sig <= bitledl_sig ((L—2) downto 0) &
(bitled1_sig(L—1) xor bitledl_sig(L—2) xor
bitledl _sig (L—4) xor bitledl_sig(L—7));
when 5 => bitledl_sig <= bitledl_sig ((L-2) downto 0) &
(bitled1_sig(L—1) xor bitledl_sig(L—3) xor
bitled1_sig (L—4) xor bitledl_sig(L—-5));
when 6 => bitledl_sig <= bitledl_sig ((L—2) downto 0) &
(bitled1_sig (L—1) xor bitledl_sig(L-2));
when 7 => bitled1_sig <= bitledl_sig ((L—2) downto 0) &
(bitled1_sig(L—1) xor bitledl_sig(L—4));
when 8 => bitledl_sig <= bitledl_sig ((L-2) downto 0) &
(bitled1_sig(L—1) xor bitledl_sig(L—2) xor
bitled1l_sig (L—3) xor bitledl_sig(L—4) xor
bitled1 _sig (L—5) xor bitledl_sig(L—6));
when 9 => bitledl_sig <= bitledl_sig ((L-2) downto 0) &
(bitled1_sig(L—1) xor bitledl_sig(L—2) xor
bitled1_sig (L—3) xor bitledl_sig(L—4) xor
bitledl _sig (L—6) xor bitledl_sig(L—7));
when others => bitledl_sig <= (bitledl_sig ((L-2) downto 0) &
bitledl_sig(L—-1));

end case;

elsif L = 8 then

| Code 127

case lednumber is
when 1 => bitledl_sig <= bitledl_sig ((L-2) downto 0) &
(bitled1_sig(L—1) xor bitledl_sig(L—2) xor
bitled1l_sig (L—3) xor bitledl_sig(L—8));
when 2 => bitledl_sig <= bitledl_sig ((L—2) downto 0) &
(bitled1_sig(L—1) xor bitledl_sig(L—2) xor
bitledl _sig (L—4) xor bitledl_sig(L—6));
when 3 => bitledl_sig <= bitledl_sig ((L—2) downto 0) &
(bitled1_sig(L—1) xor bitledl_sig(L—2) xor
bitledl _sig (L—6) xor bitledl_sig(L—7));
when 4 => bitledl_sig <= bitledl_sig ((L-2) downto 0) &
(bitled1_sig(L—1) xor bitledl_sig(L—3) xor
bitledl_sig (L—4) xor bitledl_sig(L—-5));
when 5 => bitledl _sig <= bitledl_sig ((L—2) downto 0) &
(bitledl_sig(L—1) xor bitledl_sig(L—3) xor
bitledl _sig (L—4) xor bitledl_sig(L—6));
when 6 => bitledl_sig <= bitledl_sig ((L-2) downto 0) &
(bitled1_sig(L—1) xor bitledl_sig(L—3) xor
bitledl _sig (L—4) xor bitledl_sig(L—7));
when 7 => bitledl_sig <= bitledl_sig ((L-2) downto 0) &
(bitled1_sig(L—1) xor bitledl_sig(L—2) xor
bitled1l _sig (L—3) xor bitledl_sig(L—4) xor
bitled1 _sig (L—5) xor bitledl_sig(L—7));
when 8 => bitledl_sig <= bitledl_sig ((L-2) downto 0) &
(bitled1_sig(L—1) xor bitledl_sig(L—2) xor
bitled1_sig (L—3) xor bitledl_sig(L—4) xor
bitledl _sig (L—7) xor bitledl_sig(L—8));
when others => bitledl_sig <= (bitledl_sig ((L-2) downto 0) &
bitledl_sig(L—1));

end case;

elsif L = 9 then

case lednumber is

when 1 => bitledl_sig <= bitledl_sig ((L—2) downto 0) &
(bitled1l_sig(L—1) xor bitledl_sig(L-5));

when 2 => bitledl_sig <= bitledl_sig ((L—2) downto 0) &
(bitledl_sig(L—1) xor bitledl_sig(L—2) xor
bitledl _sig (L—3) xor bitledl_sig(L—8));

when 3 => bitledl_sig <= bitledl_sig ((L-2) downto 0) &
(bitled1_sig(L—1) xor bitledl_sig(L—2) xor
bitledl _sig (L—4) xor bitledl_sig(L—5));

when 4 => bitledl_sig <= bitledl_sig ((L-2) downto 0) &
(bitled1_sig(L—1) xor bitledl_sig(L—2) xor
bitled1l _sig (L—5) xor bitledl_sig(L—6));

| Code 128

when 5 => bitledl _sig <= bitledl_sig ((L—2) downto 0) &
(bitledl_sig(L—1) xor bitledl_sig(L—2) xor
bitledl _sig (L—5) xor bitledl_sig(L—9));
when 6 => bitledl_sig <= bitledl_sig ((L-2) downto 0) &
(bitled1_sig(L—1) xor bitledl_sig(L—2) xor
bitled1l_sig (L—6) xor bitledl_sig(L—8));
when 7 => bitledl_sig <= bitledl_sig ((L—2) downto 0) &
(bitled1_sig(L—1) xor bitledl_sig(L—3) xor
bitledl _sig (L—4) xor bitledl_sig(L—6));
when 8 => bitledl_sig <= bitledl_sig ((L—2) downto 0) &
(bitledl_sig(L—1) xor bitledl_sig(L—3) xor
bitledl _sig (L—5) xor bitledl_sig(L—8));
when 9 => bitledl_sig <= bitledl_sig ((L-2) downto 0) &
(bitled1_sig(L—1) xor bitledl_sig(L—4) xor
bitled1l_sig (L—5) xor bitledl_sig(L—-7));
when 10 => bitledl _sig <= bitledl_sig ((L—2) downto 0) &
(bitled1l_sig(L—1) xor bitledl_sig(L—-2) xor
bitledl _sig (L—3) xor bitledl_sig(L—4)xor
bitledl _sig (L—5) xor bitledl_sig(L—7));
when 11 => bitledl _sig <= bitledl_sig ((L—-2) downto 0) &
(bitled1_sig(L—1) xor bitledl_sig(L—2) xor
bitled1_sig (L—3) xor bitledl_sig(L—4)xor
bitled1l _sig (L—5) xor bitledl_sig(L—9));
when others => bitledl_sig <= (bitledl_sig ((L—2) downto 0) &
bitledl_sig(L—1));

end case;

elsif L = 10 then

case lednumber is
when 1 => bitledl_sig <= bitledl_sig ((L-2) downto 0) &
(bitled1_sig(L—1) xor bitledl_sig(L—4));
when 2 => bitledl_sig <= bitledl_sig ((L-2) downto 0) &
(bitled1_sig(L—1) xor bitledl_sig(L—2) xor
bitledl_sig (L—3) xor bitledl_sig(L—6));
when 3 => bitledl_sig <= bitledl_sig ((L—2) downto 0) &
(bitledl_sig(L—1) xor bitledl_sig(L—2) xor
bitledl _sig (L—4) xor bitledl_sig(L—5));
when 4 => bitledl_sig <= bitledl_sig ((L-2) downto 0) &
(bitled1_sig(L—1) xor bitledl_sig(L—2) xor
bitledl _sig (L—4) xor bitledl_sig(L—8));
when 5 => bitledl _sig <= bitledl_sig ((L-2) downto 0) &
(bitled1_sig(L—1) xor bitledl_sig(L—2) xor
bitled1l_sig (L—5) xor bitledl_sig(L—10));

| Code 129

when 6 => bitledl_sig <= bitledl_sig ((L—2) downto 0) &
(bitledl_sig(L—1) xor bitledl_sig(L—2) xor
bitledl _sig (L—6) xor bitledl_sig(L—9));
when 7 => bitledl_sig <= bitledl_sig ((L-2) downto 0) &
bitled1l_sig (L—1) xor bitledl_sig(L—2) xor
bitled1_sig (L—-7) xor bitledl_sig(L—-9));
when 8 => bitledl_sig <= bitledl_sig ((L—2) downto 0) &
(bitled1_sig(L—1) xor bitledl_sig(L—3) xor
bitledl _sig (L—4) xor bitledl_sig(L—6));
when 9 => bitledl_sig <= bitledl_sig ((L—2) downto 0) &
(bitledl_sig(L—1) xor bitledl_sig(L—3) xor
bitledl _sig (L—4) xor bitledl_sig(L—9));
when 10 => bitledl_sig <= bitledl_sig ((L-2) downto 0) &
(bitled1_sig(L—1) xor bitledl_sig(L—3) xor
bitled1l_sig (L—6) xor bitledl_sig(L—-7));
when 11 => bitledl_sig <= bitledl_sig ((L—2) downto 0) &
(bitled1l_sig(L—1) xor bitledl_sig(L—3) xor
bitledl _sig (L—7) xor bitledl_sig(L—8));
when others => bitledl_sig <= (bitledl_sig ((L—2) downto 0) &
bitled1l_sig (L—-1));
end case;
elsif L = 11 then

case lednumber is
when 1 => bitledl_sig <= bitledl_sig ((L—2) downto 0) &
(bitled1_sig(L—1) xor bitledl_sig(L-3));
when 2 => bitledl_sig <= bitledl_sig ((L—2) downto 0) &
(bitled1l_sig(L—1) xor bitledl_sig(L—-2) xor
bitledl _sig (L—3) xor bitledl_sig(L—5));
when 3 => bitledl_sig <= bitledl_sig ((L—2) downto 0) &
(bitled1_sig(L—1) xor bitledl_sig(L—2) xor
bitledl _sig (L—3) xor bitledl_sig(L—7));
when 4 => bitledl_sig <= bitledl_sig ((L-2) downto 0) &
(bitled1_sig(L—1) xor bitledl_sig(L—2) xor
bitledl_sig (L—3) xor bitledl_sig(L—10));
when 5 => bitledl _sig <= bitledl_sig ((L—2) downto 0) &
(bitledl_sig(L—1) xor bitledl_sig(L—2) xor
bitledl _sig (L—4) xor bitledl_sig(L—6));
when 6 => bitledl_sig <= bitledl_sig ((L—2) downto 0) &
(bitled1_sig(L—1) xor bitledl_sig(L—2) xor
bitledl_sig (L—4) xor bitledl_sig(L—11));
when 7 => bitledl_sig <= bitledl_sig ((L-2) downto 0) &
(bitled1_sig(L—1) xor bitledl_sig(L—2) xor
bitled1l _sig (L—5) xor bitledl_sig(L—9));

| Code 130

when 8 => bitledl_sig <= bitledl_sig ((L—2) downto 0) &
(bitledl_sig(L—1) xor bitledl_sig(L—2) xor
bitled1l _sig (L—5) xor bitledl_sig(L—10));
when 9 => bitledl_sig <= bitledl_sig ((L-2) downto 0) &
(bitled1_sig(L—1) xor bitledl_sig(L—2) xor
bitled1l_sig (L—6) xor bitledl_sig(L—-7));
when 10 => bitledl_sig <= bitledl_sig ((L—2) downto 0) &
(bitled1_sig(L—1) xor bitledl_sig(L—2) xor
bitledl _sig (L—8) xor bitledl_sig(L—9));
when 11 => bitledl_sig <= bitledl_sig ((L—2) downto 0) &
(bitled1l_sig(L—1) xor bitledl_sig(L—2) xor
bitled1l _sig (L—9) xor bitledl_sig(L—10));
when others => bitledl_sig <= (bitledl_sig ((L—2) downto 0) &
bitledl_sig(L—1));
end case;
elsif L = 12 then

case lednumber is
when 1 => bitledl_sig <= bitledl_sig ((L—2) downto 0) &
(bitled1_sig(L—1) xor bitledl_sig(L—2) xor
bitledl _sig (L—3) xor bitledl_sig(L—9));
when 2 => bitledl_sig <= bitledl_sig ((L—2) downto 0) &
(bitled1_sig(L—1) xor bitledl_sig(L—2) xor
bitledl_sig (L—3) xor bitledl_sig(L—11));
when 3 => bitledl_sig <= bitledl_sig ((L—2) downto 0) &
(bitledl_sig(L—1) xor bitledl_sig(L—2) xor
bitled1l_sig (L—5) xor bitledl_sig(L—7));
when 4 => bitledl_sig <= bitledl_sig ((L-2) downto 0) &
(bitled1_sig(L—1) xor bitledl_sig(L—2) xor
bitledl _sig (L—6) xor bitledl_sig(L—9));
when 5 => bitledl _sig <= bitledl_sig ((L—-2) downto 0) &
(bitled1_sig(L—1) xor bitledl_sig(L—3) xor
bitled1l_sig (L—4) xor bitledl_sig(L—10));
when 6 => bitledl_sig <= bitledl_sig ((L—2) downto 0) &
(bitledl_sig(L—1) xor bitledl_sig(L—3) xor
bitledl _sig (L—8) xor bitledl_sig(L—9));
when 7 => bitledl_sig <= bitledl_sig ((L-2) downto 0) &
(bitled1_sig(L—1) xor bitledl_sig(L—4) xor
bitled1l_sig (L—5) xor bitledl_sig(L—8));
when 8 => bitled1_sig <= bitledl_sig ((L—2) downto 0) &
(bitled1_sig(L—1) xor bitledl_sig(L—4) xor
bitled1l _sig (L—6) xor bitledl_sig(L—7));
when 9 => bitledl_sig <= bitledl_sig ((L—2) downto 0) &
(bitled1_sig(L—1) xor bitledl_sig(L—5) xor

| Code 131

bitledl _sig (L—7) xor bitledl_sig(L—8));
when 10 => bitledl_sig <= bitledl_sig ((L-2) downto 0) &
(bitled1_sig(L—1) xor bitledl_sig(L—2) xor
bitled1_sig (L—8) xor bitledl_sig(L—-9));
when 11 => bitledl_sig <= bitledl_sig ((L—2) downto 0) &
(bitled1_sig(L—1) xor bitledl_sig(L—2) xor
bitled1l _sig (L—9) xor bitledl_sig(L—10));
when others => bitledl_sig <= (bitledl_sig ((L—2) downto 0) &
bitled1l_sig(L—-1));
end case;
elsif L = 13 then

case lednumber is
when 1 => bitledl_sig <= bitledl_sig ((L—2) downto 0) &
(bitledl_sig(L—1) xor bitledl_sig(L—2) xor
bitledl _sig (L—3) xor bitledl_sig(L—6));
when others => bitledl_sig <= (bitledl_sig ((L—2) downto 0) &
bitledl_sig (L—1));

end case;

elsif L = 14 then

case lednumber is
when 1 => bitledl_sig <= bitledl_sig ((L—2) downto 0) &
(bitledl_sig(L—1) xor bitledl_sig(L—2) xor
bitled1l_sig (L—3) xor bitledl_sig(L—13));
when others => bitledl_sig <= (bitledl_sig ((L—2) downto 0) &
bitled1l_sig(L—1));

end case;

elsif L = 15 then

case lednumber is
when 1 => bitledl_sig <= bitledl_sig ((L—2) downto 0) &
(bitled1_sig(L—1) xor bitledl_sig(L—2) xor
bitledl _sig (L—3) xor bitledl_sig(L-5));
when others => bitledl_sig <= (bitledl_sig ((L—2) downto 0) &
bitledl _sig(L—1));

end case;

elsif L = 16 then

case lednumber is
when 1 => bitledl_sig <= bitledl_sig ((L-2) downto 0) &
(bitled1_sig(L—1) xor bitledl_sig(L—2) xor
bitledl _sig (L—4) xor bitledl_sig(L—13));
when others => bitledl _sig <= (bitledl_sig ((L—2) downto 0) &

| Code 132

bitled1_sig (L—1));

end case;
end if;
end if;
end if;

end process Pl;

bitledl <= bitledl_sig(L—1);
END ARCHITECTURE gen;

| Code 133

I.2 Python Code

1.2.1 Ethernet sender

This Python script sends a UDP packet to the FPGA.
import socket

UDP_IP = 7169.254.111.1° # [P address FPGA
UDPPORT = 9 # destination UDP port

HOST = socket.gethostbyname (socket. gethostname ()) # get host
sock = socket.socket(socket.AF_INET, socket.SOCKDGRAM)
sock.bind ((HOST, 0)) # bind socket to host, choose source UDP port (0)

print “HOST:”, HOST

data = "Hello_world _VLC_Communication_Correlation.filter _.Python_Ethernet ,\
~test_message._to._send._to _FPGA”

data to send

sock.sendto (data, (UDP_.IP, UDPPORT)) # send to destination

print ”send._done”

sock.close () # close socket

I.2.2 Main script

This Python script receives UDP packets from the FPGA. These packets
contain the samples taken by the ADC. The samples are stored in an

array and we do some calculations to print the samples in a graph

as seen on the oscilloscope. Before receiving the data, we first send
a packet to the FPGA, so he knows our MAC address and IP address.

We also filter the received data with each of the bit sequences. After
this correlation, we use some code to find the position. Finally , we
plot the position in a graph.

We import the file ’functions.py’ where we defined the functions we
need.

We also import the file ’functions_test.py’ where we defined some

functions for testing purposes.

import functions

import functions_test

import matplotlib.pyplot as plt

from scipy.signal import 1filter

I Code 134
import numpy as np

UDP.IP = *169.254.111.1° # 1P address FPGA

UDPPORT = 9 # destination UDP port

functions .sendUdp (UDP_IP ,UDP_PORT) # send UDP packet to FPGA

UDP.IP = °° # get packets from all IP addresses

UDPPORT = 9 # bind to UDP port 9

sequence = [0,1,0,0,1,0,1,1,0,1] # 10 bit start sequence of the LFSRs
sequencel_gen = functions.generate_seql (sequence) # scquence of 1023 bits
sequence2_gen functions . generate_seq2 (sequence) # sequence of 1023 bits
sequence3_gen functions . generate_seq3 (sequence) # sequence of 1023 bits
sequence4_gen functions . generate_seq4 (sequence) # sequence of 1023 bits
sequenceS_gen functions . generate_seqS (sequence) # sequence of 1023 bits
calculate sequences from start sequence

bit sequences sent by the LEDs (time between two bits is 5 us)

samplesPerBit = 5 # how many samples we take for 1 bit
functions .
functions .
functions .
functions .

functions .

sequencel _samples =
sequence2_samples
sequence3_samples
sequence4_samples =
sequenceS_samples =

sequence_gen (sequencel _gen ,
sequence_gen (sequence2_gen ,
sequence_gen (sequence3_gen,
sequence_gen (sequence4_gen ,
sequence_gen(sequence5_gen ,

samplesPerBit)
samplesPerBit)
samplesPerBit)
samplesPerBit)
samplesPerBit)

generates new bit sequences so the time between two bits is 1 us
instead of 5 us, because time between ADC samples is also 1 us
packets = 100

determines on how many data (packets) we want to do the calculations

numberOfCalculations = 1

how many times we want to run the while loop

while numberOfCalculations >= 1:
numberOfCalculations = numberOfCalculations — 1

functions .receiveUdp (packets ,UDP_IP ,UDP_PORT)
n packets and gives the received data

array_packets =
this function
in a list

receives back

array_analog , array_real = functions.bit_to_real_and_osc_val \

(array_packets)

| Code 135

this function calculates the samples (2 bytes) and calculates the
corresponding analog values as seen on the oscilloscope.

array_peaksout = functions.getpeaksout(array_analog ,0.07)
this function filters out the unwanted peaks

time=functions .timegen(len(array_real),le6)
determine time between samples: samplefrequency = 1 MHz

plot data vs. time (as seen on the oscilloscope)
#functions . grafosc (time , array_peaksout)

we used this function to see what happens if we filter the bit
sequence on itself (auto correlation)
#functions_test.autocorr(sequencel _samples)

this function plots the received signal and the ideal signal under
each other so we can see an eventual time shift
#functions_test.received_vs_ideal (array_peaksout, sequencel_samples)

correlation filters

yl=I1filter (sequencel _samples ,1,array_peaksout)
y2=1filter (sequence2_samples ,1,array_peaksout)
y3=1filter (sequence3_samples ,1,array_peaksout)
y4=1filter (sequenced4 _samples ,1,array_peaksout)
y5=1filter (sequence5S_samples ,1,array_peaksout)

plot filtered data vs. time
functions . grafcorr (time ,yl,1)
functions . grafcorr (time ,y2,2)
functions . grafcorr (time ,y3,3)
functions . grafcorr (time ,y4,4)
functions . grafcorr (time ,y5,5)

H OH H H H*

calculate the mean of the peaks of the filtered signal

corrl = functions.mean_peaks_after_correlation(yl,samplesPerBit, \
len (sequencel_gen))
corr2 = functions.mean_peaks_after_correlation(y2,samplesPerBit, \
len (sequence2_gen))
corr3 = functions.mean_peaks_after_correlation (y3,samplesPerBit, \
len(sequence3_gen))
corrd = functions.mean_peaks_after_correlation (y4,samplesPerBit, \
len (sequenced4_gen))
corr5 = functions.mean_peaks_after_correlation (y5,samplesPerBit, \

| Code 136

len (sequence5_gen))

print "Correlatie.1:”, corrl
print "Correlatie.2:”, corr2
print "Correlatie.3:”, corr3
print "Correlatie._4:”, corrd
print “Correlatie.5:”, corr5

coeffl = [5.668, —0.05907, 0.0003756, —1.253e—6, 2.028e¢—-9, —1.268e—12]
coeff2 = [4.173, —-0.0234, 9.693e-5, —2.265e¢e—7, 2.575e—10, —1.125e—13]

coeffd = [5.024, —-0.04922, 0.0003086, —1.015e—6, 1.607e—9, —9.747e—13]
coeff4 = [4.379, —0.02752, 0.0001286, —3.525e—7, 4.842e—10, —2.605e—13]
coeff5 = [4.706, —0.03478, 0.0001661, —4.151e—7, 4.93e—-10, —2.238e—13]
coefficients derived from the fitting with a 5th order polynom on the
measurements (correlation value versus radius)

radiusl = functions.getRadius (corrl ,coeffl)
radius2 = functions.getRadius(corr2,coeff2)
radius3 = functions . getRadius (corr3 ,coeff3)
radius4 = functions.getRadius(corr4d ,coeffd)

radius5 = functions.getRadius(corr5,coeffs)
find radiuses from each of the 5 LEDs starting from the correlation
value and the coefficients of the 5th order polynom

radius = [radiusl] + [radius2] + [radius3] + [radius4] + [radius5]
put the 5 radiuses in a list

led = np.array ([[2,2.4],[2,4.4],[3.5,3.4],[5,4.4]1,(5,2.41])

gives the position of the 5 LEDs in x—y coordinates (in meters)

functions . displed (led ,radius)
shows the position of the 5 LEDs and shows circles around the LEDs
with the calculated radiuses

position = functions.middlePoint(radius ,led)
calculates the position of the receiver starting from the
intersections of the different circles

plt.show ()
show all the plots

print “done”

| Code

137

1.2.3 Functions

import
import
import
import
import

matplotlib.pyplot as plt
matplotlib. patches as patch
numpy as np

socket

math

def sendUdp(IPaddress , UDPport):
UDP_IP = IPaddress
UDP_PORT = UDPport

HOST = socket.gethostbyname (socket. gethostname ())
sock = socket.socket(socket.AF_INET, socket.SOCKDGRAM)
sock . bind ((HOST, 0))

print “HOST:”, HOST

data = "Hello_.world 'VLC_Communication_Correlation._filter .Python.\
—...Ethernet ,_test._.message._to._send.to _FPGA”

sock.sendto(data, (UDP_.IP, UDP_PORT))
print ”send._done”

sock.close ()

def receiveUdp (packets ,UDP_IP,UDP_PORT) :
sock = socket.socket(socket.AF_INET),

socket .SOCK_DGRAM)

sock . bind ((UDP_IP, UDP_PORT))

array = bytearray (1024)

array_packets = [0] * packets x 1024

for x in range (0, packets):

print “wait_.message”
data, addr = sock.recvfrom_into (array ,1024)

| Code 138

print “sender:”, addr

array_packets [x%x1024: 1024x(x+1)] = array
sock.close ()
return array_packets

def grafosc(x,y)
x = x[0:1len(y)]
plt.figure (1, figsize=(20,10))
plt.plot(x,y)
plt.title (°Signal_receiver’)
plt.xlabel (’time.(s)’)
plt.ylabel(’signal_(V)’)
plt.grid ()

def grafcorr(x,y,nr)
x = x[0:1len(y)]
plt.figure(figsize=(20,10))
plt.plot(x,y)
plt.title (’Signal_after.correlation._filter.’ + str(nr))
plt.xlabel (’time.(s)’)
plt.ylabel (’signal_(V)’)
plt.grid ()

def timegen(length ,samplefreq):
time = map(float, [0] * length)
time[0] = 0.0

for x in range(0,(length —1)):
time[x+1] = time[x] + (1/samplefreq)
return time

def bit_to_real_and_osc_val(bitarray):
array2 = [0] x len(bitarray)

for x in range (0, len(bitarray)):
array2[x] = bitarray[x]

| Code 139

array_samples = [0] % (len(bitarray)/2)
for x in range(0,(len(bitarray)/2)):

array_samples[x] = array2[2xx]*xpow(16,2) + bitarray[2*x+1]
array_real = map(float, array_samples)

array_analog = array_real

for x in range(0,len(bitarray)/2):
array_-analog[x] = (array._-real[x]/4095)%3.3

return array_analog ,array_real

def sequence_gen(sequence, samplesPerBit):

counter = 0
counter2 = 0
sequencel _samples = [0] * samplesPerBit * len(sequence)
for x in range (0, samplesPerBit * len(sequence)):
sequencel _samples[x] = sequence[counter?2]
counter = counter + 1
if counter == samplesPerBit:
counter2 = counter2 + 1
counter = 0

return sequencel_samples

def getpeaksout(peakarray ,diffval):
for x in range(l,len(peakarray)—1):
diffl=peakarray[x] — peakarray[x—1]
diff2=peakarray[x] — peakarray[x+1]
if (abs(diffl) > diffval) and (abs(diff2) > diffval) and \
abs(diff2 + diffl) > (2xdiffval)
if abs(peakarray[x] — peakarray[x—1]) > \
abs(peakarray[x] — peakarray[x+1]):
peakarray[x] = peakarray[x+1]
else:

peakarray[x] = peakarray[x—1]

mean_array = np.mean(peakarray)

| Code 140

for x in range(0,len(peakarray)):
peakarray[x] = peakarray[x] — mean_array

return peakarray
def generate_seql (sequence):
length = len(sequence)
range_lfsr = (pow(2,len(sequence))—1)
sequence_nbit = [0] %= range_lfsr

begin_seq = sequence

for x in range (0, range_Ifsr):
sequence_nbit[x] = sequence[0]

if length ==
sequence=sequence [1:len(sequence)]+[(sequence [0] " sequence[1])]
elif length ==
sequence=sequence [1:len(sequence) |+[(sequence[0]" sequence[2])]
elif length == 6:
sequence=sequence [1:len(sequence)]+[(sequence[0]" sequence[1])]
elif length == 7:
sequence=sequence[l:len(sequence)]+[(sequence[0]" sequence[l] \
sequence [2] " sequence [3])]
elif length == 8:
sequence=sequence [1:len(sequence)]+[(sequence[0]" sequence[l] \
sequence [2] " sequence[7])]
elif length ==
sequence=sequence [1l:len(sequence)]+[(sequence[0]" sequence[4])]
elif length == 10:
sequence=sequence [l:len(sequence)]+[(sequence[0]" sequence[3])]
elif length == 11:
sequence=sequence [l:len(sequence)]+[(sequence[0] sequence[2])]
elif length == 12:
sequence=sequence [1:len(sequence)]+[(sequence[0] sequence[1] \
sequence [2] " sequence[8])]
elif length == 13:
sequence=sequence [1:len(sequence)]+[(sequence[0] sequence[l] \
sequence [2] ~ sequence[5])]
elif length == 14:
sequence=sequence [1:len(sequence)]+[(sequence [0]" sequence[1] \
sequence [2] " sequence[12])]

| Code 141

elif length == 15:
sequence=sequence [1:len(sequence)]+[(sequence[0] sequence[l] \
sequence [2] " sequence [4])]

if sequence == begin_seq:
break
sequence = sequence_nbit[0:x+1]

sequence .reverse ()
return sequence

def generate_seq2 (sequence):
length = len(sequence)
range_lfsr = (pow(2,len(sequence))—1)
sequence_nbit = [0] *x range_lfsr
begin_seq = sequence

for x in range(O,range_Ifsr):
sequence_nbit[x] = sequence[0]
if length == 4:
sequence=sequence [1:len(sequence) J]+[(sequence[0]" sequence[2])]
elif length == 5:
sequence=sequence[l:len(sequence)]+[(sequence[0]" sequence[l] \
sequence [2] " sequence[3])]
elif length == 6:
sequence=sequence[l:len(sequence)]+[(sequence[0]"sequence[l] \
sequence [2] " sequence[5])]
elif length ==
sequence=sequence [l:len(sequence)]+[(sequence[0]" sequence[l] \
sequence [2] ~ sequence[5])]
elif length == 8§:
sequence=sequence [1:len(sequence) J+[(sequence [0]" sequence[1] \
sequence [3] " sequence[5])]
elif length ==
sequence=sequence [1:len(sequence)]+[(sequence[0]" sequence[1] \
sequence [2] " sequence[7])]
elif length == 10:
sequence=sequence [1:len(sequence)]+[(sequence[0] sequence[l] \
sequence [2] ~ sequence[5])]
elif length == 11:
sequence=sequence [1:len(sequence) J+[(sequence [0]" sequence[1] \
sequence [2] " sequence [4])]

| Code 142

elif length == 12:
sequence=sequence [1:len(sequence)]+[(sequence[0] sequence[l] \
sequence [2] "~ sequence[10])]

elif length == 13:
sequence=sequence [1:len(sequence)]+[(sequence[0] sequence[l] \
sequence [2] ~ sequence[5])]

elif length == 14:
sequence=sequence [1:len(sequence) J+[(sequence [0]" sequence[1] \
sequence [2] " sequence[12])]

elif length == 15:
sequence=sequence [1:len(sequence)]+[(sequence[0] sequence[l] \
sequence [2] " sequence [4])]

if sequence == begin_seq:
break
sequence = sequence_nbit[0:x+1]

sequence .reverse ()
return sequence

def generate_seq3 (sequence):

length = len(sequence)

range _lfsr = (pow(2,len(sequence))—1)

sequence_nbit = [0] * range_lfsr

begin_seq = sequence

for x in range(O,range_Ifsr):
sequence_nbit[x] = sequence[0]

if length == 4:
sequence=sequence [1:len(sequence) |+[(sequence[]1]" sequence[3])]
elif length ==
sequence=sequence[l:len(sequence)]+[(sequence[0]"sequence[l] \
sequence [2] " sequence [4])]
elif length ==
sequence=sequence [l:len(sequence)]+[(sequence[0]"sequence[l] \
sequence [3] ~ sequence[4])]
elif length ==
sequence=sequence[l:len(sequence)]+[(sequence[0]" sequence[l] \
sequence [3] "~ sequence[5])]
elif length ==
sequence=sequence [1:len(sequence)]+[(sequence[0]" sequence[1] \
sequence [5] " sequence[6])]
elif length ==
sequence=sequence [1:len(sequence)]+[(sequence[0] sequence[l] \
sequence [3] ~ sequence[4])]
elif length == 10:

| Code 143

def

sequence=sequence[l:len(sequence)]+[(sequence[0]" sequence[l] \
sequence [3] " sequence [4])]
elif length == 11:
sequence=sequence [1:len(sequence)]+[(sequence[0]" sequence[1] \
sequence [2] " sequence[6])]
elif length == 12:
sequence=sequence [1:len(sequence)]+[(sequence[0] sequence[l] \
sequence [4] " sequence[6])]
elif length == 13:
sequence=sequence [1:len(sequence)]+[(sequence [0]"sequence[1] \
sequence [2] " sequence[5])]
elif length == 14:
sequence=sequence [1:len(sequence)]+[(sequence[0] sequence[1] \
sequence [2] " sequence[12])]
elif length == 15:
sequence=sequence [1:len(sequence)]+[(sequence[0] sequence[l] \
sequence [2] ~ sequence[4])]

if sequence == begin_seq:
break
sequence = sequence_nbit[0:x+1]

sequence .reverse ()
return sequence

generate_seq4 (sequence):

length = len(sequence)
range_lfsr = (pow(2,len(sequence))—1)
sequence_nbit = [0] x range_Ifsr
begin_seq = sequence
for x in range (0, range_Ifsr):
sequence_nbit[x] = sequence[0]
if length ==

sequence=sequence [1l:len(sequence)]+[(sequence[1]" sequence[2])]
elif length ==
sequence=sequence[l:len(sequence)]+[(sequence[1]"sequence[2] \
sequence [3] " sequence[4])]
elif length ==
sequence=sequence [l:len(sequence)]+[(sequence[1]"sequence[2] \
sequence [3] ~ sequence[4])]
elif length == 7:
sequence=sequence[l:len(sequence) J+[(sequence[0]" sequence[l] \
sequence [3] "~ sequence[6])]
elif length ==
sequence=sequence [1:len(sequence)]+[(sequence[0] sequence[2] \

| Code 144

def

sequence [3] " sequence[4])]
elif length == 9:
sequence=sequence [1l:len(sequence)]+[(sequence[0]" sequence[1]
sequence [4] " sequence[5])]
elif length == 10:
sequence=sequence [1:len(sequence) |+[(sequence [0] " sequence[1]
sequence [3] " sequence[7])]
elif length == 11:
sequence=sequence [1l:len(sequence)]+[(sequence[0]" sequence[1]
sequence [2] ~ sequence[9])]
elif length == 12:
sequence=sequence [1l:len(sequence)]+[(sequence[0]" sequence[1]
sequence [5] " sequence[8])]
elif length == 13:
sequence=sequence [1l:len(sequence)]+[(sequence[0] sequence[1]
sequence [2] " sequence[5])]
elif length == 14:
sequence=sequence [1l:len(sequence)]+[(sequence[0]" sequence[1]
sequence [2] " sequence[12])]
elif length == 15:
sequence=sequence [1:len(sequence)]+[(sequence[0]" sequence[1]
sequence [2] " sequence [4])]

if sequence == begin_seq:
break
sequence = sequence_nbit[0:x+1]

sequence .reverse ()
return sequence

generate_seqS5 (sequence):

length = len(sequence)
range_lfsr = (pow(2,len(sequence))—1)
sequence_nbit = [0] * range_lfsr
begin_seq = sequence
for x in range (0, range_Ifsr):
sequence_nbit[x] = sequence[0]
if length ==

sequence=sequence [1l:len(sequence)]+[(sequence[0]" sequence[3])]
elif length ==

sequence=sequence [1l:len(sequence) J]+[(sequence[]1]" sequence[2])]
elif length ==

sequence=sequence [1l:len(sequence) J+[(sequence[]1]" sequence[2])]
elif length ==

sequence=sequence [l:len(sequence)]+[(sequence[0]" sequence[2] \

| Code 145

sequence [3] " sequence[4])]
elif length == 8§:
sequence=sequence [1l:len(sequence)]+[(sequence[0]" sequence[2]
sequence [3] "~ sequence[5])]
elif length == 9:
sequence=sequence [1:len(sequence) |+[(sequence [0] " sequence[1]
sequence [4] ~ sequence[8])]
elif length == 10:
sequence=sequence [l:len(sequence)]+[(sequence[0]" sequence[1]
sequence [4] ~ sequence[9])]
elif length == 11:
sequence=sequence [1l:len(sequence)]+[(sequence[0]" sequence[1]
sequence [3] " sequence[5])]
elif length == 12:
sequence=sequence [l:len(sequence)]+[(sequence[0] sequence[2]
sequence [3] "~ sequence[9])]
elif length == 13:
sequence=sequence [1l:len(sequence)]+[(sequence[0]" sequence[1]
sequence [2] ~ sequence[5])]
elif length == 14:
sequence=sequence [1:len(sequence)]+[(sequence[0]" sequence[1]
sequence [2] " sequence[12])]
elif length == 15:
sequence=sequence [1l:len(sequence)]+[(sequence[0]" sequence[1]
sequence [2] " sequence [4])]

if sequence == begin_seq:
break
sequence = sequence_nbit[0:x+1]

sequence .reverse ()
return sequence
def mean_peaks_after_correlation(filtered ,samplesPerBit,lengthSequence):
count_samples = len(filtered)
count_peaks = count_samples/samplesPerBit/lengthSequence
peaks = [0] * count_peaks
step = count_samples/count_peaks

for x in range(0,count_peaks):
peaks[x] = max(filtered [xxstep:(x+1)xstep])

| Code 146

return np.mean(peaks[1l:len(peaks)])
calculate mean of all the peaks

radius is a list of the different found radiuses from the LEDs
led 1s a nx*2 matrix with the positions of the LEDs
def middlePoint(radius ,led):
rangelLeds = 2.5
counterLeds = 0
we only do the calculations with the LEDs closer than 2.5m (most
accurate). If we don’t have 3 leds to do the calculations with the
limit goes up with steps of O0.lm until we have 3 LEDs to do the
calculations with
for x in range(0,len(radius)):
if radius[x] < rangeLeds:
counterLeds = counterLeds + 1
while counterLeds < 3:
rangeleds = rangelLeds + 0.1
counterLeds = 0
for x in range(0,len(radius)):
if radius[x] < rangeLlLeds:
counterLeds = counterLeds + 1

coordX=0
coordY=0
Point = [coordX ,coordY]

counter=0

N = [0] % int(math.pow(len (radius) ,2))

A = [0] % int(math.pow(len(radius) ,2))

B = [0] % int(math.pow(len(radius) ,2))

C = [0] % int(math.pow(len(radius) ,2))
delta = [0] % int(math.pow(len(radius) ,2))

point = np.zeros ((int(math.pow(len(radius) ,2)),2))
#calculation of the coefficents for the calculation
#of the intersection points and calculation of those points

for k in range(0,len(radius)):
for j in range(0,len(radius)):

if j > k:
x0 = led[k,0]
xl = led[j.0]

y0 = led[k,1]
yl = led[j,1]
r0 = radius[k]
rl = radius|[j]
if r0 < rangelLeds and rl < rangeleds

| Code 147

if not (((x0—x1) == 0) and ((y0O—yl) == 0)):
if (yO—yl) == 0:

x=(math.pow(rl ,2)—math.pow(r0 ,2)—math.pow(x1,2)+ \
math .pow (x0,2))/(2x(x0—x1))
N[counter] = 0
Al counter] 1
B[counter] —2xy1
Cl[counter] = math.pow(x1,2)+math.pow(x,2)—2«xl*x+ \
math .pow(yl,2)—math.pow(rl ,2)
delta[counter]=math.sqrt (abs(math.pow(B[counter],2)\
—4xA[counter |*C[counter]))

point[counter ,0] = x

point[counter ,1] = (—B[counter]+delta[counter]) \
/(2«xA[counter])

counter = counter+l1

N[counter] = 0

Al counter] = A[counter —1]

B[counter] = B[counter —1]

Cl[counter] = C[counter —1]

delta[counter] delta[counter —1]

point[counter ,0] = X
point[counter ,1] = (—B[counter]—delta[counter]) \
/(2xA[counter])
else:

N[counter] = (math.pow(rl,2)—math.pow(r0,2)— \

math . pow (x1,2)+math.pow(x0,2)—math.pow(yl,2)+ \

math . pow(y0,2))/(2x(y0—yl))

Al counter] = math.pow (((x0—x1)/(y0—yl)) ,2)+1

B[counter]=2xy0*(x0—x1)/(y0—yl)—2«N[counter]*(x0—x1)\
/(y0O—y1l)—2xx0

C[counter] = math.pow(x0,2)+math.pow(y0,2)+ \

math . pow (N[counter] ,2)—math.pow(r0 ,2)—2xy0xN[counter]
delta[counter]=math.sqrt(abs(math.pow(B[counter],2)\
—4xA[counter |*C[counter]))

point[counter ,0] = (—B[counter]+delta[counter]) \
/(2«xA[counter])

point[counter ,1] = N[counter]—point[counter ,0] \
*(x0—x1)/(y0—yl)

counter = counter+l1

N{counter] = N[counter —1]
A[counter] = A[counter —1]
B[counter] B[counter —1]
C[counter] = C[counter —1]
delta[counter] = delta[counter —1]

| Code 148

point[counter ,0]
/(2%A[counter])

point[counter ,1]
*(x0—x1)/(y0—yl)

(—B[counter]—delta[counter]) \

N[counter]—point[counter ,0] \

counter = counter + 1
point = np.array (point)[0:counter]
deltaPoint = [0] % counter
middlePoints = np.zeros ((int(counter/2) ,2))

for k in range(0,counter):
deltaPoint[k] = 0
for j in range(0,counter):
deltaPoint[k] = deltaPoint[k]+math.sqrt(math.pow ((point[k,0] \
—point[j,0]) ,2)+math.pow ((point[k,I1]—point[j,1]) ,2))

deltaPointSort = sorted(deltaPoint)

for k in range(0,counter/2):
for j in range(0, counter):
if deltaPointSort[k] == deltaPoint[]]:
middlePoints [k,0] point[j,0]
middlePoints [k, 1] point[j,1]

numberMPoint =0
for k in range(0,counter/2):
if not ((middlePoints[k,0]+ middlePoints[k,1]) == 0):
numberMPoint = numberMPoint + 1
coordX = coordX+ middlePoints[k,0]
coordY = coordY+ middlePoints [k, 1]

Point = np.array ([coordX ,coordY])/numberMPoint
plt.plot(Point[0], Point[1],”ro” ,ms=10,mfc="r" ,mew=2, mec ="1r")

text = ”"Position:.(” + str(round(Point[0],2)) + ”,.” + str(round(\
Point[1],2)) + 7)”

| Code 149

plt.text(7.5,1,text,fontsize=18)
plt.text(7,4,”windows” ,rotation=—90,fontsize=16)
plt.hold (False)

return Point

def getRadius(corr, coeff):

radius = coeff[0] + coeff[1] % corr + coeff[2] =* \
math.pow(corr ,2) + coeff[3] * math.pow(corr ,3) \
+ coeff[4] * math.pow(corr ,4) + coeff[5] * math.pow(corr,5)

return radius

def displed(led, radius):
ledX = led[:,0]
ledY = led[:,1]
numberpoint = 300;

coordX = [0] % numberpoint *x 5
coordY = [0] * numberpoint *x 5
pos = 0;

for k in range (0,5):

r = radius [k]

inc = 2xmath.pi / numberpoint

for j in range(l,numberpoint):
pos=pos+1
alpha = jxinc
coordY [pos] = ledY [k]+math.sin(alpha)xr
coordX[pos] = ledX[k]+math.cos(alpha)xr

fig=plt.figure(figsize=(20,10))
ax=fig.add_subplot(111)

plt.plot(ledX,ledY, ’o’)

plt.hold (True)

rect=patch.Rectangle ((0,0), 6.95, 7.25, fill = False)

ax.add_patch(rect)

| Code 150

plt.axis(’equal’)
plt . xlim((—-1,11))
set x range
plt.ylim((—1,8))
set y range

plt.grid ()

I.2.4 Functions testing

import functions
from scipy.signal import Ifilter

the code below was used to compare the received signal with the ideal
signal so we could see an eventual time shift.

We searched for the place with the most successive ones in the bit

sequence of the received signal and of the ideal signal. Then we plot
both under each other so we can see an eventual time shift

def received_vs_ideal (array_peaksout, sequencel_samples):

synch = map(float ,array_peaksout[0O:len(sequencel _samples)])
counter 0
maximum 0
for x in range(0,len(synch)):
if synch[x] > O:

counter = counter + 1;

if counter > maximum:
maximum = counter
index = X

elif synch[x] < O:
counter = 0
find number of most successive ones (+ index) in received signal

synch = synch[index:len(synch)] + synch[0O:index]
shift the list

synch2 = map(float ,sequencel_samples)
time=functions .timegen(len(sequencel _samples),le6)
counter2 = 0

maximum2 = 0

for x in range(0,len(synch2)):
if synch2[x] == 1:

| Code 151

counter2 = counter2 + 1;
if counter2 > maximum?2:
maximum?2 = counter?2
index2 = x
elif synch2[x] == O0:
counter2 = 0

find number of most successive ones (+index) in ideal signal

synch2 = synch2[index2:len(synch2)] + synch2[0:index2]
shift the list

functions . grafosc (time ,synch)
plot the received signal

sequenceke = synch?2
for x in range(0,len(sequenceke)):

if sequenceke[x] == O:

sequenceke[x] = —1

for x in range(0,len(sequenceke)):

sequenceke[x] = sequenceke[x] *x 0.2 — 0.5
scale the ideal bit sequence and move it down so we can see the two
bit sequences under each other

functions . grafosc (time , sequenceke)
plot the i1deal signal

Auto correlation: we filter the bit sequence on itself. If we plot the
filtered signal in a graph, we can see very high peaks.

def autocorr(sequence_samples):

filt = sequence_samples[:: —1] # flips the bit sequence
for x in range(0,len(sequence_samples)):
if sequence_samples[x] == O0:
sequence_samples[x] = —1

replace all zeros by —1°
auto = map(float ,sequence_samples)

auto = auto + auto + auto
repeat the bit sequence three times so we can see 3 peaks

y = Ifilter (filt ,1,auto) # correlation filter

| Code 152

time=functions .timegen(len (auto),le6)

functions . grafcorr (time ,y,0)

	Introduction
	Preparation and Research
	Choice of emitting LED and receiving photodiode
	Introduction
	LED
	Photodiode
	Conclusion

	LED driver circuit
	Introduction
	Power Supply Topologies
	Flyback Converter
	LFSR
	First tests
	Final LFSR

	LED Heatsink
	Testing circuit 1
	Tests

	Testing circuit 2
	Twisted pair cable
	Tests
	VHDL of sender FPGA

	The receiver circuit
	Introduction
	Power supply
	Current-voltage converter
	Ambient light filter
	Amplifier
	Anti-aliasing filter
	ADC

	Connection to the PC
	Introduction
	Structure Ethernet communication

	Processing with Python
	Receiving the data
	Processing the data
	Positioning
	Radius calculation
	Position calculation
	Data Transmission

	Result
	Future work
	List of Main Switch Mode Power Supply (SMPS) Topologies
	Calculations to determine the needed heat sink
	Ambient light rejection circuit
	Simulations
	ADC
	Sending Ethernet frames

	Tests of sending circuit
	Results Test 1 of circuit 1
	General findings
	Changing the duty cycle
	Conclusion
	Results Test 2 of circuit 1

	Correlation with an n-bit register
	n = 6
	n = 7
	n = 8
	n = 9
	n = 10
	n = 11
	n = 12
	n = 13
	n = 14
	n = 15
	Conclusion

	Data transmission
	One sequence per bit
	Two sequences per bit
	Five sequences per bit
	Conclusion

	Schematics
	Shematic 1
	Rectifier
	Snubber
	Mosfet and mosfet driver
	Power switch chip and analog switch
	Feedback circuit

	Schematic 2
	Ambient light rejection circuit
	High pass filter
	Amplifier
	Voltage reference
	LC filter
	Voltage regulator
	Separation between analog and digital ground
	Connection to the FPGA board

	Shematic 3

	Code
	VHDL Code
	ADC
	Ethernet
	Sequence generation for LEDs

	Python Code
	Ethernet sender
	Main script
	Functions
	Functions testing

