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Technology is just a tool. In terms of getting the kids

working together and motivating them, the teacher

is the most important.

Bill Gates



To sing opera, one needs two things: the voice and

the passion - and above all, the passion.

Andrea Bocelli
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Persistence and resilience only come from having

been given the chance to work through difficult

problems.

Gever Tulley
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Abstract
With the advancement of Big Data and Natural Language Processing (NLP) technologies,

extensive research into Knowledge Graphs (KGs) has been conducted. In a typical KG, such

as Wikidata, entities are connected via relations. A popular approach to represent facts in

KGs is to define them as triplets (head ,r el ati on, t ai l ). For example, the fact Bern, capitalOf,

Switzerland, is composed of two entities, Bern and Switzerland, connected by the relation

capitalOf. Although KGs are effective in representing structured data, they cannot be used

to train modern Machine Learning models which often require numerical input. To tackle

this issue, Knowledge Graph embeddings have been proposed. In our context, KG embed-

dings aim to project entities and relations from a KG into a low-dimensional and continuous

vector space. The main benefit of such a representation is that the resulting vectors can

be subsequently used as input to Machine Learning pipelines. In this thesis, we first intro-

duce popular Knowledge Graphs, as well as typical KG embedding models. After providing

an overview of the applications and problems that can be tackled with KG embeddings, we

present our own contributions to this research field. Specifically, we first propose a novel

approach, called JOINER, to jointly learn KG embeddings from text and a Knowledge Graph by

taking advantage of both large-scale unstructured content (text) and high-quality structured

data (the Knowledge Graph). JOINER not only preserves co-occurrences between words in a

text corpus and relations between entities in a Knowledge Graph, it also provides the flexibility

to control the amount of information shared between the two data sources via regularization.

We conduct a thorough evaluation of JOINER on three evaluation tasks (analogical reasoning,

link prediction and relation extraction) using three different corpora, showing significant

improvement on most tasks. Next, we present a new KG embeddings model, called HINGE,

able to learn hyper-relational facts from KGs, which are facts containing not only a base triplet

(head ,r el ati on, t ai l ) but also associated key-value pairs. HINGE captures not only the pri-

mary structural information of the KG encoded in the triplets, but also the correlation between

each triplet and its associated key-value pairs. Our extensive evaluation shows the superiority

of HINGE on various link prediction tasks over KGs, outperforming not only the KG embedding

methods learning from triplets only (by 0.81-41.45%), but also the methods learning from

hyper-relational facts using an n-ary representation (by 13.2-84.1%). Additionally, we propose

an end-to-end solution called RETA in order to tackle instance completion problems by sug-

gesting relation-tail pairs given a head entity. RETA consists of two components: RETA-Filter

iii



Acknowledgements

and RETA-Grader. More precisely, RETA-Filter first generates a filtered list of candidates by

extracting and leveraging the schema of a KG; RETA-Grader then evaluates and ranks the

candidate pairs considering the plausibility of both the candidate triplet and its corresponding

schema using a newly-designed KG embedding model. We evaluate our methods against

a sizable collection of state-of-the-art techniques on three real-world KG datasets. Results

show that our RETA-Filter generates of high-quality candidate r -t pairs, outperforming the

best baseline techniques while reducing by 10.61%-84.75% the candidate pool size under the

same candidate quality guarantees. Moreover, our RETA-Grader also significantly outperforms

state-of-the-art link prediction techniques on the instance completion task by 16.25%-65.92%

across different datasets. Finally, we address research questions raised in this thesis related to

a number of Knowledge Graph embedding methods presented in the next sections. Addition-

ally, we summarize the series of contributions we made in some of the core tasks tackled by

Knowledge Graph embedding methods and conclude our thesis by discussing how to extend

our proposed works.

Key words: Knowledge Graph embeddings, Word embeddings, regularization, Hyper-relation,

Link prediction, Entity Types, Instance completion
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Résumé
Avec l’avancement des technologies de Big Data et de traitement du langage naturel (NLP),

des recherches approfondies sur les graphes de connaissances (ou Knowledge Graphs KGs)

ont été menées. Dans un KG typique, tel que Wikidata, les entités sont reliées par des rela-

tions. Une approche populaire pour représenter les faits dans les KGs consiste à les définir

comme des triplets (head ,r el ati on, t ai l ). Par exemple, le fait Bern, capitalOf, Switzerland,

est composé de deux entités, Bern et Switzerland, reliées par la relation capitalOf. Bien que les

graphes de connaissances soient efficaces pour représenter des données structurées, ils ne

peuvent pas être utilisés pour former des modèles modernes d’apprentissage automatique qui

nécessitent souvent des données numériques. Pour résoudre ce problème, des incorporations

(ou embeddings) de graphes de connaissances ont été proposées. Dans notre contexte, les

incorporations de KG visent à projeter les entités et les relations d’un KG dans un espace

vectoriel continu et de faible dimension. Le principal avantage d’une telle représentation est

que les vecteurs résultants peuvent être utilisés ultérieurement comme entrée dans des pipe-

lines d’apprentissage automatique. Dans cette thèse, nous présentons d’abord les graphes de

connaissances les plus populaires, ainsi que les modèles typiques d’intégration de KG. Après

avoir donné une vue d’ensemble des applications et des problèmes qui peuvent être abordés

avec les encastrements de KG, nous présentons nos propres contributions à ce domaine de re-

cherche. Plus précisément, nous proposons d’abord une nouvelle approche, appelée JOINER,

pour apprendre conjointement les encastrements de KG à partir d’un texte et d’un graphe

de connaissances en tirant parti à la fois du contenu non structuré à grande échelle (le texte)

et des données structurées de haute qualité (le graphe de connaissances). JOINER préserve

non seulement les cooccurrences entre les mots d’un corpus textuel et les relations entre

les entités d’un graphe de connaissances, mais il offre également la possibilité de contrôler

la quantité d’informations partagées entre les deux sources de données par le biais de la

régularisation. Nous effectuons une évaluation approfondie de JOINER sur trois tâches d’éva-

luation (raisonnement analogique, prédiction de liens et extraction de relations) en utilisant

trois corpus différents, montrant une amélioration significative pour la plupart des tâches.

Ensuite, nous présentons un nouveau modèle d’intégration de KG, appelé HINGE, capable

d’apprendre des faits hyper-relationnels à partir de KGs, qui sont des faits contenant non

seulement un triplet de base (head ,r el ati on, t ai l ) mais aussi des paires clé-valeur associées.

HINGE capture non seulement l’information structurelle primaire du KG encodée dans les
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Résumé

triplets, mais aussi la corrélation entre chaque triplet et ses paires clé-valeur associées. Notre

évaluation approfondie montre la supériorité de HINGE sur diverses tâches de prédiction

de liens sur les KGs, surpassant non seulement les méthodes d’intégration de KG apprenant

uniquement à partir de triplets (de 0,81 à 41,45%), mais aussi les méthodes apprenant à partir

de faits hyperrelationnels utilisant une représentation n-aire (de 13,2 à 84,1%). De plus, nous

proposons une solution de bout en bout appelée RETA afin de résoudre les problèmes de

complétion d’instances en suggérant des paires relation-queue pour une entité de tête. RETA

se compose de deux éléments : RETA-Filter et RETA-Grader. Plus précisément, RETA-Filter

génère d’abord une liste filtrée de candidats en extrayant et en exploitant le schéma d’une

KG; RETA-Grader évalue et classe ensuite les paires de candidats en tenant compte de la

plausibilité du triplet candidat et de son schéma correspondant à l’aide d’un nouveau modèle

d’intégration de KG. Nous évaluons nos méthodes par rapport à un ensemble important de

techniques de pointe sur trois ensembles de données de KGs réels. Les résultats montrent que

notre RETA-Filter génère des paires r -t de haute qualité, surpassant les meilleures techniques

de base tout en réduisant de 10,61% à 84,75% la taille du pool de candidats avec les mêmes ga-

ranties de qualité. De plus, notre RETA-Grader surpasse également de manière significative les

techniques de prédiction de liens de l’état de l’art pour des tâches de complétion d’instances

de 16,25% à 65,92% suivant les jeux de données utilisés. Enfin, nous abordons les questions de

recherche soulevées dans cette thèse en relation avec les méthodes d’intégration des graphes

de connaissances présentées dans les sections suivantes. En outre, nous résumons la série de

contributions que nous avons faites concernant les diverses tâches abordées et concluons

cette thèse en discutant de la manière d’étendre les travaux proposés.

Mots clefs : Knowledge Graph embeddings, Word embeddings, regularization, Hyper-relation,

Link prediction, Entity Types, Instance completion
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1 Introduction

Artificial Intelligence (AI) and more specifically Machine Learning (ML) are two of today’s most

rapidly growing technical fields due to recent progress including new algorithms, the use of

powerful hardware to power them, and the collection of big datasets [62]. AI was founded as

an academic discipline in 1955 [81] and it has been defined as the science and engineering

of making intelligent machines, especially intelligent computer programs [80]. With recent

developments of AI, considerable research into Knowledge Graphs has been carried out

[100, 41]. Knowledge Graphs are essentially multi-relational graphs composed of entities

(nodes) and relations (edges) and encoding knowledge. Figure 1.1 shows a simple instance

of a KG where entities in the real world are represented as nodes, which are connected by

edges representing the relations between those entities. A fact in a KG, also known as a triplet,

is represented by two entities connected by a relation. Often, the two entities composing a

fact are also referred to as the head and tail entities, and a fact represented as a triplet h,r, t .

Moreover, a triplet may also contain additionally information, stored as key-value pairs, for

instance. Figure 1.2 shows an example of a fact in a KG. In this case, Marie Curie and University

of Paris are the head and tail entities connected by the relation educated at. Moreover, the fact

also contains extra information stored as key-value pairs, where academic major and academic

degree are the keys and their values are Physics and Master of Science, respectively. Unlike

relational databases where the information is bound under a rigid schema, the schema-less

nature of KGs creates flexibility by not enforcing the representation of the data.

Knowledge Graphs have become a key asset powering a large range of applications, mainly in

the area of Artificial Intelligence. For instance, KGs can be used to support decision making

and to improve machine learning applications. Example of applications include question-

answering, recommender systems, spam detection, etc. Although KGs are effective in rep-

resenting structured data, their underlying symbolic nature usually makes them hard to

manipulate because many Machine Learning algorithms expect numerical input data. To

avoid this problem, a new research direction known as Knowledge Graph embeddings has
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Chapter 1. Introduction

Figure 1.1 – A simple instance of a KG in which entities are connected via relations.

Figure 1.2 – Example of a fact in a KG. The fact is composed by the head and tail entities Marie
Curie and University of Paris, respectively, connected by the relation educated at. Additionally,
the fact contains also two sets of key-value pairs. The first key-value pair is represented by
academic major and Physics, while the second set of key-value pairs is represented by academic
degree and Master of Science.
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been proposed, where the idea is to represent entities and relations in continuous vector

spaces. The generated vectors can then be used to train Neural Networks while preserving the

inherent structure of the KG. Additionally, the vectors of entities and relations can be used

to tackle other problems, such as link prediction, entity resolution, or triple classification.

Most of the existing techniques perform embedding tasks on the basis of observed facts in the

KGs. More precisely, existing techniques first represent entities and relations in a continuous

vector space, and define a scoring function to measure the plausibility of a fact. Often, these

techniques represent the entities and relations in a KG in a low-dimensional vector space, and

define an evaluation function to measure the plausibility of each fact triplet. Neural networks

are used to learn the embeddings. The embeddings form the weights of the network which

are adjusted to minimize loss on a task to be tackled. Additionally, further approaches also

leverage other types of information, such as text, entity types, etc., in order to enhance the

vectorial representation. Thanks to the low and dense feature space, embeddings are capable

of preserving the structure and property information of the graph and can be used as a proxy

when analyzing the entities and relations. In the last few years, KG embeddings have become

a research hotspot and models have been proposed in that context. These models differ in

three main ways: (i) how they define the representation form (triplet, property graphs, etc.),

(ii) how they define the scoring function, (iii) how they optimize the ranking criterion that

maximizes the global plausibility of the existing triplets. Additionally, Knowledge Graphs can

be used as an applied technology to support specific applications in the industrial domain.

For example, in the field of medicine, KGs are used to diagnose diseases and to analyze drugs

[112, 4]. In the field of e-commerce, KGs containing information about products are built in

order to accurately match the user’s purchase intention and product candidate set [72, 139],

and in public security KGs are employed to analyze the relations between entities and obtain

clues [140]. A distributed representation technology can be utilized by KG embeddings in

order to alleviate the problems of data sparsity and computational inefficiency [27], having

three main advantages:

• By embedding entities and relations into a continuous low-dimensional vector space,

the data sparsity problem can be effectively mitigated, which makes the calculation of

semantic or inferential relations of entities extremely inaccurate.

• Compared to traditional one-hot representation, which is a representation of categorical

variables as binary vectors, KG embeddings use a distributed representation method to

improve the efficiency of semantic computing.

• The calculation between different types of information can be performed by defining a

unified feature space to connect heterogeneous objects.

Despite recent advances, KG embeddings are still in their infancy and many problems on how
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to best learn such embeddings are still unsolved. In the following section, we look at some of

these issues and define the research questions that we focus on in this thesis.

1.1 Research Questions

This thesis focuses on Knowledge Graph embeddings, which project entities and relations of a

KG into a low-dimensional and continuous vector space while preserving the key structural

properties of the KG. Such KG embeddings effectively retain the reasoning ability of the KG, and

can thus efficiently support various downstream applications by facilitating the applications

of classical vector-based machine learning techniques on KGs. A large number of successful

KG embeddings models have been proposed [19, 131, 29], but most of them train the models

only on the observed triplets. Thereupon, in these thesis work we focus on learning broader

KG embedding models by leveraging additional information in addition to the Knowledge

Graphs. Moreover, we also study the problem of learning more expressive KG embeddings by

leveraging richer data structures like hyper-relational facts. Specifically, we aim at answering

the following research questions in this thesis:

• Q1: How can we jointly learn embeddings from some text and a Knowledge Graph? How

can we best benefit from both data sources simultaneously?

• Q2: How can we effectively learn Knowledge Graph embeddings from more expressive

structures such as hyper-relational facts?

• Q3: How can we tackle instance completion tasks by leveraging expressive KG embed-

dings?

In the following chapters, we answer those questions in detail.

1.2 Summary of Contributions

Knowledge Graphs gained great popularity in the past years, and a number of research works

proposed Machine Learning models able to represent entities and relations of a KG as vectors.

Those vectors, also known as Embeddings, can be used as input to train Neural Networks and

preserve the inherent structure of the Knowledge Graph as well as the reasoning ability over the

graph. This thesis proposes a set of new algorithms to learn embeddings representing entities

and relations from a Knowledge Graph. In the following, we describe the main contributions

of this thesis and list the conference papers we have published along our research work.

• Background: in Chapter 2, we give an overview of the state of the art in Knowledge Graph

embeddings. We group existing works in three categories: Translational distance models,
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Semantic matching models and Deep learning models. In addition, we describe the

learning processes of the embeddings and the two main strategies to generate negative

samples based on the Open World Assumption and on the Closed World Assumption.

Finally, we describe typical applications of KG embedding and also applications going

beyond KGs. Part of the work presented in Chapter 2 has been published as a survey in

the following paper:

Paolo Rosso, Dingqi Yang, Philippe Cudré-Mauroux: Knowledge Graph Embeddings.

Encyclopedia of Big Data Technologies 2019

• Jointly learning embeddings from both text and Knowledge Graphs: in Chapter 3, we

aim at answering research question Q1, and in particular how to benefit from jointly

learning embeddings from text and a KG. We present JOINER, a new method to jointly

learn embeddings taking advantage of both large-scale unstructured content (text) and

high-quality structured data (the Knowledge Graph). JOINER not only preserves the co-

occurrence between words in a text corpus and relations between entities in a Knowledge

Graph, but it also provides the flexibility to control the amount of information shared

between the two data sources via regularization. Our extensive evaluation shows the

superiority of JOINER across different evaluation tasks, including analogical reasoning,

link prediction, and relation extraction, yielding up to 4.3% absolute improvement and

76% savings in learning time overhead. The work presented in Chapter 3 has been

published in the following research paper:

Paolo Rosso, Dingqi Yang, Philippe Cudré-Mauroux: Revisiting Text and Knowledge

Graph Joint Embeddings: The Amount of Shared Information Matters! BigData 2019:

2465-2473

• Learning KG embeddings for hyper-relational facts: in Chapter 4, we aim at answering

the second research question (Q2), and in particular how to learn KG embeddings from

hyper-relation facts. We propose HINGE, a hyper-relational KG embedding model,

which directly learns from hyper-relational facts in a KG. HINGE captures not only the

primary structural information of the KG encoded in the triplets, but also the correlation

between each triplet and its associated key-value pairs. Our extensive evaluation shows

the superiority of HINGE on various link prediction tasks over KGs. In particular, HINGE

consistently outperforms not only the KG embedding methods learning from triplets

only (by 0.81-41.45% depending on the link prediction tasks and settings), but also

the methods learning from hyper-relational facts using the n-ary representation (by

13.2-84.1%). The work presented in Chapter 4 has been published in the following paper:

Paolo Rosso, Dingqi Yang, Philippe Cudré-Mauroux: Beyond Triplets: Hyper-Relational

Knowledge Graph Embedding for Link Prediction. WWW 2020: 1885-1896

• An end-to-end solution to tackle instance completion: in Chapter 5, we aim at answer-
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ing our last research question Q3, and in particular how to leverage the schema of a KG to

tackle instance completion. We propose an end-to-end solution called RETA consisting

of two components: RETA-Filter and RETA-Grader. More precisely, our RETA-Filter first

generates candidate r -t pairs for a given h by extracting and leveraging the schema

of a KG; our RETA-Grader then evaluates and ranks the candidate r -t pairs consider-

ing the plausibility of both the candidate triplet and its corresponding schema using

a newly-designed KG embedding model. We evaluate our methods against a sizable

collection of state-of-the-art techniques on three real-world KG datasets. Results show

that our RETA-Filter generates of high-quality candidate r -t pairs, outperforming the

best baseline techniques while reducing by 10.61%-84.75% the candidate size under

the same candidate quality guarantees. Moreover, our RETA-Grader also significantly

outperforms state-of-the-art link prediction techniques on the instance completion task

by 16.25%-65.92% across different datasets. The work presented in Chapter 5 has been

published in the following paper:

Paolo Rosso, Dingqi Yang, Philippe Cudré-Mauroux: RETA: A Schema-Aware, End-to-End

Solution for Instance Completion in Knowledge Graphs. WWW 2021.

1.3 Additional Contributions

In addition to the main contributions of this thesis mentioned above, we also published further

works related to embeddings and graphs.

• Highly-efficient graph embedding technique preserving high-order node proximity:

in this work, we propose NodeSketch, a highly-efficient graph embedding technique

preserving high-order node proximity via recursive sketching. Specifically, built on top of

an efficient data independent hashing/sketching technique, NodeSketch generates node

embeddings in Hamming space. For an input graph, it starts by sketching the self-loop-

augmented adjacency matrix of the graph to output low-order node embeddings, and

then recursively generates k-order node embeddings based on the self-loop-augmented

adjacency matrix and (k-1)-order node embeddings. This work has been published in

the following paper:

Dingqi Yang, Paolo Rosso, Bin Li, Philippe Cudré-Mauroux: NodeSketch: Highly-Efficient

Graph Embeddings via Recursive Sketching. KDD 2019: 1162-1172

• Location prediction: in this work, we aim at predicting a user’s next location based

on historical user mobility traces. This problem has been studied using Recurrent

Neural Networks by incorporating spatiotemporal factors into the recurrent hidden state.

However, such a scheme oversimplifies the temporal periodicity and spatial regularity

of user mobility. In order to solve this problem, we propose Flashback, a general RNN
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architecture designed for modeling sparse user mobility traces by doing flashbacks

on hidden states in RNNs. Specifically, Flashback explicitly uses some spatiotemporal

context to search past hidden states with a high predictive power for location prediction,

which can then directly benefit from rich spatiotemporal contexts. This work has been

published in the following paper:

Dingqi Yang, Benjamin Fankhauser, Paolo Rosso, Philippe Cudré-Mauroux: Location

Prediction over Sparse User Mobility Traces Using RNNs: Flashback in Hidden States!

IJCAI 2020: 2184-2190

• Entity disambiguation on tables: in this work, we present two novel and unsupervised

Web table annotation methods, which leverage the context of the tables to better capture

their semantics. Our first method is lookup based and exploits text similarity to find

reference entities in the knowledge base. The second method uses distributional vector

representations – a.k.a. embeddings – of the Web tables to elicit their context and

disambiguate their semantics. This work has been published in the following paper:

Yasamin Eslahi, Akansha Bhardwaj, Paolo Rosso, Kurt Stockinger, Philippe Cudré-Mauroux:

Annotating Web Tables through Knowledge Bases: A Context-Based Approach. SDS 2020:

29-34

• Entity disambiguation on microposts: in this work we propose an approach that ex-

tends the context of a micropost by leveraging graph-based algorithms to further disam-

biguate the entities present in it. Our approach, GraphEDM, is divided into two phases.

First, we use unsupervised clustering approaches to regroup tweets in semantic neigh-

borhoods using embedding approaches. Next, each ambiguous entity in a cluster is

iteratively disambiguated by leveraging a graph-based algorithm. This work is submitted

for publication:

Prathyusha Nerella, Akansha Bhardwaj, Paolo Rosso, Philippe Cudré-Mauroux. GraphEDM:

A Graph-Based Approach to Disambiguate Entities in Microposts.

• Training the embeddings of tabular data: in this work, we propose an effective ap-

proach based on Convolutional Neural Networks called ConvTab to train the embed-

dings of tabular data. Our approach is divided into two phases. First, we leverage

the discriminating power of CNNs to train a table classifier. Next, the representations

learned from this model are used to generate semantic features for query-table similarity.

These query-table similarity features are used as input to the learning algorithm. This

work is submitted for publication:

Akansha Bhardwaj, Vibhav Agarwal, Paolo Rosso, Philippe Cudré-Mauroux. ConvTab: A

Context-Preserving, Convolutional Model for Ad-Hoc Table Retrieval.
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1.4 Outline

The rest of the thesis is organized as follows. Chapter 2 reviews existing work in training

Knowledge Graph embeddings and describes their learning process. Additionally, we describe

typical KG embedding applications, such as link prediction, triple classification, entity classi-

fication and entity resolution, and other application domains beyond KGs such as relation

extraction, question answering and recommendation systems. In Chapter 3, we revisit text

and Knowledge Graph joint embeddings methods and we show that the existing techniques

yield suboptimal results, as they fail to control the amount of shared information between the

two data sources during the joint learning process and generate additional learning samples.

Aiming at releasing the power of such joint embeddings, we propose JOINER, a new joint text

and Knowledge Graph embedding method using regularization, able to control the amount

of information shared between the two data sources via regularization without generating

additional learning samples. In this chapter we also try to answer research question Q1, in

particular how to benefit from the joint learning. Next, in Chapter 4, we propose a new method

to learn hyper-relational facts, where each fact of the KG contains not only a triplet, but also the

associated key-value pairs and tackle link prediction. In this chapter, we show that the triplet

serves as the fundamental data structure in modern KGs and preserves essential information

for link prediction. Specifically, we propose HINGE, a hyper-relational KG embedding model,

which directly learns from hyper-relational facts in a KG. By doing so, we answer research

question Q2 and show how to effectively learn KG embeddings from hyper-relational facts. In

Chapter 5 we propose an end-to-end solution for instance completion in Knowledge Graphs

called RETA, consisting of two components: RETA-Filter, which generates candidate relation-

tail pairs for a given head by extracting and leveraging the schema of a KG, and RETA-Grader,

which evaluates and ranks the candidate relation-tail pairs considering the plausibility of both

the candidate triplet and its corresponding schema. Through the description of RETA, we

also answer research question Q3, and in particular how to tackle instance completion task by

leveraging the schema of the KG. Finally, we conclude in Chapter 6 by summarizing our work

and discussing future work, as well sketching future research avenues for Knowledge Graph

embeddings.

1.5 What this Thesis is Not About

In the past few years, several transformer-based architecture were proposed such as BERT [30],

GPT-3 [21] and ELMo [103], showing great success in Natural Language Processing. Specifically,

these architectures can learn contextualized embeddings with large amounts of data and

achieve state-of-the-art performance in many NLP tasks. Although these methods can achieve

strong performance in several NLP tasks, this thesis proposes a set of KG embeddings trained

using shallow neural networks or well-studied architectures, such as Convolutional Neural
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Networks. In particular, our goal is not to propose the best performing KG embeddings

method, but a set of architectures that aim at achieving a good trade off between architecture

complexity and performance. We leave the study of more advanced and complex models, such

as transformers, for future work.

In the following chapter, we provide an overview on currently available Knowledge Graphs

and investigate state-of-the-art methods for Knowledge Graph embeddings. In addition, we

provide an overview on the training process of KG embeddings and how to accelerate it through

a technique called negative sampling. Finally, we describe a number of KG embeddings

applications.
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2 Background

With the growing popularity of multi-relational data on the Web, knowledge graphs have

become a key data source in various application domains, such as Web search, question

answering, and natural language understanding. In a typical KG such as Freebase ([16]) or

Google’s Knowledge Graph ([45]), entities are connected via relations. For example, Bern is

capital of Switzerland. Formally, a popular approach to represent such relational data is to

use the Resource Description Framework. It defines a fact as a triple (subject, predicate and

object), which is also known as head, relation, and tail or (h,r, t ) for short. Following the above

example, the head, relation and tail are Bern, capitalOf and Switzerland, respectively. With

a considerable number of entities and relations (e.g., Google’s Knowledge Graph has more

than 18 billion of triples with 570 million of entities and 35,000 of relations by the end of

2014), KGs now become a valuable information source that can empower many semantic Web

applications.

Despite the importance of building large-scale KGs, their symbolic and logical frameworks are

not flexible enough to be compatible with modern statistical and machine-learning techniques

which require often numerical inputs. In this context, Knowledge Graph embeddings that

project entities and relations in a KG into a low-dimensional continuous vector space have

attracted much attention. One of the key benefits of such numeric representation is that they

can easily serve as input to classical statistical and machine learning approaches. The learnt

entity and relation embeddings can thus be used in different tasks, such as KG completion

[19], relation extraction [135], entity classification and entity resolution [95].

In the following section, we provide a review of currently available Knowledge Graphs. Al-

though the term "Knowledge Graph" has been used in literature since 1972 [114], its modern

version comes from the 2012, when Google announces the Google Knowledge Graph [1]. We

have grouped these Knowledge Graphs into two categories: publicly available and non-publicly

available.
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2.1 Publicly and Non-Publicly Available Knowledge Graphs

Publicly available Knowledge Graphs are those KGs that can be freely used by anyone. Exam-

ples of publicly available KGs are Wikidata, YAGO and Freebase, which we describe next.

1. Wikidata [127] is a collaboratively edited multilingual Knowledge Graph curated and

maintained by a large community of thousands of volunteers. Figure 2.1 shows how a

Wikidata entry is structured. An Item is related to a unique identifier, known as a QID. An

identifier is linked to a label-description pair to avoid any ambiguity. Optionally, multiple

aliases and a number of statements (and their properties and values) are associated

with the item. Statements record the information about the item. They consist of key-

value pairs, which match a property with one or more entity values. For example, the

statement carrot is orange would be encoded by pairing a key color (P462) with the

value orange (Q39338) under the item carrot (Q81). Statements may also map a key to

multiple values. For example, the property occupation for Steve Jobs is linked with the

values entrepreneur and inventor. Values may have types, such as other Wikidata items,

strings, numbers, etc. Following the previous example, the values entrepreneur and

inventor have types Wikidata items. A property describes the data value of a statement

and can be thought of as a relation connecting the item with a value. Properties have

their own pages on Wikidata and may have rules about their usage. For example, the

property capital can only have a single value, reflecting the case that territories have

only one capital city. In our context, items are the heads and tails of a fact, while the

properties are the relations. Optionally, qualifiers can provide additional information

by refining the meaning of a statement. For example, the property population could

be linked with the qualifier as of 2020. With currently more than 55M data items and

over 5.4K distinct properties that help describe these data items, Wikidata is also used

by end-user applications such as Google Search and Apple Siri. Wikidata’s data is highly

dynamic. Editors can create items and add new facts about any topic that satisfies the

criteria defined by the community [3]. Such a process brings benefits in terms of data

diversity and freshness but does not guarantee the completeness of the data [78].

2. YAGO [119] is a KG on general knowledge about people, cities, countries, movies, and

organizations. YAGO was one of the first academic projects building a knowledge base

automatically. The main idea behind YAGO was to extract information from Wikipedia

and unify it with WordNet [87], using a combination of rule-based and heuristic methods.

YAGO also includes a pipeline in order to check and filter facts by reaching a manually

verified accuracy of 95%. Despite the fact that YAGO2 [54] and YAGO3 [79] increased

the size of the original release of YAGO, they could not rival Wikidata in terms of size.

Still, YAGO became very popular also thanks to more than 40,000 people who contribute

to the project at least once a month. Finally, in 2020 YAGO4 [101] was proposed to
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Figure 2.1 – The most important terms used in Wikidata. Each item has a unique item identifier,
known as a QID. Items may also have labels and descriptions that must be unique. Multiple
aliases and a number of statements (and their properties and values) are associated with the
item.

13



Chapter 2. Background

solve two main problems faced by Wikidata: fact correctness and schema complexity.

Since the content in Wikidata is partially added by users, it may contain contradictory

statements since Wikidata typically does not enforce semantic constraints (e.g., “each

person has exactly one father”). Additionally, Wikidata uses a big set of relations and

classes, totaling 6.7k relations, of which only 2.6K have more than 1000 facts, and it

comprises around 2.4M classes of which 80% have less than 10 instances; YAGO4 collects

facts from Wikidata and constraints them into a simpler and cleaner taxonomy from

schema.org. Facts in YAGO 4 are composed by triplets, each of which consists of a head,

a relation and a tail 1.

3. Freebase [16] is a database used to structure general human knowledge. Traditionally,

structured databases have been managed by trusted administrators who created and

modified the schema, often with poor support for structural diversity. More precisely,

relational databases store data in a fixed and pre-defined structure, leading to a rigid

data model where each schema change comes at a cost. At the other end of the spec-

trum, popular online encyclopedias like Wikipedia define semi-structured document

repositories and provide tools with structured query capabilities. Freebase tries to merge

the advantages of both scalable structured databases and the diversity of collaborative

wikis. Essentially, Freebase is a scalable tuple store containing a large and diverse dataset

harvested from sources such as Wikipedia, providing an HTTP/JSON-Based API. How-

ever, in 2015 Freebase was shut down and its data move to Wikidata. Nevertheless, the

Freebase dump is still utilized in the Knowledge Graph embedding community. Facts in

Freebase are also composed by triplets, each of which consists of a head, a relation and

a tail 2.

Non-publicly available Knowledge Graphs are KGs where the access to the data is limited.

Companies like Google, Amazon, Facebook, Airbnb, Linkedin, IBM, Microsoft, Uber and eBay

have developed their own KGs.

1. Google integrated their own Knowledge Graph in their search engine to search for things,

people or places and instantly get information that is relevant to the input search query.

For more than four decades, search engines ranked web pages by the number and

quality of links to a page itself. However, Google found out that many query terms were

ambiguous or polysemous. For example, Taj Mahal can represent a monument, or a

Grammy Award-winning musician, or a casino in Atlantic City, NJ, or even an Indian

restaurant. Since a given term may refer to different entities, Google came up with a

graph that is used to better contextualize real-world entities with their relationships.

1https://yago-knowledge.org/downloads/yago-4
2https://developers.google.com/freebase
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This is a critical first step towards building the next generation of search, where the

engine is able to query the Knowledge Graph and provide more relevant results. The

Google Knowledge Graph also has the ability to provide a short summary of the retrieved

entity, including key facts. For example, Figure 2.2 shows a summary resulting from

the query Ed Sheeran. As can be seen, Google’s Knowledge Graph provides information

about the British singer and also key facts such as his date of birth, place of birth, source,

etc. The Knowledge Graph also helps to understand the relationships between things.

For example, Marie Curie is a person in the Knowledge Graph. She had two children,

one of whom also won a Nobel Prize. Additionally, she had a husband, Pierre Curie,

who claimed a third Nobel Prize for the family. All these facts are linked in the graph

as well, showing that it is not just a catalog of objects but also a graph that models

all these inter-relationships. Google began to gradually roll out the Knowledge Graph

view to U.S. users, and given its success it has been also rolled out on mobile phones

and tablets [2]. Additionally, Google also explored automatic methods for constructing

knowledge bases. Specifically, Luna Dong. et al. proposed the Knowledge Vault [31], a

Web-scale probabilistic knowledge base that combined extraction from Web content

(obtained via analysis of text, tabular data, page structure, and human annotations) with

prior knowledge derived from existing knowledge repositories. In order to build such a

knowledge base, Google employed supervised machine learning methods for merging

different information sources [1].

2. Amazon developed the Product Graph to help customers find products more easily, sug-

gesting products that fit their need. Amazon’s Product Graph describes every item using

product and non-product concepts, and form links between different entities/items.

However, Amazon has a catalog comprising millions of items, and manually attaching

attributes to every product can be an expensive process. In order to solve this issue, the

Product Graph team uses several machine learning techniques to get product-related

information from Amazon detail pages and the Internet. The challenge in building such

a graph is that product information across the Internet is mostly unstructured, making

the process of information extraction very difficult. To overcome this problem, Amazon

engineers use distantly supervised learning techniques to identify items from a smaller

and more structured dataset. The team responsible for the Product Graph also applies

knowledge linkage and cleaning to make sure that the data is reliable. One technique

used is to make a judgment on the validity of information depending on the source.

For example, if a source lists the release of a movie as 2010, while IMDb lists the movie

release date as 2011, then the algorithm would use the information from IMDb which is

the more trusted source. Lastly, the team applies graph mining techniques to identify

interesting hidden patterns, useful to serve recommendations such as "People who

bought item A also bought item B" [7]. Figure 2.3 shows the results related to the query

puzzle. All the suggested items were retrieved using the Amazon Product Graph.
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Figure 2.2 – Summary of the user query Ed Sheeran. The Knowledge Graph does not only
provide a summary of the British singer, but also shows key facts such as date of birth, place of
birth, source, etc.

16



2.1. Publicly and Non-Publicly Available Knowledge Graphs

Figure 2.3 – Example of retrieved results on Amazon typing the query “puzzle”. The most
relevant results are fetched using the Amazon Product Graph.

3. Facebook has the world’s largest social graph, which also includes information about

music, movies, places, etc. that its users care about. Many experiences in Facebook’s

products today are powered by their Knowledge Graph, for example when helping people

plan movie outings on Messenger. There are four factors that drive the development of

Facebook’s Knowledge Graph: coverage, correctness, structure, and constant change.

Coverage means being exhaustive in a particular domain, correctness means being

able to explain why a certain assertion is made, structure means that the Knowledge

Graph must be self-describing (for example an item should have an expected type), and

constant change means that the graph has multiple representations (a new graph is

build periodically from scratch). Facebook starts by building its KG from the contents

of Facebook pages and combines it with further sources of structured data. One of the

biggest challenges that Facebook has faced in building its KG is to leverage the data

found on its pages and extract relevant information to achieve the goals of a clean and

structured KG [99].

4. Airbnb, the American vacation rental online marketplace, also relies on Knowledge

Graphs to discover what the user wants to know about a destination. In order to provide

relevant information to people, Airbnb needs to have some way of representing relation-

ships between distinct but related entities such as cities, activities, cuisines, etc. These

types of information became important as Airbnb is an end-to-end travel platform that

provides not only places for staying in homes, but also entire experiences such as classes,

cultural immersions, etc. Figure 2.4 shows an example of a simplified version of the

Airbnb Knowledge Graph. The entities are represented by users, homes, experiences,

events, etc. Each entity in the graph has a type, and each type is defined by a unique
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Figure 2.4 – Example of a simplified version of the Airbnb Knowledge Graph. Entities such as
users, homes, experiences, events, etc., are interconnected via relations. The KG is used to
scale the ability to answer travel related queries.

schema. For example, an entity of type place is defined by its name and GPS coordinate

while an entity of type event is defined by its name, date, and venue. Also, relations

connecting nodes have specific types to reflect different kinds of relationships among

entities, for example language-spoken-in-country [6].

5. LinkedIn extensively uses machine learning technologies to optimize products, update

news feed, and recommend jobs, people, or articles. LinkedIn’s Knowledge Graph de-

fines different entities such as users, skills, jobs, companies etc. The Knowledge Graph is

used to enhance recommender systems, monetization, search, consumer products and

consumer analytics. The approach used by LinkedIn to build the Knowledge Graph is

very different from projects like Wikidata that rely on the contributions from human vol-

unteers, or from other projects like Google’s Knowledge Vault that automatically extracts

facts from the Internet for constructing knowledge bases. Specifically, LinkedIn builds

its KG primarily from user-generated content from members, recruiters, advertisers,

and company administrators, and augment it with data extracted from the Internet.

Moreover, the Knowledge Graph must be able to scale with new members, companies

and skills registered, new jobs posted, etc. Because of the fast-evolving data on LinkedIn,

the KG must be updated in real time, for example when a user changes job or when

a new company is added. To solve this challenge, LinkedIn applies machine learning

techniques on user-generated data and external sources to infer new relations between

entities, and then interactively acquire data from users to validate inference results [75].

6. IBM developed Watson Discovery, a search and text-analytics service that uses Natural
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Figure 2.5 – Result of the query Satya Nadella using Bing’s Entity Search API. The API provides
core details and information sources about the entity Satya Nadella to augment the user
experience.

Language Processing technologies to understand natural language. Watson Discovery

also integrates a feature to create Knowledge Graphs. Specifically, given as input an

unstructured dataset, Discovery automates the creation of a Knowledge Graph at scale,

extracting and disambiguating entities and relationships using sophisticated relevancy

ranking techniques [56].

7. Microsoft made Bing’s Entity Search API available, a service that allows to enrich appli-

cations with knowledge from, the web. This API lets users access the Bing Knowledge

Graph, which in turn consists of billions of real world entities such as people, places,

things etc. Through this service, users can retrieve most of the relevant entities within

a document, as well as details and information sources about them. For example, by

searching for “Satya Nadella”, users get a single dominant entity corresponding to Mi-

crosoft’s CEO. Additionally, users can also perform searches like “restaurants near me”

to get a ranked list of the most relevant local businesses that match the user’s interest.

Figure 2.5 shows an example of how the information about the entity Satya Nadella is

extracted from the Knowledge Graph and provided to the users using Bing’s Entity Search

API. The API not only provides a description of the entity, but also further information

such as his official website [82].

8. Uber believes that restaurant recommendations is key to the Uber Eats experience.

When a user picks food from the Uber platform, at any given time and location, there

could be hundreds of options to choose from. There are many factors that can influence

this choice such as time, cuisine preference and current mood. Uber tackles this prob-

lem by combining recommendation technologies and machine learning. When a user

looks for food and types a query, Uber’s goal is to understand his/her intent based on

knowledge on food organized as a graph in order to expand on the query. Sometimes,
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users have clear intents but this is unfortunately not always the case. A user might have

a certain type of food in mind, but chooses something else while browsing the app.

For example, when a user searches for udon but ends up ordering soba. As humans,

this choice may sound natural, because udon and soba are somewhat similar, but for

a machine this is not trivial knoledge since users specify their intent through textual

keywords in the form of a search query. Consequently, a possible solution is to use query

understanding to figure out the intent. A classic approach for query understanding is

using Natural Language Processing but this does not work when the intent of the user is

unclear. The alternative solution proposed by Uber is to build and use a food-focused

Knowledge Graph to better understand food-related queries. Since entities such as

restaurants, cuisines, and items have natural relationships, they can be modeled as a

graph. One of the main challenges faced by Uber was to build an ontology to describe

the graph, including properties of different entities and their relations. Once the graph

is established, an offline phase annotates restaurants and menu items with very de-

scriptive tags, while an online phase is used to rewrite the user’s query in real time to

optimize the quality of the returned results. Additionally, Uber uses the Knowledge

Graph to solve other problems like the zero result problem. This problem occurs when a

user searches for a restaurant that is not on the platform or that is not located nearby.

Instead of returning no result, the platform recommends restaurants in the area with

similar cuisines [126]. Figure 2.6 shows a subgraph of the overall ontology used for Uber

Eats’ Knowledge Graph. In the graph, we can see that dishes like Udon, Sushi, and Soba

are linked to Japan, and that Noodle is a super category of Soba and Udon.

9. eBay released the eBay ShopBot, a smart personal shopper that helps consumers find

items they wished to buy from a marketplace of more than one billion of listings. Users

can type queries in order to ask the bot to show the most relevant items. For example,

for the query “Can you show me brown leather Coach messenger bags under $100?” the

bot is able to identify the object of interest as a handbag and the target price range to

be between $0 and $100. subsequently, the bot executes a named-entity recognition

program to identify brown as the color, leather as the material, and Coach as the brand.

Once the characteristics of the object are recognized, the data is mapped onto eBay

inventory using a Knowledge Graph, which is used to find the best results in the shortest

amount of time [34]. Figure 2.7 shows a subgraph of ShopBot’s Knowledge Graph. Purple

entities represent “categories” (e.g., handbag, men’s backpack, etc.), green “attributes”

(e.g., color, type, etc.) while pink represent “values” for those attributes (e.g., red, toiletry

bag, etc.).

In Table 2.1 we summarize the aforementioned Knowledge Graphs.
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Figure 2.6 – Example of Uber’s Knowledge Graph, showing the relationship between cuisines
and dish types.

Figure 2.7 – Snapshot of ShopBot’s Knowledge Graph used to understand user requests and
retrieve the most relevant items. In a search query for “bags” for example, purple nodes
represent “categories”, green “attributes” and pink are “values” for those attributes.
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Table 2.1 – Knowledge Graphs Summary

KG Domain Publicly/Non-Publicly
Wikidata General Publicly
YAGO General Publicly
Freebase Human Publicly
Google General Non-Publicly
Amazon Products Non-Publicly
Facebook Social Networking Non-Publicly
Airbnb Lodging Non-Publicly
LinkedIn Social Networking Non-Publicly
Microsoft General Non-Publicly
Uber Food Ordering Non-Publicly
eBay Products Non-Publicly

In the following, we first discuss typical KG embedding models and then their extensions by

integrating additional data sources. We then summarize the applications of KG embeddings.

2.2 Learning Knowledge Graph embeddings

Learning KG embeddings consists in two key steps in general:

1. Defining a KG embedding model with a specific scoring function, which computes the

probability that a given triple is true;

2. Initializing entity and relation embeddings (e.g. vectors) according to the KG embedding

model, and learning those embeddings by maximizing the sum of the scoring function

over all triples in the KG. Triples appearing in the KG will have higher scores than the

triples that do not exist in the KG.

2.2.1 KG embedding models

Depending on the type of scoring function, there are three categories of embedding mod-

els: translational distance models, semantic matching models, and deep learning models.

Translational distance models, such as TransE ([19]), use a scoring function that measures

the distance between two entities, semantic matching models, such as RESCAL ([95]), use a

scoring function that measures the similarity of the facts, while deep learning models, such as

ConvE ([29]), use deep neural networks.
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Translational distance model: TransE and its extensions

TransE is a representative translational distance model that projects entities and relations

onto a unique vector space. In this model, the head h and the tail t of a triplet are connected

by their relation r , holding the fact that the embedding of t should be similar to the embedding

of h plus the embedding of r (i.e., h + r ≈ t). The proposed idea is based on the vector-offset

method for identifying linguistic regularities in continuous space word representations [86], for

example, USA - dollar ≈ Japan - yen. In a KG, this analogy holds since through the currencyOf

relation we get dollar + currencyOf ≈ USA and yen + currencyOf ≈ Japan. In this way, the

scoring function is defined as the negative distance between the sum of the head and the

relation, subtracted by the tail:

fr (h, t ) =−||h+ r− t||1/2 (2.1)

Following this initial idea, several techniques improved TransE by designing sophisticated

scoring functions that are able to capture complex KG structures, in particular multi-mapping

relations (one-to-many, many-to-one, or many-to-many). TransH ([132]), for instance, sug-

gests a new approach by projecting the relations on different hyperplanes in order to capture

many-to-many mapping properties of some relations; TransR ([74]) defines a mapping matrix

and a vector for every relation; TransD ([59]) introduces dynamic matrices for each entity-

relation pair by considering the diversity of entities and relations simultaneously. Sophisticated

scoring functions can indeed improve the KG embeddings in some downstream learning tasks,

tough they also increase the complexity of the embedding models. RotatE [120] uses complex

latent space and define each relation as a rotation from the head entity to the tail entity. TorusE

[35] was motivated by the fact that TransE uses the regularization to force entity embeddings

to lie on a hypersphere, thus limiting their capability to satisfy the translational constraint.

To handle TransE’s regularization problem, TorusE embeds entities and relations vectors in a

torus space

Semantic matching model: RESCAL and its extensions

RESCAL is a tensor factorization model for KG embeddings, which decomposes a three-

way tensor consisting of head, relation and tail dimensions. RESCAL generates for each

entity a vector, and for each relation a matrix capturing the interaction between the entities.

The proposed model allows for discovering the correlation between multiple interconnected

entities. The model represents facts via a tensor product with a corresponding scoring function
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defined as follows:

fr (h, t ) = h>Mr t =
d∑

i=1

d∑
j=1

[Mr ]i j · [h]i · [t] j (2.2)

where h and t are the vectors of the head and tail, respectively, and Mr is the matrix that

represents the relations. d refers to the dimension of the embeddings.

Several pieces of work extend RESCAL by designing customized tensor factorization models.

DistMult ([143]) simplifies the RESCAL model by using a bilinear formulation, showing similar

performance with less parameters (more efficient in the learning process). However, the model

works with symmetric relations only. [124] propose a model called Complex Embeddings

(ComplEx) that extends DistMult in order to model asymmetric relations. ComplEx introduces

a complex space in which head, relation and tail embeddings are represented. In this model,

the scoring function generates different scores from facts with asymmetric relations. Neural

Tensor Network (NTN) ([117]) is another model with a neural network architecture. For each

fact, the embedding vectors of its head and tail are fed into the input layer of a neural network,

and then mapped onto its hidden layer combined with a relation-specific tensor. Finally, the

output layer generates a score for each fact. ANALOGY [76] also extends RESCAL in order

to model the analogical properties of entities and relations, for example, "AlfredHitchcock

is to Psycho as JamesCameron is to Avatar". SimplE [63] extends DistMult by learning two

embeddings of each entity, one in case the entity is the head of a fact and the other in case

the entity is the tail. [58] observed that factorization models often fail when they make

entity predictions that are incompatible with the type required by the relation. To solve this

problems, [58] proposed TypeDM and TypeComplex, a modification of DistMult and ComplEx

respectively by explicitly modeling type compatibility.

Deep learning model: ConvE and its extensions

ConvE [29] is a deep learning model for KG embeddings, which uses a Convolutional Neural

Network and a fully-connected layers to capture the interactions between entity and relation

embeddings. Specifically, ConvE uses a convolution layer directly over 2D reshaping of head

and relation embeddings. The scoring function is defined as following:

fr (h, t ) = f (vec( f ([h̄; r̄]∗ω))W)t (2.3)

where h̄ and r̄ denote a 2D reshaping of h and r, respectively. Specifically, the model con-

catenates h and r and uses it as an input for a 2D convolutional layer with filters ω. The

convolutional layer returns a set of feature maps that are reshaped into a vector, which is then

projected into a k-dimensional space using a linear transformation parametrised by the matrix
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W, and matched with the tail embedding t via an inner product.

HypER [11] simplifies ConvE by using a hypernetwork to generate a set of 1D relation-specific

filters, then extracts relation-specific features from the head embedding. ConvKB [91] extends

ConvE by applying a convolution layer over the embedding triplets (h,r, t). In this model,

each triplet is represented as a 3-column matrix where each column vector represents a triplet

element. CapsE [128] extends ConvKB using capsule network to model facts in a KG. Similarly

to ConvKB, it stacks the embedding triplets (h,r, t ) in a 3-column matrix where each column

vector represents the embedding of an element in the triplet. The 3-column matrix is the

fed to a CNN in order to generate a set of future maps. These future maps are fed as input

of a capsule neural network to produce continuous vectors. Another relevant work is NaLP

[47]. Specifically, it learns n-ary relational facts (represented as a set of role-value pairs) by

concatenating role-value pairs and fed them to a CNN in order to capture the correlation

between pairs.

2.2.2 Learning process

The goal of the learning process is to maximize the sum of the scoring function over all

triples in the KG. Typical examples of optimization algorithms used in this context include

Stochastic Gradient Descent (SGD) ([107]), Broyden–Fletcher–Goldfarb–Shanno (BFGS) ([13])

and AdaGrad ([33]). In order to accelerate the training process, negative sampling techniques

can be applied by replacing the head, the relation or the tail of a given fact. These generated

triples are called negative samples. There are two main methods of generating negative

samples, based on the Open World Assumption (OWA) and on the Closed World Assumption

(CWA).

Open World Assumption

The open world assumption assumes that the KG only contains true facts and the facts that do

not appear can either be false or just missing [32]. Under this assumption, a negative fact is

probabilistically generated given a positive fact by randomly corrupting its head, relation or

tail. The entity and relation representations are learned by minimizing a loss function defined

based on the scoring function, such as the logistic loss defined as follows:

min
h,r,t

∑
(h,r,t )∈D+∪D−

log (1+exp(−yhr t · fr (h, t ))) (2.4)

where D+ and D− are positive and negative training samples, and yhr t is equal to 1 if the

label is positive, -1 otherwise. The logistic loss can be optimized using for instance stochastic
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gradient descent in mini-batch mode. In the training phase, a set of true facts are sampled

and a set of negative fact get generated, and the embeddings can be iteratively updated with a

fixed or adaptive learning rate.

Closed World Assumption

The closed world assumption assumes that all the facts that are not in the KG are negative

samples (i.e., assuming the KG is complete). The entity and relation representations are

learned by minimizing, for example, the squared loss:

min
h,r,t

∑
h,t∈E,r∈R

(yhr t − fr (h, t ))2 (2.5)

where E and R are the set of entities and relations, respectively. yhr t is equal to 1 if the triplet

appears in the KG, 0 otherwise. In addition, [94] propose the logistic loss and [83] the absolute

loss as alternatives to the squared loss.

In summary, the closed world assumption usually has more limitations than the open world

assumption, as it penalizes the missing true facts from a KG. In practice, despite their tremen-

dous size, modern KGs all suffer from incompleteness issues [134]. Consequently, the open

world assumption is more realistic for most settings and thus performs better on average

better than the closed world assumption [49].

2.3 KG embedding extension by integrating additional information

When learning KG embeddings, additional information, such as entity types, relation paths,

textual descriptions or logical rules, can be added to the embedding model to improve the

quality of the embeddings on certain tasks.

Entity types represent semantic categories the entity belongs to. For example, the entity

PresidentObama can be annotated as a PERSON entity type. This piece of information can

be incorporated in different ways. [96] use the entity type as a relation and its corresponding

facts (h,r,t) as training example. [48] propose a method in which entities of the same type are

close to each other in the vector space. The entity type can also be used to set constraints for

different relations. For example, [137] use this constraint to generate correct negative samples

by filtering out triples with incorrect entity types.

Relation paths refer to a sequence of relations between two entities. The multi-hop rela-

tionships contain useful information that can be used for KG completion. For example, [70]

predict the relation between entities using a path ranking algorithm that connects two entities.

More precisely, the relations can be represented as vectors or matrices, and their addition or
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multiplication can be used to compose a path as vector or matrix composition. [73] show a

method to approximate the relation path via sampling and pruning. Along similar lines, [123]

propose an algorithm that incorporates paths with specific lengths and intermediate entities

in the model.

Most of the KGs contain entity descriptions that can be used to enrich the semantic informa-

tion of the entities. External information sources, such as Wikipedia articles [131] or news

releases [117], can be used to extend the entity description by providing richer textual infor-

mation. A representative work by [131] introduce a model that combines text corpus and

KG to align them in the same vector space and creates KG embeddings and text embeddings.

The model includes three main parts: a KG model, a text model and an alignment model.

Specifically, the KG model is used to generate embeddings of entities and relations in the

KG while the text model is used to generate embeddings from the text corpus. Finally, the

alignment model is used to align the KG embedding and text embedding in the same vector

space using different alignment mechanisms, such as entity name and Wikipedia anchors. In

this way, the model is able to predict out-of-KG entities (phrases not stored in the KG but that

appear in the text). Similarly, [109] propose JOINER, a joint text and KG embedding method

using regularization. JOINER not only preserves co-occurrence between words in a text corpus

and relations between entities in a KG, it also provides the flexibility to control the amount

of information shared between the two data sources via regularization. Compared to other

models that combine text corpus and a KG, JOINER does not generate additional learning

samples, which makes it computationally efficient.

Logical rules are another type of information that could be integrated into embedding models.

For instance, if two entities are connected by the relation HasWife, then they should also be

connected by the relation HasSpouse. There exist systems, such as WARMR ([28]), ALEPH

([90]), and AMIE ([43]), that can automatically extract such kinds of relations. [105] prove

that the logical rules contain rich information and that they can be used to acquire and infer

further knowledge. Following this idea, [130] propose an approach seamlessly incorporating

logic rules into KG embedding models by reducing the solution space and thus improving the

inference accuracy for knowledge base completion tasks. [50] propose a model that embeds

KG and logical rules in a unified framework. Specifically, logical rules are first instantiated into

ground rules, for example, HasWife(x,y) implies HasSpouse(x,y) and vector embeddings are

introduced for entity pairs. For each fact of the logical rule, a score is computed in order to

indicate whether the ground rule is satisfied or not. The embedding model is then learned

based on the unified facts and rules. In this way, the model is more effective for knowledge

acquisition and inference as the embeddings are compatible with both facts and rules.

Key-value pairs associated with triplets are another type of information that could be integrated

into KG embedding models. Specifically, hyper-relational facts are facts that contain not only
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a base triplet (h,r,t), but also some associated key-value pairs (k,v), where a key-value pair

denotes a relation-entity pair or a relation-literal pair associated with the base triplet. Existing

works, [47, 133, 152] transform hyper-relational data (a.k.a. multi-fold or n-ary relational data)

into an n-ary representation, i.e., a set of key-value (relation-entity) pairs while completely

avoiding triplets. Using this representation, the aforementioned works learn the relatedness

between entity/relation pairs. Specifically, m-TransH ([133]) models the interaction between

entities involved in each fact, and RAE ([152]) further extends m-TransH by considering the

relatedness between entities in each fact. As these two works capture only the relatedness

between entities, NaLP ([47]) was subsequently proposed to model the relatedness between

key-value (relation-entity) pairs contained in each fact. However, [111] show that transforming

a hyper-relational fact into an n-ary representation is incompatible with the schema used by

modern KGs, where triplets still serve as the fundamental data structure to discover missing

facts based on the contents of the KG. This means that key-value pairs on a hyper-relational

fact should not be treated equally to base triplets (h,r,t), as the latter actually preserves essential

information for discovering missing facts. To address this issue, [111] propose HINGE, a hyper-

relational KG embedding model that captures not only the primary structural information of

the KG encoded in the triplets, but also the correlation between each triplet and its associated

key-value pairs.

In addition to the information described above, further types of information that can be

added to the embedding models include entity attributes, temporal information and graph

structures. [96] highlight the fact that entity attributes and relations must be separated. The

authors propose a new algorithm to handle attributes efficiently. [61] show that the KG facts are

often time-sensitive and that they develop a time-aware knowledge base embedding approach

by taking advantage of the time at which facts have occurred. The proposed solution forces the

embeddings to be temporally consistent by using temporal constraints to model the relations.

[40] show a graph-aware approach that learns entitiy and relation embeddings by leveraging

the relation paths and edge context (i.e., all the relations that connect an entity). The intuition

behind this approach is that all the relations linking to and from an entity are representative of

that entity.

2.4 KG embedding applications

Typical applications of KG embedding include link prediction, triple classification, entity

classification and entity resolution.

• Link prediction (also called KG completion) attempts to discover missing facts based on

the contents of the KG. Specifically, it predicts an entity given a relation and a second

entity, i.e., given (r, t) it predicts h, denoted also as (?, r, t), or given (h, r) it predicts t,
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denoted also as (h, r, ?). [73] define this task as entity prediction while [18] define it as

entity ranking. A similar approach predicts a relation given its head and tail entities,

denoted also as (h, ?, t), which is similar also to relation prediction [137]. In order to

evaluate the results generated by this task, a common practice is to store in a list all the

answers and see the rank of the correct answer. Several evaluation metrics can be used

in this context, such as Hits@n that considers only the ranks smaller than n, or the mean

rank, that is, the average of the predicted ranks.

• Triple classification aims at determining whether a triple appears in a KG. More precisely,

triple classification can be performed based on the score of a candidate triple (h, r, t)

that can be easily computed using the scoring function. In this way, an unseen fact

can be either true if its score is higher than a threshold and false otherwise. Traditional

evaluation metrics can be used in this task, for example, mean average precision [50] or

micro and macro averaged accuracy [48].

• Entity classification classifies entities into different semantic categories. Concretely, the

type of an entity is usually denoted using a IsA relation, and entity classification can thus

be seen as a particular case of the link prediction task, in which only (h, IsA, ?) triples are

predicted.

• Entity resolution verifies whether two entities are actually referring to the same object

or not. [18] tackle this problem by considering a scenario in which the relation of two

equivalent entities is explicit denoted as EqualTo. By learning the embedding for this

type of relation, the problem of entity resolution becomes a triple classification problem.

Fundamentally, the triple classification problem judges whether the fact (h, EqualTo, t) is

true or not. Alternatively, [95] propose a different approach that computes the similarity

between two entities and use the score to calculate the likelihood that two entities refer

to the same object. This method works even if the relation EqualTo is not encoded in

the KG.

KG embeddings can also be applied to other application domains beyond KGs. Three most

popular out-of-KG applications are relation extraction, question answering and recommenda-

tion systems.

• Relation extraction tries to discover relations from text where entities have already been

identified. [135] propose a method to extract relations by combining TransE and text,

showing that the integration of TransE and a traditional text-based extractor can actually

improve the performance of relation extraction.

• Question answering refers to the task of answering questions over KGs. Given a question

in plain text, a fact or a set of facts containing the correct answer is extracted as an answer.
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This task is challenging because of the extended variability of natural language text used

to formulate the question and of the extensive size of the KGs. A successful solution

that involves KG embedding is proposed by [17], which learns embeddings in order to

put questions and corresponding answers closer in the vector space. Given a question

and an answer, the model generates a high score if the answer is correct, low score

otherwise. The results show that, by involving the KG, the task is successfully performed

without using any rules or additional tagging step as most traditional question answering

applications do.

• Recommendation systems suggest users a list of items according to the users’ prefer-

ences. Collaborative filtering techniques are often used to perform recommendations

based on the historical interaction between users and items. However, user-item inter-

actions are often sparse, leading to unsatisfactory performance. To alleviate this issue,

hybrid recommendation systems were developed by adding auxiliary information [148].

[151] propose a hybrid recommendation system that integrates a KG. More precisely,

the hybrid recommendation system models structural knowledge by applying a KG

embedding technique such as TransR in order to learn the representation of each item.

Similarly, the users are represented by vectors, and each item is represented by its KG

vector representation plus an offset. Finally, the preference of a user for a specific item

is computed as a product of the user and item vectors. In this way, the hybrid recom-

mendation system automatically extracts semantic representations from facts in the KG

to improve the quality of the recommendation system.

2.5 Conclusion

With the booming of multi-relational data on the Web, Knowledge Graphs have become an

important data source empowering many applications. However, the symbolic and logical

representation of KGs make it difficult to take them as input to machine-learning or processing

pipelines. To tackle this issue, knowledge graph embedding techniques were proposed to

project entities and relations from a KG into a low-dimensional continuous vector space, while

still preserving the inherent structure of the KG and reasoning capabilities over the KG. The

learnt embeddings have been successfully used in both KG-reasoning applications, such as

link prediction, triple classification, entity classification and entity resolution, and out-of-KG

applications, such as relation extraction, question answering and recommendation systems.

In the next chapter we investigate about how to jointly learn embeddings from text and a

Knowledge Graph in order to benefit from both large-scale unstructured content text and

high-quality structured Knowledge Graph. Specifically, we propose a method that not only

jointly learn embeddings from text and a Knowledge Graph, but also regularize the amount

of shared information between the two data sources. We compare our proposed method
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against a collection of state-of-the-art KG embeddings across different evaluation tasks, such

as analogical reasoning, link prediction, and relation extraction, showing that our method

yields better results and significantly less computational overhead.
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3 Revisiting Text and Knowledge Graph
Joint Embeddings: The Amount of
Shared Information Matters!

Jointly learning embeddings from text and a Knowledge Graph benefits both word and enti-

ty/relation embeddings by taking advantage of both large-scale unstructured content (text)

and high-quality structured data (the Knowledge Graph). Current techniques leverage anchors

to associate entities in the Knowledge Graph to corresponding words in the text corpus; these

anchors are then used to generate additional learning samples during the embedding learning

process. However, we show in this chapter that such techniques yield suboptimal results, as

they fail to control the amount of shared information between the two data sources during

the joint learning process. Moreover, the additional learning samples often incur significant

computational overhead. Aiming at releasing the power of such joint embeddings, we pro-

pose JOINER, a new joint text and Knowledge Graph embedding method using regularization.

JOINER not only preserves co-occurrence between words in a text corpus and relations be-

tween entities in a Knowledge Graph, it also provides the flexibility to control the amount of

information shared between the two data sources via regularization. Our method does not

generate additional learning samples, which makes it computationally efficient. Our extensive

empirical evaluation on real datasets shows the superiority of JOINER across different evalua-

tion tasks, including analogical reasoning, link prediction, and relation extraction. Compared

to state-of-the-art techniques generating additional learning samples from a set of anchors,

our method yields better results (with up to 4.3% absolute improvement) and significantly less

computational overhead (76% less learning time overhead).

3.1 Introduction

Jointly learning embeddings from both text and Knowledge Graphs has been shown to com-

bine the advantages from both large-scale unstructured data (text) and high-quality structured

data (KGs). On one hand, word embeddings techniques, represent words in unstructured text

as real-valued vectors, which can be efficiently used as features by various downstream appli-

33



Chapter 3. Revisiting Text and Knowledge Graph Joint Embeddings: The Amount of
Shared Information Matters!

cations such as document classification [115], named entity recognition [125], or sentiment

analysis [118]. SkipGram [84, 85], for instance, is a well-known word embedding technique

that can efficiently learn word embeddings by preserving the co-occurrence between words in

a context window in a large text corpus, hence implicitly capturing semantic relations between

words (e.g., USA − dollar ≈ Japan − yen). Although word embedding techniques can efficiently

capture the semantics of words from large-scale unstructured text, they typically cannot model

the nature of the relation between pairs of words, e.g., they cannot infer the currency relation

between Japan and yen.

Knowledge Graphs, on the other hand, contain high-quality structured data where entities

are connected via relations. More specifically, a typical KG, such as Freebase [16], Google’s

Knowledge Graph [45] or Wikidata [136], can be represented as a set of facts; each fact is a

triplet head, relation, tail or (h,r, t) for short, such as Japan (head) hasCurrency (relation)

yen (tail). To efficiently exploit KGs in practice, KG embeddings [129] have been proposed to

represent entities as vectors, and relations as operations, while still preserving the relations

between entities. A typical KG embedding technique is TransE [19]. It models a relation as

a vector-plus operation and hence preserves the relations between entities as h + r ≈ t . By

doing so, it preserves the reasoning ability of a KG, i.e., a new fact can be asserted by evaluating

||h + r − t ||. Although the high-quality and structured data present in KGs have been widely

used to power various applications, ranging from question answering [146] to query expansion

[46], they are known to suffer from incompleteness (i.e., they are missing many/most entities

and facts) [19, 131]. For example, 93.8% of persons from Freebase have no place of birth, while

78.5% have no nationality [88].

In the current literature, the most popular scheme to jointly learn embeddings from text

and KGs [131, 153, 39, 141] is to define one or several types of anchors that link entities in

a KG and words in a text corpus, such as entity names (labels) appearing in text or entities

associated to Wikipedia pages. Subsequently, these anchors are used to generate additional

learning samples during the embedding learning process. For example, when an entity’s

name (label) appears in text, beyond the co-occurrence between words, a joint embedding

model additionally learns from the co-occurrence of the entity and its surrounding words

[131]. Although such a joint learning scheme has shown the advantage of combining text and

KGs, we still raise the following question: Does this scheme optimally combine the advantages

from the two data sources?

To answer this question, we started by reviewing the aforementioned joint learning process.

More precisely, the heuristically-defined anchors used by this scheme uniquely determine the

additionally-generated learning samples, and thus implicitly control the extend to which the

word and KG embeddings are jointly learnt from the two data sources. Subsequently, it fails to

provide the flexibility to control how much information is actually shared between the two data
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sources in the embedding learning process, which in many cases leads to suboptimal results

(as we show below in our experiments). Even though one can combine different heuristics

to generate different sets of anchors, it still gives very limited flexibility to control the joint

learning process (see the baseline JointAS in our experiments for more details). Moreover, this

joint learning scheme also suffers from an inefficiency issue, as the additionally generated

learning samples require extra computation and learning time.

Aiming at releasing the power of joint text and KG embeddings, we propose JOINER, a novel

Joint text and KG Embedding learning method via Regularization. JOINER not only preserves

the co-occurrence between words in a text corpus and the relation between entities in a KG,

but also provides the flexibility to smoothly control the amount of information shared between

the two data sources in the joint embedding learning process using regularization. Specifically,

we insert a regularization term in both the text and the KG embedding models to minimize the

distance between a word (from a text corpus) and an entity (from a KG) when the two are linked

by an anchor (e.g., entity names appearing in text). Subsequently, we are able to smoothly

control via a regularization parameter the extent to which the word and the KG embeddings are

jointly learnt from the two sources. Moreover, without additionally generated learning samples,

JOINER incurs significantly less computation overhead compared to classical joint embedding

learning methods. We conduct a thorough evaluation of JOINER on three evaluation tasks

(analogical reasoning, link prediction and relation extraction) using Freebase, Wikipedia and

New York Times corpora. Our results show the superiority of JOINER. In particular, compared

to the state-of-the-art technique generating additional learning samples from a set of anchors

[131], our method yields better performance (with a 1.4%-4.3% improvement on different

evaluation tasks), and 76% less computational overhead. Moreover, our results also show that

the amount of shared information matters across different evaluation tasks.

3.2 Related work

Word embedding techniques learn vector representations of words from a text corpus by

preserving the semantic similarity between words [15, 26, 84, 102]. For example, the SkipGram

model [84] learns word embeddings by maximizing the co-occurrence probability of words in

a text corpus. The resulting embeddings are able to capture semantic and syntactic relations

between words. By incorporating a negative sampling technique and using asychronized

stochastic gradient descent to speedup the embedding learning process [85], the SkipGram

model has been shown to be able to scale up to a large corpus in practice. Although word

embedding models are able to efficiently capture semantic and syntactic relations between

words from a large-scale corpus, they cannot extract explicit relations between pairs of words.

Knowledge Graph embedding techniques learn vector representations of entities and rela-

tions in a KG by preserving the relations between entities and thus maintaining the reasoning
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ability of the KG [108, 129]. The existing KG embedding techniques can be classified into two

categories, i.e., translational distance models and semantic matching models. Translational

distance models exploit distance-based scoring functions to create the embeddings. One

representative model is TransE [19], which creates embeddings from triplet (h,r, t ) such that

the relation between the head and tail entities are preserved as h + r ≈ t . Several works further

improve TransE to capture complex KG structures, such as multi-mapping relations (one-to-

many, many-to-one, or many-to-many), using more sophisticated scoring function involving

relation-specific hyperplanes [132] or spaces [74, 59], for example. Ebisu et. al.[36] employ

the same principle applied in TransE to a Lie group, which is a compact space representation.

Semantic matching models, on the other hand, exploit similarity-based scoring functions.

One typical model is RESCAL [95]. It represents each entity as a vector and each relation as

a matrix, and uses a bilinear function to model the relation between two entities. Several

works also extend RESCAL by putting a specific focus on reducing the model complexity [143],

by capturing asymmetric relations [124], or by modeling non-linear relations using neural

networks [117, 29, 113, 10, 92]. Another promising direction is the Data-to-Text movement

[5, 51], whose goal is to decode a Knowledge Graph into sentences and then add them as

training for a language model such as GPT-3 [21]. Despite achieving good performance, these

non-linear models are computationally expensive, non-transparent and poorly understood, as

opposed to translational distance and semantic matching models. Although KG embeddings

are able to capture specific relations between entities, they suffer from incompleteness, i.e.,

many triplets are missing from the KG.

Joint text and Knowledge Graph embeddings learn embeddings by combining the two data

sources. The most common scheme to jointly learn text and KG embeddings is to define

one or several types of anchors that link entities in a KG and words in a text corpus, which

are then used to generate additional learning samples in the embedding learning process.

One representative method is proposed by [131]. Specifically, based on a SkipGram-like text

model and a TransE-like KG model, it jointly learns word and entity/relation embeddings.

It defines two types of anchors connecting words in a text corpus and entities in a KG: 1)

entity names (labels) appearing in text and 2) entity-associated Wikipedia pages, and then

generates additional learning sample from these anchors. For entity names appearing in text,

additional learning samples are generated for the KG model by replacing the entity from each

head-relation-tail triplet by the corresponding word (e.g., word-relation-tail if the head is an

anchor from text). For entity-associated Wikipedia pages, additional learning samples are

generated for the text model by replacing the word from each word pairs by the associated

entity (e.g., word-entity). [153] extends this model by using another type of anchors, i.e.,

words appearing in the entity description from the KG. Following this joint learning scheme,

many task-specific joint embedding methods have also been proposed. For example, [39]

combines all the aforementioned types of anchors to jointly learn embeddings specifically

for the entity disambiguation problem. [141] addresses the same problem considering not
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only entity names appearing in text as anchors, but also the relatedness between entities. [53]

learns joint text and KG embeddings using entity name appearing in text as anchors, and also

by inferring relations from text using distant supervision. However, all these methods do not

provide the flexibility to control how much information is actually shared between the two

data sources in the embedding learning process, and thus fail to optimally take advantage of

both data sources. Moreover, the additional samples generated from the anchors create some

significant overhead in terms of computations and learning time, in particular when a large

number of additional samples being fed to a stochastic optimization process [144]. To address

these issues, we propose JOINER to jointly learn text and KG embeddings via regularization.

JOINER can flexibly control the amount of information shared between the two data sources

in the embedding learning process with significantly less computational overhead.

In addition, there are some other embedding methods combining text and KGs focusing

on improving one using the other, but they do not tackle the same problem as ours. On

the one hand, KG embeddings can be improved using textual relations (i.e., full lexicalized

dependency paths) [122] or sentence/paragraph embeddings [142]. On the other hand, word

embeddings can be enhanced by considering explicit relations from semantic knowledge [147]

or word concepts from KGs [25]. However, these methods output either word embeddings or

entity/relation embeddings.

Finally, regularization techniques are widely used for joint learning from multiple data sources

[145, 24]. To the best of our knowledge, for joint learning from text and KGs, only one recent

work KADE [14] adopts regularization techniques to align entities with documents using

heuristically defined relatedness between entities and documents, which differs from our goal

(aligning entities with words). Meanwhile, it outputs document embeddings rather than word

embeddings, and thus fails to support the analogy reasoning task.

3.3 JOINER

3.3.1 Model

Our proposed joint model is built on top of a text model for learning word embeddings and a KG

model for learning entity/relation embeddings. In this chapter, we adopt the same individual

text and KG models as in [131], which is a representative joint text and KG embedding method

generating additional learning samples from a set of anchors. Subsequently, by comparing

with [131] in the experiments, the superiority of using regularization when jointly learning

the embeddings can be clearly verified, as we discount the effect of the individual text and KG

models. However, we also note that our joint embedding learning method using regularization

is not limited to any specific text and KG model; it can incorporate more sophisticated text or

KG models (more discussion on this point later). In the following, we start by describing the
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individual text and KG models, followed by our joint model.

Text model. Our text model learns word embeddings by capturing the co-occurrence of words

observed in a text corpus D. We adopt the same text model as in [131]. Specifically, let V

denote the word vocabulary of the text corpus1. The conditional probability of a target word

w appearing close to a context word v (within a context window of a certain length) is defined

as follows:

p(w |v) = exp{s(w,v)}∑
v ′∈V exp{s(w,v′)}

(3.1)

where s(w,v) is a scoring function evaluating the co-occurrence of two words w and v based

on their embeddings. It is defined as s(w,v) = b− 1
2 ||w−v||2, where b is a constant margin used

for better numerical stability in the learning process. Subsequently, the objective of the text

model is to maximize the likelihood of the co-occurrence of pairs of words in the whole text

corpus:

LT = ∑
(w,v)∈C

#(w, v) log p(w |v) (3.2)

where C is the set of unique word pairs co-occurring in a context window of a certain length,

and #(w, v) is the number of times (w, v) appears in the corpus D.

Knowledge Graph model. Our KG model learns entity/relation embeddings by preserving the

relations between entities. Specifically, a KG ∆ consists of a set of triplets (h,r, t ), h, t ∈ E and

r ∈ R, where E and R refer to the entity and relation vocabularies, respectively. Similar to

the text model, we define the conditional probability of observing h given (r, t) in the KG as

follows:

p(h|r, t ) = exp{s(h,r,t)}∑
h′∈E exp{s(h′,r,t)}

(3.3)

where s(h,r,t) is a scoring function evaluating the correctness of the triplet (h,r, t) based

on their embeddings. It is defined as s(h,r,t) = b − 1
2 · ||h+ r− t||2. In addition, p(r |h, t) and

p(t |h,r ) are defined in the same way as p(h|r, t ) with the corresponding normalization terms,

respectively. Subsequently, the KG model maximizes the likelihood of observing all triplets

from the KG:

LKG = ∑
(h,r,t )∈∆

[log p(h|r, t )+ log p(r |h, t )+ log p(t |h,r )] (3.4)

1We pre-process the text corpus in order to detect common phrases (e.g., new york) such that the vocabulary V

also contains these phrases. For the sake of simplicity, we use the term “word(s)” to refer these words/phrases in V ,
if not specified otherwise.
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Joint Text and KG model using regularization. Our joint model combines the above text and

KG models via regularization. Specifically, let A denote a set of anchors, where each anchor

connects a word from the text corpus and an entity from the KG. In this chapter, we adopt

two common types of anchors, 1) entity names appeared in text and 2) entity-associated

Wikipedia pages, which are widely used in the current literature [131, 39]. First, entity names

naturally link entities to words in the text corpus. For each entity e ∈ E , if its name (label) we

also appears in our word vocabulary, i.e., we ∈V , we consider (e, we ) as an anchor. Second,

entity-associated Wikipedia pages also link entities to words. A Wikipedia (English) page is

often associated with a unique entity in a KG (e.g., Freebase). Subsequently, a Wikipedia

anchor (i.e., a word w with a hyperlink to the Wikipedia page) in the text actually links to

the page’s associated entity ew ; we also considers (ew , w) as an anchor. Finally, both types of

anchors are included in our set of anchors A , and we do not distinguish them in A . Note that

we do not consider entity descriptions as anchors [153], as it suffers from a low coverage issue

(entity descriptions are not always available in a KG).

Based on the set of anchors A , we are then able to jointly learn the text and KG models not

only by capturing the co-occurrence between words in a text corpus and the relation between

entities in a KG, but also by minimizing the distance between a word and an entity when the

two are linked by an anchor via regularization. To achieve this goal, we insert regularization

terms in both the text and KG models to connect them by minimizing the Euclidean distance

between a word and an entity if they are connected by an anchor in A . Specifically, for the

text model, we redefine the scoring function as follows:

s(w,v) = b − 1

2
(||w−v||2 +1(v,ev )∈A ·β · ||v−ev ||2) (3.5)

where 1(v,ev )∈A is an indicator function which is equal to 1 when (v,ev ) is an anchor in A and

to 0 otherwise. β is a regularization parameter which defines the weight of the regularization

term ||v−ev ||2 (more on β below). Using this scoring function for our text model, we are able

to not only capture the word co-occurrence (i.e., ||w−v||2), but also to preserve the similarity

between a word and its anchor entity (if any) via the regularization term. Subsequently, we

redefine the scoring function for the KG model in a similar way:

s(h,r,t) = b − 1

2
(||h+ r− t||2 +1(h,wh )∈A ·β · ||h−wh ||2

+1(t ,wt )∈A ·β · ||t−wt ||2)
(3.6)

where we insert two regularization terms for head and tail entities, respectively. This scoring

function is able to not only capture the relations between entities (i.e., ||h+ r− t||2), but also

preserves the similarity between an entity and its word anchor via the two regularization terms.

We use the same regularization parameter β for the KG model as for the text model, as our

regularization terms share the same formulation in both the text and KG models.
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In our joint learning model, the regularization parameter β plays a key role to provide the

flexibility to control the amount of information shared between the two data sources. More

precisely, β actually defines the weight of the regularization term in the whole scoring function.

A smaller value of β implies a lower importance of the regularization term in the scoring

function; the learning process will learn less from the set of anchors, meaning that less infor-

mation is actually shared between the two models in the learning process. In the extreme case

where we set β= 0, our joint learning model degrades to two independent text and KG models.

In practice, β needs to be appropriately set to obtain high-quality word and entity/relation

embeddings. On one hand, a small value of β may lead to insufficient information sharing

between the models in the learning process. On the other hand, too big a value may lead to

putting too much emphasis on the set of anchors while insufficiently learning from the two

data sources (text and KGs). We investigate the impact of β across different evaluation tasks in

our experiments. Below, we present our joint learning process.

3.3.2 Joint Embedding Learning Process

Learning with negative sampling. In practice, the considerable size of the vocabularies V and

E makes it difficult to compute the normalizer in p(w |v) (Eq. 3.1) and p(h|r, t ) (Eq. 3.3) (also

for p(r |h, t ) and p(t |h,r )). To overcome this issue, negative sampling techniques [85] can be

adopted to simplify the objective functions LT and LKG . Specifically, for a pair of words (w, v),

we not only maximize the probability of their co-occurrence, i.e., p((w, v) ∈D|w,v) =σ(s(w,v)),

but also maximize the probability of the word w and a randomly sampled negative word vN not

appearing in the corpus D , i.e., p((w, vN ) 6∈D|w,vN ) =σ(−s(w,vN )), where σ(·) is the sigmoid

function. In summary, for each pair of words (w, v), we maximize the following objective

function:

Θw = logσ(s(w,v))+γEvN [logσ(−s(w,vN ))] (3.7)

where γ ∈Z+ is the number of negative samples. By applying the same negative sampling tech-

nique to the KG model, instead of maximizing p(h|r, t ), we maximize the following objective

function:

Θh = logσ(s(h,r,t))+γEhN [logσ(−s(hN ,r,t))] (3.8)

where hN is a randomly sampled negative head entity. We also convert p(r |h, t ) and p(t |h,r )

in the same way:

Θr = logσ(s(h,r,t))+γErN [logσ(−s(h,rN ,t))] (3.9)
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Algorithm 1 JOINER

Require: A text corpus D, a KG ∆, and the corresponding vocabulary of words, entities and
relations (V , E and R, respectively)

1: Initialize word, entity and relation embedding vectors w (w ∈ V ), e (e ∈ E ) and r (r ∈R)
2: repeat
3: Sample a batch of word pairs Dbatch from D

4: for (w, v) ∈ Dbatch do
5: Update w,v with the gradients ofΘw (Eq.3.7)
6: end for
7: Sample a batch of triples from ∆batch from ∆

8: for (h,r, t ) ∈∆batch do
9: Update h,r,t,hN with the gradients ofΘh(Eq.3.8)

10: Update h,r,t,rN with the gradients ofΘr (Eq.3.9)
11: Update h,r,t,tN with the gradients ofΘt (Eq.3.10)
12: end for
13: until Convergence

Θt = logσ(s(h,r,t))+γEtN [logσ(−s(h,r,tN ))] (3.10)

Alternating joint learning process. Based on the above objective functions, our joint learning

process alternates between the two data sources. As shown in Algorithm 1, after initializing

word/entity/relation embeddings (line 1), we alternatively learn from a batch of word pairs

sampled by scanning the text corpus (Line 3-6), and a batch of triplets randomly sampled

from the KG (Line 7-12). The batch size is empirically set to 500; in practice, when setting it

to a small value (much smaller than the size of the corpora), it has negligible impact on the

results. Our learning process is performed using asynchronous stochastic gradient descent

(ASGD) until convergence. In practice, we iterate both datasets multiple times to ensure the

convergence (see experiment settings for more details).

Figure 3.1 shows the architecture of our proposed method HINGE. Specifically, HINGE is

built on top of a text model and a KG model. The text model captures the co-occurrence of

words observed in a text corpus, while the KG model learns entity and relation embeddings

by preserving the relations between entities. In addition, HINGE defines a joint model that

combines the above text and KG models via regularization without generating extra samples.
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Figure 3.1 – Overview of our proposed method JOINER

3.3.3 Extensibility of JOINER

In this chapter, our JOINER model combines a text model and a KG model, whose scoring

functions are both defined using the Euclidean distance. Our regularization term is also

defined using the Euclidean distance. Our model is not limited to these two text and KG

models, however. It can be modified to incorporate other text and KG models, under the

condition that the scoring functions of the two models are defined using the same distance

metric (e.g., cosine distance), with which our regularization term should also be defined. In

this study, we instantiate JOINER using the Euclidean distance to distinctly demonstrate its

advantages over [131] which uses the same text and KG model as ours but generates additional

learning samples for the joint learning process.

3.4 Experimental Evaluation

We evaluate JOINER on three different tasks: analogical reasoning, link prediction in KGs, and

relation extraction. Subsequently, we investigate the impact of the regularization parameter β,

followed by a runtime evaluation. We start below by presenting our experiment settings.

3.4.1 Experiment Setting

Dataset. Similar to [131], we use the following public text corpora and KGs.

• Text. We use the English Wikipedia dump collected in July 2017. We filter out noisy

pages (e.g., pages for disambiguation), and perform named entity recognition to detect

common phrases, which are included in the vocabulary V note1. After removing rare

words, our text corpus D contains 1,110,804,425 words in total, with 489,861 unique

words.

• Knowledge Graph. We adopt Freebase in our experiments, which has been widely used
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by previous work [19, 132, 131, 59]. We extract facts (triplets) from the Freebase dump2,

and for each entity we take its label in English as its entity name for anchor extraction.

We consider the top 200K frequent entities and retain all related facts. In the end, our

KG contains 199,355 unique entities, 3,442 unique relations and 2,459,553 triplets. For

the link prediction task, we randomly sample 20% of the triplets as test data, and the

rest as training data. We choose this KG rather than the commonly used FB15k or WN18,

because its large scale ensures sufficient anchors linking entities to words.

Based on the above datasets, we extract the set of anchors A , which sum up to 98,812 unique

anchors. This represents 20.17% of the unique words in V and 49.57% of the unique entities

in E . Moreover, we find that these anchors actually involve 2,301,519 triplets (93.57% of

all triplets) in the KG, and 398,551,199 words (35.88% of all words) in our text corpus. These

statistics imply that anchors tend to connect frequent words and entities rather than infrequent

ones.

Baselines. We compare our method against a sizable collection of nine state-of-the-art tech-

niques from three categories.

• Word embedding techniques:

– SkipGram [84] is a popular word embedding model that maximizes the co-occurrence

probability of a word and its context in a text corpus, where the scoring function is

defined using the dot product, i.e., s(w,v) = w ·v. Our text model is equivalent to

the SkipGram model when constraining the embedding norm to be ||w|| = ||v|| = 1,

as w ·v = 1−0.5 ·‖w−v‖2. Note that we adopt the Euclidean distance in the scoring

function of our text model (rather than using the SkipGram model), in order to be

consistent with our KG model (whose scoring function is also defined using the

Euclidean distance).

– GloVe [102] is another word embedding techniques that learns directly from aggre-

gated global word-word co-occurrence statistics from a text corpus. The scoring

function is defined using the dot product, i.e., s(w,v) = w> ·v+bw +bv , where bw

and bv are scalar biases for a word and its context.

• Knowledge graph embedding techniques:

– TransE [19] is a popular KG embedding model that preserves the relation between

two entities as h + r ≈ t . We also use it as our KG model. However, its objective

function is different from ours. Specifically, TransE minimizes a margin-based

ranking objective function, i.e., [d(h+ r,t)+b −d(hN + r,tN )]+, where d(·, ·) can

2https://developers.google.com/freebase/
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either be the L1 or L2-norm. In our experiments, we test different margins b with

both L1 and L2-norm, the optimal setting being b = 1 with the L1-norm for TransE.

– TransH [132] is a KG embedding technique that further extend TransE to better

capture multi-mapping relations in a KG. Specifically, TransH introduces the idea

of relation-specific hyperplanes, in which, for a given triplet (h,r, t), the embed-

dings of the entities h and t are projected into a relation hyperplane wr , and their

projections are denoted as h⊥ = h−w>
r hwr and t⊥ = t−w>

r twr , respectively. Thus,

h⊥ and t⊥, can be connected by a translation vector vr on the hyperplane. Similar

to TransE, the relation between two entities is preserved as h⊥+ vr ≈ t⊥, and the

objective function is defined as [d(h⊥+vr ,t⊥)+b−d(h⊥N +vr ,t⊥N )]+, where d(·, ·)
can either be the L1 or L2-norm. In our experiments, we also test different margins

b with both L1 and L2-norm, the optimal setting being b = 0.25 with the L1-norm

for TransH.

– TransD [59] is a KG embedding technique that decomposes the projection matrix

into a product of two vectors. Specifically, additionally mapping vectors wh , wt ∈
Rd and wr ∈Rk are introduced along with the entity and relation representations

h, t ∈Rd and r ∈Rk . The two projection matrices are defined as M1
r = wr w>

h + I,

and M2
r = wr w>

t + I. These two projection matrices are then used to project the

head and tail entities with h⊥ = M1
r h and t⊥ = M2

r t. With the projected entities, the

objective function is defined in the same way as in TransR. In our experiments, we

also test different margins b with both L1 and L2-norm, the optimal setting being

b = 1 with the L1-norm for TransD.

– DistMult [143] is an efficient semantic matching model using a bilinear scoring

function that maps each entity to k-dimensional vector and each relation r to

a diagonal matrix Rk×k
r . For a given triplet, the score is computed as s(h,r, t) =

h>Rr t. DistMult also minimizes a margin-based ranking objective function, i.e.,

max{s(hN ,r, tN )−s(h,r, t )+b,0}. In our experiments, we also test different margins

b, the optimal setting being b = 0.1 for DistMult.

• Knowledge graph embedding techniques:

– JointAS [131] is a representative joint text and KG embedding model using Additional

learning Samples generated from two types of anchors. It uses the same text and

KG models as ours. It defines two types of anchors that link words and entities

and then generate additional learning samples from these anchors. First, for entity

names appeared in text, additional learning samples are generated for the KG

model by replacing the entity from each triplet (h,r, t ) by the corresponding word,

e.g., (wh ,r, t) if (h, wh) is an anchor in A . This type of anchors is called “AN”. For

entity-associated Wikipedia pages, additional learning samples are generated for

the text model by replacing the word from each word pairs (w, v) by the associated
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entity, e.g., (w,ev ) if (ev , v) is an anchor in A . This type of anchors is called “AA”.

Its joint learning process alternates between the text, the KG and the two types

of additionally generated learning samples. As suggested by the authors, we set

the margin to its optimal value b = 7. Note that according to the selected types of

anchors, JointAS can be configured in three settings, i.e., (AN), (AA) and (AN+AA).

We exclude task-specific joint embedding methods such as [39, 141] from our baselines, as

they involve task-specific heuristics, and cannot support different evaluation tasks. We also

exclude KADE [14], because it aligns entities with documents and thus outputs document

embeddings rather than word embeddings, failing to support the analogy reasoning task.

For our JOINER, we search the optimal regularization parameter β from 0.0001 to 0.1 on a log

scale, and set the margin b = 8. For all the methods, we set the embedding size to 100, the

number of negative samples to 10, and the context window size for text models to 5. For all

models involving the text corpus, we train embeddings with three epochs on the text corpus

(for the joint models, the KG is simultaneously traversed multiple times using the alternating

joint learning process). For a fair comparison, we also train TransE, TransH, TransD and

DistMult by traversing the KG the same number of times as for the joint models. We train and

test five models for each method and report the average results. The code for our model and

datasets are made publicly available3.

3.4.2 Task 1: Analogical Reasoning

The analogical reasoning task is widely used to evaluate word embeddings. It consists of a set of

analogies, such as USA→dollar: Japan→? that require to predict the missing word (yen in this

example). We use a popular analogy dataset provided by [85], which contains 19,544 word and

3,218 phrase analogies. To predict the missing word for each analogy (denoted as A→B:C→?),

we compute the Euclidean distance between C+ (B−A) and all the word embeddings, and

pick the word with the minimum Euclidean distance as the predicted word. We report the

accuracy over the whole analogy dataset.

Table 3.1 shows the results. First, we observe that JOINER outperforms all baselines by achiev-

ing the highest accuracy (with a 2.8% improvement over the best performing baseline Skip-

Gram). Here we also report the corresponding optimal regularization parameter β= 0.001 (we

will later show that the optimal β varies across different tasks). Second, the best-performing

word embedding technique, SkipGram, surprisingly beats JointAS on all configurations, which

is the opposite of the results from [131]. This is probably due to the fact that our text and KG

datasets are more tightly connected by anchors than the dataset used in [131], in particular for

3https://github.com/eXascaleInfolab/JOINER_code/
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Table 3.1 – Analogical reasoning performance

Method Accuracy (%)
SkipGram 56.3
GloVe 47.2
JointAS (AN) 38.9
JointAS (AA) 50.7
JointAS (AN+AA) 40.5
JOINER (β=0.001) 57.9

the text corpus. More precisely, 35.88% of all words in our text corpus and 93.57% of all triplets

in our KG are connected by anchors, while these two percentages are 2.76% and 40% in the

dataset used by [131], respectively. Subsequently, on our dataset, JointAS generates too many

additional learning samples which dominate the learning process, leading to degraded results.

In contrast, our JOINER approach allows to control the extent to which the embeddings are

jointly learnt from the two data sources, and can hence avoid learning too much from the

anchors by setting the regularization parameter β accordingly. Finally, we observe that JointAS

results are sensitive to the anchor configuration; AA is the best anchor type for the analogical

reasoning task, while AN actually pollutes the results. Similar findings are also reported in

[131]. However, choosing appropriate anchors is not straightforward for JointAS; we will see

later that different types of anchors may have varying impact on different tasks.

3.4.3 Task 2: Link Prediction

The link prediction task is widely used for KG completion [19]. It suggests new triplet (h,r, t )

with h or t missing. In other words, it predicts t given (h,r ) or predicts h given (r, t). To

implement this task, we follow the same evaluation protocol as in TransE [19]. More precisely,

when predicting t given (h,r ), we compute the scores for ||h+ r−e||, where e ∈ E ; by ranking

the scores in ascending order, we generate a predicted ranking list of entities. We then report

Hi t s@10, which measures the percentage of the predictions whose top-10 entities contain the

ground truth entity t , over all triplets in the test dataset. We call this setting “raw”. Moreover,

when predicting t given (h,r ), other tail entities may co-exist in the KG, i.e., T ′ = {t ′|t ′ 6=
t , (h,r, t ′) ∈∆}. In this case, ranking t ′ in front of t should not be counted as an error. To avoid

this case, [19] suggests filtering out these entities (T ′) before generating the ranked list of

entities. We call this setting “filtered”. The above evaluation protocol also applies to predict h

given (r, t ).

Table 3.2 shows the results. First, we observe that JOINER achieves the best performance in

most cases (except when predicting tail with the “raw” setting, JointAS (AN) is slightly better).

In the “filtered” setting (which is more reasonable for this task), JOINER outperforms the
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Table 3.2 – Link prediction performance

Method
Hits@10
Raw (%)

Hits@10
Filtered (%)

Head Tail Head Tail
TransE 37.1 44.6 41.7 49.2
TransH 38.7 45.4 46.1 52.6
TransD 38.9 43.1 48.6 52.7
DistMult 35.7 36.8 44.5 45.4
JoinAS (AN) 41.4 49.1 53.9 60.8
JoinAS (AA) 40.1 46.3 52.4 58.0
JoinAS (AN+AA) 40.9 48.7 52.5 59.7
JOINER (β=0.001) 42.2 48.9 56.2 62.1

best-performing baseline JointAS (AN) with 2.1% and 4.3% improvement in predicting tail and

head, respectively. Second, we find that JointAS with all configurations achieves better results

than TransE, TransH, TransD and DistMult, showing the effectiveness of joint embeddings

for this task. Moreover, for JointAS, we find that the anchor configuration AN yields higher

performance than AA on this task, while we observe the opposite (i.e., AA shows better results

than AN) on the analogical reasoning task. This implies that JointAS is less robust to different

tasks, as the selection of anchors has a strong impact on the results. In contrast, our JOINER

is less sensitive to anchor selection, as optimal performance can be achieved by tuning the

regularization parameter.

3.4.4 Task 3: Relation Extraction

Relation extraction finds relations between two entities from text [135]. Given two detected

entities in a sequence of text, it assigns a specific relation (if any) to the pair of entities based on

their contexts (features) in text. We adopt the same evaluation protocol as used by JointAS [131].

Specifically, we first use a basic relation extractor [89] to generate a set of candidate relations

ri for each pair of entities (h, t ) with their estimated probability Prmi nt z (ri ) (according to text

features). Then, we compute the Euclidean norms for the corresponding candidate triplets

based on the embeddings, and convert the Euclidean norms into probabilities using a softmax

function, i.e., Pr JOI N ER (ri ) = 1− so f tmax(||h+ ri −e||). Finally, for each candidate relation,

we linearly combine the two probabilities asα ·Prmi nt z (ri )+(1−α) ·Pr JOI N ER (ri ) and pick the

relation with the largest probability. Similar to [131], the optimal α is searched from 0 to 1 with

a step of 0.025. In this task, we use a relation-labeled dataset NYT+FB [106], and randomly

split it into 50% training and 50% test sets. The basic extractor is trained on the training data,

while entity/relation embeddings are trained using our own Wikipedia+Freebase datasets. We

report the average accuracy over the test dataset.
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Figure 3.2 – Relation extraction performance

Figure 3.2 shows the results. First, we observe that compared to the basic extractor Mintz,

using embeddings can significantly improve the relation extraction performance; a similar ob-

servation has also been reported by [135]. Second, compared to the KG embedding techniques

TransE, TransH, TransD and DistMult, JointAS achieves the same performance, while JOINER

further outperforms JointAS by 1.4%. Note that all KG embeddings baselines and JointAS show

the same results on this task, as we report the optimal accuracy by tuning the weights for the

weighted sum process, which indeed weakens the impact of individual techniques.

3.4.5 Impact of Regularization Parameter

The regularization parameter β controls to what extent we jointly learn embeddings from the

text and KG. A smaller value of β implies that we learn less from the set of anchors that link the

two data sources. In this experiment, by varying β on a log scale, we report the performance

for the analogical reasoning and relation extraction tasks in Figure 3.3. First, we observe that

neither a too small nor a too big value of β results in optimal performance. On one hand, a

too small value of β leads to insufficient information sharing between the two data sources

in the learning process, resulting in suboptimal performance. On the other hand, too big

a value over-considers the anchors which dominate the learning process, thus leading to

degraded performance. Our method JOINER provides hence the flexibility to achieve the best

performance by tuning β. Second, we find the optimal β varies across different tasks, i.e., 0.001

for analogical reasoning and 0.005 for relation extraction, which can serve as a guideline for

future work on joint text and KG embeddings.
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(a) Analogical reasoning (b) Relation extraction

Figure 3.3 – Impact of regularization parameter β

Table 3.3 – Runtime performance

Method Learning time (in hours)
Text+KG (without joint learning) 14.3
JointAS (AN+AA) 37.6
JOINER (ours) 26.8

3.4.6 Runtime Performance

We evaluate the efficiency of JOINER by comparing the learning time of different embedding

methods. For a fair comparison, we focus on JointAS (AN+AA) and JOINER, as they share the

same text and KG models, and also the same set of anchors. To give a reference, we also report

the total learning time of the text+KG models (without joint learning). We report the embed-

ding learning time4 in Table 3.3. Unsurprisingly, compared to Text+KG (without joint learning),

both the joint embedding methods create some overhead, i.e., 163% and 87% additional

learning time for JointAS and JOINER, respectively. More importantly, compared to JointAS

which creates additional learning samples for joint learning, JOINER using regularization

yields significantly less overhead (76% less learning time overhead).

3.5 Conclusions

This chapter revisited text and KG joint embeddings and introduced JOINER, a novel joint

text and KG embedding method providing the flexibility to control the amount of information

shared between the two data sources during the joint learning process via regularization. With-

out additionally generated learning samples, it is also computationally efficient. Extensive

experiments showed that compared to JointAS, a state-of-the-art joint text and KG embedding

method generating additional learning samples from a set of anchors, JOINER yields better re-

4Measured on a server with two CPUs (Intel Xeon E5-2620V4@2.10GHz) and 128G RAM using 30 threads.
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sults (with 1.4%-4.3% improvement on various evaluation tasks) while significantly improving

runtime performance (76% less overhead). [38] exploited the persona graph decomposition

[37] to develop an embedding algorithm that represents nodes in the graph with multiple

vectors. In future work, improving the embedding representation using the persona graph

concept for learning multiple representations of the nodes in the Knowledge Graph may

further improve the performance of our proposed method JOINER.

In the next chapter we propose a novel method to learn hyper-relational KG embeddings. In a

hyper-relational fact, each fact contains not only a base triplet (h,r, t ), but also the associated

key-value pairs. In order to learn embeddings from this data structure, we propose HINGE, a

Convolutional Neural Network based architecture that captures not only the primary structural

information of the KG encoded in the triplets, but also the correlation between each triplet

and its associated key-value pairs. We compare HINGE against a collection of state-of-the-art

methods on various link prediction tasks showing the superiority of our proposed method.
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4 Beyond Triplets: Hyper-Relational
Knowledge Graph Embedding for Link
Prediction

Knowledge Graph embeddings are a powerful tool for predicting missing links in KGs. Existing

techniques typically represent a KG as a set of triplets, where each triplet (h,r, t) links two

entities h and t through a relation r , and learn entity/relation embeddings from such triplets

while preserving such a structure. However, this triplet representation oversimplifies the

complex nature of the data stored in the KG, in particular for hyper-relational facts, where

each fact contains not only a triplet (h,r, t), but also the associated key-value pairs (k, v).

Even though a few recent techniques tried to learn from such data by transforming a hyper-

relational fact into an n-ary representation (i.e., a set of key-value pairs only without triplets),

they result in suboptimal models as they are unaware of the triplet structure, which serves as

the fundamental data structure in modern KGs and preserves the essential information for

link prediction. To address this issue, we propose HINGE, a hyper-relational KG embedding

model, which directly learns from hyper-relational facts in a KG. HINGE captures not only

the primary structural information of the KG encoded in the triplets, but also the correlation

between each triplet and its associated key-value pairs. Our extensive evaluation shows

the superiority of HINGE on various link prediction tasks over KGs. In particular, HINGE

consistently outperforms not only the KG embedding methods learning from triplets only

(by 0.81-41.45% depending on the link prediction tasks and settings), but also the methods

learning from hyper-relational facts using the n-ary representation (by 13.2-84.1%).

4.1 Introduction

Knowledge Graphs, such as Freebase [16], Google’s Knowledge Graph [45] or Wikidata [136],

have become a key asset powering a large range of Web applications ranging from semantic

search [138] to question-answering [146], query expansion [46], or recommendation systems

[151]. KGs are typically represented through a set of triplets; each triplet head, relation, tail,

or (h,r, t) for short, encodes a relation connecting a head entity and a tail entity, such as
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Figure 4.1 – A hyper-relational fact

Switzerland (head) hasCurrency (relation) Swiss franc (tail). While modern KGs typically

contain rich and high-quality data, they are also known to suffer from an incompleteness

issue, i.e., missing facts. For example, 71% of all people from Freebase have no place of birth

[93], even though this is a mandatory property of the schema [134]. Against this background,

Knowledge Graph completion problems have been widely studied. A central problem in this

context is to predict the missing links in a KG (a.k.a. link prediction). More precisely, given two

elements of a triplet, the task is to predict the missing one, such as (?,r, t), (h, ?, t) or (h,r, ?),

where the question mark represents the missing entity/relation.

In the current literature, Knowledge Graph embeddings have been shown as a powerful tool

for such link predictions [129]. The key idea of KG embeddings is to learn a latent (and low-

dimensional) vector representation of entities/relations (i.e., entity/relation embeddings)

from a set of triplets in a KG, while preserving the essential information for link prediction

in the KG. For example, TransE [19], a typical KG embedding technique, models a relation

as a vector-plus operation between two entities h + r ≈ t ; subsequently, when predicting the

missing links, a new fact can be asserted by evaluating ||h + r − t ||.

Despite its broad adoption, the triple-based representation of a KG often oversimplifies the

complex nature of the data stored in the KG, in particular for hyper-relational data (a.k.a.

multi-fold [133] or n-ary [47] relational data), where each fact contains multiple relations and

entities. Figure 4.1 shows an example about Marie Curie’s education from Wikidata: it contains

a triplet: (h,r, t ) {Marie Curie, educated at, University of Paris}, as well as further information

associated with the triplet, represented as key-value (relation-entity) pairs1 (k, v) including

{academic major, physics}, {academic degree, Master of Science}, etc.

Such hyper-relational data is ubiquitous in KGs. Taking Freebase as an example, more than 30%

of its entities are involved in such hyper-relational facts [133]. When learning KG embeddings,

those hyper-relational facts have to be transformed into triplets by either 1) keeping the

triplet only from a hyper-relational fact, e.g., (h,r, t ) in the above example, causing irreversible

1We use the term key-value (k, v) denoting a relation-entity pair here to emphasize its difference from the triplet
(h,r, t ), even though h, t and v are entities while r and k are relations.
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Figure 4.2 – N-ary representation of the fact

information loss; 2) creating additional triplets from a hyper-relational fact via reification [20],

where an artificial entity is used to represent the triplet q := (h,r, t ) and additional triplets are

created as (q,k, v); or 3) creating additional triplets from a hyper-relational fact via relation

paths [133], where we link h to v via an artificial relation r̂ k representing a relation path r → k,

resulting in additional triplets (h, r̂ k, v). Although the latter two transformations preserve the

complete information of a hyper-relational fact, the extra entities/relations they artificially

introduce confuse KG embeddings methods, preventing them from capturing key structural

properties of the original input graph (see Section 4.4.3 for more detail).

Against this background, in this chapter, we investigate the problem of hyper-relational Knowl-

edge Graph embedding. In the current literature, a few recent studies consider such hyper-

relational data [133, 152, 47]. These works consider a set of relations as a so-called n-ary

(or multi-fold) relation, while the associated entities then become instances of that relation.

Figure 4.2 shows an n-ary representation of the above example about Marie Curie. An n-

ary relation “education” is extracted from the hyper-relational fact, containing the following

four relations: education_head, education_tail, education_major and education_degree; the

hyper-relational fact is then represented as a set of key-value (relation-entity) pairs only, i.e.,

{education_head:Marie Curie, education_tail:University of Paris, education_major:Physics,

education_degree:Master of Science}. Subsequently, using such an n-ary representation, exist-

ing approaches to link prediction either learn to model the relatedness of entities [133, 152],

or learn from the relatedness between entity/relation pairs [47]. However, the n-ary repre-

sentation of a hyper-relational fact (as a set of key-value pairs without triplets) treats each

key-value pair in the fact equally, which is not compatible with the schema used by modern

KGs. Specifically, as triplets still serve as the fundamental data structure in modern KGs, they

preserve the essential information for link prediction. In other words, key-value pairs (k, v) on

a hyper-relational fact should not be treated identically as triplet (h,r, t ). In our experiments,

we conduct a hypothesis test and experimentally show that embeddings learnt from the origi-

nal triplets (from a set hyper-relational facts) consistently and significantly outperform (by

58.3-125.27%) embeddings learnt from the same number of triplets created by a null model,

where one triplet is extracted from the n-ary representation of each hyper-relational fact (rep-

resented a set of key-value pairs) via a randomly sampled relation path [133] (see Section 4.4.2
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for more detail). Such an observation suggests that it is highly beneficial to directly capture

the structure of the triplets in hyper-relational facts.

Motivated by the above observation, we propose in this chapter HINGE, a Hyper-relatIonal

kNowledge Graph Embedding model. HINGE is designed to directly learn from hyper-relational

facts in a KG, capturing not only the primary structural information of the KG encoded in the

triplets, but also the correlation between each triplet and its associated key-value pairs (if

any). More precisely, for each hyper-relational fact, we first design two convolutional neural

network pipelines, which learn 1) from the triplet (h,r, t ), generating a triple-wise relatedness

feature vector for h, r and t , and 2) from each key-value pair (k, v) associated with the triplet

together with the triplet itself, generating a quintuple-wise relatedness feature vector between

h, r , t , k and v , respectively. Afterward, we compute the overall relatedness feature vector for

the hyper-relational fact by taking the minimum value along each feature dimension over the

triple-wise relatedness feature vector and all the quintuple-wise relatedness feature vectors.

The basic assumption behind this operation is that for a valid hyper-relational fact, both

the relatedness for the triplet (h,r, t) and the relatedness between each key-value pair (k, v)

and the triplet should be high; subsequently, the minimum relatedness along each feature

dimension is expected to be high. Finally, we use a fully connected projection to output the

predicted score from the overall relatedness feature vector for the input hyper-relational fact.

Our contributions are hence four-fold:

• We investigate the problem of hyper-relational Knowledge Graph embedding, where each

fact contains not only a triplet, but also associated key-value pairs;

• We discuss a key limitation of a commonly used representation scheme for hyper-relational

data (i.e., using a set of key-value pairs only). We empirically verify its limitation, showing

that triplets serve as the fundamental data structure underpinning modern KGs and indeed

encode the essential information for link prediction;

• We introduce HINGE, a Hyper-relatIonal kNowledge Graph Embedding model, designed to

directly learn from hyper-relational facts in a KG, capturing not only the primary structural

information of the KG encoded in the triplets, but also the correlation between each triplet

and its associated key-value pairs;

• We conduct a thorough evaluation of our method compared to a sizable collection of base-

lines on two real-world KG datasets. Our results show that compared to nine state-of-the-art

KG embedding methods learning from triplets only, HINGE consistently achieves better

performance, yielding an improvement of 0.81-41.45% on various link prediction tasks (i.e.,

head/tail or relation prediction) with different data transformation settings (e.g., keeping

triplet only, via reification or relation paths) over the best-performing baseline methods on
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individual tasks. Moreover, compared to methods learning from hyper-relational facts using

an n-ary representation, HINGE shows improvements of 13.2-84.1% across different link

prediction tasks over the best-performing baseline methods on individual tasks.

4.2 Related Work

Graph embeddings have become a key paradigm to learn representations of nodes in a graph

and facilitate downstream graph analysis tasks [22, 55, 144]. As a specific type of graphs,

Knowledge Graphs contain both semantic-enriched nodes (entities) and edges (relations).

Therefore, KG embedding techniques learn representations of entities and relations in a KG by

preserving the relations between entities [129]. In the following, we briefly discuss existing

KG Embedding techniques learning from 1) triplets only, 2) triplets with other data, and 3)

hyper-relational facts.

4.2.1 KG Embeddings from Triplets

In the current literature, most of the existing KG embedding techniques learn from a set

of triplets (h,r, t) extracted from an input KG. These techniques can be classified into two

broad categories, i.e., translational distance models and semantic matching models [108].

First, translational distance models exploit distance-based scoring functions to create the

embeddings. One representative model of this family is TransE [19], which creates embeddings

from triplets (h,r, t) such that the relation between the head and tail entities are preserved

as h + r ≈ t . Several works further improve TransE to capture richer KG structures—such

as multi-mapping relations (one-to-many, many-to-one, or many-to-many)—using more

sophisticated scoring function involving relation-specific hyperplanes [132] or spaces [74,

59, 36], for example. Second, semantic matching models exploit similarity-based scoring

functions. One typical model in that context is RESCAL [95]. It represents each entity as a

vector and each relation as a matrix, and uses a bilinear function to model the relation between

two entities. Several works also extend RESCAL by putting a specific focus on reducing the

model complexity [143], by capturing asymmetric relations [124], or by modeling non-linear

relations using neural networks [117, 29, 113, 10, 92].

However, representing a KG using triplets only often oversimplifies the complex nature of

the data stored in the KG, in particular for hyper-relational data, where each fact contains

multiple relations and entities (see example above). Even though a hyper-relational fact can

be transformed to triplets by either keeping the triplets only or creating additional triplets via

reification [20] or relation paths [133], none of these transformations is ideal for knowledge

graph embeddings, as the former transformation setting incurs irreversible information loss

in the KG embeddings while the latter two settings generate additional entities/relations
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distracting the KG embedding method from capturing the essential information for link

prediction (see our experimental results in Section 4.4.3 for more detail on this). Therefore, it

would be highly beneficial to learn KG embeddings directly from such hyper-relational facts.

4.2.2 KG Embeddings from Triplets with other Data

We also note that there are a few works on KG embeddings considering other data together

with the triplets. According to the sources of such data, these works can be classified into two

categories, i.e., data in the KG and third-party data. First, except triplets linking entities via

relations, other data contained in a KG can be incorporated into KG embeddings. For example,

multi-modal attributes associated with entities (a.k.a. literals), such as non-discrete numerical

literals [44, 121] or text literal [66], have been shown to improve the KG embeddings on

various tasks; images associated with entities have also been used to improve entity matching

tasks (matching entities across different KGs) [77]. These works mainly focus on using multi-

modal data to enrich the representation of entities, while triplets remain the only relational

representation between entities, which differs from our work focusing on hyper-relational

facts. Second, some related techniques learn entity/relation embeddings from triplets in

a KG jointly with third-party data sources, in particular with text (e.g., Wikipedia articles)

[131, 153, 39, 141, 53, 122, 142, 147, 25, 110]. These works focus on combining the advantages

of a KG with further (textual) data sources to learn both entity/relation and word embeddings

simultaneously, which is different from our work learning from a KG only while considering

hyper-relational facts.

4.2.3 KG Embeddings from Hyper-Relational Facts

Some recent works on KG embeddings started to consider hyper-relational data (a.k.a. multi-

fold or n-ary relational data) [133, 152, 47]. More precisely, these works transform a hyper-

relational fact into an n-ary representation, i.e., a set of key-value (relation-entity) pairs while

completely avoiding triplets. For example, in [47], a hyper-relational fact (h,r, t) with (k, v)

is transformed into {rh :h, rt :t , k:v} by converting the relation r into two keys rh and rt ,

associated with head h and tail t , respectively. Using this representation, these works learn the

relatedness between entity/relation pairs for predicting missing links in KGs. Specifically, m-

TransH [133] models the interaction between entities involved in each fact in order to perform

link prediction on missing entities. RAE [152] further extends m-TransH by considering

the relatedness between entities in each fact for performing instance reconstruction, i.e.,

predicting one or multiple missing entities in a fact. As these two works capture only the

relatedness between entities and can thus only predict missing entities, NaLP [47] was later

proposed to model the relatedness between key-value (relation-entity) pairs contained in each

fact, which enables the prediction of either a missing key (relation) or a missing value (entity).

56



4.3. Learning from Hyper-Relational Facts

However, transforming a hyper-relational fact into an n-ary representation (i.e., as a set of

key-value pairs) is inherently incompatible with the schema used by modern KGs, where

triplets still serve as the fundamental data structure. In other words, key-value pairs (k, v) on a

hyper-relational fact should not be treated identically to triplets (h,r, t ), as the latter actually

preserves the essential information for link prediction in the KGs. We also empirically verify

this point in our experiments (see Section 4.4.2 for more detail). Therefore, in this chapter,

we design HINGE to directly learn from the triplets even for hyper-relational facts, while

simultaneously learning from the associated key-value pairs also.

4.3 Learning from Hyper-Relational Facts

In this section, we introduce HINGE, a hyper-relational KG embedding model learning directly

from hyper-relational facts. We introduce a couple of formal definitions:

Hyper-relational fact: A hyper-relational fact contains a triplet (h,r, t ) and a set of associated

key-value pairs (ki , vi ), i = 1, ...,n.

Triple fact: A triple fact contains a triplet (h,r, t ) only.

Based on these definitions, we start below by discussing our main design principle and goals,

before presenting our proposed model in detail.

4.3.1 Design Principle and Goals

As triplets are indeed the fundamental data structure in modern KGs and thus preserve the

essential information for link prediction in the KGs, our main design principle is to, on one

hand, learn embeddings directly from this primary data source (triplets) in order to preserve

the essential information for link prediction in the KG to a maximum extent, while on the

other hand also learning the relatedness between a triplet and its associated key-value pairs (if

any). Following this principle, we set the three following goals:

I) Effectively learning from both triple facts and hyper-relational facts. Specifically, as not

all facts are hyper-relational in a KG (e.g., 30% of entities are involved in such hyper-

relational facts in Freebase [133]), the embedding model should be highly effective at

learning both from triple facts and from hyper-relational facts. In other words, the

incorporation of key-value pairs from hyper-relational facts should not distract the main

learning process from the triplets.

II) Leveraging key-value pairs when learning from the triplets in hyper-relational facts. For

each hyper-relational fact, the triplet is associated with a set of key-value pairs providing
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Figure 4.3 – Overview of our proposed method HINGE

further information about the triplet. As the triplet remains the primary data source

for modeling the hyper-relational fact, the embedding model should be designed to

leverage key-value pairs to improve the learning process from the triplet.

III) Learning from an arbitrary number of key-value pairs from a hyper-relational fact. As

the number of key-value pairs involved in hyper-relational facts varies, the embedding

model should be able to effectively handle an arbitrary number of key-value pairs in a

hyper-relational fact.

We built HINGE with those goals in mind, in order to effectively learn embeddings from both

triple and hyper-relational facts.

4.3.2 HINGE

Figure 4.3 illustrates our proposed model HINGE. It is designed to directly learn from hyper-

relational facts in a KG, capturing not only the primary structural information of the KG

encoded in the triplets, but also the relatedness between each triplet and its associated key-

value pairs (if any). More precisely, HINGE consists of three parts. For each hyper-relational

fact containing a triplet (h,r, t) and associated key-value pairs (ki , vi ), i = 1, ...,n, it 1) learns

from the triplet (h,r, t ), generating a triple-wise relatedness feature vector for h, r and t , and 2)

learns from each key-value pair (k, v) associated with the triplet together with the triplet itself,

generating the quintuple-wise relatedness feature vector between h, r , t , k and v , respectively.

Afterward, it 3) merges these relatedness feature vectors to generate a final prediction score for

the input hyper-relational fact. In the following, we present the details of these three modules.
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Learning from Triplets

In both triple or hyper-relational facts, triplets encode the primary structural information of a

KG, and thus capture essential information for link prediction in the KG. To learn from a triplet

(h,r, t ), we resort to a Convolutional Neural Network (CNN) to model the intrinsic interaction

between the three elements in the triplet, i.e., head h, relation r and tail t , in order to generate

a triple-wise relatedness feature vector.

More precisely, as shown in Figure 4.3, we start by concatenating the three corresponding

embedding vectors ~h,~r ,~t ∈ RK (K is the embedding dimension) into an “image” T ∈ R3×K ,

which is the input for a 2D convolutional layer with n f filters of size 3×3. The filter of size 3 is

chosen to capture the triple-wise relatedness between~h,~r and~t . This layer returns n f feature

maps of size K −2, which are then flattened into a triple-wise relatedness vector ~φ ∈R1×n f (K−2).

This relatedness vector ~φ can be used to characterize the plausibility of a triplet (h,r, t) of

being true.

Learning from Key-Value Pairs

Key-value pairs contain further information describing the associated triplet in a hyper-

relational fact, which suggests that learning from key-value pairs should be coupled with

the corresponding triplet. Therefore, for each key-value pair (ki , vi ) associated with the triplet

(h,r, t ) in a hyper-relational fact, we also resort to a CNN to capture the interaction between

each elements in the triplet and the key-value pair, i.e., h, r , t , ki and vi , in order to generate a

quintuple-wise relatedness feature vector.

As shown in Figure 4.3 and similar to the case of learning from triplets, we first concatenate the

five corresponding embedding vectors~h,~r ,~t ,~ki ,~vi ∈RK into an “image” H ∈R5×K , and feed H

to a 2D convolutional layer with n f filters of size 5×3. The first dimension size 5 of the filter

here is chosen to capture the quintuple-wise relatedness between~h,~r ,~t ,~ki and~vi ; the second

dimension size 3 is chosen to match the filter size of the CNN for triplets, in order to merge

the resulting relatedness feature vectors (see below). This layer returns n f feature maps of

size K −2, which is then flattened into the quintuple-wise relatedness vector ~ψi ∈R1×n f (K−2).

This relatedness vector ~ψi can be used to characterize the plausibility of the triplet (h,r, t)

associated with the key-value pair (ki , vi ) being a true fact. This process is repeated for each

key-value pair (ki , vi ), i = 1, ..,n, in the input hyper-relational fact containing n key-value pairs,

resulting in n quintuple-wise relatedness vectors ~ψi , i = 1, ..,n. Note that this module is not

used for triple facts, as they do not contain any key-value pair.

59



Chapter 4. Beyond Triplets: Hyper-Relational Knowledge Graph Embedding for Link
Prediction

Merging Relatedness Feature Vectors for Prediction

In the previous two modules, for each hyper-relational fact, one triple-wise relatedness vector
~φ is generated from the triplet (h,r, t) while n quintuple-wise relatedness vectors ~ψi are

generated from the n key-value pairs together with the triplet. We now wish to merge these

relatedness feature vectors in order to return a final score for the input hyper-relational facts.

To achieve this goal, we first compute the overall relatedness feature vector by taking the

minimum value along each feature dimension over the triple-wise relatedness feature vector

and all the quintuple-wise relatedness feature vectors. We concatenate the triple-wise related-

ness feature vectors ~φ and the n quintuple-wise relatedness vectors ~ψi into a matrix of size

(n +1)×n f (K −2), and compute the minimum value of this matrix along each column, result-

ing in the overall relatedness feature vector. The underlying assumption for this operation is

that for a valid hyper-relational fact, both 1) the relatedness for the triplet (h,r, t ) and 2) the

relatedness between each key-value pair (k, v) and the triplet (h,r, t) should be high. While

each entry of a triple-wise (or quintuple-wise) relatedness feature vector actually measures

the relatedness between h,r, t (or between h, r , t , ki vi ) under a certain filter, the minimum

relatedness along each feature dimension is expected to be high. Similar ideas have also been

successfully applied by previous works to merge relatedness scores in a neural network [47].

Finally, we use a fully connected projection to output the predicted score σ from the overall

relatedness feature vector for the input hyper-relational fact.

4.3.3 HINGE and Design Goals

In this section, we discuss how our proposed model HINGE fits the goals we set above in

Section 4.3.1.

First, to fit goal I, we adopt two separate neural network pipelines to learn from 1) the triplet,

and from 2) the key-value pairs together with the triplet. In case of triple facts, only the first

module is used while the second module is not activated. In case of hyper-relational facts

(with key-value pairs), both the first and the second modules are used. Subsequently, the CNN

for triplets (used in the first module) is independent from the key-value pairs, which allows it

to capture the primary structural information of the KG encoded in the triplets, and thus to

preserve the essential information for link prediction in a KG to a maximum extent.

Second, to fit goal II, we merge, via a “min” operation, the relatedness feature vectors learnt

from 1) the triplet, and 2) the key-value pairs together with the triplet. Such an operation

ensures that the CNN for key-value pairs (used in the second module) effectively help to evalu-

ate the plausibility of a hyper-relational fact. More precisely, considering a hyper-relational

fact containing a triplet and an associated key-value pair, we obtain a triple-wise relatedness

vector ~φ and a quintuple-wise relatedness vectors ~ψ. If the key-value pair are highly related
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to the triplet (i.e., ~ψ has high values), the merge operation (via the “min”) ensures that the

values in the overall relatedness feature vector are determined mostly by the values of ~φ (i.e.,

relatedness for the triplet). In other words, the final predicted score depends mostly on the

triplet. In contrast, if the key-value pair is poorly related to the triplet (i.e., ~ψ has low values),

the merge (“min”) operation ensures that the values in the overall relatedness feature vector

are low (i.e., they are determined mainly based on the values of ~ψ). In other words, the overall

relatedness of the hyper-relational fact is low, because the key-value pair is poorly related to

the triplet, which further implies that this fact is less probably a true fact.

Third, goal III is automatically fulfilled with our merge operation. For the case of multiple

key-value pairs (ki , vi ), i = 1, ...,n, associated with the triplet, each key-value pair (ki , vi ) is

combined with the triplet to generate the corresponding quintuple-wise relatedness feature

vector ~ψi . Subsequently, our merging (via the “min”) operation is able to take an arbitrary

number of quintuple-wise relatedness feature vectors as input.

4.3.4 Model Training Process

To train the model parameters, we minimize a softplus loss. More precisely, following [124, 47],

our loss function is defined as the negative log-likelihood of the logistic model:∑
ω∈Ω

log (1+e−σ(ω))+ l og (1+eσ(ω′)) (4.1)

whereΩ is the input set of hyper-relational facts. For each hyper-relational fact ω containing

(h,r, t ) and the associated (ki , vi ), i = 1, ...,n, one negative sample ω′ is generated by randomly

corrupting one entity (h, t , or vi ) or relation (r or ki ). σ(ω) and σ(ω′) denote the predicted

score of our HINGE model for the true fact ω and the negative fact ω′, respectively.

The loss function 5.2 is minimized using the Adam stochastic optimizer [64], and the model

parameters are learnt via back propagation. Specifically, we use rectified linear units (ReLU)

as the non-linearity activation function [68] and batch normalization [57] after the two CNN

layers for fast training.

4.4 Experiments

In this section, we evaluate our proposed model HINGE on various link prediction tasks. In

the following, we start by presenting our experimental setup, followed by our results and

discussions.
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Table 4.1 – Statistics of the datasets

Dataset JF17K WikiPeople
#Entity 28,645 34,839
#Relation 322 375

#Fact
(training)

Only triple 44,210 57.8% 280,520 97.4%
Only hyper-relational 32,169 42.2% 7,389 2.6%
Total 76,379 100% 287,918 100%

#Fact
(test)

Only triple 10,417 42.4% 36,597 97.4%
Only hyper-relational 14,151 57.6% 971 2.6%
Total 24,568 100% 37,586 100%

4.4.1 Experimental Setup

Dataset

We conduct experiments on two hyper-relational datasets JF17K [133] and WikiPeople [47],

extracted from two popular KGs, i.e., Freebase and Wikidata, respectively. Each of these

two datasets contains both triple facts and hyper-relational facts. While JF17K was filtered

from Freebase to have a significant presence of hyper-relational facts (see [133] for more

detail), WikiPeople is extracted from Wikidata and focuses on entities of type human without

any specific filtering to improve the presence of hyper-relational facts [47]. As the original

WikiPeople dataset also contains literals (used as tails) in some facts, we filter out these non-

entity literals and the corresponding facts. Table 5.1 shows the main statistics of these datasets.

Baselines

We compare HINGE against a sizable collection of state-of-the-art Knowledge Graph embed-

ding techniques from two categories.

The first category includes models learning from triplets only.

• Translational distance models: TransE [19] learns to preserve the relation between two

entities as h + r ≈ t . TransH [132] extends TransE to better capture multi-mapping rela-

tions by introducing relation-specific hyperplanes. TransR [74] introduces relation-specific

projections to also better capture multi-mapping relations. TransD [59] extends TransR by

decomposing the projection matrix into a product of two vectors. These models minimize a

margin-based ranking objective function, where we empirically set the margin b = 1 with

the L2-norm. In addition, we set the learning rate to 0.001 with a stochastic gradient descent

optimizer, the number of negative samples to 1, and the batch size to 128.

• Semantic matching models: Rescal [95] represents each entity as a vector and each relation
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as a matrix, and uses a bilinear function to model the relation between a pair of entities.

DistMult [143] simplifies Rescal by representing each relation embedding as a diagonal

matrix. ComplEx [124] further extends DistMult in the complex space in order to better

model both symmetric and asymmetric relations. Analogy [76] models explicitly analogical

structures in multi-relational KG embeddings. ConvE [29] adopts a 2D CNN to capture

richer interactions between entity and relation embeddings. We set the margin b = 1 with

the L2-norm for Rescal. For DistMult, ComplEx and Analogy, we set the learning rate to 0.1

with Adagrad optimizer [33], the number of negative samples to 1, and the batch size to 128.

For ConvE, we set the learning rate to 0.003, the batch size to 128, the dropout to 0.2, and

the label smoothing value to 0.1.

The second category includes models learning from the n-ary representation of hyper-relational

facts.

• m-TransH [133] models the interaction between entities involved in each n-ary fact. Specif-

ically, each hyper-relational fact (h,r, t ) with (ki , vi ), i = 1, ...,n is associated with a so-called

meta-relation, represented as an ordered list of keys (relations), such as R := (rh ,rt ,k1, ...,kn);

the fact is then represented as a list of ordered values associated with the meta-relation

{R, (h, t , v1, ..., vn)}. Using this representation, m-TransH is built on top of TransH to capture

multi-fold relations between entities in a meta-relation. As it learns only from sets of entities

in meta-relations (without considering the exact relations in each meta-relation), it can be

applied to perform the link prediction task on missing entities only. Following suggestions

from the original paper, we empirically set its hyper-parameters as follows: the margin to

0.5, the weight to 0.001, and the threshold to 0.01.

• RAE [152] extends m-TransH by explicitly considering the pairwise relatedness between

entities in n-ary facts. Using the same n-ary representation of hyper-relational facts, RAE

further learns from the pairwise relatedness between entities in each n-ary fact in order to

perform instance reconstruction, i.e., predicting one or multiple missing entities. Similar

to m-TransH, RAE can only be used to predict missing entities. We search for optimal

parameters by adopting the techniques described in [47] on each dataset, and report the

results with the optimal settings.

• NaLP [47] models the relatedness between key-value (relation-entity) pairs contained in

each n-ary fact. It represents each hyper-relational fact (h,r, t ) with (ki , vi ), i = 1, ...,n, as a

set of key-value pairs {rh :h, rt :t , ki :vi }, i = 1, ...,n by converting the relation r into two keys

rh and rt , associating with head h and tail t , respectively. Using this representation, NaLP

learns from the pairwise relatedness between key-value pairs via a neural network pipeline,

which enables the prediction of both missing keys (relations) or missing values (entities).

Note that in NaLP, a commonly adopted negative sampling process is used, which randomly
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corrupts one key or value in a true fact. However, this process is not fully adaptable to its

n-ary represention of hyper-relational facts, in particular for keys rh and rt . For example,

when corrupting the key rh by a randomly sampled r ′
h (r 6= r ′), the negative fact becomes

{r ′
h :h, rt :t , ki :vi }, i = 1, ...,n. This is unrealistic as r ′

h is not compatible with rt while only one

relation r (or r ′) can be assumed between h and t in a hyper-relational fact. Therefore, we

propose a variant of NaLP fixing this issue. Following the suggestion from the original paper,

we adopt the optimal hyper-parameters reported on each dataset.

• NaLP-Fix is a variant of NaLP with a fixed negative sampling process. Specifically, when

corrupting the key rh by a randomly sampled r ′
h (r 6= r ′), we also corrupt rt by r ′

t , resulting

in a negative fact {r ′
h :h, r ′

t :t , ki :vi }, i = 1, ...,n. Subsequently for this negative fact, only a

single relation r ′ links h and t , which is a realistic case. Similarly, when corrupting rt , we

also corrupt rh in the same way. We keep using the same hyper-parameters as for NaLP.

For our HINGE model, we empirically set the number of filters n f in both CNNs to 400, the

batch size to 128, and the learning rate to 0.0001. The embedding size is set to 100 for all

methods, if not specified otherwise. The implementation of HINGE and used datasets are

available here2.

Dataset Configuration

As discussed in the introduction, hyper-relational facts need to be transformed into triplets

for the models that can learn from triplets only. There are three common settings for such a

transformation.

• Basic: Only the triplet (h,r, t) from a hyper-relational fact is kept, while removing all its

associated key-value pairs. This setting causes irreversible information loss.

• Relation Path [133]: For each hyper-relational fact containing a triplet (h,r, t ) and associated

key-value pairs (ki , vi ), i = 1, ...,n, each pair of entities are linked via an artificially created

relation path. For example, h is linked to vi via a virtual relation r̂ ki representing a relation

path r → ki , resulting in an additional triplet (h, r̂ ki , vi ). This setting creates extra relations

and facts.

• Reification [20]: For each hyper-relational fact containing key-value pairs (ki , vi ), i = 1, ...,n,

an artificial entity is used to represent the triplet q := (h,r, t ), and then additional triplets are

created as (q,ki , vi ), i = 1, ..,n. This setting also creates extra entities and triplets.

In addition, we denote the original hyper-relational facts as the Original setting.

2https://github.com/eXascaleInfolab/HINGE_code/
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Evaluation Tasks and Metrics

Link prediction is a typical task for Knowledge Graph completion. Given two elements of a

triplet in a (hyper-relational) fact, the task is to predict the missing one, such as (?,r, t ), (h, ?, t )

or (h,r, ?), where the question mark represents the missing entity/relation. In this chapter,

we conduct experiments in all of these three cases, i.e., predicting a missing head, relation,

or tail. We describe our evaluation protocols below by taking the case of predicting missing

heads (?,r, t ) as an example. For the triplet (?,r, t ) in one test (hyper-relational) fact, we replace

the missing head with all the entities, resulting in a set of candidate (hyper-relational) facts.

Among those candidate facts, in addition to the testing fact itself, other corrupted facts might

also be true facts (i.e., existing in the training/test datasets); these facts are thus removed from

the candidate facts. Afterward, the resulting candidate facts are fed into an embedding model

to output predicted scores. By ranking the candidate facts according to their corresponding

scores, we generate a predicted ranking list of entities for the missing head. By repeating

the evaluation process over all test facts in the test dataset, we report Mean Reciprocal Rank

(MRR), Hi t s@10 and Hi t s@1, which are widely used metrics for link prediction tasks [47].

The same evaluation protocol and metrics also apply to predicting missing relations (h, ?, t)

and tails (h,r, ?). As predicting missing heads or tails is essentially predicting missing entities,

we report average results on these two cases (denoted as “Head/Tail Prediction”), while we

report individual results for relation prediction.

4.4.2 Limitation of N-Ary Representation

In this experiment, we experimentally show the limitation of the n-ary representation of a

hyper-relational fact (represented as a set of key-value pairs without triplets). Specifically, most

of the existing works on learning KG embeddings from hyper-relational facts [133, 152, 47]

transform a hyper-relational fact into a set of key-value (relation-entity) pairs while completely

avoiding triplets. For example, NaLP [47] transforms a hyper-relational fact (h,r, t ) with (ki , vi ),

i = 1, ...,n, into a set of key-value pairs {rh :h, rt :t , ki :vi }, i = 1, ...,n by converting relation r

into two keys rh and rt , associated with head h and tail t , respectively. Subsequently in the

embedding learning process, these key-value pairs are treated equally. However, we argue that

as triplets still serve as the fundamental data structure in the modern KGs, they preserve the

essential information for link prediction in KGs. In other words, key-value pairs (k, v) on a

hyper-relational fact should not be treated equally as triplets (h,r, t ).

To verify this point, we define an extra setting, the null model, for dataset transformation. The

null model reconstructs one triplet from each n-ary relational fact {rh :h, rt :t , ki :vi }, i = 1, ...,n,

via a randomly sampled relation path [133], such as (h, �rhki , vi ). Note that if we only sample

the relation path r̂hrt , we reconstruct the original triplet (h, r̂hrt , t ) (corresponding to the Basic

setting). With this null model, we make a null hypothesis: The information for link prediction
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Table 4.2 – Link prediction performance on WikiPeople.

Dataset
Transformation
Setting

Method
WikiPeople

Head/Tail Prediction Relation Prediction
MRR Hit@10 Hit@1 MRR Hit@10 Hit@1

Null Model

TransE 0.2021 0.4377 0.1031 0.2060 0.2626 0.1683
TransH 0.1998 0.4400 0.0992 0.2203 0.2909 0.1785
TransR 0.2009 0.4355 0.1015 0.1485 0.1972 0.1196
TransD 0.1083 0.3416 0.0074 0.2985 0.4816 0.2089
Rescal 0.1325 0.2986 0.0626 0.6561 0.8174 0.5474
DistMult 0.1144 0.3083 0.0385 0.4281 0.5520 0.3315
ComplEx 0.1050 0.2932 0.0329 0.3719 0.4467 0.3093
Analogy 0.1144 0.2991 0.0406 0.4178 0.4903 0.3535
ConvE 0.2383 0.4548 0.1470 N/A

Basic

TransE 0.3242 0.6064 0.1216 0.3482 0.4200 0.2734
TransH 0.3206 0.6029 0.1155 0.3724 0.4448 0.2980
TransR 0.3264 0.6090 0.1236 0.2446 0.4996 0.1651
TransD 0.2200 0.5414 0.0205 0.5657 0.8804 0.4160
Rescal 0.2772 0.4915 0.1404 0.7936 0.9023 0.7306
DistMult 0.2468 0.5087 0.0645 0.6008 0.6776 0.5479
ComplEx 0.2466 0.4944 0.0648 0.5676 0.6135 0.5367
Analogy 0.2521 0.5033 0.0688 0.5984 0.6386 0.5699
ConvE 0.4781 0.6533 0.3666 N/A

Relation Path

TransE 0.3191 0.6067 0.1160 0.2773 0.3379 0.2444
TransH 0.3198 0.6084 0.1155 0.2399 0.3267 0.1906
TransR 0.3214 0.6086 0.1167 0.1593 0.2154 0.1272
TransD 0.2083 0.5228 0.0146 0.3344 0.5053 0.2443
Rescal 0.2637 0.4780 0.1255 0.7535 0.8673 0.6895
DistMult 0.2400 0.4987 0.0588 0.5787 0.6429 0.5360
ComplEx 0.2415 0.4861 0.0672 0.4975 0.5415 0.4716
Analogy 0.2443 0.4936 0.0688 0.5139 0.5555 0.4887
ConvE 0.4700 0.6537 0.3527 N/A

Reification

TransE 0.3207 0.5977 0.1224 0.3253 0.3850 0.2747
TransH 0.3244 0.6011 0.1242 0.3160 0.3873 0.2694
TransR 0.3225 0.6002 0.1225 0.2396 0.2968 0.1817
TransD 0.2123 0.5253 0.0195 0.5293 0.8611 0.3821
Rescal 0.2751 0.4815 0.1430 0.7684 0.8816 0.7053
DistMult 0.2276 0.4867 0.0519 0.5902 0.6611 0.5422
ComplEx 0.2365 0.4795 0.0614 0.5375 0.5882 0.5039
Analogy 0.2478 0.4901 0.0718 0.5838 0.6277 0.5562
ConvE 0.4657 0.6434 0.3559 N/A

Original

m-TransH 0.0633 0.3006 0.0633 N/A
RAE 0.0586 0.3064 0.0586 N/A
NALP 0.4084 0.5461 0.3311 0.4818 0.8516 0.3198
NALP-Fix 0.4202 0.5564 0.3429 0.8200 0.9757 0.7197
HINGE 0.4763 0.5846 0.4154 0.9500 0.9977 0.9159
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Table 4.3 – Link prediction performance on JF17K.

Dataset
Transformation
Setting

Method
JF17K

Head/Tail Prediction Relation Prediction
MRR Hit@10 Hit@1 MRR Hit@10 Hit@1

Null Model

TransE 0.1916 0.3553 0.1079 0.6240 0.7356 0.5522
TransH 0.1916 0.3529 0.1093 0.6382 0.7543 0.5623
TransR 0.1921 0.3603 0.1085 0.6201 0.7207 0.5543
TransD 0.0626 0.1890 0.0028 0.2155 0.2894 0.1718
Rescal 0.1095 0.2031 0.0630 0.5679 0.6781 0.4954
DistMult 0.0997 0.2145 0.0475 0.0512 0.2255 0.0323
ComplEx 0.0828 0.1824 0.0382 0.1283 0.3277 0.0474
Analogy 0.0917 0.1952 0.0438 0.1167 0.2495 0.0581
ConvE 0.2270 0.4174 0.1357 N/A

Basic

TransE 0.2556 0.4529 0.1576 0.8574 0.9064 0.8270
TransH 0.2570 0.4564 0.1619 0.8618 0.9134 0.8328
TransR 0.2806 0.4974 0.1791 0.8431 0.8924 0.8137
TransD 0.1343 0.3105 0.0501 0.6803 0.7872 0.6189
Rescal 0.1709 0.3340 0.0952 0.7887 0.8491 0.7480
DistMult 0.1752 0.3531 0.0955 0.2779 0.5340 0.1381
ComplEx 0.1669 0.3307 0.0906 0.2380 0.3445 0.1765
Analogy 0.1776 0.3471 0.0996 0.2667 0.4247 0.1773
ConvE 0.3190 0.5470 0.2129 N/A

Relation Path

TransE 0.2832 0.4826 0.1832 0.8251 0.8940 0.7814
TransH 0.2863 0.4899 0.1850 0.8179 0.8897 0.7738
TransR 0.3075 0.5170 0.2051 0.6866 0.7779 0.6383
TransD 0.1279 0.3204 0.0362 0.4333 0.5561 0.3676
Rescal 0.1692 0.3188 0.0966 0.8336 0.8957 0.7914
DistMult 0.2261 0.4084 0.1368 0.2817 0.5551 0.1574
ComplEx 0.2193 0.3930 0.1352 0.2126 0.3361 0.1477
Analogy 0.2244 0.3986 0.1413 0.2523 0.4308 0.1625
ConvE 0.3665 0.5876 0.2574 N/A

Reification

TransE 0.2285 0.3806 0.1503 0.8793 0.9187 0.8559
TransH 0.2302 0.3815 0.1538 0.8774 0.9218 0.8506
TransR 0.2838 0.4722 0.1914 0.8751 0.9157 0.8510
TransD 0.0950 0.2121 0.0366 0.5562 0.6610 0.5010
Rescal 0.1354 0.2608 0.0759 0.6958 0.7620 0.6556
DistMult 0.1523 0.2888 0.0875 0.1135 0.3251 0.0332
ComplEx 0.1325 0.2552 0.0760 0.1311 0.2451 0.0717
Analogy 0.1329 0.2594 0.0742 0.1548 0.2983 0.0852
ConvE 0.3469 0.5410 0.2500 N/A

Original

m-TransH 0.2060 0.4627 0.2060 N/A
RAE 0.2153 0.4668 0.2153 N/A
NALP 0.2209 0.3310 0.1650 0.6391 0.8215 0.5472
NALP-Fix 0.2446 0.3585 0.1852 0.7469 0.8921 0.6665
HINGE 0.4489 0.6236 0.3611 0.9367 0.9894 0.9014
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encoded by the original triplets is not greater than the triplets created by the null model. We

test this null hypothesis by performing link prediction tasks using all nine baseline models

learning from triplets on the two sets of triplets, i.e., on the original basic triplets and the

triplets created by the null model.

Table 4.2 and Table 4.3 show the results on both datasets. Comparing the results from the two

data transformation settings basic and null model, we clearly observe that the performance

from the original triplets is consistently and significantly better than the performance from

the triplets created by the null model, with an average improvement3 of 77.5% in head/tail

prediction and 58.3% in relation prediction on the WikiPeople dataset (125.2% and 114.9% on

JFK17K, respectively). To further verify this point, we conduct one-tailed paired t-test on the

results using the original triplets and the results using the triplets created by the null model

from the same set of nine baselines, for each metric and each link prediction task. The test

results consistently reject the null hypothesis at the 0.01 significance level (p-value ¿ 0.01).

Therefore, we verify that the information encoded by the original triplets is significantly greater

than the triplets created by the null model for link prediction. In other words, compared to

the key-value pairs, the triplets in hyper-relational facts preserve the essential information for

link prediction in KGs; this finding indeed corresponds to the fundamental design principle

behind our new technique HINGE.

4.4.3 Link Prediction Performance Comparison

In this experiment, we compare the link prediction performance of HINGE against all baselines

under different dataset transformation settings. Table 4.2 and Table 4.3 show the results on

both datasets. For each dataset transformation setting, we highlight the best-performing

method on each task and for each dataset. In the following, we discuss the results and highlight

our key findings.

Comparison with Baselines Learning from Triplets Only

We observe that our HINGE model consistently outperforms all baselines learning from

triplets only, for all three dataset transformation settings. Specifically, the Basic setting simply

discards the key-value pairs, causing irreversible information loss, while the Relation Path and

Reification settings create extra entities/relations which indeed distract the embedding models

from capturing the essential information for link prediction from the input KG. We compute

the average improvement of HINGE over the best-performing baselines for each dataset

transformation settings in Table 4.4. We observe that HINGE yields significant improvement

in most cases, showing improvements of up to 41.45% on head/tail prediction and of up to

3referring to the average improvement on different metrics throughout this chapter.
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Table 4.4 – Improvement of HINGE over the best-performing baselines learning from triplets
only. The best performing baselines are highlight in Table 4.2. The Null Model setting is
excluded due to its very low performance.

Dataset
Transformation
Setting

WikiPeople JF17K
Head/Tail
Prediction

Relation
Prediction

Head/Tail
Prediction

Relation
Prediction

Basic 0.81% 18.55% 41.45% 8.41%
Relation Path 2.85% 24.65% 22.96% 12.24%
Reification 3.28% 22.22% 29.71% 6.52%

24.65% on relation prediction.

One exception is for the head/tail prediction on WikiPeople with the Basic setting, where the

improvement is marginal (0.81%). We further find that the best-performing baseline in this

case is ConvE, which is indeed the most competitive baseline in head/tail prediction in all

cases (see Table 4.2 and Table 4.3). Note that similar to our HINGE, ConvE also uses a 2D

CNN layer for feature extraction from entity/relation embeddings in triplets, yielding good

performance on head/tail prediction. The marginal improvement can be explained by the

dominance of triple facts in WikiPeople dataset (97.4% triple facts vs 2.6% hyper-relational

facts in both training and test datasets), where both HINGE and ConvE perform well. In

contrast, on the JF17K dataset, which contains a significant portion of hyper-relational facts

(57.8% triple facts vs 42.2% hyper-relational facts in the training dataset and 42.4% triple

facts vs 57.6% hyper-relational facts in the test dataset), HINGE significantly outperforms

ConvE by leveraging key-value pairs in the hyper-relational facts (while ConvE learns from

a transformed dataset using one of our data transformation settings). In addition, we also

highlight that ConvE is specifically designed for head/tail prediction only, and is not applicable

to the relation prediction task.

Another interesting observation is that, compared to the Basic setting, the Relation Path and

Reification settings yield worse results in general. For example, on WikiPeople, compared

to the Basic setting, the Relation Path setting shows an average performance drop of 3.4%

on head/tail prediction and 20.5% on relation prediction (the Reification setting shows 2.2%

and 5.7% performance drop, respectively). This further verifies that even though the Relation

Path and Reification settings preserve the complete information of a hyper-relational fact, the

extra created entities/relations indeed distract the KG embeddings from capturing essential

information for link prediction in the input KG.
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Table 4.5 – Link prediction performance on triple and hyper-relational facts on WikiPeople.

Fact Type Method
WikiPeople

Head/Tail Prediction Relation Prediction
MRR Hit@10 Hit@1 MRR Hit@10 Hit@1

Triple
Fact

NaLP-Fix 0.4216 0.5592 0.3436 0.8057 0.9728 0.7022
HINGE 0.4765 0.5874 0.3937 0.9493 0.9979 0.9145

Hyper-relational
Fact

NaLP-Fix 0.3050 0.4757 0.2154 0.7605 0.9476 0.6517
HINGE 0.3213 0.4888 0.2322 0.9432 1.0000 0.8876

Comparison with Baselines Learning from Hyper-Relational Facts

We observe that our proposed model HINGE consistently outperforms all other baselines learn-

ing from hyper-relational facts. Among the methods learning from the n-ary representation of

hyper-relational facts (i.e., m-TransH, RAE and NaLP), NaLP shows the best performance, as it

learns the relatedness between key-value (relation-entity) pairs while m-TransH and RAE learn

from entities only. Note that m-TransH and RAE result in very low performance on WikiPeople,

which is probably due to the weak presence of hyper-relational facts in WikiPeople while

and m-TransH and RAE are designed for hyper-relational facts. Moreover, compared to NaLP,

NaLP-Fix (with our fixed negative sampling process) consistently shows better performance,

with a slight improvement of 2.8% in head/tail prediction, and a tremendous improvement of

69.9% in relation prediction on WikiPeople (10.4% and 15.8% on JFK17K, respectively). This

verifies the effectiveness of our fixed negative sampling process, in particular for relation

prediction. Finally, compared to the best-performing baseline NaLP-Fix, HINGE shows a

13.2% improvement on the head/tail prediction task, and a 15.1% improvement on the relation

prediction task on WikiPeople (84.1% and 23.8% on JF17K, respectively).

In addition, we also find that the baseline methods learning from hyper-relational facts (i.e.,

m-TransH, RAE, NaLP and our NaLP-Fix) yield, surprisingly, worse performance in many

cases than the best-performing baselines learning from triplets only. This can be explained

by the fact that their n-ary representation of hyper-relational facts indeed ignores the triplet

structure, by converting a hyper-relational fact (h,r, t) with (ki , vi ), i = 1, ...,n, into a set of

key-value pairs {rh :h, rt :t , ki :vi }, i = 1, ...,n. However, as the triplet structure serves as the

fundamental data structure in KGs and thus preserves essential information for link prediction

in the KGs, even though these methods can learn from key-value pairs associated with triplets

in hyper-relational facts, their ignorance of the triplet structure results in subpar performance.

4.4.4 Link Prediction Performance on Triple and Hyper-Relational Facts

In this experiment, we look into the breakdown of link prediction performance on triple and

hyper-relational facts. We compare HINGE with NaLP-Fix only, as it is the best-performing
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Table 4.6 – Link prediction performance on triple and hyper-relational facts on JF17K.

Fact Type Method
JF17K

Head/Tail Prediction Relation Prediction
MRR Hit@10 Hit@1 MRR Hit@10 Hit@1

Triple
Fact

NaLP-Fix 0.0901 0.1802 0.0464 0.6005 0.8253 0.4806
HINGE 0.2641 0.4965 0.1572 0.8723 0.9846 0.7965

Hyper-relational
Fact

NaLP-Fix 0.3420 0.4760 0.2693 0.8542 0.9381 0.8067
HINGE 0.5850 0.7172 0.5112 0.9841 0.9929 0.9785

Table 4.7 – Key/Value prediction performance on hyper-relational facts on WikiPeople.

Method
WikiPeople

Value Prediction Key Prediction
MRR Hit@10 Hit@1 MRR Hit@10 Hit@1

NaLP-Fix 0.4251 0.5789 0.3426 0.7643 0.8970 0.6945
HINGE 0.5506 0.6880 0.4714 0.9986 0.9996 0.9978

Table 4.8 – Key/Value prediction performance on hyper-relational facts on JF17K.

Method
JF17K

Value Prediction Key Prediction
MRR Hit@10 Hit@1 MRR Hit@10 Hit@1

NaLP-Fix 0.4251 0.5789 0.3426 0.7643 0.8970 0.6945
HINGE 0.5506 0.6880 0.4714 0.9986 0.9996 0.9978
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baseline learning from hyper-relational facts.

Table 4.5 and Table 4.6show the results. We observe that HINGE consistently achieves the best

performance on both types of facts. In addition, we also find that while the performance of

both methods on triple facts is higher than on hyper-relational facts on WikiPeople, we have a

completely opposite observation on JF17K, i.e., the performance on triple facts is obviously

lower than on hyper-relational facts. This can be explained by the dataset statistics. Where

the JF17K dataset has a significant presence of hyper-relational facts (42.2% and 73.6% in the

training and test datasets, respectively), WikiPeople contains much fewer hyper-relational

facts (2.6% in both the training and test datasets).

4.4.5 Key/Value Prediction Performance

In this experiment, we study the performance of HINGE on a key/value prediction task.

Specifically, as a hyper-relational fact may contains a set of key-value pairs (ki , vi ), with

i = 1, ...,n, associated with the triplet (h,r, t ), this task tries to predict a missing key (?, vi ) or a

missing value (ki , ?) in a hyper-relational fact. Our evaluation protocol is similar to the one

from the link prediction task. Taking the case of predicting a missing key (?, vi ) as an example,

we first replace the missing key with all possible relations, resulting in a set of candidate

hyper-relational facts. After filtering out the other true facts (existing in the training/test

datasets) except the test fact itself, we feed the remaining candidate hyper-relational facts to

an embedding model to output predicted scores. By ranking the candidate facts according

to their scores, we report MRR, Hi t s@10 and Hi t s@1. The same evaluation protocol and

metrics also apply to predicting a missing value (ki , ?). Similar to the previous experiment,

we compare HINGE only with NaLP-Fix, which is the best-performing baseline learning from

hyper-relational facts.

Table 4.7 and Table 4.8 shows the results. We observe that HINGE consistently outperforms

NaLP-Fix, showing a 6.0% improvement on the value prediction task, and a 29.4% improvement

on the key prediction task on WikiPeople (28.7% and 28.6% on JF17K, respectively).

4.4.6 Parameter Sensitivity Study

Finally, we study the impact of two key parameters in HINGE, i.e., the number of filters n f

used in the CNNs, and the embedding dimension K . First, by fixing the embedding dimension

K = 100, we vary the number of filters n f from 10 to 800 on a log scale, and show its impact on

the link prediction tasks for both datasets in Figure 4.4. We observe that when increasing n f ,

the performance starts to increase, and then flatten out when n f ≥ 400 in most cases. Second,

by fixing the number of filters n f = 400, we vary the embedding dimension K from 5 to 200

on a log scale, and show its impact on the link prediction tasks for both datasets in Figure
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Figure 4.4 – Impact of the number of filters n f

4.5. Similar to the case of n f , we observe that when increasing K , the performance starts to

increase, and then flatten out when K ≥ 100 in most cases. Therefore, we set the number of

filters n f = 400 and the embedding dimension K = 100, in all previous experiments.

4.5 Conclusion

Existing Knowledge Graph embedding techniques mostly represent a KG as a set of triplets,

and then learn entity/relation embeddings from such triplets while preserving the essential

information for link prediction in the KG. However, this triplet representation oversimplifies

the complex nature of the data stored in the KG, in particular for hyper-relational facts, where

each fact contains not only a triplet (h,r, t ), but also its associated key-value pairs (k, v). Even

though a few recent techniques learn from such data using an n-ary representation (i.e.,

a set of key-value pairs only without any triplet), they result in suboptimal models due to

their ignorance of the triplet structure, which, as we show in this chapter, is the fundamental

structure in modern KGs and encodes essential information for link prediction. Against this

background, we proposed HINGE, a hyper-relational KG embedding model. It captures not

only the primary structural information of the KG from the triplets, but also the correlation

between each triplet and its associated key-value pairs. Our extensive evaluation shows

the superiority of HINGE on various link prediction tasks over KGs using two real-world KG

datasets. In particular, HINGE consistently outperforms not only the KG embedding methods

learning from triplets only (by 0.81-41.45% depending on the link prediction tasks and settings),

but also the methods learning from hyper-relational facts using n-ary representations (by
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Figure 4.5 – Impact of the embedding dimension K

13.2-84.1%).

In the future, we plan to investigate the hyper-relational KG embedding problem further by

taking into consideration other types of data in a KG, such as numerical and text literals, or

multi-modal data such as images.

In the next chapter we propose an end-to-end solution for instance completion in Knowledge

Graphs called RETA. Unlike link prediction, where the goal is to predict an entity given an

entity-relation pair (or predict a relation given two entities), instance completion suggests

relation-entity pairs for a given entity. Specifically, RETA consists of two components: a

RETA-Filter that generates candidate r -t pairs for a given h, and RETA-Grader that evaluates

and ranks the candidate r -t pairs using a newly-designed KG embedding model based on

Convolutional Neural Networks. We evaluate our proposed method against a sizable collection

of state-of-the-art techniques on three real-world KG datasets showing not only the candidates

quality of RETA-Filter, but also the performance of RETA-Grader.
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5 RETA: A Schema-Aware, End-to-End
Solution for Instance Completion in
Knowledge Graphs

Knowledge Graph completion has been widely studied to tackle the incompleteness issue

(i.e., missing facts) in modern KGs. A fact in a KG is represented as a triplet (h,r, t ) linking two

entities h and t via a relation r . Existing work mostly consider link prediction to solve this

problem, i.e., given two elements of a triplet predicting the missing one, such as (h,r, ?). This

task has, however, a strong assumption on the two given elements in a triplet, which have to be

correlated, resulting otherwise in meaningless predictions, such as (Marie Curie, headquarters

location, ?). In addition, the KG completion problem has also been formulated as a relation

prediction task, i.e., when predicting relations r for a given entity h. Without predicting t , this

task is however a step away from the ultimate goal of KG completion. Against this background,

this chapter studies an instance completion task suggesting r -t pairs for a given h, i.e., (h, ?, ?).

We propose an end-to-end solution called RETA (as it suggests the Relation and Tail for a

given head entity) consisting of two components: a RETA-Filter and RETA-Grader. More

precisely, our RETA-Filter first generates candidate r -t pairs for a given h by extracting and

leveraging the schema of a KG; our RETA-Grader then evaluates and ranks the candidate r -t

pairs considering the plausibility of both the candidate triplet and its corresponding schema

using a newly-designed KG embedding model. We evaluate our methods against a sizable

collection of state-of-the-art techniques on three real-world KG datasets. Results show that

our RETA-Filter generates of high-quality candidate r -t pairs, outperforming the best baseline

techniques while reducing by 10.61%-84.75% the candidate size under the same candidate

quality guarantees. Moreover, our RETA-Grader also significantly outperforms state-of-the-art

link prediction techniques on the instance completion task by 16.25%-65.92% across different

datasets.
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Figure 5.1 – Examples of entities Marie Curie and Apple Inc. from Wikidata. For each entity, we
present a subset of triplets having that entity as head from Wikidata.

5.1 Introduction

Knowledge Graphs, such as Freebase [16], Wikidata1 or Google’s Knowledge Graph2, have

become a key resource powering a broad spectrum of Web applications, such as semantic

search [138], question-answering [146], or recommender systems [151]. A typical KG repre-

sents a large collection of entities (real-world objects or abstract concepts) interconnected via

relations, where entities contribute to the description of other entities via relations. Using a

triplet representation scheme, a KG consists of a set of triplets, (head, relation, tail), or (h,r, t )

for short, each of which encoding a relation connecting a head entity to a tail entity, such

as Marie Curie (head) sex or gender (relation) female (tail). Figure 5.1 shows two real-world

examples of entities Marie Curie and Apple Inc. from Wikidata; each example is associated

with a set of triplets having the entity as head in Wikidata. Despite the fact that modern KGs

contain high-quality structured data, they are also known to suffer from an incompleteness

issue, i.e., missing facts. For example, 71% of all people from Freebase have no place of birth

[93].

In this context, Knowledge Graph completion problems have been widely studied. In the

current literature, these problems are mostly formulated as a link prediction task [93, 129], i.e.,

1http://wikidata.org/
2https://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-not.html
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to predict missing links in a KG. More precisely, given two elements of a triplet, the task is to

predict the missing one, such as (h,r, ?), (h, ?, t ) or (?,r, t ), where the question mark represents

the missing entity/relation. However, despite the wide adoption of such link prediction tasks

by existing work for KG completion, this task is often impractical due to its strong assumption

on knowing two elements in a triplet. In fact, the two known elements in a triplet must

somehow be correlated in order to make a meaningful prediction, otherwise the task will result

in meaningless results. For example, the predictions for (Marie Curie, headquarters location, ?)

or (Apple Inc., sex or gender, ?) do not make any sense, while they would both be considered as

valid input for the link prediction task. Although existing work on link prediction implement

this task by taking out one element from a true triplet in a KG and then making predictions on

the triplet (which implicitly ensures the correlation between the two remaining elements in

the triplet), such an experimental setting indeed departs from many real-world use cases of

KG completion where we are not given two correlated elements in a triplet. Another thread of

work on KG completion focuses on the relation prediction task3, suggesting missing relations

to a given entity by collaboratively using the information about other entities that are similar

to the given entity, for example [9]. However, these techniques only suggest relations for a

given head, without predicting the tails and hence are only part of the solution.

In this chapter and toward the ultimate goal of KG completion, we tackle a more complex

instance completion problem. Specifically, considering a (head) entity as an instance, we

complete its descriptions by suggesting relation-tail pairs. In other words, we make predic-

tions on (h, ?, ?), suggesting r -t pairs to a given h. Different from the link prediction task,

our instance completion task has a more realistic setting without assuming knowing two

correlated elements in a triplet. However, such an instance completion problem on KGs is a

challenging task, due to a large number of potential r -t pairs for a given h; directly evaluating

and ranking all combinations of r and t not only incurs a significant computation cost, but

also results in poor performance due to the large number of candidate triplets to consider. For

example, such an approach takes 350.7 hours (CPU time) even with an efficient link prediction

technique TransE on our JF17K dataset (see our experiments for more detail), resulting in poor

performance of 0.0097 for recall@5.

A straightforward solution to this problem is to combine the relation prediction and link

prediction tasks [23]; for a given h, we first predict a set of relations using a relation prediction

technique, and then predict (h,r, ?) using a link prediction technique for each predicted rela-

tion r . Subsequently, with a small set of predicted relations, the number of candidate r -t pairs

fed to the link prediction technique can be significantly reduced. However, such an approach

still shows subpar performance, as it fails to fully consider the triplewise correlation of the

three elements in a triplet, in particular the schema information encoded in the entity-typed

3This task is also known as property prediction or recommendation by [23, 69, 149], as these works refer to a
triplet by (entity,property,value), which is equivalent to our notion of triplet as (head, relation, tail).
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triplet (h_t y pe,r, t_t y pe). Taking real-world examples from Wikidata, a relation prediction

technique may suggest two relations, headquarters location and industry, to the head entity

Apple Inc.; a link prediction technique then predicts on (Apple Inc., headquarters location, ?)

and (Apple Inc., industry, ?), resulting in a ranked list of candidate r -t pairs. Although such a

scheme reduces the number of candidate r -t pairs by predicting relevant relations, it still fails

to filter out many noisy r -t pairs, such as headquarters location-software industry or indus-

try-Mountain View. In Wikidata, the entities Apple Inc., software industry and Mountain View

are all associated with types (enterprise, economic branch and city, respectively). If we have

the schema information represented as entity-typed triplets (h_t y pe,r, t_t y pe) —(enterprise,

headquarters location, city) and (enterprise, industry, economic branch), we could easily filter

out such noisy r -t pairs that do not match the schema of the KG (to the given h).

Against this background and to effectively solve our instance completion problem over KGs

(h, ?, ?), we propose an end-to-end solution fully leveraging schema information encoded

in triplets. Specifically, our solution consists of two components. First, to effectively filter

out noisy r -t pairs for a given h, we design RETA-Filter, a Relation-Tail pair filter based on

entity types. More precisely, although the schema of a KG implies valuable information about

the structure of the KG, open-domain KGs such as Wikidata do not have a fixed schema [9].

Therefore, by extracting entity-typed triplets from an input KG, we build a head_type-relation-

tail_type tensor, which encodes the schema information of the KG. Based on this tensor, we

can efficiently search for candidate r -t pairs schematically matching a given h via tensor oper-

ations. In essence, RETA-Filter outputs a set of coarse-grained candidate r -t pairs fitting the

schema of the KG. Second, to predict the most promising r -t pairs from the filtered candidates,

we design RETA-Grader, a Relation-Tail pair grader leveraging a newly designed KG embedding

model scoring each candidate r -t pair with a particular consideration on the plausibility of

both the input triplet and its corresponding schema. To achieve this goal, we design two

neural network pipelines. On one hand, we learn from a triplet (h,r, t), generating a triplet

relatedness feature vector. On the other hand, we learn from the corresponding entity-typed

triplet(s) (h_t y pe,r, t_t y pe), generating one or multiple (when h or t has multiple types) relat-

edness feature vector(s), based on which we then compute a schema relatedness feature vector

by taking the minimum value along each feature dimension over these relatedness feature

vectors. The basic assumption behind this operation is that for a given valid triplet (h,r, t),

the relatedness of all its entity-typed triplets (h_t y pe,r, t_t y pe) should be high; subsequently,

the minimum relatedness along each feature dimension is expected to be high. Afterward,

we fed the concatenated triplet and schema relatedness feature vectors to a fully connected

projection to output the final predicted score of the input triplet (h,r, t ).

Our contributions can be summarized as follows:

• We revisit the impractical settings of existing approaches to KG completion, and propose
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to study a novel instance completion problem with more realistic settings, i.e., predicting

relation-tail pairs given a head (h, ?, ?).

• We propose an end-to-end solution to our instance completion problem. We first

propose RETA-Filter, a r -t pair filter based on entity-typed triplets, generating a set of

coarse-grained candidate r -t pairs matching the schema of the KG (to the given h). We

then propose RETA-Grader, a r -t pair grader leveraging a newly designed KG embedding

model scoring each candidate r -t pair with a particular consideration on the plausibility

of both the input triplet and its corresponding schema.

• We conduct a thorough evaluation of our proposed techniques compared to a sizable col-

lection of baselines on three real-world KG datasets. Results show that our RETA-Filter is

able to generate a set of high-quality candidate r -t pairs for a given h, outperforming the

best baseline techniques with 10.61%-84.75% reduction on the candidate set size, under

the same candidate quality guarantees. Moreover, our RETA-Grader also significantly

outperforms state-of-the-art link prediction techniques on the instance completion task

by 16.25%-65.92% across different datasets.

5.2 Related Work

Knowledge Graph completion predicts missing facts in a KG. In the following, we briefly

discuss existing work implementing one of the three types of tasks for KG completion: 1)

link prediction tasks suggesting one missing element in a triplet; 2) relation prediction tasks

predicting missing relations to a given entity; and 3) instance completion task suggesting

relation-tail pairs to a given head entity.

5.2.1 Link Prediction Task

In the current literature, KG completion has been mostly formulated as a link prediction task,

i.e., predicting one missing element in a triplet, i.e., (h,r, ?), (h, ?, t) or (?,r, t). To solve this

problem, early work resorted to rule/feature-based relational learning, such as association

rules [43] or hand-crafted features [71, 97] (e.g., paths linking entities) for link prediction.

Recently, KG embedding techniques have been proposed to learn latent representations of

entities/relations in a KG, which can then be effectively used for link prediction tasks over

the KG. These techniques can be classified into two broad categories. First, translational

distance models that exploit distance-based scoring functions to create the embeddings. One

representative model of this family is TransE [19], which learns from triplets (h,r, t ) such that

the relation between the head and tail are preserved as h+r ≈ t . Several works further improve

TransE to capture richer KG structures, such as involving relation-specific hyperplanes [132]

or spaces [74, 59, 36], for example. Second, semantic matching models that exploit similarity-
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based scoring functions. One typical model in that context is RESCAL [95], which represents

each entity as a vector and each relation as a matrix, and then uses a bilinear function to model

the relation between two entities. Several works extend RESCAL by reducing the complexity of

the models [143, 116] or of the training processes [150], by improving the model expressiveness

[12], by capturing asymmetric relations [124], by considering unbalanced data in KGs [60], or

by modeling non-linear relations using neural networks [117, 29, 113, 10, 92].

In addition, there are also a few works on link prediction combining triplets with other data.

According to the sources of such data, these works can be classified into two categories, i.e.,

data in the KG and third-party data. On one hand, besides triplets linking entities via relations,

literals [44, 67], images [77] or types [98, 58, 137] associated with entities in the KG can be

combined with triplets to improve the performance on link prediction. On the other hand,

some other techniques learn entity/relation embeddings from triplets in a KG jointly with

third-party data sources, in particular with text (e.g., Wikipedia articles) [131, 141, 122, 110].

However, we argue in this chapter that such link prediction tasks are impractical in the sense

that they assume knowing two of the elements in a triplet, which is often not the case in prac-

tice. Those two elements must be correlated to make meaningful predictions, which otherwise

result in meaningless outputs such as (Marie Curie, headquarters location, ?). Therefore, we

study an instance completion problem in this chapter, suggesting relation-tail pairs for a given

(head) entity.

5.2.2 Relation Prediction Task

KG completion problems have also been studied as a relation prediction task, suggesting

missing relations to a given entity [8, 42, 9, 23, 69, 149]. Specifically, for a given entity, the

objective is to suggest a list of relations (so-called properties by some of these works) which

are relevant to the entity. For example, Zangerle et al. [149] built a “property suggester” for

Wikidata, suggesting candidate properties based on association rules learnt from existing

triplets in Wikidata. Lajus et al. [69] studied the problem of determining obligatory relations

for a given entity in a KG by extracting and using the class hierarchy (of entities) in the KG.

Cao et al. [23] designed a relation prediction technique by applying an attention-based graph

neural network model to a bipartite entity-relation graph built from a KG. Recoin [9] suggests

properties to an entity on Wikidata by collaboratively using the information about other

entities that are similar to that entity; to ensure the high quality of the suggested properties, it

sometimes involves much prior knowledge when defining the similarity between entities on

Wikidata. For example, for entities of type human, a (Boolean) similarity is defined as whether

the two entities have the same occupation or not.

Our work differs from these techniques by considering a more complex problem, that of
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predicting relation-tail pairs for a given (head) entity. Although these relation prediction tech-

niques can be combined with link prediction techniques to perform our instance completion

task, such an approach yields subpar performance, as it does not fully leverage the schema

information encoded by the triplets.

5.2.3 Instance Completion Task

A closely related work to our instance completion problem is OKELE [23], which suggests

relation-tail pairs to a long-tail head (i.e., a less popular/frequent entity) in a KG, using open

Web data. Specifically, for a given head h, OKELE first implements a relation prediction

technique by applying an attention-based graph neural network model to a bipartite entity-

relation graph built from a KG, predicting a list of relations; for each suggested relation r ,

it then extracts and verifies potential tails from open Web data including semi-structured

vertical websites, unstructured plain text in Web content and structured HTML tables. To the

best of our knowledge, this is the only work in the current literature considering the instance

completion task, i.e., predicting relation-tail pairs to a given head. However, OKELE differs

from our work by extensively using open Web data. In contrast, our proposed solution only

requires triplets and entity types from a KG, without the need of involving any extra data

sources.

We also note that the so-called instance reconstruction task on KGs has been defined by

[152] for n-ary (or multi-fold) relational facts, where an n-ary relation consisting of a set of

relations {r1,r2, ...,rn} links multiple entities {e1,e2, ...,en}, respectively. For example, the n-ary

relation “PeopleMariage” containing the following three relations person, spouse, location,

links three entities Kobe Bryant, Venessa Bryant and California. The authors define the instance

reconstruction task as follows: given an n-ary relation {r1,r2, ...,rn} and a subset of the entities

linked by this relation, predict the rest of the entities, such as {e1, ?, ..., ?}. With the help of

relation paths [133], this task boils down to a link prediction task, i.e., predicting (e1,r1r2, ?),

(e1,r1r3, ?) and so on. Therefore, it fundamentally differs from our instance completion task,

where we do not assume any information about the relations.

5.3 Schema-Aware Instance Completion

To solve our instance completion problem on KGs, we propose an end-to-end solution leverag-

ing the explicit and implicit schema information encoded through the triplets. More precisely,

we first design RETA-Filter, a r -t pair filter based on entity-typed triplets, generating a set

of coarse-grained candidate r -t pairs matching the schema of the KG (to the given h). We

then propose RETA-Grader, a r -t pair grader leveraging a newly designed KG embedding

model scoring and ranking these candidate r -t pairs with a particular consideration on the
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plausibility of the triplets and their corresponding schema.

5.3.1 RETA-Filter

Our RETA-Filter is designed to generate a set of coarse-grained r -t pairs by extracting and

leveraging the schema of an input KG. Specifically, a KG contains a set of triplets (h,r, t ), where

h, t ∈ E and r ∈ R ; E and R are the sets of all entities and relations in the KG, respectively. Each

entity h (or t) can have one or multiple types h_t y pe1,h_t y pe2, ... ∈ T , where T is the set of

all entity types in the KG (we will discuss later the case where an entity does not have any

type). Subsequently, the schema of a KG can characterized by a set of entity-typed triplets

(h_t y pe,r, t_t y pe), indicating that an entity of type h_t y pe could be linked to an entity of

type t_t y pe via a relation r . Such information can serve as an important guideline to identify

eligible r -t pairs for a given h, thus avoiding many meaningless predictions.

To implement our filter, we first extract entity-typed triplets (h_t y pe,r, t_t y pe) from the

triplets (h,r, t) in a KG, by considering all the combinations of the types of h and t for each

triplet (h,r, t). For example, if h and t have m and n types, respectively, we extract m ×n

entity-typed triplets. Afterward, we represent all these entity-typed triplets as a head_type-

relation-tail_type tensor F ∈ B|T h |×|R|×|T t |, where T h and T t are the sets of all head and tail

types, respectively, while R is the set of all relations in the KG. Note that T h and T t are the same

as T in practice, as they are both the set of all entity types. We use different notations for them

to distinguish the semantic meaning of the corresponding dimensions of F, where the first

and third dimensions of F refer to head and tail types, respectively. Finally, by representing h

using its type vector ~hT ∈B|Th | and all tails using a type matrix MT ∈B|E |×|T |, we can efficiently

compute the candidate r -t pairs for h via a tensor product:

S = ~hT ×Th F×Tt M (5.1)

where ×n denotes the mode-n tensor product [65]. The resulting matrix S ∈N|R|×|E | encodes

the number of matches between h and each r -t pair, under the extracted schema. Figure 5.2

shows a toy example of our filter. To implement this filter, we have to take into account the

following two practical considerations:

• Frequency of entity-typed triplets. Entity-typed triplets

(h_t y pe,r, t_t y pe) encode the schema of the corresponding KG. When converting the

triplets of a KG into entity-typed triplets, we also obtain the frequency of each entity-typed

triplets, indicating how many times it appears in the KG. Intuitively, a low frequency indicates

a small contribution of the corresponding entity-typed triplet to the schema of the KG,

which could also be considered as noise. Subsequently, we could select frequent entity-

typed triplets (whose frequencies are higher than a threshold α) to build F. However, a too
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Figure 5.2 – A toy example of our filter, where we highlight an example of computation for one
relation (in gray). Given an head entity h, RETA-Filter fetches its type vector ~hT and multiply it
with the tensor F. The resulting matrix is then multiplied with the type matrix MT in order to
compute the candidate r -t pairs for h.

high value of α could also remove useful entity-typed triplets, resulting in an incomplete

schema captured by F. In other words, α controls the quality of the extracted schema, and

subsequently balances the tradeoff between the size of the candidate (r -t pair) set and its

coverage of true r -t pairs being included in the candidate set. On one hand, a too low value

of α could include noisy entity-typed triplets in F, resulting in a large candidate set with

noisy and redundant r -t pairs. On the other hand, a too high value ofα captures incomplete

schema information when building F, resulting in a small but low-coverage candidate set

(i.e., missing true r -t pairs).

We note that once we select frequent entity-typed triplets (whose frequencies are higher

than α), we build F as a Boolean tensor without considering the absolute frequency of each

selected entity-typed triplet, since the absolute frequencies of these frequent entity-typed

triplets are not useful when representing the schema of the KG. For example, an entity-typed

triplet (human, occupation, profession) with a frequency of 10,000 does not necessarily mean

that it is (ten times) more important than an entity-typed triplet (enterprise, headquarters

location, city) with a frequency of 1,000 when representing the structure of the KG; such a

frequency difference may just be caused by the varying popularity of different entity types in

a KG. Therefore, we do not distinguish the selected (frequent) entity-typed triplets by their

frequencies when building F.

• Number of matches between r -t pairs and h. The resulting matrix S encodes the number

of matches between h and each r -t pair under the extracted schema. Intuitively, a higher

number of matches indicates a higher plausibility of the corresponding r -t pair being a

candidate for h. Following the example in Figure 5.2, the number of matches between h

and the first r -t pair is S0,0 = 3. Subsequently, instead of taking all r -t pairs with non-zero

matches (in S) as the candidate r -t pairs, we could further select higher-quality r -t pairs

whose numbers of matches are higher than a threshold β as candidate r -t pairs. Obviously, a
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Figure 5.3 – Architecture of RETA-Grader.

lower value of β selects more candidate r -t pairs and thus leads to a higher coverage of true

r -t pairs being included in the candidate set, and vice versa. In essence, β directly balances

the tradeoff between the size of the candidate (r -t pair) set and its coverage.

In summary, our RETA-Filter is designed to efficiently generate a set of coarse-grained r -t

pairs by matching with the KG schema extracted from the entity-typed triplets of a KG. We use

two tunable parameters α and β balancing the tradeoff between the size of the candidate (r -t

pair) set and its coverage. By varying α and β, our RETA-Filter is able to achieve the best Pareto

frontier when trading off the size of the candidate (r -t pair) set and its coverage, compared to

a sizable collection of baselines (see our experiments for more detail).

5.3.2 RETA-Grader

Based on the set of candidate r -t pairs provided by our RETA-Filter, our RETA-Grader further

evaluates and ranks these candidate r -t pairs considering the plausibility of both the triplet

and its corresponding schema using a subtly designed KG embedding model. Figure 5.3 shows

our embedding model consisting of three parts. Specifically, for each fact (h,r, t ), it 1) learns

to capture the structural information of the triplet (h,r, t), generating a triplet relatedness

feature vector, and 2) learns to capture the corresponding schema information encoded by

the triplet, generating a set of relatedness feature vectors, one for each entity-typed triplet

(h_t y pe,r, t_t y pe), and then merges them into a unique schema relatedness feature vector.

Finally, it concatenates the triplet and schema relatedness feature vectors into an overall

relatedness feature vector to output a final prediction score, measuring the plausibility of both

the input triplet and its corresponding schema. In the following, we discuss the detailed design

of these three modules.
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Learning from triplets

To learn from a triplet (h,r, t), we use a Convolutional Neural Network (CNN) to model the

interaction between the three elements in the triplet, i.e., head h, relation r and tail t . We

adopt a CNN here, as it has been successfully used to learn from triplets in KGs by previous

work [29, 91]. As shown in Figure 5.3, we start by concatenating the three embedding vectors
~h,~r ,~t ∈RK (K is the embedding dimension), resulting in a matrix I ∈R3×K . The matrix I is fed

to a 2D convolutional layer with n f filters of size 3×3. We set the filter size to 3×3 to capture

the triple-wise relatedness between the embeddings of h, r and t . This convolutional layer

returns n f feature maps of size K −2 each, which are then flattened into a triplet relatedness

feature vector ~φ ∈R1×n f (K−2). This relatedness vector ~φ characterizes the plausibility of a fact

(h,r, t ) of being true.

Learning from schema (entity-typed triplets)

The schema information encoded by the triplet (h,r, t ) is also an important predictor for the

plausibility of the triplet. To capture such schema information, we extract and learn from entity-

typed triplets considering all the combinations of the types of h and t . When h and t have m

and n types, respectively, we extract a set of mn entity-typed triplets {(h_t y pei ,r, t_t y pe j )|1 ≤
i ≤ m,1 ≤ j ≤ n}. Afterward, we learn from each of these entity-typed triplet (h_t y pei ,r, t_t y pe j )

to generate its relatedness feature vector, using a similar method as for learning from triplets.

Specifically, as shown in Figure 5.3, by concatenating three embedding vectors for head type−−−−−−→
h_t y pei , relation~r , tail type

−−−−−−→
t_t y pe j , we also resort to a 2D convolutional layer with n f fil-

ters of size 3×3 to capture the triple-wise relatedness between
−−−−−−→
h_t y pei ,~r , and

−−−−−−→
t_t y pe j ; the

resulted feature maps are then flattened into a relatedness vector of size 1×n f (K −2). Note

that the filters in this module are different from the filters in the first module. We repeat this

process for all the mn entity-typed triplets associated with the input triplet. Finally, we con-

catenate these relatedness feature vectors into a matrix of size mn ×n f (K −2), and then take

the minimum value along each feature dimension, resulting in a unique schema relatedness

feature vector ~ψ. The basic assumption behind this min operation is that for a true triplet, the

relatedness of the three elements (h_t y pe, r , t_t y pe) of any entity-typed triplets should be

high; subsequently, the minimum relatedness along each feature dimension is expected to be

high. Similar ideas have also been successfully applied by previous works to merge relatedness

scores in a neural network [47].

Prediction using triplet and schema relatedness feature vectors

In the two previous modules, for each triplet, we obtain a triplet and a schema relatedness

feature vectors (~φ and ~ψ, respectively). We then concatenate~φ and ~ψ into an overall relatedness
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feature vector of size 2n f (K −2). Finally, we use a fully connected layer to output the predicted

score σ from the overall relatedness feature vector.

RETA-Grader Training Process

To train our RETA-Grader model, we minimize a softplus loss, which is defined as the negative

log-likelihood of the logistic model:∑
ω∈Ω

log (1+e−σ(ω))+ l og (1+eσ(ω′)) (5.2)

whereΩ represents the set of training triplets. For each tripletω= (h,r, t ), one negative sample

ω′ is generated by randomly corrupting one element in the triplet h, r or t . σ(ω) and σ(ω′)
denote the predicted score of our RETA-Grader model for the true fact ω and the negative fact

ω′, respectively. The loss function in Eq. 5.2 is minimized using the Adam optimizer [64], and

the model parameters are learnt via back propagation. We use rectified linear units (ReLU)

as the activation function [68] and batch normalization [57] after the two CNN layers for fast

training.

Practical considerations on design choices

To implement our RETA-Grader, we have to take into account the following two practical

considerations:

• Number of types learnt per entity. Our RETA-Grader evaluates a triplet considering the

plausibility of both the input triplet and its corresponding schema, where the schema

information is represented by a set of entity-typed triplets. For a given triplet (h,r, t ) where h

and t have m and n types, respectively, the second module in Figure 5.3 is repeated mn times

when evaluating this triplet; this could incur a large computation overhead for large values

of m and n. To overcome this issue, we choose to learn at most top-k types (according to the

frequency of types in a KG dataset) for each entity, resulting in min(mk,nk,k2) repetitions

of the second module, rather than mn times. We empirically show in our experiments below

that a small value of k is able to achieve a good performance on our instance completion

task.

• Entities without types. Although most entities in modern KGs are associated with one or

multiple types, there is still a small portion of entities without types. To accommodate these

entities in our instance completion task, we make the following adaptation to our proposed

solution.

First, to generate a set of candidate r -t pairs for a head h, if any entity (h or t ) does not have
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a type, we assume the entity could be associated with any type, such that we do not miss

any potential candidates. Specifically, we have the following three cases: 1) when h has no

type but t has types, ~hT becomes an all-one vector, where our RETA-Filter still considers the

match between r and t ; 2) when t has no type but h has types, the corresponding row of M

becomes an all-one vector, where our RETA-Filter still considers the match between h and

r ; 3) when both h and t have no type, ~hT and the corresponding row of M become all-one

vectors, where our RETA-Filter generates a full matrix S (without zero entry); in the last case

in particular, if we set the threshold bet a to 1, our RETA-Filter indeed degrades to keep all

combinations of r -t pairs as candidates.

Second, to let our RETA-Grader learn from entities without types, we assign an “unknown”

type to such entities, and then keep the same processing pipeline for score prediction. For

example, for a triplet (h,r, t ) where h has no type and t has n types, the set of entity-typed

triplets becomes {(unknown_t y pe,r, t_t y pe j )|1 ≤ j ≤ n}. From a schema point of view,

such an “unknown” type could be linked to any type in a KG via a relation, which makes the

schema relatedness feature vector less discriminative for prediction. Subsequently, the fully

projected layer in the third module in Figure 5.3 is able to automatically learn more from the

triplet relatedness feature vector to make predictions.

The implementation of RETA and used datasets are available here4.

5.4 Experiments

We conduct an extensive evaluation on our instance completion task. In the following, we

start by presenting our experimental setup, followed by our results and discussions.

5.4.1 Experimental Setup

Datasets

We use three popular KG datasets JF17K , FB15K and HumanWiki in our experiments. More

precisely, the JF17K and FB15K datasets are extracted from Freebase by [133] and [19], respec-

tively. We extract the HumanWiki dataset from Wikidata by extracting all triplets involving a

head entity of type human (i.e., class Q5 human on Wikidata)5. As our instance completion

task suggests relation-tail pairs for a given head, for each unique head, we randomly split its

r -t pairs in the datasets into 80% training and 20% test datasets. Table 5.1 shows the main

4https://github.com/eXascaleInfolab/RETA_code/
5We choose to extract the HumanWiki dataset because one of the state-of-the-art relation prediction techniques,

Recoin (see below), is specifically designed for “human” instances on Wikidata, using prior knowledge for better
performance on relation prediction.
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Table 5.1 – Statistics of the datasets.

Dataset JF17k FB15k HumanWiki
#Entity 9,233 14,579 38,949
#Entity w/ types 9,174 14,417 34,470
#Entity w/o types 59 162 4,479
#Type 511 588 388
#Type per entity 6.45 10.02 1.08
#Relation 326 1,208 221
#Fact 19,342 154,916 108,199
#Fact w/ types on both h and t 19,015 144,117 87,150
#Fact w/ types on either h or t 322 10,776 21,049
#Fact w/o types 5 23 0

statistics of the three datasets.

Baselines

We compare our proposed method against a sizable collection of state-of-the-art techniques

from the following three categories.

• Relation (property) prediction techniques. BPR [104] is a recommendation technique gener-

ating an entity-specific ranked list of relations (where we consider the relation prediction

task as recommending relations to entities). Property suggester (WikiPS) [149] recommends

relations to an entity using association rules learnt from existing triplets in Wikidata; this

technique is an API6 on Wikidata, and thus can only be applied to our HumanWiki dataset.

Recoin [9] suggests relations to an entity by collaboratively using the information about

other similar entities, where the similarity is manually defined using a Boolean similarity

function that considers two entities as similar if they share at least one type. In particular, it

has a special setting for entities of type human using heuristics and prior knowledge, where

the Boolean similarity is defined as whether two humans have the same occupation or not,

i.e., whether the two head entities of type human have the same tail entity linked via the

relation occupation or not. OKELE [23] predicts relations associated with an entity using

an attention-based graph neural network model7. As these relation prediction techniques

suggest a ranking list of relations to a given head, we take the top-N relations from the list as

6https://www.wikidata.org/w/api.php?action=help&modules=wbsgetsuggestions
7Note that we consider only the relation prediction technique from OKELE as a baseline technique in this

chapter, as its link prediction technique extensively uses open Web data, which fundamentally differs from our
instance completion task requiring only triplets and entity types from a KG, without the need of involving any extra
data sources (see more detail in our Related Work section).
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the predicted relations; tuning N actually balances the tradeoff between the size and the

coverage of the resulting candidate (r -t pair) set.

• Tail candidate refinement techniques. Based on the predicted list of relations returned by

the above techniques, a straightforward approach to form a set of candidate r -t pairs is

to combine each predicted relations with all entities (All). One possible improvement to

this step is to have a filtered list of relevant t rather than using all entities, i.e., generating

a subset of potential t for given h and r . Note that this differs from the link prediction

task, as we generate a subset of t rather than ranking r -t pairs. In the current literature,

an entity relatedness prediction task has been introduced by [152] for n-ary relational

facts where an n-ary relation links multiple entities {e1,e2,e3, ...,en}); this task predicts the

relatedness between entities in such an n-ary relational fact, in order to perform an instance

reconstruction task {e1,e2, ?, ..., ?} (see more detail in our Related Work section). The proposed

techniques by [152] evaluate the relatedness between two entities, i.e., whether two entities

should be linked by a relation or not, which can thus be adopted for our tail candidate

refinement. Specifically, two techniques have been proposed by [152]. First, a relatedness

affiliated embedding (RAE) model, which learns a multi-layer perceptron neural network to

predict a relatedness score between two entities, and considers them to be relevant if the

score is higher than a threshold γ. Tuning γ balances the tradeoff between the size and the

coverage of the resulting candidate (r -t pair) set. Second, a schema based predictor (Sch),

which leverages the type requirements on the entities dictated by the schema of a relation,

generating a set of (tail) entities schematically matching a given relation. Subsequently,

one can also combine the refined sets of candidate tails from RAE and Sch by taking their

intersection (RAE&Sch).

• Link prediction techniques. Based on a set of candidate r -t pairs for a given h, we apply the

following link prediction techniques.

First, we consider classical link prediction techniques evaluating the plausibility of a triplet.

The translational distance models we consider include: TransE [19], which learns to preserve

the relation between two entities as h + r ≈ t ; TransH [132], which extends TransE to better

capture multi-mapping relations using relation-specific hyperplanes; TransR [74], which

introduces relation-specific projections to also better capture multi-mapping relations;

TransD [59], which further extends TransR by decomposing the projection matrix into a

product of two vectors for an improved efficiency. The semantic matching models we

consider are as follows: Rescal [95], which represents each entity as a vector and each

relation as a matrix, and uses a bilinear function to model the relation between a pair of

entities; DistMult [143], which simplifies Rescal by representing each relation embedding

as a diagonal matrix; ComplEx [124], which further extends DistMult in the complex space

in order to better model both symmetric and asymmetric relations; Analogy [76], which

explicitly models analogical structures in multi-relational KG embeddings; SimplE [63],
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Figure 5.4 – Tradeoff between the size and the coverage of the resulting candidate (r -t pair) set
from different filtering techniques. Note that our RETA-Filter has a unique tradeoff line on
each dataset, as it does not use any tail candidate refinement techniques.

which is an expressive and interpretable KG embedding techniques based on canonical

polyadic tensor decomposition; RotatE [120], which defines a relation as a rotation from

a head to a tail in the complex vector space, capturing richer relation patterns. For each

of these link prediction technique, we use the hyperparameters as recommended by [52].

We also consider a variation of RETA-Grader as an additional baseline, where we learn

from triplets only, without learning from the schema (entity-typed triplets); we refer to this

baseline as RETA-Grader (no type).

Second, we also consider link prediction techniques using additional information about

entity types as baselines, as our RETA-Grader also evaluates a triplet considering the plau-

sibility of both the input triplet and its corresponding entity-typed triplets. TypeDM and

TypeComplex [58] are extended from DistMult and ComplEx, respectively, by explicitly

modeling entity type compatibility.

For our RETA-Grader, we set the number of types learnt per entity k = 2, 1 and 4, and the

number of Filters n f = 50, 200 and 100 for JF17K, FB15K and HumanWiki, respectively. More

details on these parameter sensitivity study will be present later.

90



5.4. Experiments

Evaluation Protocol

To implement our instance completion task, for a test h, we first generate a set of candidate

r -t pairs, and then score and rank them. We evaluate this task in two steps.

First, we evaluate the quality of the generated candidate r -t pair sets. We consider two

metrics: 1) the coverage of the candidate set (i.e., the percentage of the ground truth r -t

covered by the candidate set), and 2) the size of the candidate set. Intuitively, a good candidate

set should have higher coverage and a small size at the same time. Due to the intrinsic

tradeoff between the coverage and size of the candidate set, we plot and compare the Pareto

frontier of different techniques. Specifically, to generate a set of candidate r -t pairs using

our baseline techniques, we can use any relation prediction technique (BPR, WikiPS, Recoin,

Recoin_Human or OKELE) combined with any tail candidate refinement technique (All, RAE,

Sch or RAE&Sch). We first take the top N relations generated by a relation prediction technique

and then use one tail candidate refinement technique to generate a set of candidate r -t pairs.

By tuning N (and also γ for RAE when applicable), we balances the tradeoff between the size

and the coverage of the resulting candidate (r -t pair) set. For our method, we tune α and β to

balance this tradeoff.

Second, by fixing the set of candidate r -t pairs ensuring 95% coverage using our RETA-Filter,

we evaluate the performance of different (link prediction) techniques and our RETA-Grader

when ranking these candidate r -t pairs. We report Recall (Rec), Mean Average Precision (MAP),

and Normalized Discounted Cumulative Gain (NDCG).

5.4.2 Performance on Filtering r -t Pairs

In this section, we evaluate the first step of our instance completion task by investigating

the performance of filtering r -t pairs using different techniques. Figure 5.4 shows the Pareto

frontier when trading off the size and the coverage of the candidate r -t pair set using each

baseline technique and our RETA-Filter.

We observe that our RETA-Filter outperforms state-of-the-art techniques in general by achiev-

ing a better tradeoff in most cases, i.e., the resulting Pareto frontier is closer to the upper-left

corner of the plot. Moreover, we find that adding tail candidate refinement techniques to

relation prediction techniques does indeed help improve the quality of the resulting r -t pair

sets, where combining RAE and Sch (RAE&Sch) shows the best performance.

Furthermore, under the tail candidate refinement technique RAE&Sch, we find that Recoin

(RAE&Sch) is the most competitive baseline, which is able to achieve comparable results

to our RETA-Filter on FB15K and HumanWiki. More precisely, RETA-Filter is better than

Recoin (RAE&Sch) by achieving a slightly smaller candidate set under the same coverage
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Table 5.2 – Size of candidate set with at least 95% coverage. *WikiPS works only on HumanWiki
and fails to reach 95% coverage, due to the fact that its suggested relations (returned from its
API online) do not include all relations in our HumanWiki dataset.

Method JF17k FB15k HumanWiki
BPR (RAE&Sch) 450,933 1,526,529 287,247
OKELE (RAE&Sch) 699,890 7,734,614 1,011,185
Recoin (RAE&Sch) 514,930 1,567,367 278,253
WikiPS (RAE&Sch)* N/A N/A -*
RETA-Filter 68,745 1,048,053 248,721

when the coverage is higher than 82% on FB15K (95% on HumanWiki), while we observe the

opposite result when the coverage is lower than 82% on FB15K (95% on HumanWiki). However,

Recoin achieves such results by using heuristics and prior knowledge on the structure of a KG

(i.e., manually defined similarity between entities), in particular on HumanWiki where the

similarity between entities is defined as whether two humans have the same occupation or

not, i.e., whether the two head entities of type human have the same tail entity linked via the

relation occupation or not. In addition, WikiPS (RAE&Sch) also performs well on HumanWiki

(the second best baseline). However, it cannot reach high coverage, due to the API limitations,

as the returned relations do not include all relations in our HumanWiki dataset.

In practice, as the first step of our instance completion task, the r -t pair filtering step should

generate a set of candidate r -t pairs with a high coverage (95% or even higher), in order to

let the following link prediction techniques or our RETA-Grader identify the true r -t pairs

by scoring and ranking the candidate r -t pairs. Otherwise, the prediction on a candidate

set with a low coverage will certainly lead to low performance on our instance completion

task, as a candidate set with a low coverage excludes many ground-truth r -t pairs, which

can never be correctly predicted. In other words, the coverage of the candidate set in this

step is indeed the upper bound of recall@N when ranking the candidate r -t pairs in the

following prediction step. Therefore, we set the coverage to 95% and compare the size of

the candidate sets generated by different methods using the best-performing tail candidate

refinement technique RAE&Sch. Table 5.2 shows the results. We see that our RETA-Filter

consistently outperforms the baseline techniques, and reduces the size of the candidate set by

84.75%, 31.34% and 10.61% compared to the best performing baselines on JF17k, FB15k and

HumanWiki, respectively. In the following experiments, we use our RETA-Filter to generate

the set of candidate r -t pairs with 95% coverage.
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Table 5.3 – Performance of different methods on our instance completion task on JF17K. We
highlight the top-2 best-performing techniques for each metric.

Method
JF17K

Rec@10 Rec@5 MAP NDCG
TransE 0.0682 0.0321 0.0230 0.0233
TransH 0.0410 0.0188 0.0173 0.1248
TransR 0.0657 0.0316 0.0229 0.1343
TransD 0.0465 0.0238 0.0179 0.1253
Rescal 0.0074 0.0057 0.0048 0.0791
Distmult 0.0892 0.0499 0.0367 0.1392
ComplEx 0.0841 0.0523 0.0317 0.1377
Analogy 0.1129 0.0679 0.0414 0.1424
SimplE 0.0881 0.0398 0.0290 0.1336
RotatE 0.1745 0.0996 0.0529 0.1694
RETA-Grader (no type) 0.1414 0.0976 0.0528 0.1600
TypeDM 0.1481 0.0524 0.0452 0.1651
TypeComplex 0.0665 0.0425 0.0203 0.1204
RETA-Grader 0.1916 0.1153 0.0615 0.1855

Table 5.4 – Performance of different methods on our instance completion task on FB15K. We
highlight the top-2 best-performing techniques for each metric.

Method
FB15K

Rec@10 Rec@5 MAP NDCG
TransE 0.0411 0.0162 0.0242 0.1654
TransH 0.0216 0.0069 0.0175 0.1505
TransR 0.0441 0.0124 0.0240 0.1648
TransD 0.0253 0.0086 0.0196 0.1566
Rescal 0.0009 0.0004 0.0002 0.0566
Distmult 0.0596 0.0260 0.0245 0.1559
ComplEx 0.1235 0.0683 0.0597 0.1994
Analogy 0.1496 0.0841 0.0625 0.2017
SimplE 0.0483 0.0198 0.0245 0.1536
RotatE 0.0583 0.0341 0.0359 0.1805
RETA-Grader (no type) 0.1262 0.0653 0.0538 0.2114
TypeDM 0.1274 0.0693 0.0576 0.1999
TypeComplex 0.0985 0.0552 0.0439 0.1755
RETA-Grader 0.2104 0.1288 0.1037 0.2658
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Table 5.5 – Performance of different methods on our instance completion task on HumanWiki.
We highlight the top-2 best-performing techniques for each metric.

Method
HumanWiki

Rec@10 Rec@5 MAP NDCG
TransE 0.0098 0.0008 0.0147 0.1140
TransH 0.0110 0.0007 0.0119 0.1086
TransR 0.0052 0.0006 0.0124 0.1118
TransD 0.0050 0.0005 0.0108 0.1061
Rescal 0.0000 0.0000 0.0000 0.0474
Distmult 0.1400 0.1035 0.0767 0.1747
ComplEx 0.0986 0.0586 0.0416 0.1365
Analogy 0.0136 0.0064 0.0077 0.0891
SimplE 0.1151 0.0812 0.0573 0.1520
RotatE 0.0429 0.0064 0.0171 0.1172
RETA-Grader (no type) 0.1606 0.1109 0.0860 0.2038
TypeDM 0.1285 0.1143 0.0789 0.2079
TypeComplex 0.0581 0.0015 0.0165 0.1082
RETA-Grader 0.2049 0.1545 0.1166 0.2332

5.4.3 Performance on Ranking r -t Pairs

Based on the candidate r -t pair set generated by our RETA-Filter, we then evaluate the perfor-

mance of our RETA-Grader on our instance completion task. Table 5.3 and Table 5.4 and Table

5.5 show the results. We observe that our RETA-Grader consistently outperforms all baseline

techniques on our instance completion task in general. Taking MAP as an example, it yields

an improvement of 16.25%, 65.92% and 35.58% over the best performing baselines on JF17K,

FB15K and HumanWiki, respectively. Moreover, compared to RETA-Grader (no type), which

is the variant of our proposed model without learning from the schema, our RETA-Grader

learning from both triplets and their corresponding schema significantly achieves better per-

formance; this shows that learning from entity-typed triplets is indeed helpful for the instance

completion task. Compared to link prediction techniques using additional information about

entity types, our RETA-Grader yields better performance by evaluating the plausibility of both

the input triplet and its corresponding schema using a subtly designed KG embedding model.

Note that TypeComplex, which further considers entity types on top of the ComplEx model,

underperforms ComplEx; opposite results are reported in [58]. This is due to the different im-

plementations of the ComplEx model. More precisely, we tested two different implementation

of ComplEx from [58] and [52], respectively, and report the results from the best-performing

implementation from [52] in this chapter.

Moreover, we further investigate the performance of our RETA-Grader when handling entities

without types, where we assign an artificially created “unknown” type to such entities. To this
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Table 5.6 – Performance of RETA-Grader on different test facts.

Test Facts
JF17K FB15K HumanWiki

MAP NDCG MAP NDCG MAP NDCG
known types 0.0614 0.1857 0.1075 0.2780 0.1440 0.2912
unknown type 0.0651 0.1577 0.0790 0.1846 0.0608 0.1154

Figure 5.5 – Impact of the number of types learnt per entity k on instance completion perfor-
mance and evaluation time.

end, we divide all test facts into two sets depending on whether a fact involves an “unknown”

type or not: 1) test facts with types on both h and t (denoted as known type); and 2) test

facts involving “unknown” type (denoted as unknown type), including both facts with types

on either h or t and facts without types at all. We then compare the performance of our

RETA-Grader on these two sets of test facts. Table 5.6 shows the results. We observe that the

performance on the facts with known type is generally better than the facts with unknown

type. On one hand, for the facts with known type, our RETA-Grader is able to fully leverage

the corresponding entity-typed triplets to evaluate the plausibility of a triplet from a schema

perspective, resulting in better performance. On the other hand, for the facts with unknown

type, our RETA-Grader can only evaluate the schematic plausibility based on the assumption

that an “unknown” type could be linked to any type in a KG via a relation, which makes the

schema relatedness feature vector less discriminative for prediction.

We note that the results of known type in Table 5.6 are very close to the results on all test facts

from Table Table 5.3 and Table 5.4 (MAP and NDCG) on JF17K and FB15K, but not Table 5.5 on

HumanWiki. This difference can be explained by the fact that facts with known type dominate

the set of all test facts on JF17K and FB15K, representing 98.3% and 93.0% of all test facts on

JF17K and FB15K, respectively, while this statistic on HumanWiki is 80.5% (see Table 5.1 for

more detail).

5.4.4 Parameter Sensitivity Study

We also study the impact of two key parameters in our RETA-Grader, i.e., the number of types

learnt per entity k and the number of filters n f , on both instance completion performance and
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Figure 5.6 – Impact of the number of filters n f on instance completion performance and
evaluation time.

evaluation time. In this section, we focus on test facts with known type only, i.e., test facts with

known types on both h and t , as these test facts can be fully evaluated by our RETA-Grader

considering the plausibility of both the input triplet and its corresponding schema. In addition,

these test facts also dominate the set of all test facts.

Number of types learnt per entity by RETA-Grader

Our RETA-Grader evaluates a triplet considering the plausibility of both the input triplet and its

corresponding schema, where the schema information is represented by a set of entity-typed

triplets. For entities with many types, the size of this entity-typed triplet set is large, incurring

a large computation overhead. To solve this issue, our RETA-Grader considers at most top-k

types for each entity. In this experiment, we investigate the impact of k on instance completion

performance and evaluation time. Figure 5.5 shows the results.

On one hand, we observe that a small k is able to achieve a good performance on our instance

completion task. Although considering entity types could improve the performance on in-

stance completion, learning from a too large set of entity-typed triplets indeed makes it hard

to capture the key schematic structure of the KG, due to the noise included in the large set of

entity-typed triplets, resulting in degraded performance.

On the other hand, the evaluation time consistently increases with k, as our RETA-Grader

repeats its second module min(mk,nk,k2) times for a triplet where h and t have m and n

types, respectively. We observe an exponentially increasing time on JF17K (and FB15K), as

for most triplets in the dataset we have min(mk,nk,k2) = k2 (the average number of types

per entity is 6.45 on JF17K (and 10.02 on FB15K), which is larger than k in Figure 5.5). Note

that on HumanWiki, both instance completion performance and evaluation time have a small

variation when increasing k, due to the small number of types per entity in the dataset. In

essence, as the average number of types per entity is only 1.08 on HumanWiki, increasing k

affects only very few entities which have more than k types.

In summary, we select the best performing k = 2, 1 and 4 for JF17K, FB15K and HumanWiki,

respectively, for all other experiments.
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Number of Filters

We also investigate the impact of the number of filters n f used by RETA-Grader. Figure 5.6

shows the results. We observe that the optimal n f varies across datasets, while the evaluation

time monotonically increases with n f . Therefore, in all other experiments, we selected the

best performing n f = 50, 200 and 100 for JF17K, FB15K and HumanWiki, respectively.

5.5 Conclusion

By revisiting the KG completion task, this chapter studies an instance completion problem

over KGs, where we predict relation-tail r -t pairs for a given head h. To this end, we propose

an end-to-end solution consisting of two components: the RETA-Filter and RETA-Grader.

More precisely, our RETA-Filter first generates candidate r -t pairs for a given h by extracting

and leveraging schema information from the KG; our RETA-Grader then evaluates and ranks

these candidate r -t pairs considering the plausibility of both the candidate triplet and its

corresponding schema using a newly designed KG embedding model. We conduct a thorough

evaluation of our proposed techniques compared to a sizable collection of state-of-the-art

techniques on three real-world KG datasets. Results show that our RETA-Filter is able to

generate a set of high-quality candidate r -t pairs for a given h, outperforming the best baseline

techniques with 10.61%-84.75% reduction on the candidate set size under the same candidate

quality guarantee. Moreover, our RETA-Grader also significantly outperforms state-of-the-art

link prediction techniques on the instance completion task by 16.25%-65.92% across different

datasets. In future work, improving the generation of negative samples by corrupting r -t pairs

may further improve the performance of RETA-Grader.

In the next chapter we conclude our thesis summarizing the contributions of our proposed

methods. Additionally, we address the questions posed in Section Research Questions. Finally,

we discuss how to extend our proposed works and define new research directions.
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6 Conclusion

In this thesis, we investigated, designed, and evaluated a number of Knowledge Graph em-

bedding methods. We made a series of contributions in analogical reasoning, link prediction,

relation extraction and instance completion. These tasks represent some of the core tasks

tackled by Knowledge Graph embedding methods.

6.1 Addressing Research Questions

In this section, we come back to the research questions raised in Section Research Questions

and explain how we solved them. The three research questions are intrinsically correlated

as they aim to answer how to learn broader KG embedding models by leveraging additional

information in addition to the Knowledge Graphs.

6.1.1 Q1: How can we jointly learn embeddings from some text and a Knowledge
Graph? How can we best benefit from both data sources simultaneously?

We started by studying the problem of jointly learning embeddings from some text and a

Knowledge Graph in Chapter 3. The main advantage of this joint approach is that the model

not only benefits from high-quality structured KG data, but also from large-scale unstructured

text. However, existing techniques leverage anchors to associate entities in the Knowledge

Graph to corresponding words in the text corpus, thus generating additional learning samples

during the embedding learning process. One representative method is proposed by [131].

Specifically, it jointly learns word and entity/relation embeddings using a SkipGram-like and

a TransE-like methods, defining anchors to connect words in a text corpus and entities in a

KG. However, we found two main problems in this approach. First, existing models do not

provide enough flexibility to control how much information is actually shared between the

two data sources in the embedding learning process, and thus fail to optimally take advantage
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of both data sources. Second, this approach generates additional samples from the anchors

creating significant overhead in terms of computations and learning time, especially when

a large number of additional samples is generated. To address these issues, we proposed

JOINER to jointly learn text and KG embeddings via regularization. JOINER can flexibly control

the amount of information shared between the two data sources in the embedding learning

process with significantly less computational overhead. Our proposed approach is built on top

of a text model for learning word embeddings and a KG model for learning entity/relation em-

beddings. We evaluate JOINER on three different tasks: analogical reasoning, link prediction

in KGs, and relation extraction. Subsequently, we investigate the impact of the regularization

parameter, followed by a runtime evaluation. Specifically, on analogical reasoning we obtain a

2.8% improvement over the best performing baseline. On link prediction, JOINER outperforms

the best-performing baseline with 2.1% and 4.3% improvement in predicting tail and head,

respectively. Finally, on relation extraction, JOINER further outperforms the best performing

baseline by 1.4%. Moreover, we performed a study on the impact of the regularization parame-

ter showing that its optimal value varies across different tasks. We also performed a runtime

performance study showing that our approach generates 76% less overhead. In order to fully

take advantage of our proposed technique, a certain amount of anchors must be generated,

otherwise the model is limited to learn the text and the Knowledge Graph components sepa-

rately. However, it is not possible to estimate the size of the anchor set, since it depends on the

nature of the dataset itself and on the problem to be tackled.

6.1.2 Q2: How can we effectively learn Knowledge Graph embeddings from more
expressive structures such as hyper-relational facts?

After studying the problem of jointly learning embeddings from some text and a Knowledge

Graph, and tackling three different tasks (analogical reasoning, link prediction in KGs, and

relation extraction), in Chapter 4 we turned our attention to relation extraction. Existing tech-

niques typically represent a KG as a set of triplets (h,r, t ) and learn entity/relation embeddings

while preserving the KG’s structure. However, this triplet representation oversimplifies the

complex nature of KGs, especially for hyper-relational facts, where each fact is represented by a

triplet (h,r, t ) and associated key-value pairs (k, v). Existing works transform hyper-relational

fact into n-ary representation, in which a fact is composed only of a set of key-value pairs

without triplets. However, the n-ary representation is not always ideal, specifically for those

KG embedding models tackling link prediction. The problem of models learning from such

a representation is that they are unaware of the triplet structure, which serves as the funda-

mental data structure in modern KGs and preserves essential information for link prediction.

To address this issue we propose HINGE, a hyper-relational KG embedding model. HINGE is

designed to directly learn from hyper-relational facts in a KG, capturing not only the primary

structural information of the KG encoded in the triplets, but also the correlation between each
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triplet and its associated key-value pairs. We evaluated our proposed method and compared

it to a sizable collection of baselines on two real-world KG datasets. Through our evaluation

we show an improvements of 13.2-84.1% across different link prediction tasks over the best

performing baseline methods on individual tasks.

6.1.3 Q3: How can we tackle instance completion tasks by leveraging expressive
KG embeddings?

After studying Knowledge Graph completion to tackle the incompleteness issue in KGs (i.e.,

missing facts), in Chapter 5 we tackle a more complex instance completion problem, which is,

given a head entity suggesting the relation-tail pairs. Compared to link prediction, instance

completion has a more realistic setting as it does not assume knowing two correlated elements

in a triplet. However, such instance completion results in a highly challenging task, due to

the large number of potential relation-tail pairs candidates for a given head. Evaluating and

ranking all relation-tail pairs may incur a significant computational cost and poor perfor-

mance due to the large number of candidate triplets to consider. To effectively solve instance

completion problem over KGs, we propose RETA, an end-to-end solution fully leveraging

schema information encoded in triplets. RETA consists of two components: RETA-Filter,

which first generates candidate relation-tail pairs for a given head by extracting and leveraging

schema information from the KG, and RETA-Grader, which then evaluates and ranks these

candidate relation-tail pairs considering the plausibility of both the candidate triplet and its

corresponding schema. We evaluated our proposed method against a sizable collection of

state-of-the-art techniques on three real-world KG datasets. We show that RETA-Filter is able

to generate a set of high-quality relation-tail candidates for a given head, and that RETA-Grader

also significantly outperforms state-of-the-art techniques on the instance completion task.

6.2 Applications on Downstream Tasks

The learned entity and relation embeddings from a Knowledge Graph can be applied to

and improve a wide variety of downstream tasks. The models proposed in this thesis work

can be applied to the so-called In-KG applications, which are those applications conducted

within the scope of the KG where entity and relation embeddings are learned. In contrast

to In-KG applications, there also exist Out-of-KG applications, which go beyond the strict

boundary of the input KG. Examples of Out-of-KG applications are relation extraction, question

answering and recommendation systems (described in Section KG embedding applications).

The proposed method JOINER provides conclusive evidence that natural language can be

used to substantially improve the quality of Knowledge Graph embeddings. The experimental

results show that text and KGs can be mutually beneficial, i.e., the combination of text and

KGs can improve analogical reasoning (typically a text-only task) in addition to link prediction
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performance (typically a graph-only task). Both HINGE and RETA tackle the incompleteness

issue (i.e., missing facts) in modern KGs. Specifically, HINGE considers link prediction to solve

this problem, where given two elements of a triplet predicting the missing one, while RETA

considers instance completion task suggesting r-t pairs for a given h.

6.3 Future Work

There are several gaps and opportunities for future work that are worth investigating in order

to advance the methods presented in this thesis.

6.3.1 JOINER

Our proposed model JOINER adopts the same individual text and KG models as in [131], which

is a popular and representative joint text and KG embedding method. In this way, in our

experiments we compare JOINER and [131] showing the superiority of using regularization

when jointly learning the embeddings by discounting the effect of the individual text and KG

models. However, we also note that our joint embedding learning method using regularization

is not limited to any specific text and KG model. Specifically, JOINER combines a Skip-Gram

like text model and a TransE-like KG model since their scoring functions are both defined

using the Euclidean distance. Subsequently, our regularization term is also defined using the

Euclidean distance. However, our proposed approach can be modified in order to incorporate

other text and KG models, under the condition that the scoring functions of the two models

and the regularization term are defined using the same distance metric. Future experimental

work should extend JOINER with other text and KG models in order to clarify the impact of

jointly learning text and KG using different approaches.

6.3.2 HINGE

We have trained and evaluated HINGE on hyper-relational facts, where the key-value pairs were

composed of entities and relations, specifically. However, our current implementation does

not exploit any kind of external information such as visual and numerical/textual information

corresponding to the KG entities. A future research direction in this context is to enhance

HINGE with other types of data such as multimodal data (images or numerical/text literals),

in order to extend and enrich the key-value pairs. Often, the visual and numerical/textual

information can be obtained from literals corresponding to the KG entities. This information

can be used to improve the representation of novel entities, which are entities not linked to

any other entity in the KG but that have literal values associated with them such as their textual

description. Images can be also exploited, for example images of the entities of type human
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can be used to infer the entities’ gender.

6.3.3 RETA

Our proposed RETA model uses a simple but effective negative sampling technique, in which

either the head or tail entities or the relation from a fact are corrupted. This common setting

used by most of the KG embedding techniques works well since the large number of entities in

modern KG datasets makes the probability of generating a true fact as a negative sample very

low. However, corrupting entities by looking at their type may further improve the performance

of RETA-Grader as the goal of our model is to score relation-tail pairs given a head entity. For

example, if the entity to be corrupted is Obama, the negative sampling algorithm should

corrupt it with another entity with the same type, Politician for example. In this way, the model

is able to better discriminate entities belonging to the same type.

6.4 Outlook

Knowledge graphs are a valuable source of structured data for machine learning algorithms

empowering many downstream applications such as question answering, recommendation

and information retrieval. Real world examples of KGs include the Google Knowledge Graph

and Amazon’s Product Graph, which provide richer search capabilities on the Web, or Wikidata,

a collaboratively edited multilingual KG. Even though the aforementioned KGs contain millions

of fact, they are far from being complete. Due to this limitation, several link prediction

approaches have been proposed that aim at predicting new edges in a Knowledge Graph given

existing edges among the entities. In the future, we expect KGs to grow both in terms of size and

coverage, and to constantly evolve over time. Additionally, different types of graph models will

rise in popularity, such as Property Graphs where relationships not only describe connections

but also carry types and properties. These new types of graph models will introduce new

challenges in learning entities and relations embeddings. More complex problems will be also

studied at greater length, for example instance completion. Compared to link prediction, the

instance completion task has a more realistic setting as it does not presuppose knowing two

correlated elements in a triplet.

In the medium term, Knowledge Graphs will not only allow machines to store knowledge in a

semi-structured manner, but will also enable AI technologies to contextualize information

and evolve towards fact-based and common knowledge reasoning. In that context, Knowledge

Graph embeddings still represent the most efficient and effective methods to represent entities

and relations in a vector space while capturing some or their semantic meaning.
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