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Introduction

Empirical methods use structured observations from the real world to draw
conclusions. It is impossible to imagine economic research without such
methods. Empirical research methods can be categorized as either qualitative
or quantitative. The former gather information from non-numerical mea-
surements, while the latter use quantitative measurements (mostly numbers).
Quantitative economic research can fulfill two different purposes. First, they
can indicate causal effects, which usually depend on understanding a coun-
terfactual: What happens with and without a ’treatment’. For instance, in
winter sports destinations, knowledge of differences in demand with (treat-
ment) and without (counterfactual) a discount on ski lift passes is important
in helping companies decide their pricing strategies. Second, researchers
discuss ’prediction policy problems’ (Kleinberg, Ludwig, Mullainathan, and
Obermeyer, 2015) in order to predict the probability of an event. For in-
stance, the prediction of economically harmful cartels is important in helping
competition authorities decide which markets to examine more closely.

This PhD thesis fulfills both purposes of quantitative economic research
mentioned above by studying prices in different contexts and research fields,
namely tourism, public transportation and the construction industry. The
thesis is organized as a collection of four independent chapters. Chapter 1
provides a causal effect, i.e., the effect of a radical discount on ski-lift passes
on other companies in a winter sports destination. In recent years, a rapidly
growing economic literature has begun using machine learning, a subfield of
artificial intelligence. The remaining three chapters add to this literature
by analyzing data using predictive and causal machine learning algorithms.
Chapters 2 and 3 discuss prediction policy problems by predicting different
forms of bid-rigging cartels in the construction industry. Finally, Chapter 4
combines both purposes by assessing the demand effects of railway tickets.
The remainder of this introduction summarizes the broader context of each
chapter, provides a general description of the methods applied and describes
the key results.

Chapter 1 investigates the effect of radical discounts on ski lift passes
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on accommodation businesses in the same winter sports destination.1 The
interest here is because tourists’ choices of a winter sports destination not only
depend on the individual supply of a particular company, such as a hotel, but
also on the availability of attractive complementary products offered by other
companies in the value network of a winter sports destination. Therefore,
one company’s campaign or attractive offer, such as a price discount, can
positively affect partners in the same value network. Since around the turn of
the millennium, winter sports destinations in Switzerland have suffered from
a decline in visitor numbers. To reverse this decline in demand, in 2016 the
ski lift company in one destination, Saas-Fee, offered a yearly ski-lift pass for
222 Swiss francs (the WinterCARD), this being a radical price discount of
80% compared to the previous season. However, the decision to implement it
was made independently, and the campaign itself was characterized by weak
cooperation, as other businesses in the destination did not contribute to the
costs.

To assess the effect of the radical price discount on other partners in
the Saas-Fee value network, I use the synthetic control method (see Abadie,
Diamond, and Hainmueller, 2010). This method allows comparisons between
a single treated unit (Saas-Fee) and a control group (other winter sports
destinations in Switzerland). The methodology uses a data-driven procedure
to construct a synthetic control unit that adequately mimics the outcome
the treated unit would have experienced in the absence of the treatment
(WinterCARD). The synthetic control unit is created out of existing units
and is not chosen by researchers a priori. Athey and Imbens (2017) state
that the synthetic control approach is ”the most important innovation in the
policy evaluation literature in the last 15 years” (p. 9). To the best of my
knowledge, this is the first time in tourism research that the method has
been used to investigate the impact of a new pricing strategy. The results
indicate that a company’s practice of radically discounting the prices of its
seasonal lift passes had a positive impact on accommodation businesses in
the same winter sports destination. More precisely, the impact amounted to
about 35% additional overnight stays by domestic tourists per winter season,
a seasonal increase of about 32,000 overnight stays. On the other hand, the
ski lift company earned its main turnover from transportation. Therefore, by
the end of 2018 it concluded that, despite rising frequencies, the campaign
had been unsuccessful. Thus, in this chapter, I also show the difficulties
associated with such new pricing strategies and emphasize the importance of
cooperation between independent companies active in the same destination.

1This chapter is based on a paper published in the Tourism Economics. It is published as
Wallimann (2020).
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However, cooperation between firms does not serve the general public’s
interest in every case. For example, in markets, the joint interests of rival firms
are best served by cartelizing the market and keeping prices high. Here, the
problem is that the success of the cooperating firms harms the general public’s
interest: their cooperation leads to reductions in consumer and total welfare
and creates inefficiencies. Therefore, governments get into the game and
enact antitrust laws making collusion between firms illegal. In Switzerland,
for instance, in 2004 the parliament revised the federal Cartel Act and
introduced a sanction regime to prevent economically harmful cooperation of
rival firms. In order to discover collusive agreements, competition agencies can
use insightful information from, for example, compliance programs. However,
to reduce their dependence on such sources, researchers have proposed using
statistical methods to screen markets. This screening is the first phase of a
multi-stage process that may condemn firms cooperating illegally. Chapters 2
and 3, which analyze data from the construction industry, add to the most
recent literature on dismantling cartels with predictive machine learning.

The use of machine learning algorithms entails a set of predictors, also
features or covariates, to predict an outcome. Implementing such powerful
algorithms requires data to be randomly split into independent training and
test data. Then predictive models are developed in the training data, where
both covariates and outcomes are observed. Finally, the models predict the
outcomes in the test data for each observation on the basis of their covariates,
so-called ’out of sample predictions’. Machine learning algorithms aim to
achieve goodness of fit in the test set by minimizing deviations between the
predicted and actual outcomes. In recent years, machine learning algorithms
have drawn increasing attention from economists. Varian (2014), for example,
states ”I believe that these methods have a lot to offer and should be more
widely known and used by economists” (p. 3).

Chapter 2, a joint work with David Imhof and Martin Huber, proposes a
machine learning approach to flag bid rigging, which is particularly useful for
detecting incomplete bid-rigging cartels.2 This approach is essential, as the
reality is frequently characterized by a situation in which competitive bidders
participate in markets in which a cartel is active. Thus, in public procurement
tenders, one observes incomplete cartels due to the presence of competitive
bidders. In such a case, the statistical pattern produced by bid rigging
is contaminated, rendering its detection more challenging. The approach
classifies tenders as collusive using screens as predictors, i.e., statistics derived
from the distribution of bids in a tender. The methodological innovation of

2Chapter 2 is based on a working paper. It is published as Wallimann, Imhof, and Huber
(2020).
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this chapter consists in calculating the predictors for a tender in two steps:
first, screens are calculated for all possible subgroups of three and four bids
in a tender; and second, the summary statistics thereof, i.e., median, mean,
maximum and minimum, are used. To evaluate the method’s performance,
we analyze Swiss data on the Ticino, See-Gaster and Graubünden cartels,
in which the incidence of collusive and competitive tenders is known. Our
original detection method increases the correct classification rate of collusion
vs. competition of previously suggested methods by 3 to 10 percentage points
for incomplete bid-rigging cartels.

Chapter 3, a joint work with David Imhof, presents a method for detecting
collusive groups of firms.3 A wide range of methods focuses on discovering
tenders affected by bid rigging. Using such a method, agencies must also
build concrete suspicions against specific firms in order to flag candidates
for further investigations, e.g., house searches. The method we propose
considerably simplifies this step and allows cartels or collusive coalitions to
be identified directly. Coalitions are formed with three firms, as we aim to
discover the smallest possible cartels. Our approach isolates all tenders in
which the three firms of a coalition submitted a bid. Then screens (again,
statistics derived from the distribution of bids in a tender) exclusively based
on the bids of those three firms are calculated for each tender, constituting
the so-called ’tender-based screens’. The method proposes a further step
by calculating the summary statistics of all the tender-based screens of a
coalition. These statistics, so-called ’coalition-based screens’, synthesize the
distributional features of a specific coalition’s bids. We use these coalition-
based screens as predictors to flag bid rigging. Using Swiss, Japanese and
Italian procurement data, our method (out of sample) correctly classifies 90%
of collusive and competitive coalitions for each data set. Moreover, since the
auction settings differ in these three countries – i.e., first-price sealed bid
procurement mechanisms in Japan and Switzerland, and mean-price sealed
bid auctions in Italy – the method applies more generally. Finally, comparing
different machine learning algorithms, we find that the super learner (see
van der Laan, Polley, and Hubbard, 2008) outperforms the other algorithms
in two out of three data sets, making it advisable in our case.

Predictive machine learning algorithms, which we deploy in Chapters
2 and 3, can deal with many predictors and provide precise out of sample
predictions. However, predictive machine learning does not frame itself as
solving estimation problems, even though the econometric and economic

3Chapter 3 is based on a manuscript accepted for publication at the International Review
of Law & Economics and on a working paper. The working paper is published as Imhof
and Wallimann (2021).
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literature often focuses on questions that go beyond such problems. More
precisely, and as already noted, academics are interested in causal effects.
Causal machine learning, being an evolving and promising research field in
recent years, combines the theory of causal inference with the advantages of
machine learning (see, for instance, Athey, 2019). The last chapter of this
thesis contains both predictive and causal machine learning.

Chapter 4, a joint work with Martin Huber and Jonas Meier, assesses
the demand effects of discounts on train tickets, so-called ’supersaver tickets’,
issued by the Swiss Federal Railways.4 Using supersaver tickets, customers
in Switzerland can travel on long-distance public transport routes with a
discount of up to 70%. From a business analytics perspective of the railway
industry, understanding the demand effects of discounts is primarily relevant
for improving the allocation of public transport users. This is due to two
facts: capacity constraints in the rush hour, and the low average capacity
utilization of the trains. Furthermore, measuring the effectiveness of discounts
is important for policy-makers, as taxpayers subsidize public transport. In this
study, we provide two cases of business analytics in the railway industry. For
this purpose, we combine a unique survey-based sample of buyers of supersaver
tickets with data relevant to the supply and calculation of discounts.

In the first use case, we investigate which characteristics are important to
predict buying behavior when offering a supersaver ticket. Buying behavior
denotes rescheduling a trip (demand shift), booking a trip otherwise not
realized by train (additional trip) and buying a first- rather than second-
class ticket (upselling). The machine learner random forest (see Breiman,
2001) suggests that demand-related information for a specific connection (like
departure time and utilization), the discount level and customer’s age are
important features to predict buying decisions. The algorithm obtains correct
(out of sample) classification rates of 58%, 65% and 82% for demand shift,
additional trip and upselling respectively.

In the second use case, we assess the impact of the discount rate on
rescheduling a trip among ’always buyers’, those who would have booked a
journey even at the regular fare. The focus on always buyers is essential,
as consumers buying a supersaver ticket with a higher discount generally
differ from those who would already buy it at a lower discount in terms of,
for instance, their reservation price. On the other hand, the ’always buyers’
are homogeneous in terms of their buying decisions. To estimate the causal
effects, we assume that (i) the discount rate is quasi-random, conditional on
our covariates; and (ii) buying decisions cannot decrease in the discount rate.

4Chapter 4 is based on a working paper. It is published as Huber, Meier, and Wallimann
(2021). We are grateful to the SBB Research Fund for financial support.
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The second assumption we can scrutinize in the data, there being no evidence
for its violation.

Our findings are based on the causal machine learning algorithms causal
forest (see Wager and Athey, 2018, Athey, Tibshirani, and Wager, 2019) and
double machine learning (see Chernozhukov, Chetverikov, Demirer, Duflo,
Hansen, Newey, and Robins, 2018). The causal forest finds that, on average,
increasing the discount rate by one percentage point increases the share of
rescheduled trips by 0.16. The double machine learning approach suggests
that discount rates of 30% and more (relative to discounts of less than 30%)
on average increase the share of rescheduled trips by 3.8 percentage points.
Finally, investigating the effect heterogeneity across pre-selected observables
using the causal forest suggests that the effects are more than 0.2 percentage
points higher for leisure travelers and during peak hours when controlling
several other characteristics.



Chapter 1

A complementary product of a
nearby ski-lift company

*

Abstract

The availability of attractive complementary products offered by a nearby
company positively affects other companies in the value network of a winter
sports destination. We aim to empirically illustrate the positive effects of the
campaign of a local ski-lift company in Switzerland on other companies in
the same value network. For the first time in tourism research, the synthetic
control method is used to investigate the impact of a new pricing strategy.
In this case, the company’s practice of radically discounting the prices of its
seasonal lift passes had a positive impact on accommodation businesses in the
same winter sports destination. The impact amounts to about 35% additional
overnight stays by domestic tourists per winter season, a seasonal increase
of 32,000 overnight stays. However, the ski-lift company concluded that the
campaign had been unsuccessful. We, therefore, discuss the difficulties of
such a new pricing strategy and emphasize the importance of cooperation
between independent companies in the wider destination area.

*This chapter is based on a paper published in the Tourism Economics. It is published as
Wallimann (2020).
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1.1 Introduction

Winter tourism is of prime economic importance to mountain areas (Gonseth,
2013, Koenig and Abegg, 1997, Lohmann and Crasselt, 2012, Moreno-Gené,
Sánchez-Pulido, Cristobal-Fransi, and Daries, 2018, Steiger, Scott, Abegg,
Pons, and Aall, 2019). Winter sports destinations are characterized by having
a number of different independent companies, directly and indirectly, related
to tourism. These companies sell complementary products and, because
of sales interdependencies between them, form a complementary value net-
work (Baggio, 2011, Lohmann and Crasselt, 2012, Pechlaner, Presenza, and
Cipollina, 2010, Wyss, Luthe, and Abegg, 2015). Indeed, tourists’ choices
of winter sports destinations depend not only on the individual supply of a
particular company but also on the availability of complementary products
offered by nearby companies (Rigall-I-Torrent and Fluvià, 2010). Therefore,
one company’s campaign or attractive product can positively affect other
companies in the same complementary value network.

As Falk and Steiger (2020) point out, ski lift companies are the backbone
of winter tourism, as they transport visitors to the mountain tops. Therefore,
the provision of attractive products by a nearby ski lift company impacts
the tourist demand in a winter sports resort. In this article, we empirically
illustrate the effects of a local ski lift company’s campaign on other companies
in the value network of the winter sports destination of Saas-Fee, a high-
altitude mountain resort in Switzerland. The ski lift company in Saas-Fee
tried to reverse a declining demand by offering a radical price discount of 80%
on its seasonal lift passes. The decision to do this was made independently,
without cooperation with other partners in the Saas-Fee value network. Called
WinterCARD, in 2016, the ski pass was offered for 222 Swiss francs.1 The
price of the WinterCARD changed only slightly in the next two seasons,
and the campaign lasted three seasons altogether. However, after declines in
turnover and earnings, at the end of 2018, the ski lift company concluded
that the campaign had been unsuccessful.

In empirically illustrating the effects of the campaign of a local ski lift
company on other companies in a value network, we estimate how the Winter-
CARD affected accommodation businesses in Saas-Fee. As far as we are aware,
this is the first time its impact has been estimated for all three winter sea-
sons (2016/2017, 2017/2018, and 2018/2019) in which the WinterCARD was
available. Therefore, we use the synthetic control method (Abadie, Diamond,
and Hainmueller, 2010, Abadie and Gardeazabal, 2003, Cavallo, Galiani, Noy,
and Pantano, 2013), hereafter referred to as SCM, to estimate the causal

1This was equivalent to US$ 216 in November 2016.
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effect of the WinterCARD on overnight stays in hotels in this resort. The
methodology uses a data-driven procedure to construct a synthetic control
municipality that adequately reproduces the overnight stays that Saas-Fee
would have experienced in the absence of the WinterCARD. Although the
SCM has been used in several tourism studies (Addessi, Biagi, and Brandano,
2019, Biagi, Brandano, and Pulina, 2017, Castillo, Figal Garone, Maffioli, and
Salazar, 2017, Doerr, Dorn, Gaebler, and Potrafke, 2020, Tkalec, Zilic, and
Recher, 2017), the present article is the first in tourism research to use the
SCM to investigate the effect of a new pricing strategy of a ski lift company
on its partners in a destination’s value network.

We find a remarkable impact on accommodation businesses in Saas-Fee of
about 35% additional overnight stays by domestic tourists per winter season,
a seasonal increase of 32,000 overnight stays. The results for the first two
seasons remain robust when we perform several robustness investigations.
However, not all robustness tests confirm the third season. By extrapolating
the estimates for the first two seasons, we find that the WinterCARD has
a considerable economic effect on other companies in the Saas-Fee value
network, estimating a value added to be about CHF 25 million. The value
added by the WinterCARD includes spending for products and services in
the destination minus the value of the intermediate consumption needed to
produce these products and services.

The remainder of this article is organized as follows. In section 1.2,
we briefly discuss the existing literature on price strategies, tourism value
networks, and cooperation, as well as the provision of public goods within
such networks. Section 1.3 describes the context of this case study. In section
1.4, we introduce the methodology employed and its implementation. Section
1.5 documents the municipality-level panel data for the whole of Switzerland
used for the article. Section 1.6 presents the main results of the empirical
analysis and assesses the robustness of our results. Finally, in section 1.7,
we discuss the economic effects of the WinterCARD on the value network in
Saas-Fee. The article ends with a conclusion.

1.2 Literature review

Pricing strategies play a crucial role in tourism research. For ski lift companies,
a distinction must be made between pricing strategies for seasonal passes and
strategies focussing on single-day or multi-day tickets. As a famous example
of the second strand, dynamic pricing approaches to maximize revenues are
frequent strategies in the hotel and airline industries (Abrate, Fraquelli, and
Viglia, 2012). Some ski lift companies have started to experiment with a
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more dynamic approach to pricing as a means of increasing their operating
profits (Malasevska and Haugom, 2018). Another strategy in the tourism
industry to increase sales and attract guests are price discounts (Becerra,
Santaló, and Silva, 2013, Nusair, Yoon, Naipaul, and Parsa, 2010, Yang,
Zhang, and Mattila, 2016). Attracting additional visitors is also pursued by
ski lift companies introducing radical price discounts on seasonal lift passes.
Examples of such radical price discounts on seasonal passes include those
introduced in Colorado (Perdue, 2002) and the present case from Switzerland
(see also Falk and Scaglione, 2018).

Usually, the ski lift companies compete for guests by applying different
pricing strategies. However, horizontal cooperation among ski lift companies
in horizontally differentiated markets can be used to avoid this competition
between different providers. In doing so, the market power of the ski lift com-
panies involved can also be increased. Cooperation among ski lift companies
that have formed an alliance can be used for both selling common single-day
or multi-day tickets (Firgo and Kügler, 2018) and seasonal passes (Falk and
Scaglione, 2021). A ticket or season pass sold by one ski lift company in an
alliance is accepted on a mutual basis by other alliance members.

The price strategy and related demand are not only of interest to the
ski lift company itself but also to other service providers in a winter sports
destination, with which the ski lift companies form a complementary value
network because of sales interdependencies (Flagestad and Hope, 2001). Sev-
eral studies show that intercompany cooperation in a tourism value network
creates a competitive advantage (Beritelli, 2011, Machiavelli, 2001, Thao, von
Arx, and Frölicher, 2020, Wilke, Costa, Freire, and Ferreira, 2019, Zehrer
and Hallmann, 2015). This is because independent companies in destinations
sell complementary products. The importance of cooperation within the
value networks of winter sports destinations is supported by several studies
(Pikkemaat and Weiermair, 2007, Svensson, Nordin, and Flagestad, 2005).
Lohmann and Crasselt (2012) argue that if the snow sports company increases
the resort’s attractiveness by investing in new infrastructure, this will have a
positive impact on accommodation businesses. If the accommodation business
does not compensate for the cost, this situation typically creates a problem
of underinvestment.

Another stream of literature on which this article draws, linked to the
underinvestment problem, examines the provision of public goods (Samuelson,
1954) in tourist destinations (Eppen, Hanson, and Martin, 1991, Garrod and
Fyall, 2017, Rigall-I-Torrent and Fluvià, 2007, 2010, Saló, Garriga, Rigall-
I-Torrent, Vila, and Fluvià, 2014). Tourists’ choices of the destination in
which they spend their holidays depend on a company’s supply but also
on the availability of complementary products offered by nearby companies.
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Complementary products can be understood as public goods because they
are characterized by a certain degree of non-rivalry (the cost of positively
affecting another company is zero) and non-excludability (it is not possible
to exclude other companies from the positive effects of the product). The
existence of a public good in a value network has a positive external effect on
its members. However, this effect is hard to measure and therefore difficult
to internalize outside the context of reciprocal shareholdings. In the case
of independent companies, the members of a value network may not have
enough incentives to contribute to demand-enhancing investments, such as
the provision of a price discount for seasonal passes. In the following section,
we discuss the radical price discount of the ski lift company in the Saas-Fee
destination as an example of a public good in a tourism value network.

1.3 Background

According to Stettler, Zemp, and Steffen (2015), in the 1990s, Saas-Fee was a
leading alpine destination not only in Switzerland but also in Europe. The
ski slopes at this destination start at 3,600 m above sea level. This, plus the
presence of a glacier, ensures that Saas-Fee has snow throughout the winter
season. In recent years, however, winter tourism in Switzerland has suffered
a decline in visitor numbers (Seilbahnen Schweiz, 2017, Steiger, Scott, Abegg,
Pons, and Aall, 2019), Saas-Fee being particularly affected by this trend
(Falk and Scaglione, 2018, Stettler, Zemp, and Steffen, 2015). Frequencies on
the ski slopes in Saas-Fee fell by one-third between 2006 and 2016 (Saastal
Bergbahnen AG, 2017), a decrease of 170,000 visitors. The local ski lift
company generated a turnover from tickets sales of about 15 million Swiss
francs in the 2015/2016 winter season (Saastal Bergbahnen AG, 2016).

As already noted, in 2016, the ski lift company introduced the Winter-
CARD, a yearly ski lift offered for 222 Swiss francs. That amounted to a
radical price discount of 80% on ski lift passes, which the ski lift company
hoped would reverse the decline in visitor numbers. In addition to the yearly
season pass, a three-season lift pass for CHF 622 and a 15-year pass for CHF
2,999 were also offered. Implementation of the WinterCARD and its market-
ing costs amounted to about 4 million Swiss francs (Saastal Bergbahnen AG,
2017). The price of the 1-year passes remained the same in the 2017/2018
season. In 2018/2019, it was increased marginally to 233 Swiss francs.

For other members in the Saas-Fee value network, the WinterCARD came
as an attractive complementary product since their customers could also
benefit from this offer. However, the ski lift company earned its main turnover
from transport, and therefore the company only profited from one-time con-
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tributions of 222–233 Swiss francs per customer. Furthermore, the campaign
was characterized by weak cooperation, as companies in Saas-Fee other than
the ski lift company did not contribute to the costs of the WinterCARD
(Saastal Tourismus AG, 2019). Despite rising frequencies, moreover, the
ski lift company concluded that the introduction of the WinterCARD had
been unsuccessful due to declines in turnover and earnings by the end of
2018 (Saastal Bergbahnen AG, 2018). The operating loss amounted to CHF
4.31 million for the 2017/2018 winter season (Saastal Bergbahnen AG, 2018).
Therefore, the WinterCARD campaign ran only for three seasons, 2016/2017
to 2018/2019.

Several other ski lift companies in Switzerland reacted to the campaign
launched by the Saas-Fee company. As a first reaction, in the 2017/2018
winter season, 25 companies formed an alliance, whose members, mainly
located close to Saas-Fee, introduced a joint ski lift pass called the Magic Pass
for 359 Swiss francs (Falk and Scaglione, 2021) to replace their local passes.
A Magic Pass owner can use all the ski lifts of the members of the alliance.
During the 2018/2019 season, the alliance already contained more than 30 ski
lift companies. Second, other ski lift companies in Switzerland switched to
dynamic pricing for single-day and multi-day tickets. Famous examples are
the ski lift companies of Arosa Lenzerheide and Andermatt Sedrun, which
introduced dynamic pricing in the 2017/2018 season.

1.4 Methodology and Implementation

Identifying the effect of the WinterCARD on nearby accommodation busi-
nesses in Saas-Fee is equivalent to the overall topic of measuring a causal
treatment effect. ‘Treatment’ means an event, a policy or a company decision
(here, WinterCARD). In our article, we use the SCM (Abadie, Diamond, and
Hainmueller, 2010, 2015, Abadie and Gardeazabal, 2003, Cavallo, Galiani,
Noy, and Pantano, 2013) to measure the potential increase in overnight stays
at Saas-Fee triggered by the WinterCARD.

The SCM allows comparisons to be made between a single treated unit
(here, the municipality of Saas-Fee) and a control group (here, Swiss mountain
municipalities other than Saas-Fee). The treated unit under investigation
is the unit affected by the treatment. The methodology uses a data-driven
procedure to construct a synthetic control unit (here, synthetic Saas-Fee) that
adequately mimics the outcome the treated unit would have experienced in the
absence of the policy, or the company’s decision. The synthetic control unit
is created out of already-existing units and is not chosen by the researchers a
priori (Biagi, Brandano, and Pulina, 2017). The SCM is explained in more
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detail in Appendix 1.A.

Applying the SCM relies on three key assumptions (Bouttell, Craig, Lewsey,
Robinson, and Popham, 2018). The first assumption states that the outcomes
of the treated and the synthetic control unit are similar in the absence of the
policy or a decision by the company. The assumption is considered to be given
if there exists a similarity between the treated and the synthetic control unit
(Abadie and Gardeazabal, 2003, Abadie, Diamond, and Hainmueller, 2010,
2015). The SCM conditions on pre-treatment outcomes of the treatment unit
and the synthetic control. However, in contrast to, for example, the difference-
in-difference (DiD) approach, the SCM allows the impact of unobserved
confounding characteristics with time. The second assumption is that the
intervention has no spill-over effects, either positive or negative, affecting
municipalities other than Saas-Fee. Third, we assume that there are no
external shocks, other policies, or company decisions that might affect the
outcome in the municipalities in the control group. We discuss the assumptions
in more detail in the coming sections.

Falk and Scaglione (2018) estimate the effect of the WinterCARD in the
2016/2017 season by using the DiD approach. However, as we have only one
treated unit, the choice of the control unit might be problematic (Tkalec,
Zilic, and Recher, 2017). Therefore, applying a data-driven construction of a
synthetic control unit using the SCM seems more suitable. Furthermore, as
far as we are aware, our article is the first in which the effect is estimated for
all three seasons during which the WinterCARD was available, making our
conclusions regarding the campaign even more reliable.

Most studies applying the SCM use annual panel data sets (Abadie and
Gardeazabal, 2003, Abadie, Diamond, and Hainmueller, 2010, Addessi, Biagi,
and Brandano, 2019, Biagi, Brandano, and Pulina, 2017). In contrast to
these studies, in estimating the effect of the WinterCARD, we use a monthly
dependent variable. This approach is in line with the article by Castillo, Figal
Garone, Maffioli, and Salazar (2017), investigating the effect of a state tourism
development policy on employment in Argentina. Unlike the paper by Castillo,
Figal Garone, Maffioli, and Salazar (2017), we fade out the seasonal effects –
in our case, for example, the greater demand for winter sports destinations
in February compared to December – by considering the difference from the
pre-WinterCARD mean instead of the absolute values of overnight stays,
the dependent variable of our study we present in the following section. A
difference of a municipality, henceforth called the ‘difference of overnight
stays’, is the difference between the monthly overnight stays and the mean of
overnight stays in the municipality in the pre-WinterCARD period.
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1.5 Data

As we aim to estimate how the WinterCARD affected accommodation busi-
nesses in Saas-Fee, using the SCM described in the methodological section
above, overnight stays are our basic data source. The Swiss Federal Statistical
Office (FSO) provides a survey of tourist accommodations. We use the FSO’s
monthly municipality-level panel data for overnight stays for the period Jan-
uary 2006 to April 2019. In our paper, we take the winter months as being
December to April. Overall, we have data for 69 winter months, therefore
covering 54 pre-WinterCARD and 15 WinterCARD periods.

We restrict ourselves to municipalities in Switzerland that are classified
as mountain municipalities. Municipalities with incomplete data sets have
been removed. Analyzing the effect of the WinterCARD, we assume that no
external shocks were affecting the variable of interest in the municipalities
in the control group. However, we retain in our control group to ski lift
companies that are members of the Magic Pass alliance or that sell single-day
and multi-day tickets with dynamic pricing. This, because the price for
the Magic Pass is still 50% higher than for the WinterCARD, and dynamic
pricing is not applied to season passes. To test for this assumption, in the
robustness analysis, we re-estimate the effect without ski lift companies being
members of the Magic Pass alliance. Using the SCM, we compare overnight
stays in Saas-Fee with overnight stays in all other mountain municipalities
in Switzerland other than Saas-Fee, the latter constituting a control group
of 88 municipalities. All the municipalities in the control group are listed in
Appendix 1.B.

In this research, we take into account overnight stays by domestic but not
foreign tourists. The reason for this is the marketing campaign: the Winter-
CARD was mainly advertised within Switzerland. Table 1.1 gives descriptive
statistics for monthly overnight stays in hotels in the pre-WitnterCARD
and WinterCARD periods, respectively.2 The mean of overnight stays by
domestic tourists in Saas-Fee amounts to 17,655 before the introduction of the
WinterCARD. This contrasts with a lower mean for all municipalities in the
control group of 6,656. Conversely, the maximum number of overnight stays
in the control group in the pre-WinterCARD period, amounting to 78,855,
is higher than the maximum in Saas-Fee. Notably, the mean in Saas-Fee
increases to 25,610 monthly overnight stays by domestic tourists after the
introduction of the WinterCARD. Simultaneously, the mean for the control
group increases to 7,057.

2The descriptive statistics for the differences in overnight stays by domestic tourists are
presented in Appendix 1.D.
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As independent variables, we take the numbers of ski lifts, ski-runs in
kilometers, and average elevation per skiing area closest to the municipality
from commercial sources (ADAC Ski Atlas; website www.bergfex.com). For
federally licensed ski lifts, we have data from the Swiss Federal Office of
Transport. We use the distance from Swiss cities with more than 50,000
residents in travel minutes by car and public transport from Google Maps.
Regarding the snow dependence of winter tourism (Falk, 2010), we assign
our observations to the snow height measured halfway through a month at
the nearest station of the Global Climate Observing System (GCOS).3 In
addition, we have FSO data for the number of hotels per municipality. In
Appendix 1.C, we present a table with descriptive statistics of the independent
variables for all municipalities.

Table 1.1: Descriptive statistics for monthly overnight stays by domestic
tourists in Saas-Fee and the control group

Overnight stays (per month) Mean SD Min. Max. N
Pre-WinterCARD period

Saas-Fee 17,656 4,658 7,392 25,791 54
Control group 6,656 9,951 13 78,855 4,752

WinterCARD period
Saas-Fee 25,610 7,697 13,679 36,327 15
Control group 7,057 11,408 38 88,816 1,320

1.6 Results

In this section, we first present the results obtained from the SCM application
to the case of Saas-Fee. In our application, we use the synth package of
Abadie, Diamond, and Hainmueller (2011) and the synth runner package of
Galiani and Quistorff (2017) for the statistical software STATA. Secondly, we
investigate the robustness of our results.

1.6.1 The effect of the WinterCARD on accommodation busi-
nesses

Using the SCM, we construct a synthetic Saas-Fee that best represents Saas-
Fee. Therefore, we calculate the root mean squared prediction error, hereafter

3A few observations are not available. In these cases, we have assigned the values to the
second next station.
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referred to as the RMSPE, between Saas-Fee and the synthetic Saas-Fee
before the WinterCARD was introduced. To minimize our RMSPE, we use
both the independent variables presented in the section above and the data
on pre-WinterCARD overnight stays. We discuss this process in detail in
Appendix 1.E.

Table 1.2: Municipality weights for the synthetic Saas-Fee

Municipality Weights
Arosa 0.005
Davos 0.029
Engelberg 0.281
Hasliberg 0.313
Interlaken 0.072
Leukerbad 0.145
Meiringen 0.001
Zermatt 0.153

Table 1.2 gives the weights of each control municipality with a weight
higher than zero. All the other 80 municipalities receive a weight of zero.
The weights indicate that the trends in the differences of overnight stays
by domestic tourists in Saas-Fee in the pre-WinterCARD period are best
represented by a combination of the Arosa, Davos, Engelberg, Hasliberg,
Interlaken, Leukerbad, Meiringen, and Zermatt municipalities. Hasliberg
receives the highest weight, amounting to 0.313.

Figure 1.1 plots the differences in overnight stays by domestic tourists
for Saas-Fee and the synthetic Saas-Fee during January 2006 and April 2019.
As can easily be observed, the two trajectories track each other close in the
entire pre-WinterCARD period (pre-WinterCARD RMSPE: 1,168).4 This
suggests that the synthetic Saas-Fee provides a sensible approximation of
the number of differences of overnight stays that would have been booked in
Saas-Fee in the absence of the price discount. Thus, we conclude that the
first assumption of the SCM, namely that the treated and synthetic control
unit are similar in the absence of the WinterCARD, is not violated.

To outline the effect of the price discount on overnight stays by domes-
tic tourists in Saas-Fee, we compare the differences in overnight stays by
domestic tourists in Saas-Fee and the synthetic Saas-Fee for the period the
WinterCARD was available. In Figure 1.1, the two lines diverge after the

4See also Table 1.7 in Appendix 1.F giving the figures for the outcome paths for the
pre-WinterCARD period for Saas-Fee and synthetic Saas-Fee.
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Figure 1.1: Trends in differences in the overnight stays by domestic tourists
in Saas-Fee and synthetic Saas-Fee
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introduction of the radical price discount. While the two lines have a common
trend before the intervention, Saas-Fee has an apparent upward trend in the
WinterCARD period. The discrepancy in the differences in overnight stays by
domestic tourists suggests a large positive effect of the massive price discount.
Furthermore, it can be assumed that the effect is lowest in the third season.
This could be due to the introduction of the Magic Pass, which in this case
could have affected the municipalities in the control group. However, we
assume that this is not the main reason, as we do not assign weights to a
member of the Magic Pass alliance.5 Another explanation could be that the
good 2018/2019 winter season positively affected all ski lift companies, not
only that in Saas-Fee.

Table 1.3: Effect of the WinterCARD in Saas-Fee (rounded)

Per month 6,500 December 3,500
Per season 32,00 January 6,500
2016/17 season 40,000 February 9,000
2017/18 season 32,500 March 9,000
2018/19 season 23,500 April 3,500

Table 1.3 summarizes the key effects of the WinterCARD on overnight
stays by domestic tourists in Saas-Fee. The effect amounts to an average of
about 6,500 additional overnight stays per month in the Saas-Fee municipality
in the 2016/2017, 2017/2018, and 2018/2019 winter seasons. The average
seasonal effect of 32,0006 overnight stays amounts to an increase of 35%
compared to overnight stays by domestic tourists in the 2015/2016 winter
season in the Saas-Fee municipality, the season before the price discount was
introduced. In addition to comparing the different seasons, thanks to our
monthly approach, we can differentiate between the effects on a monthly
basis. This can be valuable information, as there may exist differences in
the monthly price elasticity of demand. The effect is greatest in February
and March, with an average of 9,000 additional overnight stays by domestic
tourists.7 Furthermore, as also shown graphically in Figure 1.1, the effect,
with 23,500 additional overnight stays, is the lowest in the 2018/2019 season.

5Leukerbad joined the alliance in the 2019/2020 season and is therefore not treated as a
member in this article.

6The small difference comes from the rounded values.
7Since Easter fell in mid-April in 2017 and 2019, the April figures could be positively affected
and therefore must be treated with some caution. As already noted, this is because the
Saas-Fee ski slopes have snow throughout the whole winter season and lie higher than the
municipalities with weights higher than zero in the control group except Zermatt.
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To investigate the significance of our results, we run placebo tests (see e.g.
Abadie, Diamond, and Hainmueller, 2010, 2015): that is, we use municipalities
known to be unaffected by the WinterCARD to evaluate the presence of hidden
biases. Assuming a unit of the control group was treated, we estimate the
same model as for the treated unit to arrive at the placebo effects. It is likely
that the estimated effect of the WinterCARD on accommodation businesses
in Saas-Fee, our treated unit, was observed by chance. That would be the
case if the distribution of placebo effects yielded many effects as large as the
effect in Saas-Fee.8

By comparing the distribution of the placebo effects and the effect in
Saas-Fee, we construct two meaningful p-values. We calculate the fraction
of placebo effects with an absolute value greater than or equal to the effect
estimated for Saas-Fee. To determine the joint effect across all WinterCARD
periods, we use the RMSPE. In our case, the RMSPE measures the quality
of fit between the path of the overnight stays for any particular municipality
and its synthetic control municipality. The first p-value can be interpreted as
the proportion of control units with an estimated effect at least as large as
that of the treated unit. Second, to control for the pre-WinterCARD RMSPE,
we divide all post-treatment RMSPEs by the corresponding RMSPE for the
pre-WinterCARD period.9

The first p-value amounts to 0.01. That is, one unit of the 88 units in
the control group has a higher WinterCARD RMSPE than Saas-Fee (1/88
= 0.011). The second p-value amounts to 0.023 (2/88 = 0.023). We have
two municipalities with a higher ratio of WinterCARD RMSPE over pre-
WinterCARD RMSPE than Saas-Fee. Concluding our low p-values, the
positive effect on the differences of overnight stays by domestic tourists in
Saas-Fee is highly significant.

1.6.2 Robustness analysis

To confirm the previous results, we perform several robustness checks in
this section. In doing so, we test the assumptions of the SCM, presented in
section 1.4. Further, we debate the municipality in the control group that is
assigned the highest weight and investigate the study-specific applications of
the method. The robustness checks are summarised in Table 1.4.

8We also conduct placebo tests by reassigning the time when the treatment took place (see,
e.g. Castillo, Figal Garone, Maffioli, and Salazar, 2017). We do not find any evidence that
there would be any effect prior to the massive price discount.

9In Appendix 1.G, we present the graphical results of the placebo tests.
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The second assumption of the SCM states that the treatment (Winter-
CARD) does not affect municipalities other than Saas-Fee. Ski destinations
near Saas-Fee could be adversely affected by the massive price discount (also
discussed by Falk and Scaglione (2018)). If this were the case, giving weights
to municipalities near Saas-Fee would mean overestimating the discount effect.
As shown above, we give weights to the Leukerbad and Zermatt, municipali-
ties located in the Canton Valais like Saas-Fee. Therefore, we (i) investigate
the robustness of our results with respect to this assumption. In doing so,
we discard municipalities in Valais from the donor pool. We obtain similar
results of additional overnight stays per month, amounting to about 6,500
and 6,000, respectively. Further, we omit municipalities in Canton Berne
because its skiing areas are relatively close to Saas-Fee. For both robustness
investigations, the results do not change significantly. Furthermore, other
control municipalities in the donor pool become more important and ‘step
in’ to construct a similarly good synthetic Saas-Fee with pre-WinterCARD
RMSPEs of 1,260 and 1,329, respectively.

Although members of the Magic Pass alliance are included in our estimates
of the effect of the WinterCARD, the introduction of the Magic Pass could
constitute an external shock to our analysis, as overnight stays in the control
group could be affected. If this were the case, the third assumption of
the SCM would be violated. Therefore, in robustness investigation (ii), we
exclude all municipalities near a ski lift company being part of the Magic
Pass alliance.10 Again, the result of about 6,500 additional overnight stays
differs only slightly from the original application. This is because none of
the excluded municipalities are assigned a weight greater than zero in the
above results. We conclude that the three assumptions of the SCM in our
application are fulfilled. This bases on the results of our first two robustness
investigations complementing the assumption that our synthetic Saas-Fee is
similar to the original in the pre-WinterCARD period.

In robustness test (iii), we evaluate the goodness of our main control unit
in the control group. We replace Saas-Fee with Hasliberg, which received
a weight of 0.313, to see whether there is any unexpected development in
overnight stays. The estimates indicate a monthly average increase of zero
overnight stays by domestic tourists in Hasliberg. In addition, the effect is
not significant regarding our two p-values. Therefore, having a non-significant
result amounting to zero confirms the goodness of the primary selected unit
in the control group.

In the article, we use monthly panel data corrected for seasonal effects.

10These municipalities are marked in Appendix 1.B. We also remove municipalities that
joined the alliance in the 2018/2019 season.
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As already noted, in using this approach, our article differs from many others
using the SCM. Therefore, robustness investigation (iv), we apply the SCM on
a seasonal level. The effect of additional 30,500 overnight stays by domestic
tourists triggered by the WinterCARD is more or less identical. Regarding the
first p-value, the result is significant. In contrast, the second p-value amounts
to 0.125 (11/88 = 0.125), indicating that 11 municipalities have a higher
post-WinterCARD RMSPE divided by the pre-WinterCARD RMSPE. This
is mainly because Saas-Fee has a much worse pre-treatment RMSPE than
other control municipalities, amounting to 2,030.11 Two (Ayent and Leytron)
of these 11 municipalities are members of the Magic Pass alliance; therefore,
the nonsignificance of the result is not only driven by the introduction of the
Magic Pass. As with the original calculation, the effect declines in the third
season.

As already noted, in this article, we take into account only overnight
stays by domestic tourists, as the WinterCARD was mainly advertised within
Switzerland. In robustness investigation (v), we therefore also estimate the
effect on overnight stays by foreigners.12 We do not find similar significant
effects as for overnight stays by domestic tourists. Interestingly, the results
even show a negative effect of the WinterCARD on overnight stays by foreign
tourists. One reason for this negative result might be that the campaign was
mainly marketed domestically and that the Saas-Fee destination continued to
suffer from the declining trend in foreign tourists. However, the effect is not
significant at the 5% level given both p-values. Furthermore, we see that the
pre-WinterCARD RMSPE, amounting to 2,030, is worse than estimating the
effect on domestic guests.

Summarizing our robustness tests, they broadly confirm the previous re-
sults. However, to take into account the uncertainties related to the 2018/2019
season and the (not significant) negative effect on foreign guests, in the next
section, we calculate the economic effects for the 2016/2017 and 2017/2018
seasons alone.

1110 of these 11 municipalities having a higher post-treatment root mean squared prediction
error (RMSPE) divided by the pre-treatment RMSPE have a pre-treatment RMSPE below
200, and 5 of these 11 have one below 10.

12Similar to the overnight stays by domestic tourists, we consider the difference from the
pre-WinterCARD mean instead of the absolute values of overnight stays to fade out seasonal
effects.
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1.7 The economic effect of the nearby complemen-

tary product

Companies at winter sports destinations form a complementary value network.
In the previous sections, we illustrated empirically the positive effect on
accommodation businesses triggered by the product of the nearby ski lift
company. These additional guests spend money in a destination. However, it
is not only hotel guests who are attracted by such a product. In this section, we
extrapolate the economic effects of the WinterCARD on all companies other
than the ski lift company in the value network based on strong assumptions
that the figures in studies and reports for where Saas-Fee is located (see
e.g. HES-SO Wallis, 2016, Rütter, Rütter-Fischbacher, Berwert, and Landolt,
2001, general classification of economic activities according to the FSO) are
valid for our case. We calculate the value added by the campaign in the
winter sports destination of Saas-Fee in the 2016/2017 and 2017/2018 winter
seasons. Value added is the spending of additional guests on products and
services in Saas-Fee less the value of the intermediate consumption required
to produce these products and services. Figure 1.2 visualizes our calculations
of the value added by the WinterCARD in the Saas-Fee destination.
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To calculate the value added, we start with the reliable figures of 40,000
and 32,500 additional seasonal hotel guests in the Saas-Fee tourism value
network for the 2016/2017 and 2017/2018 seasons, respectively. We first
calculate the expenses of these 72,500 (40,000 plus 32,500) additional guests
in the tourism value network. On average, a hotel guest generates direct
value added of CHF 105 in the value network of a winter sports destination.
Thus, we extrapolate a direct value added of CHF 7.6 million in the Saas-Fee
municipality. Secondly, we estimate the effect on holiday flats, assuming a
similar effect of additional overnight stays on this sort of accommodation.13

If we assume an additional CHF 55 in direct value added from spending
by these guests, we arrive at a direct value added of CHF 4 million for the
Saas-Fee municipality’s value network. Going even further, we can calculate
value added triggered by tourism demand for the upstream product or service
company, called ‘indirect value added’. In doing so, we estimate an indirect
value added of about CHF 7.8 million for the Saas-Fee municipality, given
the relative amount of indirect effects of tourism reported in Switzerland.
As the WinterCARD was a complementary product for the whole of the
Saas-Fee destination, in a fourth step, we extrapolate the 35% of additional
local hotel overnight stays (compared to the winter season of 2015/2016)
to the Saas-Grund and Saas-Almagell municipalities to arrive at additional
values added of CHF 1.9 million and CHF 4 million, respectively.14

In total, we arrive at a figure of CHF 25.3 million for the value added to
the value network of the Saas-Fee destination that the WinterCARD triggered
in the 2016/2017 and 2017/2018 winter seasons together. That is one and a
half times the total seasonal income from ticket sales to the ski lift company
in the 2015/2016 winter season. Therefore, given the high value added from
an overall short-term perspective, even based on strong assumptions, we
conclude that the WinterCARD was a success for companies in the Saas-Fee
value network except for the ski lift company, at least in the 2016/2017 and
2017/2018 seasons.

1.8 Discussion and Conclusion

Tourists’ choices not only depend on the individual supply of a particular
company in the value network of a destination. The availability of the
WinterCARD, in this case, a complementary product offered by the local ski

13The Saas-Fee destination has about the same number of guests in holiday flats as in hotels
(Saastal Tourismus AG, 2020).

14We omit the municipality of Saas-Balen, as we do not know the overnight stays in this
municipality.
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lift company, positively affected accommodation businesses and companies
other than the ski lift company in the Saas-Fee value network. Being the first
article to investigate the impact of a ski lift company’s new pricing strategy
on its partners in a destination’s value network using the SCM, an effect of
35% additional overnight stays by domestic tourists generated by a radical
price discount introduced by the ski lift company was estimated. This result
was supported by several robustness tests, especially for the first two seasons
after introducing the discount. By extrapolating, we obtained a figure for the
economic effect of the ski lift company’s campaign on the local winter sports
destination of about CHF 25 million in the 2016/2017 and 2017/2018 seasons
taken together. Thus, the introduction of a complementary product by a
nearby company positively affected other companies in the value network, as
stated in other tourism papers (Rigall-I-Torrent and Fluvià, 2007, 2010).

However, the ski lift company decided to conduct its campaign regardless of
the positive effects for the other companies. Without receiving compensation
from them for its investments, at the end of 2018, the company concluded
that the introduction of the WinterCARD had been unsuccessful. There
are two reasons for this. First, the ski lift company earns its main turnover
by providing transportation. Second, and more importantly, the company
made its decision independently, without the cooperation of local companies.
This meant that the other companies, such as the accommodation businesses
that were positively affected by the campaign, did not contribute to the
costs of the WinterCARD. Therefore, this case represents a downside of a
complementary value network with independent companies. Cooperation
between the partners in the value network could have led the destination on
a path to sustainable development (Beritelli, 2017, Bramwell and Lane, 2000,
Machiavelli, 2001). Nonetheless, our empirical illustration of the positive
effects will help companies in the value networks of winter sports destinations
cooperate to launch similar campaigns in the future. This is because we
empirically illustrated how to measure the effect of introducing a new price
strategy using the SCM. After ending the WinterCARD campaign, the ski
lift company in Saas-Fee decided to go for horizontal cooperation. Since the
2019/2020 winter season, it has been a member of the Magic Pass alliance
(Saastal Bergbahnen AG, 2018).

One limitation of this article is its short-term perspective. Due to the
short lifespan of the campaign, we only calculated its effects over three seasons.
Any generalizations from our findings should therefore consider this factor.
Also, we do not use econometric methods to calculate the economic impact of
the campaign. Instead, based on strong assumptions, we have extrapolated
our figures to arrive at the value added. At the same time, this limitation
may encourage further studies to investigate in more detail the value added
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of campaigns in winter sports destinations using econometric methods.
In the near future, attracting domestic guests should be given priority,

given the travel restrictions caused by the COVID-19 outbreak. By aiming
at local guests, perhaps with campaigns like the WinterCARD, but with
cooperation, the risk of long-term or subsequent travel restrictions can be
avoided. However, shifts in demand from guests in terms of peak hours, days,
and months will become more important to avoid overcrowding. Therefore,
campaigns other than those offering radical price discounts will be needed.
Using the SCM to measure the company’s decisions in avoiding overcrowding
is on the agenda for future research.
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Appendices

1.A Synthetic control method

Suppose we observe J + 1 units, the treated unit and J remaining units in the
control group. Let T0 be the number of pre-treatment periods, with 1 ≤ T0 < T.
Let Y I

jt be the overnight stays that would be observed for unit j at period t if unit j
is exposed to the treatment in periods T0+1 to T. The treatment has no effect on
overnight stays during the pre-treatment periods 1 to T0. Let Djt be an indicator
for treatment for municipality j at time t. In our paper, the first unit (Saas-Fee) is
exposed to the intervention, and only after period T0, we have that

Djt =

{
1 if j = 1 and t > T0,

0 otherwise.
(1.A.1)

For unit j at time t, the observed outcome is

Yjt = YN
jt + αjtDjt. (1.A.2)

The effect of the treatment can be written as

αjt = Y I
jt −YN

jt . (1.A.3)

Since only the first unit is uninterruptedly exposed to the treatment, we can
apply the standard method of Abadie, Diamond, and Hainmueller (2010). Thus,
we aim to estimate (αjT0+1, . . . , αjT) for t > T0 and an observed Y I

1t,

α1t = Y I
jt −YN

jt . (1.A.4)

As we observe Y I
1t, we merely need to estimate YN

1t , the outcome of the synthetic
control unit. We suppose that YN

jt is given by the factor model.

YN
jt = δt + θtZj + λtµj + εjt, (1.A.5)

where δt is an unknown common factor with constant factor loadings across mu-
nicipalities. Zj is a (r × 1) vector of observed covariates and pre-WinterCARD
overnight stays unaffected by the WinterCARD, and θt is a (1× r) vector of un-
known parameters. λt is a (1× F) vector of unobserved common factors, and µj is
a (F× 1) vector of unknown factor loadings. We can think, for instance, of λt as
the appreciation of the Swiss franc (a common shock across municipalities) and µj
as the heterogeneous impact of the appreciation of the Swiss franc on municipality j
according to its touristic potential. We assume the error term εjt to be independent
across municipalities and time with zero mean.

Each unit in the control group is weighted by W = (w2, w3, . . . , wJ , wJ+1),
which is a (J × 1) matrix of non-negative weights that sum to one. Units with
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a large predictive power on the outcome for the treated unit are assigned large
weights. In other words, we choose the weights to minimize the distance between
the treated and the synthetic control unit in the pre-treatment period. Therefore,
we calculate the root mean squared prediction error (RMSPE) of the dependent
variable between the treated and the synthetic control unit. The RMSPE will be
small if the Saas-Fee outcome is close to those of the synthetic Saas-Fee and is
defined as follows:

RMSPE = (
1
T0

T0

∑
t=1

(Y1t −
J+1

∑
j=2

wjYjt)
2)

1
2 . (1.A.6)

1.B The municipalities in the control group

Adelboden (Berne), Aeschi bei Spiez (Berne), Airolo, Amden, Andermatt, Arosa,
Avers, Ayent (Valais; Magic Pass), Bad Ragaz, Bagnes (Valais), Beatenberg (Berne),
Beckenried, Bex (Magic Pass), Blatten (Valais), Breil/Brigels, Brienz (Berne),
Brig-Glis (Valais), Celerina/Schlarigna, Champéry (Valais), Chur, Churwalden,
Château-d’Oex, Davos, Disentis/Mustér, Emmetten, Engelberg, Evolène (Valais;
Magic Pass), Fiesch (Valais), Flims, Flums, Flühli, Frutigen (Berne), Gersau,
Grindelwald (Berne), Gruyères (Magic Pass), Grächen (Valais), Hasliberg (Berne),
Innertkirchen (Berne), Interlaken (Berne), Kandersteg (Berne), Kerns, Klosters-
Serneus, Laax, Lauterbrunnen (Berne), Lenk, Lens (Valais; Magic Pass), Leukerbad
(Valais), Leysin (Magic Pass), Leytron (Valais; Magic Pass), Meiringen (Berne),
Morschach, Naters (Valais), Nendaz (Valais), Ollon (Magic Pass), Ormont-Dessous
(Magic Pass), Orsières (Valais), Plaffeien (Magic Pass), Pontresina, Quarten, Rid-
des, Riederalp (Valais), Saanen (Berne), Samedan, Samnaun, Schangnau (Berne),
Schwende, Schwyz, Scuol, Sigriswil (Berne), Sils im Engadin/Segl, Silvaplana,
Sion (Valais), St-Moritz, Tujetsch, Täsch, Val-d’Illiez (Valais), Vals, Vaz/Obervaz,
Vilters-Wangs, Vitznau, Walenstadt, Weggis, Wilderswil (Berne), Wildhaus-Alt
St-Johann, Wolfenschiessen, Zermatt (Valais), Zernez and Zweisimmen (Berne)
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Figure 1.B.1: Map of Saas-Fee and the control group
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1.C Descriptive statistics of the independent vari-

ables

Table 1.5 provides descriptive statistics of the independent variables for all munici-
palities.
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1.D Descriptive statistics of monthly differences in

overnight stays by domestic tourists in Saas-

Fee and the control group

Table 1.6: Descriptive statistics for monthly overnight stays by domestic
tourists in Saas-Fee and the control group

Overnight stays (per month) Mean SD Min. Max. N
Pre-WinterCARD period

Saas-Fee 0 1,791 -3,769 5,875 54
Control group 0 1,437 -13,224 18,592 4,752

WinterCARD period
Saas-Fee 8,005 3,654 2,518 14,025 15
Control group 424 2,743 -8,491 29,791 1,320

1.E Constructing the synthetic Saas-Fee

We construct a synthetic control that best represents Saas-Fee in the pre-WinterCARD
(pre-treatment) period. To minimize our RMSPE, we use both the independent
variables presented in Section 5 and pre-treatment overnight stays. It is essential
to assess the pre-WinterCARD goodness of fit of the synthetic control compared
to our treated unit, Saas-Fee. Constructing our synthetic Saas-Fee only using
pre-WinterCARD overnight stays as predictors (RMSPE: 1,168) better represents
overnight hotel stays in Saas-Fee than using the independent variables (RMSPE:
1,603). Pre-WinterCARD overnight stays together with the independent variables
do not minimize the RMSPE so that it is lower than only using all pre-WinterCARD
outcomes as predictors. Using all pre-WinterCARD outcome variables as separate
predictors together with covariates, we obtain almost the same RMSPE as when only
all pre-WinterCARD outcomes are predictors. Kaul, Klößner, Pfeifer, and Schieler
(2017) suggest that using all pre-treatment (here, pre-WinterCARD) outcomes as
predictors renders all independent variables irrelevant. Ignoring truly influential
independent variables for future outcome values could cause a potential bias in the
estimated treatment effect. Ignored observed independent variables are no different
from unobserved confounders. According to Abadie, Diamond, and Hainmueller
(2010), the SCM is asymptotically unbiased even in the presence of unobserved in-
dependent variables. Thus, according to Kaul, Klößner, Pfeifer, and Schieler (2017),
optimizing only the fit with respect to many lags of the pre-WinterCARD outcome
may, to some extent, be beneficial. Considering our RMSPEs, we assume that our
present independent variables are not truly influential. Based on the discussion
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in Kaul, Klößner, Pfeifer, and Schieler (2017), we do not use both independent
variables and all outcomes for the pre-WinterCARD period. Instead, we use only
overnight stays for the pre-WinterCARD as predictors in the construction of the
synthetic control and also assume that we take unobserved factors into account
(see also Cavallo, Galiani, Noy, and Pantano, 2013, Powell, 2017).
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1.F Pre-WinterCARD characteristics

Table 1.7: Pre-WinterCARD characteristics of Saas-Fee and synthetic Saas-
Fee (differences in overnight stays)

Variables
Saas-Fee

Variables
Saas-Fee

Treated Synthetic Treated Synthetic
2006m1 -985 -859 2011m3 2,017 1,112
2006m2 -2,852 -1,826 2011m4 5,875 1,570
2006m3 -904 -528 2011m12 2,680 344
2006m4 -41 1,148 2012m1 356 1,049
2006m12 -1,148 -2,139 2012m2 1,127 1,040
2007m1 -1,871 -2,167 2012m3 2,049 428
2007m2 -3,119 -1,713 2012m4 -1,029 259
2007m3 -1,408 -810 2012m12 -697 -188
2007m4 1,043 1,150 2013m1 997 -35
2007m12 -1,540 -586 2013m2 1,578 794
2008m1 -420 -467 2013m3 -461 787
2008m2 771 174 2013m4 -3,156 -2,049
2008m3 58 -444 2013m12 -1,373 579
2008m4 2,058 -473 2014m1 627 722
2008m12 1,152 -381 2014m2 -1,428 -556
2009m1 1,005 290 2014m3 1,939 1,470
2009m2 -1,445 -1,430 2014m4 -1,391 153
2009m3 -1,111 -1,726 2014m12 239 1,680
2009m4 519 -486 2015m1 1,381 959
2009m12 196 -684 2015m2 2,064 1,641
2010m1 -1,357 -126 2015m3 -2,086 -1,255
2010m2 543 487 2015m4 -1,040 -127
2010m3 -1,666 -943 2015m12 1,575 1,843
2010m4 933 574 2016m1 -890 54
2010m12 -1,084 -467 2016m2 3,489 2,511
2011m1 1,154 578 2016m3 1,576 1,907
2011m2 -726 -1,122 2016m4 -3,769 -1,719
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1.G Placebo tests

Figure 1.G.1 displays the results of the placebo tests graphically. The grey lines
represent the placebos, meaning they show the gap between the differences in
overnight stays by domestic tourists for each municipality in the donor pool and its
synthetic control municipality. The black line shows the gap estimated for Saas-Fee.
As Figure 1.G.1 shows, the estimated gap for Saas-Fee in the WinterCARD period
is unusually large relative to the distribution of the gaps for the municipalities in
the control group.

Figure 1.G.1: Distribution of placebo tests of 88 control municipalities plus
Saas-Fee



Chapter 2

Flagging incomplete bid-rigging
cartels

A machine learning approach

joint with David Imhof and Martin Huber*

Abstract

We propose a new method for flagging bid rigging, which is particularly
useful for detecting incomplete bid-rigging cartels. Our approach combines
screens, i.e. statistics derived from the distribution of bids in a tender, with
machine learning to predict the probability of collusion. As a methodological
innovation, we calculate such screens for all possible subgroups of three or
four bids within a tender and use summary statistics like the mean, median,
maximum, and minimum of each screen as predictors in the machine learning
algorithm. This approach tackles the issue that competitive bids in incomplete
cartels distort the statistical signals produced by bid rigging. We demonstrate
that our algorithm outperforms previously suggested methods in applications
to incomplete cartels based on empirical data from Switzerland.

2.1 Introduction

When firms deviate from competitive behavior and form a cartel, they secretly
conspire to raise prices or lower the quality of goods or services. As such,

*Chapter 2 is based on a working paper. It is published as Wallimann, Imhof, and Huber
(2020).
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conspiracies directly harm taxpayers, buyers, or sellers. Cartel formation
remains a pervasive problem and has been considered in a range of studies.
See for instance the Swedish asphalt cartel described in Bergman, Lundberg,
Lundberg, and Stake (2020), collusion among seafood processors in the US
(Abrantes-Metz, Froeb, Geweke, and Taylor, 2006), bid rigging in public
procurement auctions for construction works in Japan (Ishii, 2014), in Poland
(Foremny, Kulejewski, Anysz, and Nica l, 2018), in Canada (Clark, Coviello,
Gauthier, and Shneyerov, 2018) and in the US (Porter and Zona, 1993,
Feinstein, Block, and Nold, 1985) and bid rigging for school milk contracts
in Ohio (Porter and Zona, 1999), Florida and Texas (Pesendorfer, 2000).
To enhance the fight against cartels, the OECD recommends competition
agencies to promote pro-active methods for uncovering conspiracies, as such
methods may help to discover cartels where leniency is unlikely to be sought
(OECD, 2013). Answering the need for statistical tools in this context,
Porter and Zona (1993), Bajari and Ye (2003), Harrington (2008), Jiménez
and Perdiguero (2012), Imhof, Karagök, and Rutz (2018), Crede (2019)
and Bergman, Lundberg, Lundberg, and Stake (2020), among others, have
proposed different methods for uncovering cartels. However, the detection
of cartels might be more challenging in the presence of competitive bidders
participating in markets in which a cartel is active (McAfee and McMillan,
1992, Asker, 2010, Bos and Harrington, 2010, Conley and Decarolis, 2016,
Decarolis, Goldmanis, and Penta, 2020). When a cartel is incomplete due
to competitive bidders, it weakens the statistical pattern produced by bid
rigging in the distribution of the bids, increasing the difficulty of detecting a
cartel.

In this paper, we offer an original method based on screens and ma-
chine learning, which can detect incomplete and complete bid-rigging cartels.
Screens are statistics derived from the distribution of bids in a tender aiming to
capture the distributional changes produced by bid rigging (see Abrantes-Metz,
Froeb, Geweke, and Taylor, 2006, Hueschelrath and Veith, 2014, Abrantes-
Metz, Kraten, Metz, and Seow, 2012, Jiménez and Perdiguero, 2012, Imhof,
Karagök, and Rutz, 2018, Imhof, 2019). Our novel approach consists of
calculating screens for all possible subgroups of three or four bids in a tender,
and not only for all bids in a tender. We then use the screens calculated for
all the subgroups in a particular tender to calculate descriptive statistics of
each screen, which synthesize the properties of the distribution of bids in a
tender. Those descriptive statistics of screens, henceforth called ’summary
screens’, circumvent the distortion that competitive bidders generate in the
statistical signals produced by bid rigging in a tender, rendering our suggested
detection method robust to the presence of competitive bidders.

In our study, we combine the summary screens with machine learning
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for a prediction policy problem (see Kleinberg, Ludwig, Mullainathan, and
Obermeyer, 2015), aiming to predict the probability of a cartel. Machine
learning has been applied in a rapidly increasing number of studies (Garćıa Ro-
dŕıguez, Rodŕıguez Monteqúın, Ortega Fernández, and Villanueva Balsera,
2020, Rabuzin and Modrusan, 2019, Silveira, Vasconcelos, Resende, and Ca-
jueiro, 2021) and aims at finding the optimal combination of covariates that
best predicts the presence or absence of bid rigging in a tender. As we focus on
the predictive performance of our models, we do not have to construct explicit
structural models for collusion. To train and evaluate models, we focus on
the random forest (see Breiman, 2001) as machine learner because it provides
a flexible prediction method that does not impose any parametric (e.g., lin-
earity) assumptions when considering our large set of screens. Furthermore,
random forests do, in contrast to many other machine learners, not require
tuning specific penalty terms, see the discussion in Athey and Imbens (2019),
and are therefore arguably relatively user-friendly. That appears desirable if
a competition agency aims at reproducing our detection method for screening
procurement markets.

Calculating screens for subgroups as in our approach is also considered in
Conley and Decarolis (2016) and Chassang, Kawai, Nakabayashi, and Ortner
(2020). First, Conley and Decarolis (2016) investigate subgroups to detect
cartels in collusive auctions in Italy, but in contrast to our method (which
considers all possible subgroups in a tender), exploit firm-specific covariates
(such as, e.g., common owner, municipality, or country) to form subgroups.
Relying on firm-specific covariates could impede a broad screening activity
if firm-specific data is unavailable or the time needed to collect them in
secrecy without raising the attention of potential cartel participants is lacking.
Chassang, Kawai, Nakabayashi, and Ortner (2020) show that winning bids
tend to be isolated in terms of value when bidders collude. They calculate
the difference between a bidder’s bid and the lowest bid submitted in a
tender, focusing on such subgroups of two bids to calculate the distribution
of differences. We, however, do not focus only on subgroups formed with the
lowest bid in a tender and one of the other bids, but on all possible subgroups
formed with three and four bids.

Two important arguments are in favor of our approach based on machine
learning and summary screens. First, it exclusively relies on information
about bids rather than firm-specific characteristics or cost-related variables
required for econometric tests (see for instance Bajari and Ye, 2003, Aryal
and Gabrielli, 2013). Our suggested method does not even need the identity
of the bidders but only the bids, generally accessible from the bid summaries,
which are either public or readily accessible for competition agencies and thus
not as costly to acquire as firm- or cost-specific information. The necessity to
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gather firm-level information can attract, in some cases, the attention of the
cartel, decreasing the chance of success to act against it. Second, machine
learning relies on the hypothesis that bid rigging affects the distribution of
bids in a tender (also common to other methods for flagging bid-rigging cartels
as the econometric tests suggested by Bajari and Ye (2003)) but remains
agnostic about how the distribution is affected. It is sufficient that bid rigging
produces statistical signals in the distribution of bids that the screens can
capture.

Our study investigates the correct classification rates of different methods
in the context of incomplete cartels. We first apply a benchmark method.
Here we consider the approach suggested by Imhof, Karagök, and Rutz (2018),
which implements two screens with benchmarks, i.e., a rule of thumb, for
classifying a tender as collusive or competitive. The second method applies
machine learning using a set of screens, calculated based on all bids in a
tender, so-called ’tender-based screens’, to predict collusion. Finally, the
third method is the novel approach suggested in this paper, which includes
summary statistics of the screens (median, mean, maximum, and minimum)
calculated for all possible subgroups of bids in a tender as predictors in the
random forest.

We use data from Switzerland in which the incidence of collusive and
competitive tenders is known. First, we apply our approach to the Ticino
bid-rigging cartel (hereafter: the Ticino cartel), which was a complete cartel
involving all firms active in road construction in the canton of Ticino (see
Imhof, 2019). Since we also have data from the post-cartel period, we use
them to simulate competitive bids that we add to the collusive tenders. To
ensure that the simulated competitive bids have been adequately generated
to reproduce the competitive bids of the post-cartel period, we calculate the
screens based on the simulated competitive bids. These bids we use to check
whether they are statistically significantly different from the screens calculated
with the competitive bids of the post-cartel period. The checks confirm that
simulated competitive bids are not different from the competitive bids of the
post-cartel period.

However, the simulation exercise based on the Ticino case is limited to
examine the correct classification rates of the three different methods. It
does not account for the reaction of competitive and collusive bidders when
they are aware of their reciprocal existence. Competitive bidders might try
to benefit from the umbrella effect of the cartel by bidding higher than they
would have done in a competitive situation (Bos and Harrington, 2010). In
contrast to the potential umbrella effect, too many competitive bidders can
destabilize the formation of cartels. We empirically address these two potential
issues by considering data from two investigations of the Swiss competition
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commission (hereafter: COMCO): See-Gaster and Strassenbau Graubünden.
Both cases were characterized by well-organized bid-rigging cartels, which
faced competition from outsiders from time to time.

We find that the benchmarking method performs poorly for the Ticino
cartel when the number of competitive bids increases. The application with
the tender-based screens entails a correct classification of between 72% and
84% (depending on the sample). The classification rate is again decreasing
when the number of competitive bids increases. The approach suggested in
this paper with summary screens exhibits the highest correct classification
rate of 77% to 86%. The difference between the tender-based screens and the
summary screens amounts to 10 percentage points with five simulated bids. If
we consider the error rate, defined as one minus the correct classification rate,
it decreases by 43% using our approach. Cutting the error rate almost by half
is substantial concerning the heavy legal consequences of flagging firms as
bid-rigging cartels. This result suggests that the summary screens proposed
in this paper can detect complete and incomplete bid-rigging cartels with a
decent correct classification rate. Therefore, they are reliable for competition
agencies and have the potential for a broader application.

We find that in the See-Gaster and Graubünden data, the benchmarking
approach again exhibits a low correct classification rate for incomplete cartels.
Considering models with machine learning, we note that when competitive
bidders are present, the correct classification rate is higher when using sum-
mary screens, amounting to 67% to 84%, than when using the tender-based
screens, amounting to 61% to 77%. Further, we note that the performance of
the machine learning approaches decreases with the proportion of competitive
bids. This result confirms the findings from investigations that cartel partici-
pants partially endogenize the presence of competitive bidders by adopting,
at least in some cases, a more competitive behavior.

The remainder of this study is organized as follows. Section 2.2 presents
the bid-rigging cartels uncovered in Switzerland from which our data are
drawn. Section 2.3 outlines the detection methods for flagging both complete
and incomplete bid-rigging cartels. Section 2.4 applies our original application
to a simulation of incomplete cartels based on data from the Ticino bid-rigging
cartel and to empirical data from the cases of See-Gaster and Strassenbau
Graubünden. Section 2.5 concludes.

2.2 Bid-rigging cartels and data

The Swiss Parliament revised the federal Cartel Act and introduced a sanction
regime in April 2004, with an adaptation period of one year, alongside a
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compliance program. This legislative change helped in initiating a change in
the praxis towards economically harmful bid-rigging cartels. At the end of
2004, COMCO began to investigate the Ticino cartel, releasing its decision
in 2007. The Ticino cartel dissolved without sanctions since it had ended its
illegal conduct precisely before April 2005, consuming the whole adaptation
period. However, it stressed the damage and mischief of a bid-rigging cartel
with a price increase of over 30% (see Imhof, 2019). In 2008, COMCO decided
to prioritize fighting bid rigging.

Following its decision in the Ticino case, the authority prosecuted many
bid-rigging cases. Initially, COMCO was rendering an important decision
against bid rigging every other year. From 2015 onwards, however, COMCO
rendered more decisions, emphasizing its determination to prosecute bid-
rigging conspiracies. Table 2.1 lists COMCO’s most important decisions in
bid-rigging cases and the sanctions it imposed in each case.
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Overall, COMCO opens an investigation if there are reasonable grounds
to assume the existence of a bid-rigging cartel. Compliance programs, whistle-
blowers, and procurement agencies can provide insightful information leading
to the opening of an investigation. However, COMCO decided to reduce its
dependence on such sources and started to develop statistical methods for
detecting bid rigging based on screens (see also Imhof, Karagök, and Rutz,
2018). Based on the latter method, COMCO opened an investigation of bid
rigging in the region of See-Gaster in 2013.

Considering the evolution of the cases investigated by the COMCO in re-
cent years, incomplete bid-rigging cartels occur more often than well-organized
and complete cartels. Therefore, if COMCO desires to reduce the dependence
of external sources to open investigations, it must continue to improve its
detection methods. Our approach for flagging both incomplete and complete
bid-rigging cartels proposed in this paper responds to that need. It is likely
to be of interest to competition agencies around the world.1

In the empirical analyses, we use data from Switzerland’s three most
important cases: the Ticino cartel, the See-Gaster cartel, and the Graubünden
asphalt cartel. After discussing procurement in Switzerland, we synthesize
the main aspects of Swiss procurement data to each case.

2.2.1 Procurement Data

Procurement agencies of cantons and cities in Switzerland follow the Agree-
ment on Public Markets between cantons and their cantonal laws for public
procurement purposes. A procurement agency can choose between four proce-
dures: the open, the invitation, the selection, and the discretionary procedure.2

In the construction sector, a procurement agency generally uses either the
open procedure or the procedure on invitation. The open procedure does not
restrict the participation of submitting firms, in contrast to the procedure on
invitation, as the procurement agency invites only a small number of firms,
in general, three to five, to submit a bid. That changes the nature of the

1Another recent example is the new Procurement Collusion Strike Force (PCSF)
in the US, which focuses on deterring, detecting, investigating, and prosecuting
antitrust crimes, such as bid-rigging conspiracies and related fraudulent schemes.
See https://www.justice.gov/opa/pr/justice-department-announces-procurement-collusion-
strike-force-coordinated-national-response (accessed on June 6, 2021).

2The selection procedure allows the procurement agency to select and qualify a set of bidders
for participation in a tender. This procedure is useful when bidders are too numerous,
as, for example, in architectural design, where hundreds of architects are interested in
submitting to the project. However, such a high number of bidders is rarely a problem in
the construction sector.
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competition, as the participating firms are aware of the restricted number of
potential competitors.

A procurement agency announces future contracts and the deadline for
submitting bids (varying according to the procedure) in an official journal.
If a firm is interested in submitting, the procurement agency provides the
firm with all the relevant documents or information for the contract. Between
the time of the announcement and the deadline, firms prepare their bids
for submission. Collusive agreements, if any, between firms are typically
concluded during this period.

At a pre-announced date, the procurement agency gathers the incoming
bids for the contract and opens them. It officially records all the bids received
on time in a bid summary or so-called official record of the bid opening
and registers the firms’ names, addresses, and bids. Having registered the
official record of the bid opening, the procurement agency proceeds with a
detailed examination of the bids. In awarding the contract, the agency not
only considers the price of the bids but also other criteria such as quality,
references and the environmental or social aspects. However, as contracts
are relatively homogeneous in the construction sector, especially in road
construction and associated civil engineering, the price in practice remains
the most important criterion for awarding the contract. Furthermore, the
differences in firms’ criteria other than price are typically small. We, therefore,
consider the procurement process as an almost first-price sealed-bid auction.

2.2.2 The Ticino Cartel

The Ticino cartel started in January 1999 and dissolved itself at the end
of March 2005, precisely when the adaptation year to the new cartel Act,
entered in force in April 2004, terminated. The cartel was well-organized (see
Imhof, 2019). All firms active in the road construction sector participated in
the cartel and rigged all public tenders and all private contracts above 20,000
Swiss francs.3 The convention allocated contracts among cartel participants
according to different criteria. The first criterion was revenue, putting cartel
participants with many contracts recently awarded at the bottom of a priority
list for allocating new contracts updated each week and those with few
contracts at the top. The geographical distance between the firm and the
location of the contract was the second most important criterion, one that
played an important role in decisions to allocate small contracts. Ties with
private clients were another important criterion in the awarding of private

3Approximatively 23,500 USA dollars at the exchange rate of 0.85 (indirect quotation) in
March 2005.
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contracts. In particular, cartel participants that had already produced a
quote for a private client were privileged. After allocating contracts, cartel
participants decided the price of the bid that the designated winner by the
cartel should submit. COMCO stated in its decision that the Ticino cartel
raised prices by 30% for contracts in the road construction and asphalting
market.4

We consider data from the cartel and the post-cartel periods. Table 2.2
summarizes key information about contracts with four or more bids in our
sample. We observe 149 tenders in the collusive period, whose value amounts
up to 160 million Swiss francs. In total, we record 974 bids for the collusive
period, hereafter referred to as collusive bids. For the post-cartel period, we
observe only 33 tenders, accounting for a value of 23 million Swiss francs, in
which firms submitted 222 competitive bids. Appendix 2.D presents additional
descriptive statistics of the Ticino cartel.

Table 2.2: Overview sample Ticino cartel

Tenders in the cartel period 149

Volume of the collusive tenders in million CHF 160.7

Collusive bids 974

Tenders in the post-cartel period 33

Volume of the competitive tenders in million CHF 22.79

Competitive bids 222

4For COMCO’s decision see Strassenbeläge Tessin (LPC 2008-1, pp. 85-112).
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2.2.3 The Cartel in See-Gaster

COMCO opened its investigation in the region of See-Gaster mainly because
of a statistical analysis based on procurement data from 2004 to 2010 provided
by the canton of St. Gallen (see Imhof, Karagök, and Rutz, 2018).5 In total,
eight firms participated in bid-rigging conspiracies in the region of See-Gaster,
including the district of See-Gaster in the canton of St. Gallen and the
districts of March and Höfe in the canton of Schwyz.6 Cartel participants
regularly met once or twice a month. In their meetings, they discussed future
contracts being put out to tender and exchanged their interest in them. The
contracts included road construction, asphalting and civil engineering. Before
each meeting, one cartel participant sent an actualized table to all the others,
listing all future contracts in the region of See-Gaster. Each cartel participant
had a column to put a star to a contract it was interested in obtaining, or two
stars if it wished to register a very high interest.7 When the tender procedure
for a contract started, the cartel typically designated the cartel participant
that should win it. The allocation mechanism was based on the interests that
had been announced and fairness in making allocations to participants to
maintain cartel stability.8 In addition, if two cartel participants had both
put two stars for a specific contract, they might have formed a consortium to
share the contract, while other participants covered the consortium.9

The cartel took decisions of contract allocation during the meetings in
which they discussed the list, but they organized separate meetings to discuss
the price of the bids.10 One reason for separate meetings is that not all
cartel participants were interested in fixing the price since not all necessarily
participated in the tender. Second, discussions about price might have taken
up too much time, such that the cartel preferred the designated winner to
invite the other bidders at a separate meeting to discuss the price. COMCO
found some evidence that from time to time, the cartel used the mechanism
of the mean in determining the bid to be made by the designated winner,11

which implies that the latter had to submit either its own bid or the mean

5Report release: see the decision Bauleistung See-Gaster: Verfü-
gung vom 8. Juli 2016, available on the following internet page:
https://www.weko.admin.ch/weko/fr/home/actualites/dernieres-decisions.html.

6See the decision Bauleistung See-Gaster: Verfügung vom 8. Juli 2016, available on the
following internet page: https://www.weko.admin.ch/weko/fr/home/actualites/dernieres-
decisions.html.

7See the decision Bauleistung See-Gaster, R. 809 ff.
8See the decision Bauleistung See-Gaster, R 587, R 608 and R 623.
9See the decision Bauleistung See-Gaster, R 620 ff. and R. 645.

10See the decision Bauleistung See-Gaster, R. 649 ff.
11See the decision Bauleistung See-Gaster, R. 714 ff.
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of all the exchanged bids in the separate meetings. Using this mechanism,
the designated winner had some incentive to provide a relatively high bid to
influence the calculated mean in the separate meeting. All the other cartel
participants whose announced bids were below the mean or below the winner’s
bid increased their bids to cover the designated winner. As a result, they
generally ensured a minimal price difference of 2% to 3% between the bid of
the designated winner and their own bids.12

Finally, the cartel also made decisions about contracts that were left free
for competitive bidding.13 This decision was also determined by the presence
of external bidders. The more external bidders, the lower was the incentive
to collude because of decreasing chances of success. More external bidders
were the case for some high-value contracts, for which more non-cartel firms
were interested in bidding. Sometimes, the cartel also tried to bring external
firms into the agreement.

In June 2009, the cartel ended its illegal conduct after COMCO launched
house searches in the canton of Aargau, which to a certain extent explained
the breakdown of the cartel. In its decision, COMCO attested that the cartel
had discussed more than 400 contracts in the region of See-Gaster from 2004
to 2009 with a value of 198 million Swiss francs. COMCO also proved that
the cartel had attempted to rig at least 200 contracts with a value of 67.5
million Swiss francs.14 In making its decision, COMCO sanctioned the firms
involved for bid-rigging conspiracies with more than five million Swiss francs.
Two firms applied to the leniency program, and two other firms settled an
agreement to close the case. Four firms appealed against the decision.

2.2.4 The Strassenbau Cartel in Graubünden

Members of the local trade association organized the cartel in the canton
of Graubünden for road construction. In its decision, COMCO proved that
the cartel participants met regularly in the period being investigated, from
2004 to the end of May 2010. The meetings, called “allocation meetings”
or “calculation meetings”, were mainly held at the beginning of the year
since the canton and the local municipalities put most of their contracts out
to tender in the spring of each year.15 The cartel discussed contracts for
road construction and asphalting tendered by the canton of Graubünden and
the local municipalities. Since mountains and valleys profoundly mark the
geography of Graubünden, the cartel was divided into firms operating in the

12See the decision Bauleistung See-Gaster, R. 714 ff. and R 718.
13See the decision Bauleistung See-Gaster, R 681 ff. and R. 815 ff.
14See the decision Bauleistung See-Gaster, R. 797 ff. and table 15.
15See the decision Strassenbau Graubünden, R. 139.
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north and south, respectively. In the north of Graubünden, the cartel mostly
organized its meetings in the office of the most important mixing plant in the
canton, and to a lesser extent in the offices of the cartel participants. The
meetings included either all of the twelve to thirteen cartel participants16 or
two different subgroups.17 In the south, the total of six cartel participants18

also organized such meetings, though changing their locations.

COMCO stated in its press release that the cartel decided upon the
allocation of contracts based on a contingent determination for all the cartel
participants in the canton of Graubünden.19 The cartel allocated contracts
according to the interests of each firm and fixed the price of the designated
winner following a specific calculation method.20 As a result, the price of
the designated winner was usually above the minimal bid announced in the
respective meeting. The calculation method, therefore, contributed to raising
the price.

During the period investigated the cartel distributed 70% to 80% of the
total value of the cantonal and communal road construction contracts in
the north and south Graubünden among its participants. The cartel rigged
approximately 650 road construction contracts concerning with a total value
of 190 million Swiss francs of market volume.21 The cartel ceased its illegal
conduct in summer 2010 in both the north and the south, since some firms
decided to stop, mainly because of increasing concerns regarding the Cartel
Act.22

2.2.5 Data from the Cases See-Gaster and Graubünden

We requested data on all bid summaries from the investigations of See-Gaster
and Graubünden based on the Federal Act on Freedom of Information in the
Administration (Freedom of information Act, FoIA).23 COMCO approved
the request and sent us the data, referred to hereafter as Swiss data. They
contain the bids, a running number for each contract, a dummy variable for
each of the anonymized cartel participants and a dummy variable indicating
whether the tender took place in the cartel period (taking the value of 1 for a

16See the decision Strassenbau Graubünden, R 247 ff.
17See the decision Strassenbau Graubünden, R 195 ff.
18See the decision Strassenbau Graubünden, R 248.
19See press release: https://www.newsd.admin.ch/newsd/message/attachments/58229.pdf.
20The online published decision Strassenbau Graubünden and the press release currently give

no details of the calculation method.
21See press release: https://www.newsd.admin.ch/newsd/message/attachments/58229.pdf.
22See the decision Strassenbau Graubünden, R 197.
23https://www.admin.ch/opc/en/classified-compilation/20022540/index.html.
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cartel and 0 otherwise), a categorical variable for the contract type (taking
the value of 1 for contracts in road construction and asphalting, 2 for mixed
contracts, including road construction and civil engineering and 3 for civil
engineering contracts), as well as an anonymized date and year. The first year
in our sample begins with the value of 1 and the last year ends with the value
of 14. The first anonymized date equals 42, and the last 4,886. To ensure
anonymization of the bids, COMCO multiplied them with a factor between 1
and 1.2. The transformation does not affect the calculation of the screens.

Table 2.3: Overview for the Swiss data

Tenders with complete cartels 310

Volume of tenders with complete cartels in million CHF 111.74

Collusive bids in tenders with complete cartels 2,031

Tenders with incomplete cartels 287

Volume of tenders with incomplete cartels in million CHF 114.73

Competitive bids in tenders with incomplete cartels 650

Collusive bids in tenders with incomplete cartels 1,414

Competitive tenders 2,398

Volume of competitive tenders 1,735.91

Competitive bids in competitive tenders 13,925

Tenders for road construction and asphalting 1,389

Tenders for civil engineering 1,286

Tenders for mixed contracts 273

Table 2.3 provides key information on the Swiss data. As for the data
from Ticino, we only consider tenders with four bids or more. In total, there
are 310 tenders with complete cartels with a total value of more than 110
million Swiss francs and 2,031 bids submitted by the cartel participants.
Furthermore, there are 287 tenders with incomplete cartels with a total value
of more than 114 million Swiss francs. In these tenders, cartel participants
submitted 1,414 bids and external firms 650 bids. Finally, we observe 2,398
competitive tenders with a value of roughly 1,700 million Swiss francs and
13,925 submitted bids. In Appendix 2.E, we present additional descriptive
statistics of the Swiss data.
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2.3 Detection methods

This section outlines our novel approach to detect bid rigging. We first
describe the concept of a random forest, the machine learning algorithm
used for training and testing our predictive models for collusion (see Ho,
1995, Breiman, 2001). Second, we present in detail the screens that enter the
algorithm as potential predictors. Finally, we discuss five different predictive
models applied to our data that differ in the included screens.

2.3.1 Random forest

We use the random forest as a machine learning algorithm for predicting
collusive and competitive tenders. In our data, the outcome is given a value
of 1 for collusive tenders, including both incomplete and complete bid-rigging
cartels, and 0 for competitive tenders. Note that we intentionally do not
distinguish between incomplete and complete cartels, as we aim to construct
a reliable method for detecting any form of bid rigging. Tenders are therefore
either collusive or competitive.

Machine learning requires the data to be randomly split into the so-called
training data, used to develop the predictive model, and the test data, used to
evaluate the model’s performance. We randomly split the data such that the
training and test data consist of 75% and 25% of the observations, respectively.
The random forest is a so-called ensemble method that averages over multiple
decision trees to predict the outcome. Tree-based methods split the predictor
space (according to the values the screens might take) of the training data
recursively into a number of non-overlapping regions. Each split aims to
maximize the homogeneity of the dependent variable within the newly created
regions according to a goodness of fit criterion like the Gini coefficient. The
latter measures the average gain in purity (or homogeneity) of outcome values
when splitting and is popular for binary variables like our collusion dummy.
Splitting is continued until the decision tree reaches a specific stopping rule,
e.g. a minimum number of observations in a region or a maximum number
of splits. Tree-based predictions of bid rigging (1) or competition (0) are
based on whether collusive or competitive tenders dominate in the region that
contains the values of the screens for which the outcome is to be predicted.

Importantly, there exists a bias-variance trade-off in out of (training)
sample prediction when using such tree-based (and other machine learning)
methods when it comes to model generality. More splits reduce the bias and
increase the flexibility of the model specification, though at the cost of a
greater variance in the unseen data, as the test sample is not used for training,
due to the regions being smaller. The issue of a too large variance can be
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mitigated by repeatedly drawing many subsamples from the initial training
data and estimating the predictive model, i.e. the tree (or splitting) structure,
in each of the newly generated samples. A random forest consists of predicting
the outcome by the majority rule across the individual trees, based on whether
the majority of the trees estimated in the various subsamples predict collusion
or competition for specific values of the screens. A further feature of the
random forest is that at each splitting step in a specific subsample, only a
random subsample of possible predictors (i.e. screens) is considered, reducing
the correlation of tree structures across the subsamples and thus further
reducing the prediction variance. In our application, we use the randomForest
package by Liaw and Wiener (2018) for the statistical software R with growing
1,000 trees to estimate the predictive models in the training data and assess
their performance in the test data based on the correct classification rate.

Note that we repeat the random sample splitting into 75% training and
25% test data and assess the predictive performance in the latter 100 times.
Our reported correct classification rate corresponds to the average of the
correct classification rates across the 100 repetitions. This procedure is likely
to entail a smaller variance in estimating the correct classification rate than
relying on a single random data split.

2.3.2 Predictors

Screens are statistics that permit data analysis intending to flag anomalous
outcomes indicating potential anticompetitive issues. The literature usually
differentiates structural from behavioral screens in cartel detection (see Har-
rington, 2008, OECD, 2013, Froeb, Sibley, Doane, and Pinto, 2014). Structural
screens focus on the factors facilitating the emergence of collusive agreements
and help to identify markets in which collusion is more likely. Among these
factors, distinctions are made between market structure, demand-related
factors, and supply-related factors (OECD, 2013). In contrast, behavioral
screens empirically measure the behavior of market participants and assess
whether the observed behavior significantly departs from competitive behavior
to flag it as a potential issue worth scrutinizing further. Following Huber
and Imhof (2019) we propose using various descriptive statistics as screens
and combining them with machine learning, however, to uncover not only
complete but also incomplete bid-rigging cartels.24 We consider three classes

24In contrast to the context of causal inference, causality goes from the dependent variable
(collusion or competition) to the predictors (screens) rather than the other way around.
The incidence of collusion as an explanatory variable affects the distribution of bids and
thus the screens in causal terms. As in Huber and Imhof (2019) our prediction problem
consists of analyzing a reverse causality. By investigating the screens, we infer the existence
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of screens: variance, asymmetry, and uniformity.
As variance screens, we implement the coefficient of variation (CV) and

the kurtosis statistic (KURTO), as suggested by Huber and Imhof (2019)
and Imhof (2019). In addition, we also implement the spread (SPD) of the
distribution of the bids as screen.

The coefficient of variation is widely discussed in the literature (see
Abrantes-Metz, Froeb, Geweke, and Taylor, 2006, Esposito and Ferrero,
2006, Jiménez and Perdiguero, 2012, Abrantes-Metz, Kraten, Metz, and Seow,
2012, Imhof, 2019) and is defined as the standard deviation divided by the
arithmetic mean of all bids submitted in a tender:

CVt =
st

b̄t
, (2.3.1)

where st is the standard deviation and b̄t is the mean of the bids in some
tender t. As the coordination and manipulation of bids by cartel participants
might affect the convergence in the distribution of the bids, we also consider
the following kurtosis statistic as screen:

KURTOt =
nt(nt + 1)

(nt − 1)(nt − 2)(nt − 3)

nt

∑
i=1

(
bit − b̄t

st
)4 − 3(nt − 1)3

(nt − 2)(nt − 3)
,

(2.3.2)
where bit denotes the bid i in tender t, nt the number of bids in tender

t, st the standard deviation of bids, and b̄t the mean of bids in that tender.
Note that we calculate the kurtosis statistic only for tenders with four bids or
more. Furthermore, we estimate the spread using the following formula:

SPDt =
bmax,t − bmin,t

bmin,t
, (2.3.3)

where bmax,t denotes the maximum bid and bmin,t the minimum bid in
some tender t.

As bid rigging may produce asymmetries in the distribution of the bids,
we implement the following cover-bidding screens as in Huber and Imhof
(2019): the percentage difference (DIFFP), the skewness (SKEW), the relative
distance (RD) and the normalized distance (RDNOR). We also add an alter-
native measure for calculating the relative difference, namely the alternative
relative distance (RDALT).

It seems plausible that cartel participants manipulate the difference be-
tween the lowest and second lowest bids to secure awards of contract by the

of their cause: collusion.
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cartel’s designated winner. To analyze the difference between the two lowest
bids, we use the following formula to calculate the percentage difference:

DIFFPt =
b2t − b1t

b1t
, (2.3.4)

where b1t is the lowest bid and b2t the second lowest bid in some tender t.
We also consider the absolute difference between the first and second lowest
bids Dt = b2t − b1t in the empirical analysis.

The manipulation of the bids by cartel participants can simultaneously
affect both the difference between the first and second lowest bids and the
differences across the losing bids. Following Imhof, Karagök, and Rutz (2018),
we calculate a relative distance (relative to a measure of dispersion) in a
tender by dividing the difference between the first and second lowest bids by
the standard deviation of the losing bids:

RDt =
b2t − b1t

slosingbids,t
, (2.3.5)

where b1t denotes the lowest bid, b2t the second lowest bid, and st,losingbids
the standard deviation calculated among the losing bids in some tender t.
In Huber and Imhof (2019) in terms of its predictive power the RD was
outperformed by the difference between the second and first lowest bids
divided (or normalized) by the average of the differences between all adjacent
bids. We also consider this normalized distance in our study:

RDNORt =
b2t − b1t

(∑
nt−1
i=1,j=i+1 bjt−bit)

nt−1

, (2.3.6)

where b1t is the lowest bid, b2t the second lowest bid, nt is the number of bids
and bit, bjt are adjacent bids (in terms of price) in tender t, with bids being
arranged in increasing order.

We consider a further alternative measure for the relative distance, initially
suggested by Imhof, Karagök, and Rutz (2018):

RDALTt =
b2t − b1t

(∑
nt−1
i=2,j=i+1 bjt−bit)

nt−2

, (2.3.7)

where b1t is the lowest bid, b2t the second lowest bid, nt is the number
of bids and bit, bjt are adjacent losing bids in a tender t, with bids being
arranged in increasing order. In contrast to the normalized distance, the
mean of the differences in the denominator is calculated using only losing bids.
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Furthermore, bid manipulation might affect the symmetry of the distribution
of bids. We therefore include the skewness as screen:

SKEWt =
nt

(nt − 1)(nt − 2)

nt

∑
i=1

(
bit − b̄t

st
)3, (2.3.8)

where nt denotes the number of the bids, bit the ith bid, st the standard
deviation of the bids, and b̄t the mean of the bids in tender t.

Finally, we consider the nonparametric Kolmogorov-Smirnov statistic (KS)
for verifying whether bid rigging (or competition) transforms the distribution
of the bids in a less uniform distribution:

D+
t = maxi(xit −

it

nt + 1
), D−t = maxi(

it

nt + 1
− xit), KSt = max(D+

t , D−t ),

(2.3.9)

where nt is the number of bids in a tender, it the rank of a bid and xit the
standardized bid for the ith rank in tender t. The standardized bids xit are
the bids bit divided by the standard deviation of bids in tender t to facilitate
the comparison of tenders with different contract values. We suspect that the
KS-statistic should generally differ across cartels and competitive periods.

In incomplete cartels, competitive bidders distort the statistical signals
produced by bid rigging in the distribution of bids in a tender. Therefore, the
tender-based screens can fail to recognize bid rigging if they are calculated for
all bids. We circumvent that distortion by calculating the screens not (only)
for all the bids in a tender but for all possible subgroups of three and four
bids. Table 2.4 gives the number of possible subgroups of three or four bids,
respectively, when the total number of bids in a tender varies between four to
ten bids.

For instance, in a tender with a total number of six bids, we calculate the
same screen but for 15 different subgroups containing four bids and for 20
different subgroups containing three bids. In each tender, we then include
summary statistics for each screen: the mean, the median, the minimum,
and the maximum of the respective screen across the various subgroups of
three or four bids. We use these summary statistics, so-called ’summary
screens’, as predictors for flagging collusive and competitive tenders and
permit comparing tenders with different numbers of bids. We subsequently
exemplify the computation of such summary screens by means of the coefficient
of variation for subgroups formed on four bids.

The mean of all coefficients of variation calculated for subgroups of four
bids in each tender is:
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Table 2.4: Example of possible subgroups for three and four bids in a tender

Bids in a tender Subgroups formed Subgroups formed

with three bids with four bids

4 4 1

5 10 5

6 20 15

7 35 35

8 56 70

9 84 126

10 120 210

MEAN4CVt =
Nt

∑
s=1

(
sst/b̄st

Nt
), (2.3.10)

where s and t denote the indices for some sub-group s and some tender
t respectively, Nt is the number of all the possible subgroups of four bids
in tender t and sst and b̄t are the standard deviation and the mean of the
bids respectively. Likewise, the minimum and maximum of the coefficients of
variation across the subgroups in a tender correspond respectively to:

MIN4CVt = mins
sst

b̄st
, (2.3.11)

MAX4CVt = maxs
sst

b̄st
, (2.3.12)

In order to calculate the median for subgroups of four bids in each tender,
define the coefficient of variation in subgroup s and tender t as CVst = sst

b̄st
and order the coefficients in so that

CV1t ≤ CV2t ≤ ... ≤ CVst ≤ ... ≤ CVNtt.

If the number of subgroups Nt in a tender is uneven, the median of the
coefficient of variation in tender t is calculated as follows:

MEDIAN4CVt = CV(Nt+1)/2,t, (2.3.13)

If the number of subgroups is even, the median corresponds to:
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MEDIAN4CVt =
CVNt/2,t + CVNt/2+1,t

2
. (2.3.14)

We apply these approaches to all the screens discussed above across the
different tenders. Note also that we do not calculate summary screens for
subgroups of two bidders because of the impossibility of calculating some
screens as RD, RDALT, RDNOR, KURTO, or SKEW. Moreover, cartel
participants usually numbered more than two in tenders characterized by
incomplete cartels. We also renounce calculating screens for sub-groups of
five bidders or more. Using summary screens calculated for subgroups of
five bidders only makes sense for tenders with six bids and more. Using
tenders with six bids or more would have restricted our sample too much
and limited the application of our suggested methods in other cases. Finally,
our original application of summary screens does not require the identity of
bidders. Instead, we only need the bids in each tender to apply them in many
different contexts.

Appendix 2.F presents the descriptive statistics for the samples used in
the empirical analyses for both the Ticino simulation and the Swiss data.

2.3.3 Model specification

In the empirical analyses, we consider five different predictive models that
vary in terms of screens considered and a benchmarking method. For the
latter, we use the benchmarks suggested by Imhof, Karagök, and Rutz (2018),
developed for and applied to the Swiss construction market.25 Model 1 only
includes screens calculated for all bids in a tender (rather than summary
screens). This approach relates to the one discussed by Huber and Imhof
(2019). Still, it extends the set of predictors compared to the study by
including the relative measure for the alternative distance (RDALT), the
spread (SPD), and the Kolmogorov-Smirnov statistic (KS). In total, we use
nine predictors and exclude any screens based on the absolute bid value to
consider only scale-invariant screens in model 1.

In contrast, model 2 exclusively includes the summary screens, calculated
for all possible subgroups of three bids in a tender. In total, we consider the
application of 32 of these summary screens, using all screens of model 1 but the
kurtosis (KURTO), which requires at least four bids. Model 3 uses summary
screens of all screens presented above for all possible subgroups of four bids
in a tender, making a total of 36 predictors (now including the kurtosis).
Model 4 considers all predictors included in models 1, 2, and 3, resulting in 77

25More precisely, tenders with a CV below 6 and a RD above 1 are classified as conspicuous.
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screens in total, mixing the summary screens with the tender-based screens.
Finally, model 5 also includes three screens based on absolute bid values (and
thus not scale-invariant) and the number of bids in a tender (NBRBIDS),26

producing 81 predictors in total. The three value-based screens are the mean
bid in a tender included as a proxy for the contract value (MEANBIDS),
the standard deviation of the bids in a tender (STDBIDS), and the absolute
difference between the first and the second lowest bids (D).

2.4 Flagging incomplete bid-rigging cartels

2.4.1 The Ticino simulation

We use the data from the Ticino cartel to investigate how the predictive models
presented above perform in detecting bid-rigging cartels when competitive
bids distort the statistical pattern produced by bid rigging. Since the Ticino
cartel was complete, we use the data from the competitive periods to simulate
competitive bids and progressively add them to the collusive tenders, thus
creating five additional datasets for the cartel period. The first dataset
includes only one simulated competitive bid in each collusive tender, the
second two, and the fifth five. This stepwise approach permits investigation
of how different degrees of partial collusion affect the performance of each
model.

We generate simulated bids from competitive bids using the following
formula:

bt,simulated = b̄t(1 +
bi,drawcomp − b̄drawcomp

b̄drawcomp
), (2.4.1)

i and t are indices for bids and tenders, respectively, b̄t is the mean bid of
tender t (without the simulated bid), while bi,drawcomp and b̄drawcomp are the
bid and the mean bid randomly drawn from competitive tenders respectively.
We simulate competitive bids to be added to collusive tenders in three steps.
First, we calculate the normalized bids for all bids in competitive tenders by (i)
subtracting the tender’s mean from each bid and (ii) dividing this number by
the tender’s mean. Normalizing the bids like we do and not dividing the bids
with the standard deviation avoids losing information about the dispersion of
the bids. In a second step, we pool all the normalized bids together. Then,
we randomly draw (with replacement) and assign them to a collusive tender

26The motivation for including the number of bids is that it might be easier to settle an
agreement in a tender with few bidders than with many.
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t. Finally, in a third step, we (i) add the mean bid of the collusive tender t to
the normalized bid drawn and (ii) multiply the number with the mean bid.

We end up with seven different datasets for the Ticino cartel: the dataset
of the post-cartel period, including only competitive bids; the dataset of
the collusive period, including only collusive bids; and five different datasets,
including the collusive tenders with one to five competitive bids in each tender.

We verify whether the simulated competitive bids are similar to the
competitive bids of the post-cartel period. Since we generate five simulated
competitive bids for each tender in the collusive period, we only calculate
the screens for those five simulated competitive bids. We test whether the
screens based on the simulated competitive bids are statistically significantly
different from the screens based on the competitive bids of the post-cartel
period. The results presented in Appendix 2.C show that most statistical
tests do not reject the null hypothesis of no distributional differences, such
that our simulation process adequately generates competitive bids. In other
words, the distribution of the simulated competitive bids empirically matches
the distribution of the competitive bids in the post-cartel period.

We first apply the benchmarking approach to classify conspicuous tenders
and find a correct classification rate of 84.8% in the test data in the absence
of competitive bids (see Table 2.5). However, when adding one simulated
competitive bid to the collusive tenders, the correct classification rate falls to
66.7%. Furthermore, it continuously decreases in the number of competitive
bids added. With five competitive bids in the collusive tenders, the method
suggested by the benchmarking method does not perform any better than
tossing a coin. As expected, the collusive tenders exclusively drive the
decrease in the overall correct classification rate. With the addition of only
one competitive bid, the correct classification rate among collusive tenders
decreases to 48.5%. With five competitive bids, it falls to 15.2%. This
decrease suggests that while the benchmarking approach might be well suited
for detecting complete bid-rigging cartels, it seems inappropriate for flagging
incomplete bid-rigging cartels due to too many false negative predictions.
Note that, concerning the competitive tenders, the correct classification rate
of 84.8% remains unaffected since the sample of the post-cartel period does
not vary across the various simulations.

We turn now to the results for model 1, which only includes tender-based
screens, and we find that its correct classification rate shrinks between 5.3 and
11.3 percentage points depending on the number of competitive bids added to
the collusive tenders. Contrasting with model 1, model 4 appears to be the
most powerful model for predicting bid rigging, whose correct classification
rates varying between -6.3 and +3.1 percentage points with the occurrence
of competitive bids. When competitive bids are absent, model 1 performs
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slightly better than model 4, while model 4 outperforms model 1 by 10.1
and 10.3 percentage points when including four and five competitive bids,
respectively. This result illustrates the advantage of our approach, considering
summary screens. Considering the error rate, it amounts to 24.2% for model
1 such that almost one tender out of four is incorrectly classified. In model
4, the error rate is only 13.9%. This decrease of 42.6% in the error rate
compared to model 1 is substantial, indicating that some tenders rigged by
incomplete cartels would not have been detected by a conventional detection
method based on tender-based screens. This could be potentially problematic
if a competition agency judging the presence of reasonable grounds to open an
investigation leaves out some problematic cases by lack of statistical power.

Models 2 and 3 also include summary screens calculated in subgroups
of three and four bids, respectively. On average, model 2 performs slightly
better than model 3, but the correct classification rates are very similar. The
maximum difference in (overall) correct classification rates across model 4
and models 2 or 3 amounts to 2.2 percentage points in the sample with three
competitive bids. Overall, the correct classification rates of models 2 and 3
hardly differ from model 4. This result indicates that adding tender-based
screens to summary screens, as in model 4, does not significantly increase
predictive power. Thus, summary screens mainly explain the increase in the
correct classification rates in models 2 to 4.

We examine the variable importance in the random forest for predicting
collusive and competitive tenders in each dataset according to the mean
decrease in the Gini index (hereafter: MDG)27 when omitting the respective
predictor, which ranks variables according to their predictive power. However,
it does not allow direct comparison between models since the MDG depends
on the number of predictors. As we use fewer variables in model 1 than in
model 4, the MDG of the former model is higher. For each dataset and models
1 to 4, we depict the five most important variables in Table 2.6.

We observe for model 1 almost the same important predictors in all six data
sets (zero to five competitive bids), namely the Kolmogorov-Smirnov statistic
(KS), the coefficient of variation (CV), the kurtosis statistic (KURTO), and
the normalized distance (RDNOR). The order of importance changes with
the number of competitive bids. With zero or one competitive bid, the
Kolmogorov-Smirnov statistic (KS), the coefficient of variation (CV), and the
kurtosis statistic (KURTO) are the most relevant variables with MDGs larger
than three. In the presence of two or more competitive bids, the normalized
distance (RDNOR) and the alternative distance (RDALT) exhibit a greater

27This is a measure of the contribution of each variable to the purity of nodes and leaves in
the random forest.
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Table 2.5: Correct classification rate for the Ticino simulation

Comp.B Tenders Bench. M1 M2 M3 M4

0

All 0.848 0.835 0.832 0.834 0.830

Comp. 0.848 0.816 0.811 0.806 0.811

Coll. 0.848 0.863 0.861 0.87 0.859

1

All 0.667 0.722 0.766 0.756 0.767

Comp. 0.848 0.701 0.781 0.739 0.777

Coll. 0.485 0.758 0.765 0.788 0.769

2

All 0.652 0.752 0.819 0.786 0.802

Comp. 0.848 0.751 0.856 0.786 0.832

Coll. 0.455 0.758 0.79 0.803 0.784

3

Overall 0.576 0.782 0.826 0.795 0.817

Comp 0.848 0.796 0.862 0.807 0.838

Coll. 0.303 0.775 0.804 0.793 0.806

4

All 0.561 0.727 0.808 0.832 0.828

Comp. 0.848 0.713 0.843 0.83 0.837

Coll. 0.273 0.747 0.777 0.832 0.819

5

All 0.500 0.758 0.871 0.871 0.861

Comp. 0.848 0.745 0.885 0.879 0.887

Coll. 0.152 0.778 0.837 0.862 0.837

Notes: ”Comp.B”, ”Tenders”, ”Bench.”, ”M1”, ”M2”, ”M3” and ”M4” denote the number of
competitive bids in the collusive tenders, the type of tenders, the results produced by the
screening methods of the benchmarking approach, model 1, model 2, model 3 and model 4
respectively. For the type of tenders, ”All”, ”Comp.” and ”Coll.” denote the prediction for
all types of tenders, the prediction for the competitive tenders and the prediction for the
collusive tenders respectively.
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predictive power along with the Kolmogorov-Smirnov (KS) and the kurtosis
statistic (KURTO).

In models 2 to 4, the Kolmogorov-statistic (KS), the spread (SPD), the
difference in percentage (DIFFP), and the coefficient of variation (CV) are
the best predictors. Contrary to model 1, summary screens based on relative
distance (RDNOR, RD, and RDALT) or skewness (SKEW) are less important.
At the same time, the difference between the first and second lowest bids
in percentage (DIFFP) is more important. As in model 1, the order of
importance changes with the number of competitive bids. In models 2 to 4
for zero and one competitive bid, the Kolmogorov-statistic (KS) is the most
important variable. Conversely, in the data sets with four and five competitive
bids, the difference in percentage (DIFFP) comes first.

For models 2 to 4, we find that the median and mean of certain summary
screens are the most predictive in the presence of zero or one competitive
bids, while the minima and maxima of summary screens predominate under a
larger number of competitive bids. Intuitively, the minimum or maximum of
a particular summary screen is likely to exclude competitive bids if the latter
distort the distribution of collusive bids and should thus be relatively more
predictive as the number of competitive bids increases. We also note that, for
three or more competitive bids, the random forest mainly selects summary
screens calculated in subgroups of four bids in a tender rather than three.

To sum up the results of the Ticino simulation, we find that our approach
based on summary screens can flag bid-rigging cartels even when we add
competitive bids. When the number of competitive bids increases, the random
forest puts more weight on the minima or the maxima of summary screens
across the subgroups. The minima and maxima of summary screens appear to
be adequate to eliminate the distortion of competitive bids in the statistical
pattern produced by bid rigging. Therefore, our approach is able to detect
incomplete and complete bid-rigging cartels. For models 1 to 4, the algorithm
selects a mix of screens from the three groups, namely variance, asymmetry,
and uniformity. The random forest selects screens based on the uniformity
(KS) or the variance (CV, KURTO, and SPD) in the sample with zero or one
competitive bid added. When the number of competitive bids rises, screens
for asymmetry in the distribution of bids become more important (RDNOR
and RDALT for model 1 and DIFFP for models 2 to 4). Thus, screens for
asymmetry in the distribution of bids might have a higher weight in our data
for detecting bid-rigging cartels when a cartel is incomplete.
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Table 2.6: Important predictors for the Ticino simulation

Model 1 Model 2 Model 3 Model 4

IV MDG IV MDG IV MDG IV MDG

0

KS 4.63 MEAN3KS 2.33 MEAN4KS 2.88 MEAN4KS 1.56

CV 4.6 MEDIAN3SPD 1.88 MEDIAN4SPD 1.89 MEAN3KS 1.37

KURTO 3.37 MEAN3SPD 1.85 MEAN4SPD 1.86 MEDIAN3SPD 0.99

SPD 2.42 MEAN3DIFFP 1.78 MEAN4CV 1.83 MEAN3SPD 0.97

RDNOR 2.36 MEAN3CV 1.74 MEDIAN4KS 1.82 MEAN3DIFFP 0.97

1

KS 3.88 MEAN3KS 1.92 MEAN4KS 2.08 MEAN3KS 1.16

KURTO 3.65 MEDIAN3SPD 1.18 MEDIAN4SPD 1.15 MEAN4KS 1.08

CV 3.61 MEAN3SPD 1.17 MEAN4SPD 1.13 MEDIAN3SPD 0.65

SPD 2.96 MEDIAN3KS 1.13 MEDIAN4CV 1.1 MEAN3SPD 0.65

RDNOR 2.72 MEAN3CV 1.08 MIN4SPD 1.08 MEDIAN3KS 0.63

2

RDNOR 4.2 MEAN3KS 1.45 MIN4DIFFP 1.45 MIN3DIFFP 0.82

RDALT 3.37 MIN3DIFFP 1.4 MEAN4KS 1.4 MEAN3KS 0.81

KS 3.1 MIN3SPD 1.14 MIN4CV 1.14 MIN4DIFFP 0.76

KURTO 2.99 MAX3KS 1.1 MIN4SPD 1.1 MEAN4KS 0.74

CV 2.92 MIN3CV 1.1 MAX4KS 1.1 RDNOR 0.72

3

RDNOR 3.67 MEAN3KS 1.64 MIN4CV 1.76 MAX4KS 0.99

KURTO 3.47 MAX3KS 1.46 MAX4KS 1.75 MIN4CV 0.99

KS 3.45 MIN3CV 1.44 MIN4SPD 1.74 MIN4SPD 0.95

RDALT 3.12 MIN3SPD 1.44 MIN4DIFFP 1.71 MEAN3KS 0.9

CV 3.08 MIN3DIFFP 1.33 MEAN4KS 1.33 MIN4DIFFP 0.89

4

KURTO 4.49 MIN3DIFFP 2.04 MIN4DIFFP 2.34 MIN4DIFFP 1.34

RDNOR 3.72 MIN3SPD 1.69 MAX4KS 2.1 MIN4CV 1.27

KS 3.16 MIN3CV 1.59 MIN4CV 2.09 MAX4KS 1.27

RDALT 2.68 MAX3KS 1.57 MIN4SPD 2.02 MIN4SPD 1.23

CV 2.52 MAX3RDNOR 1.47 MAX4RDALT 1.28 MIN3DIFFP 1.07

5

KURTO 5.08 MIN3DIFFP 2.15 MIN4DIFFP 2.44 MIN4DIFFP 1.53

RDNOR 3.87 MIN3SPD 1.62 MIN4SPD 2.31 MIN4SPD 1.51

RDALT 2.77 MAX3KS 1.52 MAX4KS 2.05 MAX4KS 1.35

KS 2.71 MIN3CV 1.5 MIN4CV 2.03 MIN4CV 1.34

CV 2.15 MEAN3KS 1.5 MAX4RDALT 1.54 MIN3DIFFP 1.06

Notes: ”IV” and ”MDG” denote the important variables selected by the random forest
and the mean decrease in Gini index. ”KS”, ”CV”, ”SPD”, ”RD”, ”RDNOR”, ”RDALT”,
”SKEW”, ”DIFFP” and ”KURTO” denote the Kolmogorov-Smirnov statistic, the coefficient
of variation, the spread, the relative distance, the normalized distance, the alternative
relative distance, the skewness statistic, the percentage difference and the kurtosis statistic
respectively.
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2.4.2 Application to the Swiss data

We now apply our detection method to data on the cases of See-Gaster and
Strassenbau Graubünden, characterized by well-organized bid-rigging cartels,
which, however, faced competition from outsiders from time to time. In these
’real’ cases, competitive and collusive bidders were aware of their reciprocal
existence. Evidence from COMCO’s investigations has pointed out that
cartel participants adopted a more competitive behavior in the presence of
competitive bidders by deciding not to collude in some tenders. The poor
chance of success of an agreement due to the number of (potential) competitive
bidders motivated such decisions to bid free for diverse contracts. In other
cases, the cartel faced only one competitive bidder and tried to enroll him
in the agreement. Moreover, competitive bidders aware of the existence of
the cartel might have tried – if not enrolled in the agreement – to benefit
from the umbrella effect of a cartel by bidding higher in a fully competitive
situation. As a consequence of the umbrella effect, bids of the competitive
bidder fall nearer to bids of collusive bidders, such as competitive bids distort
less the statistical pattern produced by bid rigging.

Similar to the Ticino simulation, we construct different samples of collusive
tenders. Sample 1 includes all tenders with incomplete bid-rigging cartels
and at least two cartel participants. As stated in Table 2.7, the average
percentage of cartel participants in sample 1 amounts to 71%. Sample 2
includes tenders with incomplete bid-rigging cartels formed with at least three
cartel participants. The average rate of cartel participants of 75% in sample
2 is superior to sample 1 since sample 2 excludes tenders with only two cartel
participants. The logic is the same for samples 3 to 5. Consequently, sample
5 has the highest average percentage of cartel participants and contains fewer
competitive bidders but at least one per tender. In addition, we construct a
sample including all tenders with complete cartels.

First, we investigate the performance of our various predictive models
starting with complete cartels. As shown in Table 2.7, the correct classification
rates do not differ notably across machine learning-based models 1 to 5, the
range being 81.3% to 83.3%. However, for the benchmarking method, the
correct classification rate of 61.7% is clearly below that of models 1 to
5. In addition, it differs strongly between competitive and collusive tenders,
amounting to only 33.4% in the latter case. Possible explanations for this poor
performance are the reliance on only two screens, which are not necessarily the
optimal predictors, and on benchmark values for these two screens from two
previous investigations, which are not necessarily optimal in the dataset being
considered. In contrast, machine learning approaches use a more extensive
set of screens and weight their importance in a data-driven way.
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However, if we adjust the benchmarks of our benchmarking approach
applied, we can achieve better prediction rates for complete cartels. In
Appendix 2.A, we depict a decision tree on Figure 2.A.1 corresponding to
the minimal cross-validation error. Our pruned tree, using as predictors
only the RD and the CV as in Imhof, Karagök, and Rutz (2018), shows
a correct classification rate of 81.6% for complete cartels. Since Imhof,
Karagök, and Rutz (2018) have drawn their benchmarks from two previous
investigations, one of them the Ticino cartel, it is therefore coherent that
the benchmarks produce better results for detecting complete bid-rigging
cartels in Ticino than in the Swiss data. This discrepancy illustrates the
fundamental difference between a benchmark method and machine learning:
benchmarks are exogenous, whereas machine learning outperforms benchmarks
since it chooses the best predictors in each case. While a benchmark can
still be adapted to different cases, machine learning algorithms are far more
precise. Nonetheless, a benchmark method has the advantage of requiring
less information to be implemented and therefore remains a simple (first) step
in flagging cartels.

Considering models 1 to 5, the correct classification rates vary between
61.2% and 84.1%, depending on the sample and the model. When the
proportion of competitive bidders increases, the correct predictions generally
decrease, as depicted in Table 2.7. This result suggests that cartel participants
anticipated competitive bids and decided not to collude in some peculiar
tenders, as attested, for example, in the case of See-Gaster. The models with
summary screens calculated for subgroups outperform model 1. Among them,
models 3 and 4, unlike in the Ticino simulation, slightly outperform model 2,
indicating that in our case, summary screens calculated for subgroups of four
bids exhibit a higher predictive power than those calculated for subgroups of
three bids. The fact that we have four cartel participants per tender in most
cases likely explains this result. In contrast, summary screens calculated for
subgroups of three bids may work better if we mainly observe three cartel
participants per tender.

Model 5, the only one also to include the number of bidders or the contract
value as predictors, outperforms the other models and has a 5 to 10 percentage
points more correct classification rate than model 1. The advantage of models
3 or 4 over model 1 is 3 to 5.7 percentage points. Therefore, the gain
in calculating screens for subgroups is not quite as high as for the Ticino
simulation (4.5 to 10.3 percentage points). This result suggests strategic
reactions between competitive bidders and cartel participants, absent in
the Ticino simulation. Finding less difference between models 2, 3, and 4 as
opposed to model 1 compared to the Ticino simulation suggests that outsiders,
aware of the existence of the bid-rigging cartel, have tried to benefit from
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an umbrella effect (Bos and Harrington, 2010). If the cartel did not enroll
them, they have submitted bids nearer to collusive bids in some tenders,
which have less disturbed the statistical patterns produced by bid rigging.
However, even in the presence of strategic interactions, models 2 to 4 still
outperform model 1 with a 3 to 5.7 percentage point decrease in the error rate
by roughly more than 20% in some cases. Therefore, competition agencies
should consider summary screens for subgroups to detect both complete and
incomplete bid-rigging cartels.

Like for the Ticino simulation, the benchmarking method performs poorly
when flagging incomplete bid-rigging cartels and does no better than tossing
a coin. Specifically for truly collusive tenders, the correct classification rate is
only between 8.7% and 14.7%.
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When looking at the variable importance as reported in Table 2.8, we find
for all models and samples that the Kolmogorov-Smirnov statistic (KS) is an
important predictor. In many cases, it is among the three most important
variables. Even if both collusive and competitive tenders generally do not
follow a uniform distribution, the collusive ones usually are less uniform.
Therefore, the Kolmogorov-Smirnov statistic for deviations from the uniform
distribution tends to exhibit notably higher values in rigged tenders than in
competitive tenders.

The random forest generally picks up a balanced set of screens for the
variance and asymmetry along with the Kolmogorov-Smirnov statistic for
model 1 in all samples. Specifically for the sample with complete cartels, we
observe for models 2 to 5 that the random forest selects screens for the variance,
mainly the coefficient of variation (CV) and the spread (SPD), along with the
Kolmogorov-Smirnov statistic (KS). Screens for asymmetry in the distribution
of bids remain unselected for models 2 and 5 when the cartel is complete,
as in the Ticino case. However, when cartels are incomplete, the random
forest selects for models 2 to 5 screens for asymmetry in the distribution of
bids, mostly skewness (SKEW), relative distance (RD), percentage difference
(DIFFP), and alternative distance (RDALT). Even though the results suggest
that screens for asymmetry are less important than screens for variance
and the Kolmogorov-Smirnov statistic (KS), as in the Ticino case, we find
that screens for asymmetry help in detecting bid-rigging when a cartel is
incomplete.

For all the samples with incomplete cartels, the minima and maxima
of the summary screens are the most important variables, while complete
cartels prevail the mean and the median. As for the Ticino case, the results
suggest that a few competitive bids sufficiently disturb the statistical pattern
produced by bid rigging that it becomes difficult to detect collusion by tender-
based screens. In contrast, the use of the minimum or maximum of summary
screens mitigates the distortion of competitive bids in the statistical patterns
produced by bid rigging and makes possible the detection of incomplete and
complete bid-rigging cartels in the Swiss data.
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2.4.3 Robustness analysis

We investigate the robustness of our correct classification rates by discarding
the most important predictors and applying the random forest to the remaining
predictors. Since model 1 uses fewer predictors than the other models, we
leave out the three most important variables, while for models 2 to 5, we drop
the five best predictors. Table 2.9 reports the difference in percentage points
in the correct classification rates when keeping vs. dropping the respective
predictors.
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The overall correct classification rate of model 1 in samples 1, 3, and 4,
keeping all variables, predominates when dropping the three best predictors
by 3.4 to 4.8 percentage points. Considering the other models and samples,
we observe more or less the same predictive power when discarding the most
important variables. Therefore, the remaining predictors seem to be suitable
substitutes for the discarded ones. Other variables become more important
when the most important predictors are omitted, and the correct classification
rate is hardly affected.

Furthermore, we investigate robustness for the type of contract. For both
the cartel and post-cartel periods, we subsequently only consider contracts for
road construction and asphalting. We exclude contracts for civil engineering
and mixed contracts combining civil engineering with road construction or
asphalting. This, because certain specific characteristics of contracts in civil
engineering might affect the screens and, therefore, the correct classification
rate. Dropping mixed contracts and contracts for civil engineering permits
us to verify whether this importantly affects the correct classification rate
among the remaining contracts for road construction and asphalting. Table
2.10 reports the difference in percentage points in the correct classification
rates when using all contracts vs. using contracts for road construction and
asphalting only.

In samples 1 and 2, we find the correct classification rates of the random
forest for road construction and asphalting contracts to be superior to the
classification rate of the random forest with all types of contracts. For example,
the difference in the (overall) classification rate of model 1 in samples 1 and 2
accounts for 6.2 and 2.8 percentage points, respectively. A possible explanation
could be that we implicitly suppress some competitors when we keep only the
road construction and asphalting contracts. For example, in sample 1, the
average percentage of collusive bidders is 80.9%, which is considerably higher,
as is the situation with all types of contracts (71.1%, see Table 2.7). Therefore,
the cartel percentage is higher for this restricted sample of road construction
and asphalting contracts alone and explains the higher performance in samples
1 and 2. In sample 3, the situation begins to change for both types, the
correct classification rates being quasi identical. Noticeably for all models
in samples 3 and 4, the differences increase again. However, not as strong
as before and in the opposite direction. Therefore, for an almost identical
average percentage of cartel participants, the correct classification rates of
the random forest for all types of contracts are slightly superior to those for
road construction and asphalting.

To investigate the robustness of the correct classification rate across
different machine learning algorithms, we also assess the performance of
lasso regression and an ensemble method (including bagged trees, random
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Table 2.10: Differences between original random forest and random forest
using only contracts for road construction and asphalting

Sample Cart.F Perc.Cart.F Tenders M1 M2 M3 M4 M5

1 > 1 81%

All -6.2 -5.2 -6.7 -5.5 -3.6

Comp. -7.2 -4.6 -6.9 -5.7 -3.8

Coll. -5.2 -5.8 -6.2 -5.2 -3.3

2 > 2 82%

All -2.8 -3 -4.3 -3.6 -1.2

Comp. -3.6 -3.1 -4.7 -3.9 -1.4

Coll. -1.9 -2.9 -3.8 -3.2 -1

3 > 3 84%

All 0.1 -0.6 -0.9 -0.6 0.2

Comp. -1.9 -1.5 -2.7 -2.1 -1.9

Coll. 2 0 0.5 0.5 1.9

4 > 4 86%

All 1.5 2.2 2 2.4 3.4

Comp. 2.2 2.7 1.9 2.5 3.1

Coll. 1 1.9 1.9 2.2 3.6

5 > 5 88%

All 2.6 3.3 2 2.1 2.7

Comp. 3.1 3.3 2.2 1.8 3

Coll. 1.9 3.2 1.9 2.4 2.3

Compl.
Cartel

All 100%

All 0.7 0.3 0 0.3 0.3

Comp. 0.9 -0.3 -0.4 0 -0.2

Coll. 0.4 0.9 0.4 0.5 0.8

Notes: ”Sample”, ”Cartel.F”, ”Per.Cart.F”, ”Tenders”, ”M1”, ”M2”, ”M3”, ”M4” and ”M5”
denote the sample, the number of cartel firms in the collusive tenders, the percentage of
cartel firms in the collusive tenders, the type of tenders, model 1, model 2, model 3, model 4
and model 5 respectively. For the outcome classification, ”All”, ”Comp.” and ”Coll.” denote
the prediction for all types of tenders, the prediction for the competitive tenders and the
prediction for the collusive tenders respectively.
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forest, and neural networks) for all models and samples. We explain these
algorithms, also outlined by Huber and Imhof (2019), in more detail in
Appendix 2.B. Table 2.11 reports the difference in percentage points in the
correct classification rates of the random forest minus the correct classification
rates of the lasso and ensemble method.
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Considering samples 1 and 2 in Table 2.11, we find that the lasso and
ensemble method slightly outperform the random forest. The maximum
difference in (overall) correct classification rates across models and samples
amount to 2.9 percentage points. While the somewhat lower rates speak
against the random forest, performance is more uniform. Therefore, there is
less divergence across both the competitive and collusive periods, which may
be important to practitioners. For samples 3, 4, and 5, in general, the lasso
and ensemble method slightly outperform the random forest, in two cases
even more profoundly, with higher correct classification rates of 4.3 to 6.7
percentage points for model 1 in samples 4 and 5. This implies that in samples
4 and 5 (with a high amount of collusive bidders), considering summary screens
does not significantly improve the predictive power of the lasso and ensemble
method, in contrast to the random forest. On the other hand, and as for
samples 1 and 2, the random forest shows a more uniform performance (e.g.
correct classification rates are not too different for competitive and collusive
tenders). We find a similar performance of (overall) correct classification
rates between the random forest and the ensemble method for complete
cartels. However, the random forest slightly dominates the lasso regression.
Considering the deviation across prediction of the competitive and collusive
periods, the random forest and the ensemble method show a less divergent
performance than the lasso.

To conclude, in Table 2.11 the random forest shows a somewhat lower
correct classification rate than the lasso and the ensemble method. Still,
it exhibits a more homogeneous correct classification rate across both the
competitive and collusive tenders. All in all, this robustness check shows the
stability of our preliminary results.

2.5 Conclusion

In this paper, we have suggested a robust method for flagging bid rigging in
tenders that is likely to be more powerful for detecting incomplete cartels than
previously suggested methods. Our approach combined screens, e.g. statistics
derived from the distribution of bids in a tender, with machine learning to
predict the probability of collusion. As a methodological innovation, we
calculated the screens for all possible subgroups of three or four bids within a
tender and considered summary statistics as the mean, median, maximum,
and minimum for each screen (so-called summary screens) as predictors in
the machine learning algorithm. We tackled the issue that competitive bids
in incomplete cartels distort the statistical signals produced by bid rigging
using these summary screens.
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We first applied our approach to the Ticino bid-rigging cartel and found a
correct out-of-sample classification rate of 77% to 86% even in the presence
of simulated competitive bids. Our approach increasingly outperformed other
methods using tender-based screens as the number of competitive bids per
tender increased. In this simulation, there was no strategic reaction by design
or interaction between competitive and collusive bidders. We also applied
our method to data from the investigations involving partial cartels in the
regions See-Gaster and Graubünden in Switzerland to allow for such reactions.
The out-of-sample performance of machine learning using summary screens
(calculated for all possible subgroups of three and four bids) as predictors
again outperformed other screening methods. However, the performance of all
machine learning-based methods in all models still decreased concerning the
relative number of competitive bids in the data of the investigations involving
incomplete cartels. This decrease indicates that cartel participants anticipated
competition from non-cartel bidders. However, the less divergent classification
rate between models indicates that it is likely that competitive bidders bid
closer to collusive bids trying to benefit from the umbrella effect (Bos and
Harrington, 2010), usually if there are a large number of cartel bidders.

Compared to tender-based, summary screens increased the correct classifi-
cation rate by 5 to 10 and 3 to 5.7 percentage points for incomplete cartels in
the Ticino simulation and the Swiss data from See-Gaster and Graubünden,
respectively. This implies a substantial decrease in the error rate (one minus
the correct classification rate) of 42.6% and 22.2% for the Ticino simulation
and the Swiss data respectively. As screening by competition agencies can
trigger investigations with legal consequences for potential cartel members,
such decreases in the error rate appear more desirable. Thus, our results
demonstrate the usefulness of combining machine learning with an improved
set of statistical screens to reduce distortions of competitive bids in incomplete
cartels. Moreover, the approach appears promising for detecting collusion in
other industries or countries, being on the agenda for future research.
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Appendices

2.A Adjusting the benchmarking rule

Figure 2.A.1: Adjusted classification tree

2.B Details about lasso regression and the ensemble

method

Here discuss in more detail the machine learning approaches of the lasso regression
and ensemble method. Similar to the random forest, the lasso regression and
ensemble method require randomly splitting the data into training (used for esti-
mating the model parameters) and test data (used for out-of-sample prediction and
performance evaluation). Again, our training and test samples contain 75% and
25% of the observations respectively. Lasso regression corresponds to a penalized
logit regression, where the penalty term restricts the sum of absolute coefficients
on the regressors. Coefficients of less predictive variables shrink towards or even
exactly to zero depending on the penalty term. Therefore, lasso regression may
perform predictor selection. Estimating lasso logit coefficients is based on the
following optimization problem:
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where β0 denotes intercept and slope coefficients on the predictors, β the slope
coefficients on the predictors, x the vector of predictors, i indexes an observation
in our data set (with n being the number of observations), j indexes a predictor
(with p being the number of predictors), and λ a penalty term larger than zero. We
use the same predictors as described in the main text for the different models. In
our application, we use the hdm package by Chernozhukov, Hansen, and Spindler
(2016) for the statistical software R. We apply 15-fold cross-validation to select the
penalty term λ based on minimizing the mean squared error of prediction.

For the ensemble method, as by Huber and Imhof (2019) we apply the “Super-
Learner” package for R by van der Laan, Polley, and Hubbard (2008) with default
values for bagged regression tree, random forest and neural network algorithms in
the “ipredbagg”, “cforest” and “nnet” packages respectively. The ensemble method
also relies on training data to estimate the model parameters and test data for
prediction and performance evaluation. However, any estimation step now consists
of a weighted average of bagged classification trees, random forest and neural
networks. Bagged trees involve estimating single trees (rather than random forest)
repeatedly using the outcome residuals of the respective previous tree as outcome.
Rather than splitting the predictor space, neural networks aim at fitting a system
of nonlinear functions that models the influence of the predictors of collusion in a
flexible way. To do so, we model the association between the predictors and the
outcomes using a network of non-linear intermediate functions, so-called hidden
notes. Several layers of hidden nodes allow modelling associations and interactions
between the predictors in a flexible way, with more nodes and layers increasing the
variance but reducing the bias.

2.C Results for the statistical tests between the

simulated bids and the competitive bids in the

Ticino case

In the following, we test whether the simulated competitive bids are similar to the
competitive bids of the post-cartel period. We calculate the screens for the five
simulated competitive bids for each collusive tender. We test whether the screens
differ from the screens calculated with the competitive bids in the post-cartel
period. Since the screens are not normally distributed, we apply non-parametric
tests to our data, which do not assume any particular distribution in the test
procedures (see also Imhof, Karagök, and Rutz, 2018, Imhof, 2019). First, we apply
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the Mann-Whitney test (also called the Wilcoxon rank sum test).28 Second, to
ensure the robustness of the results, we use the Kolmogorov-Smirnov test, a more
general test examining any kind of difference between the samples.29

Table 2.12: Statistical tests for the screens calculated with the simulated
competitive bids against the competitive bids of the post-cartel period

Screens z-statistic p-value MW KSa p-value KS

CV -1.14 0.2525 1.24 0.0934

KURTO -0.93 0.3545 1.04 0.2311

SPD -0.45 0.6541 1.12 0.1623

DIFFP -1.64 0.1014 1.90 0.0015

SKEW -0.06 0.9524 0.87 0.4377

RD -0.10 0.9215 0.78 0.5820

RDNOR 0.1290 0.9874 0.83 0.4913

RDALT 0.1179 0.9061 0.77 0.5901

KS 1.31 0.1890 1.21 0.1084

Notes: ”Screens”, ”z-statistic”, ”p-value MW” denote the screens tested, the z-statistic of
the Mann-Whitney test and the p-value of the Mann-Whitney test respectively. ”KSa” and
”p-value KS” denote the asymptotic Kolmogorov-Smirnov statistic and the p-value of the
Kolmogorov-Smirnov test respectively.

Table 2.12 indicates the test results. We find no rejection for all the tests
(at the 5% significance level), except for the Kolmogorov-Smirnov test applied to
the percentage difference (DIFFP). To sum up, the screens calculated with the
simulated competitive bids do not significantly differ from the screens calculated
with the ”real” competitive bids in the post-cartel period. Therefore, the simulated
competitive bids exhibit more or less the same statistical pattern as the ”real”
competitive bids. This result indicates that our simulation procedure adequately
generates competitive bids for the purposes of our analyses.

2.D Descriptive statistics for the Ticino Cartel

Figure 2.D.1 visualizes the distribution of tenders for a predetermined number of
bids. In either period, most tenders had four to eight bids (see Table 2.13). Table
2.14 shows the empirical distribution of the bids for each period. Both periods
contain contracts of different values varying from several tens of Swiss francs to up

28See Rice (2007) chapter 11, page 435 ff.; Hollander, Wolfe, and Chicken (2014) chapter 4,
page 115 ff.

29See Hollander, Wolfe, and Chicken (2014) chapter 5, page 190 ff.
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three to five million Swiss francs. The mean and the median of the cartel period are
superior to those of the post-cartel period. In either periods, the contract values
exhibit higher means than medians, indicating a right-skewed distribution with
outliers of comparably high contract values.

Figure 2.D.1: Distribution of tenders for a predetermined number of bids for
the Ticino data

Table 2.13: Numbers of bids in a tender for the cartel and post-cartel periods
in Ticino

Number of bids in a tender 4 5 6 7 8 9 10 10+

Cartel Period 32 24 23 28 15 12 7 8

Post-cartel Period 8 2 8 3 5 4 2 1
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Table 2.14: Empirical distributions of collusive and competitive bids in the
Ticino data (in million CHF)

Cartel period Post-cartel Period

Mean 1.08 0.69

Std 1.01 0.75

Min 0.02 0.04

Lower Q. 0.36 0.25

Median 0.78 0.44

Upper Q. 1.47 0.68

Max 4.85 2.95

N 149 33

Notes: “Mean”, “Std”, “Min”, “Lower Q.”, “Median”, “Upper Q.”, “Max”, and “N” denote
the mean, standard deviation, minimum, lower quartile, median, upper quartile, maximum,
and number of observations respectively.

2.E Descriptive statistics for the Swiss data

Figure 2.E.1 depicts the distribution of the number of bids per tender for complete
cartels, incomplete cartels and competitive tenders respectively. While tenders
with four to seven bids dominate, there is also a sufficient number of tenders with
eight or more bids (see Table 2.15). Table 2.16 depicts the empirical distribution
of the bids for each type of tender. The empirical distributions for tenders with
complete cartels and with incomplete cartels are similar. However, this is not the
case for competitive tenders, which have many more contracts, varying in value
from one thousand Swiss francs to 148 million Swiss francs. As for the data from
the Ticino cartel, all the bids’ empirical distributions are right-skewed, such that
the mean is higher than the median, but more strongly so for competitive tenders
than for complete and incomplete cartels.

Table 2.15: Numbers of bids in a tender in the Swiss data

Number of bids 4 5 6 7 8 9 10 10+

Complete cartels 94 50 29 24 33 33 23 24

Incomplete cartels 56 36 38 40 27 28 24 38

Competitive tenders 786 559 365 257 158 129 74 70

Note: ’Complete cartels’, ’Incomplete Cartels’ and ’Competitive tenders’ denote tenders
with complete cartels, incomplete cartels and non-colluding firms, respectively.
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Figure 2.E.1: Distribution of tenders for a predetermined number of bids in
the Swiss data

Table 2.16: Empirical distributions of bids in the Swiss data (in million CHF)

Complete cartels Incomplete cartels Competitive tenders

Mean 0.36 0.4 0.72

Std 0.36 0.47 3.81

Min 0.03 0.02 0.001

Lower Q. 0.16 0.12 0.13

Median 0.29 0.25 0.31

Upper Q. 0.44 0.50 0.66

Max 3.45 3.46 147.73

N 310 287 2,398

Notes: “Mean”, “Std”, “Min”, “Lower Q.”, “Median”, “Upper Q.”, “Max”, and “N” denote
the mean, standard deviation, minimum, lower quartile, median, upper quartile, maximum,
and number of observations respectively.
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2.F Descriptive statistics for predictors

In the following tables, we present tables of descriptive statistics for all the different
samples used in the empirical analyses for both the Ticino simulation and the
Swiss data. We review here the most important key information drawn from
the descriptive statistics for the coefficient of variation (CV) and the normalized
distance (RDNOR). Similar interpretations can be made for other screens.

For the Ticino cartel, the coefficient of variation exhibits a mean of 3.25 and
a median of 2.97 with a low standard deviation of 1.18 (see Table 2.17). This
contrasts with the post-cartel period, in which the mean and the median of the
coefficient of variation amount to 9.51 and 8.49 respectively, with a larger standard
deviation of 5.38 compared to the collusive period (see Table 2.18). If a large
majority of the observations in the cartel period are below 3.83, we only find a few
CVs below 5.65 in the post-cartel period, considering the upper and lower quartile
respectively. For the Swiss data, we find similar values for the cartel period with a
mean of 3.66, a median of 3.29 and a standard deviation of 2.09 (see Table 2.20).
They all contrast with the values found for the post-cartel period (competitive
tenders) in the Swiss data with a mean of 10.12, a median of 8.45 and a standard
deviation of 7.89 (see Table 2.21). Note that in the following empirical analyses we
select only competitive tenders with an anonymized year superior or equal to 8.
Since collusive tenders superior or equal to 8 are absent in the anonymized years,
we conclude that both bid-rigging cartels collapsed in this post-cartel period. This
ensures that a competitive tender in the post-cartel period is really a ”competitive”
one.

If we look at the coefficient of variation for the incomplete bid-rigging cartel in
sample 1 of the Swiss data (collusive tenders characterized by incomplete cartels
with at least two colluding firms), the CV is affected by the presence of competitive
bids with a mean of 7.79, a median of 6.79 and a standard deviation of 3.89 (see
Table 2.22). Looking more precisely at the minimum of all coefficients of variation
calculated for subgroups of four bids in a tender (MIN4CV), we find a mean of 3.16,
a median of 2.26 and a standard deviation of 2.97 for the incomplete bid-rigging
cartels in sample 1 (see Table 2.22). However, the MIN4CV for the competitive
tenders exhibits higher values with a mean of 6.24, a median of 4.49 and a standard
deviation of 6.77 (see Table 2.21). Noteworthy, the differences are weaker for
the maxima of all coefficients of variation calculated for subgroups of four bids
(MAX4CV), between incomplete cartels in sample 1 (mean of 10.63, median of 9.43
and a standard deviation of 5.46 in Table 2.22) and competitive tenders (mean
of 12.14, median of 10.13 and a standard deviation of 9.73 in Table 2.21). This
example is crucial to understand the benefit delivered by summary statistics of the
screens. Even if the maxima of the coefficient of variation is high in both cases of
incomplete bid-rigging cartels and competition, the minima diverge notably and
could be used to differentiate between competition and collusion.

The normalized distance (RDNOR) assumes higher values in collusive periods
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than in competitive periods. For example, the RDNOR exhibits a mean of 2.93
and a median of 2.72 with a standard deviation of 1.35 for the Ticino cartel (see
Table 2.17). In the post-cartel period, the values of the RDNOR are lower with a
mean of 1.02, a median of 0.74 and a standard deviation of 0.80 (see Table 2.18).
Although less notable, we find a divergence in the Swiss data between collusive
tenders (with a mean of 1.38, a median of 1.24 and a standard deviation of 0.79 in
Table 2.20) and competitive tenders (with a mean of 1.04, a median of 0.87 and a
standard deviation of 0.82 in Table 2.21). We find similar values for the minima of
the normalized distance (MIN4RDNOR) between incomplete bid-rigging cartels in
sample 1 (mean of 0.37, median of 0.15, standard deviation of 0.54 in Table 2.22)
and competitive tenders in the Swiss data (with a mean of 0.51, a median of 0.29
and a standard deviation of 0.56 in Table 2.21). The values are more divergent for
the maxima (MAX4RDNOR) between the two types of tender. For the incomplete
bid-rigging cartels in sample 1, we observe a mean of 2.18, a median of 2.37 and
a standard deviation of 0.68 in Table 2.22, contrasting with competitive periods,
which exhibit a mean of 1.62, a median of 1.74 and a standard deviation of 0.81 in
Table 2.21. The result indicates that the maxima of the RDNOR could be used to
discriminate between incomplete bid-rigging cartels and competition.

Table 2.17: Descriptive statistics for the collusive tenders in Ticino (without
simulated bids)

Predictors Mean Std Min Median. Max N
NBRBIDS 6.54 2.16 4 6 13 149
MEANBIDS 1134.58 1048.71 23.16 836.59 4967.5 149
STDBIDS 34.08 30.13 0.82 25.84 136.9 149
CV 3.25 1.18 1.52 2.97 10.2 149
KURTO 2.71 2.12 -3.08 2.84 8.14 149
SKEW -1.13 0.96 -2.76 -1.34 2.21 149
SPD 0.1 0.04 0.04 0.09 0.37 149
D 49.15 43.01 1.64 39.1 272.45 149
RD 4.09 3.37 0.31 3.14 23.02 149
RDNOR 2.93 1.35 0.53 2.72 6.95 149
RDALT 7.06 6.4 0.43 5.47 40.02 149
DIFFP 5.09 1.98 1.03 5.13 21.74 149
KS 34.27 9.93 9.77 34.26 66.05 149
MIN3CV 0.7 0.8 0 0.41 4.36 149
MAX3CV 5.03 1.87 1.99 4.72 16.64 149
MEAN3CV 2.89 1.12 1.24 2.63 8.61 149
MEDIAN3CV 2.87 1.29 0.4 2.94 6.58 149
MIN3SKEW -1.67 0.17 -1.73 -1.73 -0.29 149
MAX3SKEW 1.33 0.72 -1.38 1.7 1.73 149
MEAN3SKEW -0.44 0.48 -1.56 -0.39 0.94 149
MEDIAN3SKEW -0.68 0.69 -1.69 -0.74 1.26 149
MIN3D 7.67 18.44 0 1.17 106.92 149
MAX3D 74.23 60.37 1.73 60.09 319.13 149
MEAN3D 37.58 36.04 1.03 28.73 186.08 149
MEDIAN3D 36.6 41.83 1.1 21.92 272.45 149
MIN3RD 0.43 0.75 0 0.1 4.86 149

See next page
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Predictors Mean Std Min Median. Max N
MAX3RD 3177.54 31051.89 1.72 73.49 376725.28 149
MEAN3RD 48.87 279.28 0.75 8.67 3060.42 149
MEDIAN3RD 4.47 14.02 0.49 2.6 171.76 149
MIN3RDNOR 0.32 0.38 0 0.14 1.55 149
MAX3RDNOR 1.89 0.15 1.1 1.96 2 149
MEAN3RDNOR 1.2 0.22 0.61 1.17 1.74 149
MEDIAN3RDNOR 1.27 0.28 0.5 1.27 1.85 149
MIN3RDALT 0.3 0.53 0 0.07 3.44 149
MAX3RDALT 2246.86 21957 1.22 51.97 266385 149
MEAN3RDALT 34.56 197.48 0.53 6.13 2164.04 149
MEDIAN3RDALT 3.16 9.92 0.34 1.84 121.45 149
MIN3DIFFP 0.51 0.76 0 0.16 4.03 149
MAX3DIFFP 8 3.34 1.87 7.18 34.62 149
MEAN3DIFFP 3.68 1.58 1.19 3.35 15.43 149
MEDIAN3DIFFP 3.42 2.12 0.35 3.23 10.15 149
MIN3SPD 0.01 0.02 0 0.01 0.09 149
MAX3SPD 0.1 0.04 0.04 0.09 0.37 149
MEAN3SPD 0.06 0.02 0.02 0.05 0.19 149
MEDIAN3SPD 0.06 0.03 0.01 0.06 0.14 149
MIN3KS 22.12 6.72 6.04 21.28 50.12 149
MAX3KS 851.31 3306.73 23.21 244.9 39320 149
MEAN3KS 88.19 88.53 17.01 64.31 863.76 149
MEDIAN3KS 49.42 38.86 15.83 34.73 247.55 149
MIN4CV 1.35 1.31 0.04 0.86 6.49 149
MAX4CV 4.21 1.6 1.69 3.92 13.92 149
MEAN4CV 3.06 1.16 1.35 2.81 9.2 149
MEDIAN4CV 3.29 1.46 0.54 2.99 12.88 149
MIN4SKEW -1.67 0.58 -2 -1.95 1.47 149
MAX4SKEW 0.82 1.29 -1.92 1.47 2 149
MEAN4SKEW -0.65 0.66 -1.92 -0.57 1.47 149
MEDIAN4SKEW -0.82 0.76 -1.96 -0.9 1.47 149
MIN4D 18.48 35.07 0 1.54 171.35 149
MAX4D 61.85 49.83 1.7 52.45 307.84 149
MEAN4D 40.84 38.74 1.34 29.47 229.44 149
MEDIAN4D 43.7 43.33 0.98 31.25 272.45 149
MIN4RD 1.15 2.28 0 0.19 13.56 149
MAX4RD 46.81 160.33 0.4 16.33 1865.04 149
MEAN4RD 5.2 4.81 0.4 3.79 34.88 149
MEDIAN4RD 3.27 2.83 0.32 2.34 19.6 149
MIN4RDNOR 0.65 0.75 0 0.28 2.62 149
MAX4RDNOR 2.47 0.53 0.53 2.69 3 149
MEAN4RDNOR 1.59 0.41 0.53 1.55 2.62 149
MEDIAN4RDNOR 1.66 0.5 0.44 1.65 2.73 149
MIN4RDALT 1.2 2.33 0 0.2 13.86 149
MAX4RDALT 49.69 170.21 0.43 17.11 1966.14 149
MEAN4RDALT 5.48 5.21 0.43 4.02 40.06 149
MEDIAN4RDALT 3.41 2.88 0.34 2.53 20.01 149
MIN4DIFFP 1.28 1.87 0 0.25 6.99 149
MAX4DIFFP 6.84 3.12 1.03 6.26 34.1 149
MEAN4DIFFP 4.05 1.79 1.03 3.58 18.1 149
MEDIAN4DIFFP 4.4 2.46 0.35 4.6 21.74 149
MIN4KURTO -2.38 3.14 -6 -3.19 3.76 149
MAX4KURTO 3.17 1.37 -3.08 3.83 4 149
MEAN4KURTO 1.47 1.18 -3.08 1.55 3.76 149

See next page
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Predictors Mean Std Min Median. Max N
MEDIAN4KURTO 1.93 1.27 -3.08 2.09 3.87 149
MIN4SPD 0.03 0.03 0 0.02 0.17 149
MAX4SPD 0.1 0.04 0.04 0.09 0.37 149
MEAN4SPD 0.07 0.03 0.03 0.07 0.24 149
MEDIAN4SPD 0.08 0.04 0.01 0.07 0.34 149
MIN4KS 26.58 8.13 7.22 25.64 59.33 149
MAX4KS 267.41 363.93 15.73 116.15 2643.96 149
MEAN4KS 55.64 36.47 15.73 43.12 195.25 149
MEDIAN4KS 38.72 25.53 7.82 33.39 184.51 149

Notes: “Mean”, “Std”, “Min”, “Median”, “Max”, and “N” denote the mean, standard
deviation, minimum, median, maximum, and number of observations respectively. The value
for ”MEANBIDS”, ”STDBIDS”, ”D”, ”MIN3D”, ”MAX3D”, ”MEAN3D”, ”MEDIAN3D”,
”MIN4D”, ”MAX4D”, ”MEAN4D” and ”MEDIAN4D” are expressed in thousand CHF.
”KS”, ”CV”, ”SPD”, ”RD”, ”RDNOR”, ”RDALT”, ”SKEW”, ”DIFFP”, ”KURTO”, ”D”,
”STDBIDS”, ”MEANBIDS” and ”NBRBIDS” denote the Kolmogorov-Smirnov Statistic,
the coefficient of variation, the spread, the relative distance, the normalized distance, the
alternative relative distance, the skewness statistic, the percentage difference, the kurtosis
statistic, the difference in absolute between the first and second lowest bids, the standard
deviation of the bids in a tender, the mean of the bids in a tender and the number of the
bids in a tender respectively.

Table 2.18: Descriptive statistics for the Ticino cartel in the post-cartel period

Predictors Mean Std Min Median Max N
NBRBIDS 6.73 2.34 4 6 13 33
MEANBIDS 756.79 785.43 43.97 482.05 3191.78 33
STDBIDS 54.83 49.5 2.79 39.64 209.64 33
CV 9.51 5.38 1.71 8.49 21.12 33
KURTO -0.08 1.78 -2.83 -0.16 6.06 33
SKEW 0.24 0.85 -1.46 0.31 2.36 33
SPD 0.31 0.2 0.04 0.26 0.84 33
D 29.67 36.08 0.68 17.42 149.28 33
RD 0.77 0.89 0.02 0.41 4.03 33
RDNOR 1.02 0.8 0.06 0.74 3.67 33
RDALT 1.22 1.23 0.05 0.72 4.84 33
DIFFP 5.16 5.02 0.23 3.73 20.6 33
KS 16.52 12.23 5.4 12.4 58.56 33
MIN3CV 2.58 2.8 0.07 1.73 12.23 33
MAX3CV 14.45 8.63 2.15 13.09 36.56 33
MEAN3CV 8.72 4.76 1.65 7.87 19.63 33
MEDIAN3CV 8.67 4.73 1.68 7.97 20.71 33
MIN3SKEW -1.48 0.55 -1.73 -1.7 0.7 33
MAX3SKEW 1.48 0.47 -0.27 1.69 1.73 33
MEAN3SKEW 0.1 0.51 -1.05 0.21 1.2 33
MEDIAN3SKEW 0.14 0.79 -1.26 0.29 1.2 33
MIN3D 14.25 32.2 0.16 2.58 149.28 33
MAX3D 107.42 100.76 2.88 76.2 471.5 33
MEAN3D 47.3 47.2 1.75 31.57 221.08 33
MEDIAN3D 41 38.93 1.44 28.88 183.76 33

See next page
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Predictors Mean Std Min Median Max N
MIN3RD 0.26 0.38 0.01 0.12 1.7 33
MAX3RD 39.4 59.34 0.86 17.33 274.21 33
MEAN3RD 4.37 4.62 0.51 3.4 25.42 33
MEDIAN3RD 1.65 1.17 0.53 1.16 4.24 33
MIN3RDNOR 0.25 0.28 0.01 0.16 1.09 33
MAX3RDNOR 1.74 0.29 0.76 1.85 1.99 33
MEAN3RDNOR 0.96 0.22 0.49 0.91 1.43 33
MEDIAN3RDNOR 0.96 0.29 0.53 0.9 1.49 33
MIN3RDALT 0.19 0.27 0.01 0.08 1.2 33
MAX3RDALT 27.86 41.96 0.61 12.25 193.89 33
MEAN3RDALT 3.09 3.27 0.36 2.4 17.97 33
MEDIAN3RDALT 1.17 0.83 0.37 0.82 3 33
MIN3DIFFP 1.53 2.45 0.05 0.58 13.25 33
MAX3DIFFP 21.91 14.6 2.6 17.43 62.88 33
MEAN3DIFFP 8.32 4.73 1.43 7.63 20.24 33
MEDIAN3DIFFP 7.1 4.23 1.3 6.12 20.6 33
MIN3SPD 0.05 0.06 0 0.03 0.28 33
MAX3SPD 0.31 0.2 0.04 0.26 0.84 33
MEAN3SPD 0.19 0.11 0.03 0.16 0.47 33
MEDIAN3SPD 0.19 0.11 0.03 0.17 0.49 33
MIN3KS 11.84 10.28 3.14 8.04 46.56 33
MAX3KS 113.2 230.7 8.41 58.13 1360.3 33
MEAN3KS 22.18 16.84 5.85 15.88 74.31 33
MEDIAN3KS 16.75 11.89 5.34 12.79 60.05 33
MIN4CV 4.4 4.32 0.5 2.93 20.66 33
MAX4CV 12.55 7.62 1.91 11.2 32.31 33
MEAN4CV 9.09 5 1.7 8.27 20.66 33
MEDIAN4CV 9.01 4.89 1.78 8.14 20.66 33
MIN4SKEW -1.16 0.91 -2 -1.46 1.32 33
MAX4SKEW 1.14 0.99 -1.46 1.57 2 33
MEAN4SKEW 0.11 0.7 -1.46 0.22 1.32 33
MEDIAN4SKEW 0.19 0.73 -1.46 0.22 1.34 33
MIN4D 20.5 38.09 0.16 3.62 149.28 33
MAX4D 76.56 77.3 1.26 62.49 435.92 33
MEAN4D 37.81 35.59 1.26 25.7 149.28 33
MEDIAN4D 34.53 35.39 1.26 23.39 149.28 33
MIN4RD 0.49 0.92 0.01 0.17 4.03 33
MAX4RD 10.2 22.25 0.17 4.15 128.38 33
MEAN4RD 1.55 1.44 0.17 1.03 7.36 33
MEDIAN4RD 1.03 0.94 0.1 0.67 4.03 33
MIN4RDNOR 0.43 0.52 0.02 0.23 2.01 33
MAX4RDNOR 1.95 0.68 0.23 2.07 2.95 33
MEAN4RDNOR 0.97 0.41 0.23 0.87 2.01 33
MEDIAN4RDNOR 0.91 0.49 0.15 0.77 2.01 33
MIN4RDALT 0.51 0.92 0.01 0.17 4.03 33
MAX4RDALT 10.47 22.63 0.17 4.48 130.64 33
MEAN4RDALT 1.62 1.48 0.17 1.06 7.68 33
MEDIAN4RDALT 1.07 0.96 0.11 0.68 4.03 33
MIN4DIFFP 2.43 4.4 0.16 0.84 20.6 33
MAX4DIFFP 16.11 11.32 0.54 15.77 45.9 33
MEAN4DIFFP 6.78 4.45 0.54 6.06 20.6 33
MEDIAN4DIFFP 5.97 4.5 0.54 5.07 20.6 33
MIN4KURTO -3.77 2.63 -6 -4.78 2.2 33
MAX4KURTO 2.65 1.73 -2.83 3.29 4 33
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Predictors Mean Std Min Median Max N
MEAN4KURTO -0.08 1.17 -2.83 -0.08 2.2 33
MEDIAN4KURTO 0.17 1.52 -3.68 0.69 2.2 33
MIN4SPD 0.11 0.13 0.01 0.07 0.63 33
MAX4SPD 0.31 0.2 0.04 0.26 0.84 33
MEAN4SPD 0.24 0.15 0.04 0.2 0.63 33
MEDIAN4SPD 0.23 0.14 0.04 0.2 0.63 33
MIN4KS 13.88 12.22 3.79 9.27 52.64 33
MAX4KS 43.49 37.89 5.4 34.46 201.12 33
MEAN4KS 17.88 12.29 5.4 13.17 60.1 33
MEDIAN4KS 16.68 12.04 5.4 12.71 56.12 33

Notes: “Mean”, “Std”, “Min”, “Median”, “Max”, and “N” denote the mean, standard
deviation, minimum, median, maximum, and number of observations respectively. The value
for ”MEANBIDS”, ”STDBIDS”, ”D”, ”MIN3D”, ”MAX3D”, ”MEAN3D”, ”MEDIAN3D”,
”MIN4D”, ”MAX4D”, ”MEAN4D” and ”MEDIAN4D” are expressed in thousand CHF.
”KS”, ”CV”, ”SPD”, ”RD”, ”RDNOR”, ”RDALT”, ”SKEW”, ”DIFFP”, ”KURTO”, ”D”,
”STDBIDS”, ”MEANBIDS” and ”NBRBIDS” denote the Kolmogorov-Smirnov statistic,
the coefficient of variation, the spread, the relative distance, the normalized distance, the
alternative relative distance, the skewness statistic, the percentage difference, the kurtosis
statistic, the difference in absolute between the first and second lowest bids, the standard
deviation of the bids in a tender, the mean of the bids in a tender and the number of the
bids in a tender respectively.

Table 2.19: Descriptive statistics for collusive tenders of the Ticino cartel
with five competitive bids

Predictors Mean Std Min Median Max N
NBRBIDS 10.79 2.49 6 11 18 184
MEANBIDS 1417.6 1328.38 19 897.16 6080.35 184
STDBIDS 112.94 140.47 1.83 60.74 859.5 184
CV 7.38 3.23 2.77 6.89 23.83 184
KURTO 1.78 2.37 -1.91 1.24 9.87 184
SKEW 0.11 1.24 -2.6 -0.08 3.07 184
SPD 0.29 0.14 0.08 0.26 0.89 184
D 633.31 93.76 0.11 25.49 585.65 184
RD 0.93 1.04 0 0.64 5.77 184
RDNOR 1.84 1.55 0 1.52 8.19 184
RDALT 2.51 2.94 0 1.62 18.31 184
DIFFP 5.27 4.81 0.01 4.23 27.56 184
KS 16.68 5.95 5.44 15.44 37.34 184
MIN3CV 0.49 0.52 0 0.29 2.9 184
MAX3CV 13.83 6.03 4.57 12.54 37.62 184
MEAN3CV 6.2 2.41 2.4 5.9 19.05 184
MEDIAN3CV 5.6 2.23 1.48 5.08 13.65 184
MIN3SKEW -1.72 0.03 -1.73 -1.73 -1.51 184
MAX3SKEW 1.71 0.06 1.22 1.73 1.73 184
MEAN3SKEW -0.06 0.4 -1.19 -0.12 1.09 184
MEDIAN3SKEW -0.1 0.77 -1.56 -0.25 1.73 184
MIN3D 4.61 10.12 0 0.66 70.32 184
MAX3D 239.79 245.6 4.9 146.83 1327.34 184
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Predictors Mean Std Min Median Max N
MEAN3D 82.36 91.89 1.86 45.74 391.88 184
MEDIAN3D 71.06 82.74 1.55 41.1 394.87 184
MIN3RD 0.05 0.08 0 0.01 0.52 184
MAX3RD 5367.51 51859.16 6.4 129.19 693080.61 184
MEAN3RD 43.17 245.44 0.95 7.71 2710.21 184
MEDIAN3RD 1.82 1.01 0.25 1.69 7.49 184
MIN3RDNOR 0.06 0.09 0 0.02 0.54 184
MAX3RDNOR 1.96 0.06 1.64 1.98 2 184
MEAN3RDNOR 1.04 0.17 0.6 1.06 1.56 184
MEDIAN3RDNOR 1.05 0.26 0.3 1.08 1.68 184
MIN3RDALT 0.03 0.06 0 0.01 0.37 184
MAX3RDALT 3795.41 36669.96 4.53 91.35 490082 184
MEAN3RDALT 30.53 173.55 0.67 5.45 1916.41 184
MEDIAN3RDALT 1.29 0.72 0.18 1.19 5.29 184
MIN3DIFFP 0.23 0.34 0 0.11 2.01 184
MAX3DIFFP 20.05 8.11 7.05 18.21 53.73 184
MEAN3DIFFP 6.33 2.43 2.48 5.8 13.45 184
MEDIAN3DIFFP 5.21 2.33 0.87 5 14.71 184
MIN3SPD 0.01 0.01 0 0.01 0.06 184
MAX3SPD 0.29 0.14 0.08 0.26 0.89 184
MEAN3SPD 0.13 0.05 0.05 0.12 0.45 184
MEDIAN3SPD 0.11 0.05 0.03 0.1 0.3 184
MIN3KS 8.83 3.51 3.06 8.1 22.3 184
MAX3KS 938.54 3130.28 34.68 339.85 39320 184
MEAN3KS 39.88 25.59 8.37 32.91 192.41 184
MEDIAN3KS 20.92 8.4 7.62 19.97 67.92 184
MIN4CV 0.94 0.95 0.04 0.73 7.67 184
MAX4CV 12.03 5.14 4.23 11.03 33.57 184
MEAN4CV 6.57 2.64 2.53 6.26 20.74 184
MEDIAN4CV 6.27 2.82 1.9 5.74 26 184
MIN4SKEW -1.92 0.19 -2 -1.99 -0.67 184
MAX4SKEW 1.87 0.29 0.22 1.99 2 184
MEAN4SKEW -0.08 0.53 -1.53 -0.17 1.2 184
MEDIAN4SKEW -0.06 0.7 -1.54 -0.14 1.74 184
MIN4D 5.32 11.79 0 0.68 70.32 184
MAX4D 196.4 202.67 3.82 112.66 903.6 184
MEAN4D 75.31 87.29 1.35 41.48 449.88 184
MEDIAN4D 70.54 87.18 0.82 37.46 449.27 184
MIN4RD 0.06 0.11 0 0.02 0.74 184
MAX4RD 117.38 392.24 1.49 33.85 4710.41 184
MEAN4RD 3.59 4.07 0.37 2.58 44.88 184
MEDIAN4RD 1.31 0.78 0.12 1.21 4.63 184
MIN4RDNOR 0.09 0.14 0 0.03 0.81 184
MAX4RDNOR 2.74 0.29 1.32 2.84 3 184
MEAN4RDNOR 1.18 0.31 0.4 1.23 2.21 184
MEDIAN4RDNOR 1.13 0.41 0.17 1.18 2.12 184
MIN4RDALT 0.07 0.12 0 0.02 0.74 184
MAX4RDALT 124.1 415.85 1.56 34.79 4965.75 184
MEAN4RDALT 3.73 4.24 0.39 2.66 47.93 184
MEDIAN4RDALT 1.37 0.81 0.12 1.28 4.82 184
MIN4DIFFP 0.27 0.41 0 0.11 2.5 184
MAX4DIFFP 16.67 6.63 6 15.6 40.38 184
MEAN4DIFFP 5.99 2.63 1.71 5.49 14.87 184
MEDIAN4DIFFP 5.32 2.7 0.58 4.86 19.21 184
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Predictors Mean Std Min Median Max N
MIN4KURTO -5.57 0.76 -6 -5.84 -0.04 184
MAX4KURTO 3.9 0.2 2.88 3.98 4 184
MEAN4KURTO 0.64 0.77 -1.74 0.72 2.39 184
MEDIAN4KURTO 1.32 0.98 -2.78 1.51 3.24 184
MIN4SPD 0.02 0.02 0 0.02 0.18 184
MAX4SPD 0.29 0.14 0.08 0.26 0.89 184
MEAN4SPD 0.16 0.07 0.06 0.15 0.57 184
MEDIAN4SPD 0.15 0.08 0.05 0.13 0.75 184
MIN4KS 10.09 3.78 3.67 9.25 23.85 184
MAX4KS 288.31 349.99 13.07 137.96 2643.96 184
MEAN4KS 26.2 11.64 6.8 23.37 72.53 184
MEDIAN4KS 19.03 7.35 4.49 17.82 53.22 184

Notes: “Mean”, “Std”, “Min”, “Median”, “Max”, and “N” denote the mean, standard
deviation, minimum, median, maximum, and number of observations respectively. The value
for ”MEANBIDS”, ”STDBIDS”, ”D”, ”MIN3D”, ”MAX3D”, ”MEAN3D”, ”MEDIAN3D”,
”MIN4D”, ”MAX4D”, ”MEAN4D” and ”MEDIAN4D” are expressed in thousand CHF.
”KS”, ”CV”, ”SPD”, ”RD”, ”RDNOR”, ”RDALT”, ”SKEW”, ”DIFFP”, ”KURTO”, ”D”,
”STDBIDS”, ”MEANBIDS” and ”NBRBIDS” denote the Kolmogorov-Smirnov statistic,
the coefficient of variation, the spread, the relative distance, the normalized distance, the
alternative relative distance, the skewness statistic, the percentage difference, the kurtosis
statistic, the difference in absolute between the first and second lowest bids, the standard
deviation of the bids in a tender, the mean of the bids in a tender and the number of the
bids in a tender respectively.

Table 2.20: Descriptive statistics for the collusive tenders including only cartel
participants in the Swiss data

Predictors Mean Std Min Median Max N
NBRBIDS 6.57 2.44 4 6 13 308
MEANBIDS 379.88 376.09 34.42 305.81 3509.71 308
STDBIDS 13.15 13.67 0.49 9.75 109.94 308
CV 3.66 2.09 0.6 3.29 15.73 308
KURTO 0.16 1.65 -5.4 0.21 4.37 308
SKEW 0.08 0.81 -1.94 0.07 1.78 308
SPD 0.11 0.07 0.01 0.09 0.5 308
D 9.2 13.32 0.14 6.02 121.3 308
RD 1.16 1.36 0.01 0.75 13.66 308
RDNOR 1.38 0.79 0.02 1.24 5.03 308
RDALT 1.83 1.73 0.01 1.33 13.89 308
DIFFP 2.76 2.91 0.06 1.94 34.11 308
KS 36.54 20.15 6.59 31.2 167.93 308
MIN3CV 1.08 1.01 0.04 0.81 8.46 308
MAX3CV 5.49 3.41 0.73 4.72 21.17 308
MEAN3CV 3.41 1.94 0.57 3.04 15.32 308
MEDIAN3CV 3.46 2 0.63 3 16.87 308
MIN3SKEW -1.48 0.44 -1.73 -1.7 0.69 308
MAX3SKEW 1.41 0.63 -1.49 1.68 1.73 308
MEAN3SKEW 0 0.49 -1.61 0.05 1.16 308
MEDIAN3SKEW 0.03 0.69 -1.7 0.07 1.53 308
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Predictors Mean Std Min Median Max N
MIN3D 2.67 6.13 0 1.03 73.33 308
MAX3D 26.81 27.14 0.59 20.08 200.26 308
MEAN3D 11.62 13.4 0.43 8.44 118.06 308
MEDIAN3D 10.88 13.28 0.42 7.87 121.3 308
MIN3RD 0.38 0.73 0 0.14 6.13 308
MAX3RD 117.7 665.15 0.87 16.67 9157.71 308
MEAN3RD 7.53 23.86 0.55 3.04 291.4 308
MEDIAN3RD 1.95 2.79 0.29 1.37 39.01 308
MIN3RDNOR 0.3 0.33 0 0.17 1.63 308
MAX3RDNOR 1.73 0.28 0.76 1.85 2 308
MEAN3RDNOR 1 0.22 0.51 0.98 1.8 308
MEDIAN3RDNOR 0.99 0.26 0.33 0.98 1.85 308
MIN3RDALT 0.27 0.52 0 0.1 4.34 308
MAX3RDALT 83.23 470.33 0.62 11.79 6475.48 308
MEAN3RDALT 5.32 16.87 0.39 2.15 206.05 308
MEDIAN3RDALT 1.38 1.97 0.2 0.97 27.58 308
MIN3DIFFP 0.69 0.85 0 0.44 8.62 308
MAX3DIFFP 8.1 6.07 1.13 6.76 47.45 308
MEAN3DIFFP 3.37 2.32 0.77 2.77 22.76 308
MEDIAN3DIFFP 3.13 2.31 0.69 2.51 23.91 308
MIN3SPD 0.02 0.02 0 0.02 0.18 308
MAX3SPD 0.11 0.07 0.01 0.09 0.5 308
MEAN3SPD 0.07 0.04 0.01 0.06 0.37 308
MEDIAN3SPD 0.07 0.04 0.01 0.06 0.41 308
MIN3KS 26.02 17.06 4.76 21.48 137.18 308
MAX3KS 181.77 213.13 12.09 124.09 2751.23 308
MEAN3KS 48.26 25.64 7.44 42.03 199.62 308
MEDIAN3KS 38.19 20.28 6.19 33.58 158.95 308
MIN4CV 1.93 1.66 0.22 1.5 15.73 308
MAX4CV 4.74 2.95 0.6 4.07 19.16 308
MEAN4CV 3.54 2.01 0.6 3.13 15.73 308
MEDIAN4CV 3.6 2.07 0.6 3.21 15.73 308
MIN4SKEW -1.07 0.98 -2 -1.5 1.78 308
MAX4SKEW 1.07 1.02 -1.93 1.48 2 308
MEAN4SKEW 0.04 0.68 -1.93 0.07 1.78 308
MEDIAN4SKEW 0.05 0.71 -1.93 0.03 1.78 308
MIN4D 4.47 11.64 0 1.36 121.3 308
MAX4D 20.38 20.98 0.36 14.66 121.3 308
MEAN4D 10.11 12.76 0.36 6.99 121.3 308
MEDIAN4D 9.73 13.27 0.17 6.4 121.3 308
MIN4RD 0.68 1.38 0 0.23 13.66 308
MAX4RD 9.14 19.83 0.15 4.31 298.7 308
MEAN4RD 1.66 1.53 0.15 1.26 13.66 308
MEDIAN4RD 1.26 1.37 0.07 0.87 13.66 308
MIN4RDNOR 0.53 0.58 0 0.31 2.62 308
MAX4RDNOR 1.9 0.72 0.22 2.09 2.98 308
MEAN4RDNOR 1.07 0.4 0.22 1.02 2.62 308
MEDIAN4RDNOR 1.02 0.44 0.1 0.93 2.62 308
MIN4RDALT 0.71 1.44 0 0.23 13.89 308
MAX4RDALT 9.67 22.08 0.15 4.57 340.47 308
MEAN4RDALT 1.74 1.62 0.15 1.33 13.89 308
MEDIAN4RDALT 1.31 1.42 0.07 0.9 13.89 308
MIN4DIFFP 1.19 1.93 0 0.67 23.91 308
MAX4DIFFP 6.2 5.28 0.64 4.98 39.3 308
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Predictors Mean Std Min Median Max N
MEAN4DIFFP 2.95 2.42 0.61 2.29 24.48 308
MEDIAN4DIFFP 2.82 2.74 0.2 2.08 34.11 308
MIN4KURTO -2.96 2.98 -6 -4.23 3.75 308
MAX4KURTO 2.44 1.83 -5.4 3.14 4 308
MEAN4KURTO 0.14 1.36 -5.4 0.09 3.75 308
MEDIAN4KURTO 0.34 1.54 -5.4 0.61 3.75 308
MIN4SPD 0.05 0.04 0.01 0.03 0.47 308
MAX4SPD 0.11 0.07 0.01 0.09 0.5 308
MEAN4SPD 0.08 0.05 0.01 0.07 0.47 308
MEDIAN4SPD 0.09 0.05 0.01 0.08 0.47 308
MIN4KS 30.68 20.89 5.42 24.8 167.93 308
MAX4KS 88.22 69.07 6.59 67.21 458.02 308
MEAN4KS 39.97 20.41 6.59 35.08 167.93 308
MEDIAN4KS 36.66 19.93 6.59 31.38 167.93 308

Notes: “Mean”, “Std”, “Min”, “Median”, “Max”, and “N” denote the mean, standard
deviation, minimum, median, maximum, and number of observations respectively. The value
for ”MEANBIDS”, ”STDBIDS”, ”D”, ”MIN3D”, ”MAX3D”, ”MEAN3D”, ”MEDIAN3D”,
”MIN4D”, ”MAX4D”, ”MEAN4D” and ”MEDIAN4D” are expressed in thousand CHF.
”KS”, ”CV”, ”SPD”, ”RD”, ”RDNOR”, ”RDALT”, ”SKEW”, ”DIFFP”, ”KURTO”, ”D”,
”STDBIDS”, ”MEANBIDS” and ”NBRBIDS” denote the Kolmogorov-Smirnov statistic,
the coefficient of variation, the spread, the relative distance, the normalized distance, the
alternative relative distance, the skewness statistic, the percentage difference, the kurtosis
statistic, the difference in absolute between the first and second lowest bids, the standard
deviation of the bids in a tender, the mean of the bids in a tender and the number of the
bids in a tender respectively.

Table 2.21: Descriptive statistics for the competitive tenders in the Swiss data

Predictors Mean Std Min Median Max N
NBRBIDS 5.73 1.86 4 5 13 1082
MEANBIDS 828.06 1803.84 13.63 423.97 37786.87 1082
STDBIDS 87.35 216.52 0.41 32.74 3996.24 1082
CV 10.12 7.89 0.76 8.45 128 1082
KURTO 0.25 2.27 -6 0.13 8.03 1082
SKEW 0.26 0.97 -2.68 0.28 2.47 1082
SPD 2.5 29.79 0.02 0.24 730.71 1082
D 54.94 223.18 0 14.19 4656.85 1082
RD 1.16 2.45 0 0.57 41.26 1082
RDNOR 1.04 0.82 0 0.87 6.95 1082
RDALT 1.61 3.19 0 0.84 47.49 1082
DIFFP 176.79 2246.36 0 4.36 50228.95 1082
KS 15.07 10.98 1.48 12.24 132.33 1082
MIN3CV 3.37 3.13 0.02 2.33 24.05 1082
MAX3CV 14.22 11.46 0.93 11.77 122.06 1082
MEAN3CV 9.37 6.9 0.73 7.92 91.8 1082
MEDIAN3CV 9.7 7.83 0.6 8.19 121.69 1082
MIN3SKEW -1.38 0.62 -1.73 -1.67 1.68 1082
MAX3SKEW 1.47 0.53 -1.61 1.69 1.73 1082
MEAN3SKEW 0.13 0.58 -1.66 0.16 1.71 1082
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Predictors Mean Std Min Median Max N
MEDIAN3SKEW 0.22 0.83 -1.73 0.26 1.73 1082
MIN3D 13.03 30.15 0 3.79 364.58 1082
MAX3D 154.93 433.88 0.72 52.94 7506.55 1082
MEAN3D 69.05 178.7 0.44 25.66 2536.05 1082
MEDIAN3D 64.4 171.21 0.36 23.09 2640.97 1082
MIN3RD 0.32 0.68 0 0.12 8.83 1082
MAX3RD 69.28 265.38 0.13 12.27 5315.77 1082
MEAN3RD 8.2 25.53 0.08 2.78 421.57 1082
MEDIAN3RD 2.22 4.95 0.01 1.21 72.77 1082
MIN3RDNOR 0.27 0.3 0 0.16 1.72 1082
MAX3RDNOR 1.68 0.34 0.17 1.8 2 1082
MEAN3RDNOR 0.94 0.27 0.11 0.93 1.85 1082
MEDIAN3RDNOR 0.92 0.34 0.01 0.91 1.94 1082
MIN3RDALT 0.22 0.48 0 0.09 6.24 1082
MAX3RDALT 48.99 187.65 0.1 8.67 3758.82 1082
MEAN3RDALT 5.8 18.05 0.06 1.96 298.09 1082
MEDIAN3RDALT 1.57 3.5 0 0.85 51.46 1082
MIN3DIFFP 2.07 2.77 0 0.98 22.67 1082
MAX3DIFFP 226.26 2740.18 0.89 15.42 63802.49 1082
MEAN3DIFFP 92.86 1118.61 0.64 7.07 23734.93 1082
MEDIAN3DIFFP 60.05 1011.71 0.54 6.52 25112.51 1082
MIN3SPD 0.07 0.07 0 0.05 0.58 1082
MAX3SPD 2.5 29.79 0.02 0.24 730.71 1082
MEAN3SPD 1.14 12.52 0.01 0.16 279.23 1082
MEDIAN3SPD 0.76 10.69 0.01 0.17 264.32 1082
MIN3KS 10.96 8.72 1.1 8.72 107.96 1082
MAX3KS 82.65 179.47 4.21 43 4045.44 1082
MEAN3KS 21.45 21.35 2.62 16.51 463.06 1082
MEDIAN3KS 15.78 13.43 1.2 12.57 167.49 1082
MIN4CV 6.24 6.77 0.07 4.49 128 1082
MAX4CV 12.14 9.73 0.76 10.13 128 1082
MEAN4CVB 9.82 7.64 0.76 8.29 128 1082
MEDIAN4CV 10.24 8.21 0.76 8.55 128 1082
MIN4SKEW -0.75 1.09 -2 -1.02 2 1082
MAX4SKEW 1.02 1 -1.99 1.4 2 1082
MEAN4SKEW 0.19 0.8 -1.99 0.22 2 1082
MEDIAN4SKEW 0.22 0.86 -1.99 0.19 2 1082
MIN4D 22.95 76.73 0 5.64 1226.06 1082
MAX4D 111.58 328.01 0.02 34.32 5764.43 1082
MEAN4D 59.42 181.05 0.02 19.23 3035.79 1082
MEDIAN4D 59.94 224.26 0 18.35 4656.85 1082
MIN4RD 0.71 2.05 0 0.2 41.26 1082
MAX4RD 6.73 17.51 0 2.55 266.72 1082
MEAN4RD 1.69 3.23 0 1 67.61 1082
MEDIAN4RD 1.24 2.28 0 0.74 41.26 1082
MIN4RDNOR 0.51 0.56 0 0.29 2.87 1082
MAX4RDNOR 1.62 0.81 0 1.74 2.98 1082
MEAN4RDNOR 0.95 0.51 0 0.9 2.87 1082
MEDIAN4RDNOR 0.9 0.55 0 0.84 2.87 1082
MIN4RDALT 0.75 2.18 0 0.21 43.5 1082
MAX4RDALT 7.07 18.5 0 2.69 267.55 1082
MEAN4RDALT 1.77 3.36 0 1.05 68.45 1082
MEDIAN4RDALT 1.3 2.4 0 0.78 43.5 1082
MIN4DIFFP 20.35 549.37 0 1.54 18073.22 1082
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Predictors Mean Std Min Median Max N
MAX4DIFFP 206.69 2603.79 0.03 9.88 62175.31 1082
MEAN4DIFFP 116.56 1450.99 0.03 5.46 30433.18 1082
MEDIAN4DIFFP 140.96 2011.38 0 5.24 50228.95 1082
MIN4KURTO -2.61 3.02 -6 -3.37 4 1082
MAX4KURTO 2.07 2.28 -6 2.94 4 1082
MEAN4KURTO 0.12 1.83 -6 0.1 4 1082
MEDIAN4KURTO 0.29 2.06 -6 0.6 4 1082
MIN4SPD 0.34 6.03 0 0.1 198.43 1082
MAX4SPD 2.5 29.79 0.02 0.24 730.71 1082
MEAN4SPD 1.54 17.19 0.02 0.2 388.02 1082
MEDIAN4SPD 1.78 23.58 0.02 0.21 621.75 1082
MIN4KS 12.89 10.47 1.38 10.24 132.33 1082
MAX4KS 36.64 66.05 1.48 22.53 1433.11 1082
MEAN4KS 16.65 11.9 1.48 13.55 132.33 1082
MEDIAN4KS 14.87 11.3 1.48 12.14 132.33 1082

Notes: “Mean”, “Std”, “Min”, “Median”, “Max”, and “N” denote the mean, standard
deviation, minimum, median, maximum, and number of observations respectively. The value
for ”MEANBIDS”, ”STDBIDS”, ”D”, ”MIN3D”, ”MAX3D”, ”MEAN3D”, ”MEDIAN3D”,
”MIN4D”, ”MAX4D”, ”MEAN4D” and ”MEDIAN4D” are expressed in thousand CHF.
”KS”, ”CV”, ”SPD”, ”RD”, ”RDNOR”, ”RDALT”, ”SKEW”, ”DIFFP”, ”KURTO”, ”D”,
”STDBIDS”, ”MEANBIDS” and ”NBRBIDS” denote the Kolmogorov-Smirnov statistic,
the coefficient of variation, the spread, the relative distance, the normalized distance, the
alternative relative distance, the skewness statistic, the percentage difference, the kurtosis
statistic, the difference in absolute between the first and second lowest bids, the standard
deviation of the bids in a tender, the mean of the bids in a tender and the number of the
bids in a tender respectively.

Table 2.22: Descriptive statistics for incomplete bid-rigging cartels in sample
1 (Swiss data)

Predictors Mean Std Min Median Max N
NBRBIDS 7.49 2.54 4 7 13 252
MEANBIDS 435.9 476.67 18.01 296.62 3460.91 252
STDBIDS 35.12 50.17 1.54 19.62 362.86 252
CV 7.79 3.89 1.77 6.79 23.92 252
KURTO 0.41 2.12 -5.9 0.04 6.97 252
SKEW -0.07 0.99 -2.59 -0.06 2.57 252
SPD 0.26 0.16 0.05 0.21 0.89 252
D 21.07 39.03 0.08 9.1 351.83 252
RD 1.39 2.67 0.01 0.58 28.37 252
RDNOR 1.41 1.11 0.01 1.14 5.48 252
RDALT 2.32 3.52 0.01 1.17 28.54 252
DIFFP 6.34 8.85 0.03 3.69 73.53 252
KS 16.62 8.04 4.15 15.24 57.54 252
MIN3CV 1.68 1.73 0 1.24 14.77 252
MAX3CV 12.26 6.39 2.9 10.66 38.48 252
MEAN3CV 7.12 3.48 1.55 6.32 22.96 252
MEDIAN3CV 7.06 3.81 1.01 6.28 29.82 252
MIN3SKEW -1.6 0.36 -1.73 -1.72 0.97 252
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Predictors Mean Std Min Median Max N
MAX3SKEW 1.53 0.48 -1.1 1.72 1.73 252
MEAN3SKEW -0.04 0.5 -1.43 -0.03 1.47 252
MEDIAN3SKEW -0.05 0.77 -1.71 -0.05 1.73 252
MIN3D 3.64 8.58 0 1.31 80.15 252
MAX3D 76.68 107.56 1.58 41.15 842.7 252
MEAN3D 29.56 44.27 0.62 16.57 437.36 252
MEDIAN3D 26.54 40.57 0.41 14.6 424.3 252
MIN3RD 0.23 0.45 0 0.07 3.35 252
MAX3RD 1203.97 9993.9 0.68 31.05 122393.82 252
MEAN3RD 27.54 191.86 0.31 4.5 2742.11 252
MEDIAN3RD 2.09 2.42 0.21 1.49 27.08 252
MIN3RDNOR 0.21 0.28 0 0.09 1.41 252
MAX3RDNOR 1.83 0.23 0.65 1.92 2 252
MEAN3RDNOR 1.02 0.22 0.33 1.02 1.73 252
MEDIAN3RDNOR 1.02 0.3 0.26 1.02 1.89 252
MIN3RDALT 0.16 0.32 0 0.05 2.37 252
MAX3RDALT 851.33 7066.76 0.48 21.95 86545.5 252
MEAN3RDALT 19.47 135.66 0.22 3.18 1938.96 252
MEDIAN3RDALT 1.48 1.71 0.15 1.06 19.15 252
MIN3DIFFP 0.97 1.58 0 0.47 12.6 252
MAX3DIFFP 19.61 12.81 2.29 16.77 87.65 252
MEAN3DIFFP 7.76 5.62 1.39 6.4 49.6 252
MEDIAN3DIFFP 7.11 6.59 1.14 5.72 73.53 252
MIN3SPD 0.03 0.04 0 0.02 0.32 252
MAX3SPD 0.26 0.16 0.05 0.21 0.89 252
MEAN3SPD 0.15 0.08 0.03 0.13 0.62 252
MEDIAN3SPD 0.15 0.09 0.02 0.13 0.83 252
MIN3KS 10.96 6.18 3 9.62 34.52 252
MAX3KS 357.52 3429.85 6.79 80.58 54476.99 252
MEAN3KS 27.25 34.52 6.03 21.55 495.16 252
MEDIAN3KS 18.68 11.16 3.36 16.1 99.02 252
MIN4CV 3.16 2.97 0.12 2.26 23.92 252
MAX4CV 10.63 5.46 2.38 9.43 33.94 252
MEAN4CV 7.43 3.65 1.64 6.54 23.92 252
MEDIAN4CV 7.65 3.91 1.69 6.76 25.38 252
MIN4SKEW -1.42 0.79 -2 -1.78 1.87 252
MAX4SKEW 1.28 0.97 -1.98 1.79 2 252
MEAN4SKEW -0.07 0.69 -1.98 -0.05 1.87 252
MEDIAN4SKEW -0.07 0.79 -1.98 -0.03 1.87 252
MIN4D 4.98 11.53 0 1.63 102.18 252
MAX4D 60.49 87.82 0.18 33.62 771.65 252
MEAN4D 25.08 38.97 0.18 14.32 410.17 252
MEDIAN4D 24.93 42.34 0.14 13.17 424.3 252
MIN4RD 0.59 2.26 0 0.09 28.37 252
MAX4RD 25.25 166.8 0.04 7.14 2627.72 252
MEAN4RD 2.25 2.96 0.04 1.52 28.37 252
MEDIAN4RD 1.53 2.43 0.04 1.01 28.37 252
MIN4RDNOR 0.37 0.54 0 0.15 2.8 252
MAX4RDNOR 2.18 0.68 0.07 2.37 3 252
MEAN4RDNOR 1.11 0.46 0.07 1.08 2.8 252
MEDIAN4RDNOR 1.06 0.54 0.07 1.05 2.8 252
MIN4RDALT 0.61 2.29 0 0.1 28.54 252
MAX4RDALT 27.16 186.06 0.04 7.47 2933.56 252
MEAN4RDALT 2.35 3.08 0.04 1.62 28.54 252
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Predictors Mean Std Min Median Max N
MEDIAN4RDALT 1.59 2.46 0.04 1.08 28.54 252
MIN4DIFFP 1.83 4.55 0 0.58 57.15 252
MAX4DIFFP 16.09 11.96 0.3 13.53 77.43 252
MEAN4DIFFP 7.05 6.61 0.3 5.57 60.05 252
MEDIAN4DIFFP 6.8 7.49 0.24 5.09 73.53 252
MIN4KURTO -4 2.64 -6 -5.28 3.94 252
MAX4KURTO 2.99 1.68 -5.9 3.68 4 252
MEAN4KURTO 0.16 1.38 -5.9 0.04 3.94 252
MEDIAN4KURTO 0.51 1.67 -5.9 0.64 3.94 252
MIN4SPRD 0.08 0.08 0 0.05 0.81 252
MAX4SPD 0.26 0.16 0.05 0.21 0.89 252
MEAN4SPD 0.19 0.11 0.04 0.16 0.81 252
MEDIAN4SPD 0.19 0.12 0.04 0.16 0.89 252
MIN4KS 12.65 7.28 3.64 10.91 42.15 252
MAX4KS 64.97 79.07 4.15 44.41 862.88 252
MEAN4KS 19.96 11.22 4.15 17.51 97.43 252
MEDIAN4KS 16.85 8.23 3.87 15.26 59.16 252

Notes: “Mean”, “Std”, “Min”, “Median”, “Max”, and “N” denote the mean, standard
deviation, minimum, median, maximum, and number of observations respectively. The value
for ”MEANBIDS”, ”STDBIDS”, ”D”, ”MIN3D”, ”MAX3D”, ”MEAN3D”, ”MEDIAN3D”,
”MIN4D”, ”MAX4D”, ”MEAN4D” and ”MEDIAN4D” are expressed in thousand CHF.
”KS”, ”CV”, ”SPD”, ”RD”, ”RDNOR”, ”RDALT”, ”SKEW”, ”DIFFP”, ”KURTO”, ”D”,
”STDBIDS”, ”MEANBIDS” and ”NBRBIDS” denote the Kolmogorov-Smirnov statistic,
the coefficient of variation, the spread, the relative distance, the normalized distance, the
alternative relative distance, the skewness statistic, the percentage difference, the kurtosis
statistic, the difference in absolute between the first and second lowest bids, the standard
deviation of the bids in a tender, the mean of the bids in a tender and the number of the
bids in a tender respectively.

Table 2.23: Descriptive statistics for incomplete bid-rigging cartels in sample
2 (Swiss data)

Predictors Mean Std Min Median Max N
NBRBIDS 7.77 2.47 4 8 13 223
MEANBIDS 405.24 372.35 27.84 302.21 3002.37 223
STDBIDS 30.96 37.64 1.63 19.51 270.82 223
CV 7.6 3.77 1.77 6.66 23.92 223
KURTO 0.44 2.08 -5.75 0.04 6.97 223
SKEW -0.07 0.97 -2.59 -0.08 2.57 223
SPD 0.26 0.16 0.05 0.21 0.89 223
D 20.13 36.04 0.08 8.9 351.83 223
RD 1.29 2.12 0.01 0.58 18.04 223
RDNOR 1.45 1.14 0.01 1.14 5.48 223
RDALT 2.3 3.24 0.01 1.17 20.74 223
DIFFP 6.3 9.13 0.03 3.69 73.53 223
KS 16.85 7.91 4.15 15.54 57.54 223
MIN3CV 1.47 1.22 0 1.15 7.05 223
MAX3CV 12.24 6.43 2.93 10.57 38.48 223
MEAN3CV 6.92 3.33 1.55 6.09 22.96 223
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Predictors Mean Std Min Median Max N
MEDIAN3CV 6.75 3.56 1.01 6 29.82 223
MIN3SKEW -1.63 0.29 -1.73 -1.72 0.62 223
MAX3SKEW 1.58 0.38 -1.1 1.72 1.73 223
MEAN3SKEW -0.04 0.45 -1.33 -0.04 1.31 223
MEDIAN3SKEW -0.05 0.74 -1.69 -0.06 1.73 223
MIN3D 2.76 5.42 0 1.17 56.23 223
MAX3D 69.79 84.97 2.38 42.35 670.57 223
MEAN3D 26.13 30.47 1.42 16.72 235.67 223
MEDIAN3D 23.11 25.43 1.52 14.63 171.87 223
MIN3RD 0.18 0.37 0 0.06 3.35 223
MAX3RD 1355.45 10617.14 0.92 37.36 122393.82 223
MEAN3RD 30.39 203.82 0.43 4.66 2742.11 223
MEDIAN3RD 1.92 1.72 0.26 1.5 18.63 223
MIN3RDNOR 0.18 0.25 0 0.08 1.41 223
MAX3RDNOR 1.85 0.2 0.79 1.93 2 223
MEAN3RDNOR 1.02 0.2 0.41 1.02 1.66 223
MEDIAN3RDNOR 1.02 0.28 0.3 1.02 1.85 223
MIN3RDALT 0.13 0.26 0 0.04 2.37 223
MAX3RDALT 958.45 7507.45 0.65 26.42 86545.5 223
MEAN3RDALT 21.49 144.12 0.3 3.29 1938.96 223
MEDIAN3RDALT 1.36 1.21 0.18 1.06 13.18 223
MIN3DIFFP 0.81 1.25 0 0.43 10.47 223
MAX3DIFFP 19.73 12.93 2.29 16.81 87.65 223
MEAN3DIFFP 7.59 5.58 1.39 6.35 49.6 223
MEDIAN3DIFFP 6.92 6.67 1.14 5.71 73.53 223
MIN3SPD 0.03 0.02 0 0.02 0.15 223
MAX3SPD 0.26 0.16 0.05 0.21 0.89 223
MEAN3SPD 0.15 0.08 0.03 0.13 0.62 223
MEDIAN3SPD 0.14 0.09 0.02 0.12 0.83 223
MIN3KS 10.9 6.01 3 9.7 34.52 223
MAX3KS 394.81 3645.21 14.27 87.43 54476.99 223
MEAN3KS 27.97 36.27 6.25 21.99 495.16 223
MEDIAN3KS 19.22 11.35 3.36 16.97 99.02 223
MIN4CV 2.8 2.48 0.12 2.17 23.92 223
MAX4CV 10.63 5.48 2.48 9.36 33.94 223
MEAN4CV 7.22 3.5 1.64 6.32 23.92 223
MEDIAN4CV 7.41 3.75 1.69 6.51 25.38 223
MIN4SKEW -1.51 0.71 -2 -1.82 1.84 223
MAX4SKEW 1.38 0.85 -1.96 1.82 2 223
MEAN4SKEW -0.06 0.64 -1.96 -0.07 1.84 223
MEDIAN4SKEW -0.07 0.74 -1.96 -0.04 1.84 223
MIN4D 3.82 8.45 0 1.43 96.23 223
MAX4D 58.39 72.08 0.18 37.52 535.26 223
MEAN4D 23.35 29.62 0.18 14.45 274.73 223
MEDIAN4D 23.01 32.93 0.14 13.49 351.83 223
MIN4RD 0.41 1.4 0 0.09 18.04 223
MAX4RD 27.52 177.13 0.04 7.86 2627.72 223
MEAN4RD 2.19 2.53 0.04 1.62 24.7 223
MEDIAN4RD 1.42 1.77 0.04 1.02 18.04 223
MIN4RDNOR 0.32 0.46 0 0.14 2.7 223
MAX4RDNOR 2.25 0.61 0.07 2.42 3 223
MEAN4RDNOR 1.11 0.42 0.07 1.09 2.7 223
MEDIAN4RDNOR 1.06 0.51 0.07 1.06 2.7 223
MIN4RDALT 0.42 1.42 0 0.09 18.05 223
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Predictors Mean Std Min Median Max N
MAX4RDALT 29.63 197.6 0.04 8.35 2933.56 223
MEAN4RDALT 2.29 2.67 0.04 1.72 27.4 223
MEDIAN4RDALT 1.48 1.8 0.04 1.1 18.05 223
MIN4DIFFP 1.48 4.34 0 0.51 57.15 223
MAX4DIFFP 16.59 11.97 0.3 13.87 77.43 223
MEAN4DIFFP 7 6.68 0.3 5.51 60.05 223
MEDIAN4DIFFP 6.74 7.66 0.24 5.08 73.53 223
MIN4KURTO -4.32 2.38 -6 -5.48 3.85 223
MAX4KURTO 3.16 1.43 -5.75 3.74 4 223
MEAN4KURTO 0.15 1.23 -5.75 0.04 3.85 223
MEDIAN4KURTO 0.52 1.56 -5.75 0.63 3.85 223
MIN4SPD 0.07 0.07 0 0.05 0.81 223
MAX4SPD 0.26 0.16 0.05 0.21 0.89 223
MEAN4SPD 0.18 0.11 0.04 0.15 0.81 223
MEDIAN4SPD 0.19 0.11 0.04 0.16 0.89 223
MIN4KS 12.55 7.02 3.64 11.06 40.78 223
MAX4KS 69.75 82.58 4.15 46.65 862.88 223
MEAN4KS 20.49 11.41 4.15 18.45 97.43 223
MEDIAN4KS 17.14 8.1 3.87 15.89 59.16 223

Notes: “Mean”, “Std”, “Min”, “Median”, “Max”, and “N” denote the mean, standard
deviation, minimum, median, maximum, and number of observations respectively. The value
for ”MEANBIDS”, ”STDBIDS”, ”D”, ”MIN3D”, ”MAX3D”, ”MEAN3D”, ”MEDIAN3D”,
”MIN4D”, ”MAX4D”, ”MEAN4D” and ”MEDIAN4D” are expressed in thousand CHF.
”KS”, ”CV”, ”SPD”, ”RD”, ”RDNOR”, ”RDALT”, ”SKEW”, ”DIFFP”, ”KURTO”, ”D”,
”STDBIDS”, ”MEANBIDS” and ”NBRBIDS” denote the Kolmogorov-Smirnov statistic,
the coefficient of variation, the spread, the relative distance, the normalized distance, the
alternative relative distance, the skewness statistic, the percentage difference, the kurtosis
statistic, the difference in absolute between the first and second lowest bids, the standard
deviation of the bids in a tender, the mean of the bids in a tender and the number of the
bids in a tender respectively.

Table 2.24: Descriptive statistics for incomplete bid-rigging cartels in sample
3 (Swiss data)

Predictors Mean Std Min Median Max N
NBRBIDS 8.5 2.15 5 8 13 173
MEANBIDS 439.36 388.89 30.24 329.61 3002.37 173
STDBIDS 33.5 40.38 2.01 20.48 270.82 173
CV 7.54 3.26 1.77 6.76 21.7 173
KURTO 0.46 1.97 -2.69 -0.09 6.97 173
SKEW -0.07 0.95 -2.59 -0.08 2.57 173
SPD 0.26 0.14 0.06 0.22 0.88 173
D 21.95 39.01 0.08 9.46 351.83 173
RD 1.14 1.76 0.01 0.58 12.47 173
RDNOR 1.54 1.17 0.02 1.17 5.48 173
RDALT 2.33 3.2 0.02 1.19 20.74 173
DIFFP 5.91 7.48 0.1 3.7 45.42 173
KS 16.55 7.64 6.19 15.48 57.54 173
MIN3CV 1.2 0.9 0 1.03 3.95 173
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Predictors Mean Std Min Median Max N
MAX3CV 12.6 5.86 2.93 10.99 38.48 173
MEAN3CV 6.82 2.83 1.55 6.11 16.5 173
MEDIAN3CV 6.51 2.79 1.01 5.92 14.2 173
MIN3SKEW -1.69 0.12 -1.73 -1.73 -0.88 173
MAX3SKEW 1.67 0.15 0.73 1.73 1.73 173
MEAN3SKEW -0.03 0.39 -1.02 -0.04 0.88 173
MEDIAN3SKEW -0.03 0.69 -1.48 -0.06 1.73 173
MIN3D 2.35 4.05 0 1.03 30.19 173
MAX3D 78.6 90.43 3.7 51.54 670.57 173
MEAN3D 28.43 32.44 1.58 17.96 235.67 173
MEDIAN3D 24.31 26.46 1.52 15.79 171.87 173
MIN3RD 0.11 0.19 0 0.04 1.76 173
MAX3RD 1737.96 12034.74 2.68 48.9 122393.82 173
MEAN3RD 37.63 231.03 0.92 5.15 2742.11 173
MEDIAN3RD 1.72 1.05 0.32 1.48 6.05 173
MIN3RDNOR 0.12 0.16 0 0.06 1 173
MAX3RDNOR 1.9 0.13 1.31 1.94 2 173
MEAN3RDNOR 1.02 0.18 0.61 1.03 1.46 173
MEDIAN3RDNOR 1.02 0.25 0.37 1.02 1.62 173
MIN3RDALT 0.08 0.14 0 0.03 1.25 173
MAX3RDALT 1228.92 8509.85 1.9 34.57 86545.5 173
MEAN3RDALT 26.61 163.36 0.65 3.64 1938.96 173
MEDIAN3RDALT 1.22 0.74 0.22 1.05 4.28 173
MIN3DIFFP 0.58 0.71 0 0.37 4.49 173
MAX3DIFFP 20.62 11.43 3.84 17.99 72.01 173
MEAN3DIFFP 7.33 3.89 1.55 6.42 22.8 173
MEDIAN3DIFFP 6.18 3.26 1.33 5.67 21.76 173
MIN3SPD 0.02 0.02 0 0.02 0.08 173
MAX3SPD 0.26 0.14 0.06 0.22 0.88 173
MEAN3SPD 0.14 0.07 0.03 0.13 0.38 173
MEDIAN3SPD 0.13 0.06 0.02 0.12 0.3 173
MIN3KS 10.03 5.06 3 9.18 34.52 173
MAX3KS 489.07 4136.34 25.56 97.45 54476.99 173
MEAN3KS 29.3 40.7 9.3 21.99 495.16 173
MEDIAN3KS 19.58 12.05 7.28 17.13 99.02 173
MIN4CV 2.14 1.45 0.12 1.76 8.25 173
MAX4CV 11.02 5.04 2.48 9.6 33.94 173
MEAN4CV 7.12 2.98 1.64 6.32 18.01 173
MEDIAN4CV 7.27 3.09 1.69 6.57 17.17 173
MIN4SKEW -1.69 0.44 -2 -1.88 -0.04 173
MAX4SKEW 1.62 0.52 -0.4 1.84 2 173
MEAN4SKEW -0.05 0.55 -1.42 -0.07 1.32 173
MEDIAN4SKEW -0.06 0.67 -1.86 -0.05 1.72 173
MIN4D 2.86 4.84 0 1.13 30.28 173
MAX4D 66.68 76.42 1.56 43.87 535.26 173
MEAN4D 25.49 31.63 1.22 15.85 274.73 173
MEDIAN4D 24.96 35.2 0.96 15.12 351.83 173
MIN4RD 0.16 0.26 0 0.06 1.93 173
MAX4RD 33.76 200.71 1.09 10.34 2627.72 173
MEAN4RD 2.22 2.44 0.35 1.68 24.7 173
MEDIAN4RD 1.31 1.24 0.16 1.05 9.81 173
MIN4RDNOR 0.2 0.25 0 0.1 1.51 173
MAX4RDNOR 2.42 0.44 1.07 2.53 3 173
MEAN4RDNOR 1.11 0.35 0.43 1.1 2.06 173
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Predictors Mean Std Min Median Max N
MEDIAN4RDNOR 1.07 0.44 0.22 1.07 2.5 173
MIN4RDALT 0.16 0.26 0 0.07 2.03 173
MAX4RDALT 36.41 223.95 1.1 10.76 2933.56 173
MEAN4RDALT 2.31 2.61 0.37 1.75 27.4 173
MEDIAN4RDALT 1.37 1.27 0.16 1.11 9.91 173
MIN4DIFFP 0.71 0.9 0 0.41 6.52 173
MAX4DIFFP 17.69 10.69 3.03 15.55 70.09 173
MEAN4DIFFP 6.67 4.5 1.18 5.62 26.42 173
MEDIAN4DIFFP 6.33 5.07 0.98 5.23 34.35 173
MIN4KURTO -4.9 1.6 -6 -5.55 1.44 173
MAX4KURTO 3.56 0.61 1 3.82 4 173
MEAN4KURTO 0.17 0.89 -1.78 -0.05 3.19 173
MEDIAN4KURTO 0.63 1.19 -4.42 0.63 3.57 173
MIN4SPD 0.05 0.03 0 0.04 0.2 173
MAX4SPD 0.26 0.14 0.06 0.22 0.88 173
MEAN4SPD 0.18 0.08 0.04 0.15 0.48 173
MEDIAN4SPD 0.18 0.09 0.04 0.16 0.48 173
MIN4KS 11.44 5.86 3.64 10.66 40.78 173
MAX4KS 81.53 89.76 12.72 57.17 862.88 173
MEAN4KS 20.95 12.1 8.31 18.47 97.43 173
MEDIAN4KS 16.96 7.85 5.9 15.89 59.16 173

Notes: “Mean”, “Std”, “Min”, “Median”, “Max”, and “N” denote the mean, standard
deviation, minimum, median, maximum, and number of observations respectively. The value
for ”MEANBIDS”, ”STDBIDS”, ”D”, ”MIN3D”, ”MAX3D”, ”MEAN3D”, ”MEDIAN3D”,
”MIN4D”, ”MAX4D”, ”MEAN4D” and ”MEDIAN4D” are expressed in thousand CHF.
”KS”, ”CV”, ”SPD”, ”RD”, ”RDNOR”, ”RDALT”, ”SKEW”, ”DIFFP”, ”KURTO”, ”D”,
”STDBIDS”, ”MEANBIDS” and ”NBRBIDS” denote the Kolmogorov-Smirnov statistic,
the coefficient of variation, the spread, the relative distance, the normalized distance, the
alternative relative distance, the skewness statistic, the percentage difference, the kurtosis
statistic, the difference in absolute between the first and second lowest bids, the standard
deviation of the bids in a tender, the mean of the bids in a tender and the number of the
bids in a tender respectively.

Table 2.25: Descriptive statistics for incomplete bid-rigging cartels in sample
4 (Swiss data)

Predictors Mean Std Min Median Max N
NBRBIDS 9.08 1.87 6 9 13 135
MEANBIDS 448.31 384.31 41.46 337.02 3002.37 135
STDBIDS 31.74 34.92 2.26 21.49 270.82 135
CV 7.19 2.93 1.77 6.3 18.9 135
KURTO 0.47 1.97 -2.26 -0.18 6.97 135
SKEW -0.09 0.94 -2.59 -0.12 2.57 135
SPD 0.26 0.13 0.06 0.21 0.76 135
D 22.85 42.7 0.26 9.34 351.83 135
RD 1.05 1.5 0.01 0.57 10.58 135
RDNOR 1.6 1.18 0.04 1.22 5.48 135
RDALT 2.33 3.02 0.04 1.27 20.74 135
DIFFP 5.82 7.82 0.1 3.36 45.42 135
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Predictors Mean Std Min Median Max N
KS 16.91 7.21 6.62 16.29 57.54 135
MIN3CV 0.94 0.62 0 0.82 3.04 135
MAX3CV 12.33 5.32 3.36 10.64 32.54 135
MEAN3CV 6.47 2.56 1.55 5.85 15.38 135
MEDIAN3CV 6.07 2.49 1.01 5.67 13.93 135
MIN3SKEW -1.71 0.07 -1.73 -1.73 -1.13 135
MAX3SKEW 1.69 0.1 0.93 1.73 1.73 135
MEAN3SKEW -0.04 0.37 -1.02 -0.04 0.87 135
MEDIAN3SKEW -0.03 0.66 -1.45 -0.07 1.73 135
MIN3D 1.96 3.7 0 0.87 30.19 135
MAX3D 81.04 93.45 5.67 55.61 670.57 135
MEAN3D 28.5 33.46 2.14 18 235.67 135
MEDIAN3D 23.43 25.63 2.24 16.39 171.87 135
MIN3RD 0.09 0.18 0 0.04 1.76 135
MAX3RD 2203.8 13597.91 3.46 62.53 122393.82 135
MEAN3RD 45.46 261.04 0.92 5.48 2742.11 135
MEDIAN3RD 1.69 0.96 0.45 1.5 5.61 135
MIN3RDNOR 0.1 0.14 0 0.06 1 135
MAX3RDNOR 1.92 0.1 1.42 1.96 2 135
MEAN3RDNOR 1.02 0.17 0.61 1.04 1.46 135
MEDIAN3RDNOR 1.02 0.24 0.49 1.02 1.6 135
MIN3RDALT 0.06 0.13 0 0.03 1.25 135
MAX3RDALT 1558.32 9615.17 2.44 44.22 86545.5 135
MEAN3RDALT 32.15 184.58 0.65 3.88 1938.96 135
MEDIAN3RDALT 1.2 0.68 0.32 1.06 3.97 135
MIN3DIFFP 0.44 0.47 0 0.27 2.32 135
MAX3DIFFP 20.71 11.13 3.84 17.81 63.38 135
MEAN3DIFFP 7.11 3.99 1.55 6.24 22.8 135
MEDIAN3DIFFP 5.68 2.93 1.33 5.29 21.76 135
MIN3SPD 0.02 0.01 0 0.02 0.06 135
MAX3SPD 0.26 0.13 0.06 0.21 0.76 135
MEAN3SPD 0.14 0.06 0.03 0.12 0.35 135
MEDIAN3SPD 0.12 0.05 0.02 0.11 0.3 135
MIN3KS 9.9 4.37 3.47 9.69 30.19 135
MAX3KS 603.24 4679.33 32.93 122.26 54477 135
MEAN3KS 30.89 43.76 10.24 23.63 495.16 135
MEDIAN3KS 20.34 11.39 7.28 17.92 99.02 135
MIN4CV 1.7 1.03 0.12 1.5 5.53 135
MAX4CV 10.83 4.53 2.8 9.4 28.01 135
MEAN4CV 6.76 2.69 1.64 6.08 16.54 135
MEDIAN4CV 6.88 2.88 1.69 6.17 17.17 135
MIN4SKEW -1.81 0.29 -2 -1.92 -0.28 135
MAX4SKEW 1.72 0.4 -0.26 1.86 2 135
MEAN4SKEW -0.06 0.52 -1.37 -0.1 1.18 135
MEDIAN4SKEW -0.07 0.65 -1.69 -0.07 1.72 135
MIN4D 2.38 4.46 0 1.04 30.28 135
MAX4D 69.99 79.5 5.47 47.56 535.26 135
MEAN4D 25.93 33.56 1.39 16.57 274.73 135
MEDIAN4D 25.13 37.53 0.96 16.21 351.83 135
MIN4RD 0.12 0.19 0 0.05 1.47 135
MAX4RD 41.1 226.79 1.09 13.21 2627.72 135
MEAN4RD 2.27 2.46 0.35 1.72 24.7 135
MEDIAN4RD 1.25 0.95 0.16 1.06 5.95 135
MIN4RDNOR 0.16 0.19 0 0.09 1.02 135
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Predictors Mean Std Min Median Max N
MAX4RDNOR 2.53 0.35 1.07 2.61 3 135
MEAN4RDNOR 1.11 0.33 0.43 1.11 2.05 135
MEDIAN4RDNOR 1.07 0.42 0.22 1.07 2.27 135
MIN4RDALT 0.12 0.17 0 0.06 1.04 135
MAX4RDALT 44.43 253.08 1.1 13.34 2933.56 135
MEAN4RDALT 2.37 2.65 0.37 1.79 27.4 135
MEDIAN4RDALT 1.31 1 0.16 1.11 6.3 135
MIN4DIFFP 0.53 0.59 0 0.37 3.21 135
MAX4DIFFP 18.02 10.4 3.03 15.55 56.74 135
MEAN4DIFFP 6.55 4.74 1.18 5.51 26.42 135
MEDIAN4DIFFP 6.13 5.32 0.98 4.82 34.35 135
MIN4KURTO -5.26 1.06 -6 -5.69 -0.16 135
MAX4KURTO 3.71 0.39 2.18 3.86 4 135
MEAN4KURTO 0.16 0.8 -1.21 -0.07 2.41 135
MEDIAN4KURTO 0.72 0.98 -3.63 0.68 3.11 135
MIN4SPD 0.04 0.02 0 0.03 0.13 135
MAX4SPD 0.26 0.13 0.06 0.21 0.76 135
MEAN4SPD 0.17 0.08 0.04 0.15 0.45 135
MEDIAN4SPD 0.17 0.08 0.04 0.15 0.48 135
MIN4KS 11.21 5.03 4.25 10.99 36.12 135
MAX4KS 91.93 91.08 18.25 67.17 862.88 135
MEAN4KS 21.62 10.72 8.43 19.14 97.28 135
MEDIAN4KS 17.62 7.69 5.9 16.55 59.16 135

Notes: “Mean”, “Std”, “Min”, “Median”, “Max”, and “N” denote the mean, standard
deviation, minimum, median, maximum, and number of observations respectively. The value
for ”MEANBIDS”, ”STDBIDS”, ”D”, ”MIN3D”, ”MAX3D”, ”MEAN3D”, ”MEDIAN3D”,
”MIN4D”, ”MAX4D”, ”MEAN4D” and ”MEDIAN4D” are expressed in thousand CHF.
”KS”, ”CV”, ”SPD”, ”RD”, ”RDNOR”, ”RDALT”, ”SKEW”, ”DIFFP”, ”KURTO”, ”D”,
”STDBIDS”, ”MEANBIDS” and ”NBRBIDS” denote the Kolmogorov-Smirnov statistic,
the coefficient of variation, the spread, the relative distance, the normalized distance, the
alternative relative distance, the skewness statistic, the percentage difference, the kurtosis
statistic, the difference in absolute between the first and second lowest bids, the standard
deviation of the bids in a tender, the mean of the bids in a tender and the number of the
bids in a tender respectively.

Table 2.26: Descriptive statistics for incomplete bid-rigging cartels in sample
5 (Swiss data)

Predictors Mean Std Min Median Max N
NBRBIDS 9.42 1.81 7 9 13 104
MEANBIDS 434.09 290.66 86.12 345.62 1559.96 104
STDBIDS 29.66 26.44 4.58 21.89 191.92 104
CV 6.87 2.53 1.77 6.22 14.4 104
KURTO 0.52 2.06 -2.26 -0.15 6.97 104
SKEW -0.1 0.94 -2.59 -0.16 2.57 104
SPD 0.25 0.12 0.06 0.21 0.66 104
D 23.61 46.99 0.26 8.88 351.83 104
RD 1.03 1.56 0.01 0.57 10.58 104

See next page
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Predictors Mean Std Min Median Max N
RDNOR 1.65 1.24 0.04 1.25 5.48 104
RDALT 2.4 3.23 0.04 1.29 20.74 104
DIFFP 5.91 8.38 0.1 3.22 45.42 104
KS 17.25 7.04 6.93 16.66 57.54 104
MIN3CV 0.86 0.6 0 0.75 3.04 104
MAX3CV 11.97 4.77 3.36 10.54 26.24 104
MEAN3CV 6.19 2.19 1.55 5.74 12.47 104
MEDIAN3CV 5.71 2.04 1.55 5.55 11.38 104
MIN3SKEW -1.71 0.08 -1.73 -1.73 -1.13 104
MAX3SKEW 1.71 0.05 1.48 1.73 1.73 104
MEAN3SKEW -0.04 0.35 -1.02 -0.05 0.87 104
MEDIAN3SKEW -0.05 0.62 -1.45 -0.07 1.32 104
MIN3D 1.47 2.09 0 0.81 13.14 104
MAX3D 76.95 75.24 9.36 56.91 530.84 104
MEAN3D 27.35 30.06 3.76 18.95 235.67 104
MEDIAN3D 21.88 21.69 2.24 16.45 144.14 104
MIN3RD 0.06 0.07 0 0.04 0.34 104
MAX3RD 2673.49 15390.37 3.46 75.98 122393.82 104
MEAN3RD 53.44 294.68 0.92 5.6 2742.11 104
MEDIAN3RD 1.66 0.88 0.45 1.48 5.61 104
MIN3RDNOR 0.08 0.08 0 0.06 0.39 104
MAX3RDNOR 1.93 0.09 1.42 1.96 2 104
MEAN3RDNOR 1.02 0.16 0.61 1.04 1.46 104
MEDIAN3RDNOR 1.02 0.23 0.49 1.02 1.6 104
MIN3RDALT 0.04 0.05 0 0.03 0.24 104
MAX3RDALT 1890.44 10882.63 2.44 53.73 86545.5 104
MEAN3RDALT 37.79 208.37 0.65 3.96 1938.96 104
MEDIAN3RDALT 1.17 0.62 0.32 1.05 3.97 104
MIN3DIFFP 0.37 0.4 0 0.24 2.32 104
MAX3DIFFP 20.4 11.4 3.84 17.28 63.38 104
MEAN3DIFFP 6.93 4.04 1.55 5.94 22.8 104
MEDIAN3DIFFP 5.4 2.68 1.33 5 14.62 104
MIN3SPD 0.02 0.01 0 0.01 0.06 104
MAX3SPD 0.25 0.12 0.06 0.21 0.66 104
MEAN3SPD 0.13 0.05 0.03 0.12 0.3 104
MEDIAN3SPD 0.12 0.04 0.03 0.11 0.25 104
MIN3KS 9.91 4.06 3.91 9.79 30.19 104
MAX3KS 748.1 5328.42 32.93 133.82 54476.99 104
MEAN3KS 32.57 48.85 11.03 24.65 495.16 104
MEDIAN3KS 20.44 8.91 9.05 18.19 65.09 104
MIN4CV 1.54 0.97 0.12 1.34 5.53 104
MAX4CV 10.53 4.01 2.8 9.12 21.92 104
MEAN4CV 6.46 2.3 1.64 5.96 13.1 104
MEDIAN4CV 6.52 2.52 1.69 6.07 17.17 104
MIN4SKEW -1.82 0.31 -2 -1.94 -0.28 104
MAX4SKEW 1.78 0.31 0.11 1.88 2 104
MEAN4SKEW -0.06 0.5 -1.37 -0.09 1.18 104
MEDIAN4SKEW -0.07 0.62 -1.69 -0.07 1.72 104
MIN4D 1.95 3.57 0 0.93 30.28 104
MAX4D 68.42 69.32 8.37 50.56 495.98 104
MEAN4D 25.58 33.77 2.31 17.47 274.73 104
MEDIAN4D 24.81 39.62 0.96 15.7 351.83 104
MIN4RD 0.09 0.1 0 0.05 0.45 104
MAX4RD 49.4 257.96 1.09 15.98 2627.72 104

See next page
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Predictors Mean Std Min Median Max N
MEAN4RD 2.33 2.67 0.35 1.76 24.7 104
MEDIAN4RD 1.24 0.92 0.16 1.07 5.95 104
MIN4RDNOR 0.13 0.14 0 0.09 0.58 104
MAX4RDNOR 2.56 0.37 1.07 2.67 3 104
MEAN4RDNOR 1.11 0.31 0.43 1.12 2.05 104
MEDIAN4RDNOR 1.07 0.4 0.22 1.08 2.27 104
MIN4RDALT 0.1 0.11 0 0.06 0.48 104
MAX4RDALT 53.65 287.9 1.1 16.19 2933.56 104
MEAN4RDALT 2.46 2.92 0.37 1.81 27.4 104
MEDIAN4RDALT 1.3 0.98 0.16 1.12 6.3 104
MIN4DIFFP 0.46 0.52 0 0.31 2.5 104
MAX4DIFFP 18.1 10.77 3.03 15.64 56.74 104
MEAN4DIFFP 6.47 4.92 1.18 5.34 26.42 104
MEDIAN4DIFFP 5.98 5.32 0.98 4.61 34.35 104
MIN4KURTO -5.39 0.94 -6 -5.77 -1.12 104
MAX4KURTO 3.75 0.33 2.27 3.88 4 104
MEAN4KURTO 0.17 0.79 -1.07 -0.06 2.41 104
MEDIAN4KURTO 0.71 0.98 -3.63 0.62 3.11 104
MIN4SPD 0.03 0.02 0 0.03 0.13 104
MAX4SPD 0.25 0.12 0.06 0.21 0.66 104
MEAN4SPD 0.16 0.07 0.04 0.14 0.39 104
MEDIAN4SPD 0.16 0.07 0.04 0.14 0.48 104
MIN4KS 11.18 4.58 4.66 11.24 36.12 104
MAX4KS 101.52 99.91 18.25 75.09 862.88 104
MEAN4KS 22.21 10.63 9.43 19.85 97.28 104
MEDIAN4KS 18.1 7.29 5.9 17.06 59.16 104

Notes: “Mean”, “Std”, “Min”, “Median”, “Max”, and “N” denote the mean, standard
deviation, minimum, median, maximum, and number of observations respectively. The value
for ”MEANBIDS”, ”STDBIDS”, ”D”, ”MIN3D”, ”MAX3D”, ”MEAN3D”, ”MEDIAN3D”,
”MIN4D”, ”MAX4D”, ”MEAN4D” and ”MEDIAN4D” are expressed in thousand CHF.
”KS”, ”CV”, ”SPD”, ”RD”, ”RDNOR”, ”RDALT”, ”SKEW”, ”DIFFP”, ”KURTO”, ”D”,
”STDBIDS”, ”MEANBIDS” and ”NBRBIDS” denote the Kolmogorov-Smirnov statistic,
the coefficient of variation, the spread, the relative distance, the normalized distance, the
alternative relative distance, the skewness statistic, the percentage difference, the kurtosis
statistic, the difference in absolute between the first and second lowest bids, the standard
deviation of the bids in a tender, the mean of the bids in a tender and the number of the
bids in a tender respectively.





Chapter 3

Detecting collusive coalitions

In different countries and auction formats

joint with David Imhof*

Abstract

We propose an original application of screening methods using machine
learning to detect collusive groups of firms in procurement auctions. As
a methodical innovation, we calculate coalition-based screens by forming
coalitions of bidders in tenders to flag bid-rigging cartels. Using Swiss,
Japanese, and Italian procurement data, we investigate the effectiveness of
our method in different countries and auction settings, in our cases, first-price
sealed-bid and mean-price sealed-bid auctions. We correctly classify 90% of
the collusive and competitive coalitions when applying four machine learning
algorithms: lasso, support vector machine, random forest, and super learner
ensemble method. Finally, we find that coalition-based screens for the variance
and the uniformity of bids are, in all the cases, the most important predictors
according to the random forest.

3.1 Introduction

Bid rigging conspiracies cost governments and taxpayers billions of dollars
every year, given that OECD countries spend about 12% of their GDP on

*Chapter 3 is based on a manuscript accepted for publication at the International Review
of Law & Economics and on a working paper. The working paper is published as Imhof
and Wallimann (2021).
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public procurement.1 According to the OECD, the elimination of bid rigging
could help reduce procurement prices by 20% or even more. Developing
proactive methods for uncovering bid-rigging conspiracies is therefore of prime
importance for competition and procurement agencies all over the world.
Pro-active statistical methods to detect bid rigging in public procurement
have initially been proposed by, for example, Harrington (2008) and Porter
and Zona (1993). The more recent literature discusses the application of
a wide range of methods to expose bid-rigging cartels in Brazil (Lima and
Resende, 2021), Canada (Clark, Coviello, Gauthier, and Shneyerov, 2018),
Japan (Chassang, Kawai, Nakabayashi, and Ortner, 2020), Sweden (Bergman,
Lundberg, Lundberg, and Stake, 2020) and Switzerland (Huber and Imhof,
2019, Imhof, 2019).

In this paper, we add to this literature by proposing an original method
of detection that focuses on coalitions formed by groups of firms. We apply
our method to three different data sets from Japan, Switzerland, and Italy,
for which the incidence of bid rigging is known. In all three countries, we find
that, on average, our method correctly classifies nine coalitions out of ten
as collusive or competitive. Moreover, the results remain robust in different
auction formats, such as the first-price sealed-bid procurement mechanism in
Japan and Switzerland and the mean-price sealed-bid auction in Italy. Our
suggested method of detection is thus able to flag collusive groups of firms
(collusive coalitions) from different bid-rigging cartels: (i) when all firms in a
tender rig the contract, as in Japan and Switzerland (Ishii, 2014, Huber and
Imhof, 2019, Imhof, 2019); (ii) when collusive firms face competitive firms,
as in Italy and in Switzerland (see Conley and Decarolis, 2016, Wallimann,
Imhof, and Huber, 2020); and (iii) when a cartel is active mostly in only one
region of a market, and the firms rig only a subset of contracts (see Imhof,
Karagök, and Rutz, 2018).

Our detection method is based on screens, that is, statistics derived from
the distribution of bids in a tender. To derive screens for coalitions, we
start by selecting three firms and isolate all the tenders in which those three
firms submitted a bid. We calculate the screens based exclusively on the
three bids of those firms obtaining the tender-based screens for a coalition
for each tender. We then calculate the descriptive statistics of the tender-
based screens, including the mean, median, minimum, and maximum for
each coalition. These statistics, henceforth called ’coalition-based screens’,
synthesize the distributional features of bids for a specific coalition. Since
we use data from different bid-rigging cases with complete information, we

1See https://www.oecd.org/competition/cartels/fightingbidrigginginpublicprocurement.htm
(accessed 8 April 2021).
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can identify a coalition as competitive and collusive to build the outcome
variable. We focus on coalitions of three firms since we aim to detect even
small bid-rigging cartels. Focusing on coalitions of two firms would impede
the application of most of our screens, and with coalitions of four firms or
more it would hinder the detection of the smallest bid-rigging cartels formed
by three firms.

As in recent studies (Foremny, Kulejewski, Anysz, and Nica l, 2018, Rabuzin
and Modrusan, 2019, Garćıa Rodŕıguez, Rodŕıguez Monteqúın, Ortega Fer-
nández, and Villanueva Balsera, 2020, Silveira, Vasconcelos, Resende, and
Cajueiro, 2021), we use machine learning to train and test models to flag
bid-rigging cartels. For this purpose, machine learning is ideal since it focuses
on developing predictive models to determine an outcome. Machine learning
does not focus on the causal structural relationship, e.g., between collusion
and the distributional pattern of bids. In other words, we remain agnostic
about the effects of bid rigging on the distribution of bids when using machine
learning techniques. However, we discuss the effects of bid rigging on coalition-
based screens by illustrating some common important predictors in all the
cases being considered. In our study, we combine the coalition-based screens
described above with machine learning to predict whether a coalition of firms
colluded in bidding or not. To train predictive models and evaluate their
goodness of fit in independent test sets, we apply four widely used machine
learning algorithms: the random forest (Breiman, 2001), the lasso (Frank and
Friedman, 1993, Tibshirani, 1996), the support vector machines (Cortes and
Vapnik, 1995), and the ”super learner” ensemble method, including random
forest, neural networks, gradient boosting, and least absolute shrinkage and
selection operator (lasso) regression (van der Laan, Polley, and Hubbard,
2008).

We first apply our coalition-based approach to the Okinawa bid-rigging
cartel from Japan (see also Ishii, 2014, Huber, Imhof, and Ishii, 2020). The
four machine learning algorithms offer correct classification rates from 91.9%
to 94.9% to classify a coalition as collusive or competitive. In addition,
changing the perspective from a tender-based approach to a coalition-based
approach increases the correct classification rate of three to six percentage
points, corresponding to a decrease of between 27% and 55% in the error
rate, defined as one minus the correct classification rate. Secondly, we
implement our coalition-based approach on Swiss bid-rigging cartels (see also
Huber and Imhof, 2019, Wallimann, Imhof, and Huber, 2020), and we find
correct classification rates from 86.9% to 90.5%. The increase in the correct
classification rates using a coalition-based approach amounts to four to seven
percentage points when comparing the results of the various models applied
to complete bid-rigging cartels, which in Wallimann, Imhof, and Huber (2020)
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amounts approximately to 83%. Our coalition-based approach, therefore,
reduces the error rate by between 23% and 44%, inclusive. Finally, we apply
our coalition-based approach to Italian bid-rigging cartels (see also Conley
and Decarolis, 2016) and find correct classification rates from 84.8% to 90.1%
for flagging collusive coalitions. We find that the medians of the coefficient of
variation, the spread, and the KS-statistic are the most powerful predictors
for flagging collusive coalitions for the three different countries. While the
levels of the medians differ strongly between the cases, the effect of bid rigging
on the screens goes in the same direction, and its magnitude is, to a certain
extent, similar. Therefore, benchmarks in screening other markets in other
countries should rely on the effect of bid rigging. For example, a decrease by
a factor of two in the medians of the spread and the coefficient of variation
would indicate potential competitive issues requiring further scrutiny.

We complement our analyses in three steps using the Swiss data. First, we
add more summary statistics for the tender-based screens. With an enlarged
set of coalitions-based screens, we find no significant improvement in the
correct prediction rate, indicating that summary statistics based on the mean,
median, minimum, and maximum are sufficient to deliver a good performance
in predicting collusive and competitive coalitions. Second, we discuss why
coalition-based screens for the variance and the uniformity of bids perform
significantly better than those for the asymmetry of bids. We find that
applying only screens for the asymmetry of bids to the Swiss data (omitting
the coalition-based screens for the variance and uniformity of bids) produces
a poor correct prediction rate. This might be due to the fact that, by forming
a coalition (with few firms), the bid of the designated winner and thus the
distance between the winning bid and the second lowest bid from the cartel
is not systematically considered. Therefore, the asymmetry in the coalition’s
distribution of bids decreases. Finally, we investigate the number of bidders
in coalitions formed with four firms. The result indicates an increase in the
correct prediction rates, especially for the collusive coalitions. This might be
explained by the increase in the predictive power of coalition-based screens
for asymmetry. Including more firms in a coalition reduces the likelihood
that the first bid in the tender will be omitted. Thus, coalition-based screens
appear to be more asymmetric and thus more predictive.

Our paper relates to other studies using screens for uncovering cartels
(see Abrantes-Metz, Froeb, Geweke, and Taylor, 2006, Esposito and Ferrero,
2006, Hueschelrath and Veith, 2014, Jiménez and Perdiguero, 2012, Abrantes-
Metz, Kraten, Metz, and Seow, 2012, Huber and Imhof, 2019, Imhof, 2019).
Calculating screens for subgroups as in our approach is also discussed by
Conley and Decarolis (2016) and Chassang, Kawai, Nakabayashi, and Ortner
(2020). First, Conley and Decarolis (2016) calculate subgroups to detect
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cartels in collusive auctions in Italy. In order to identify collusive bidders, we
similarly rely on the bids observed in a tender. However, we do not consider
firm-specific covariates, such as common owner, municipality, or country,
to determine subgroups, as proposed in the study by Conley and Decarolis
(2016). Different, we do not rely on firm-specific covariates, which could
impede screening activity if firm-specific data are unavailable or there is not
enough time to collect them in secrecy without attracting the attention of
potential cartel participants. Chassang, Kawai, Nakabayashi, and Ortner
(2020) show that winning bids tend to be isolated when bidders collude. They
calculate the difference between a bidder’s bid and the lowest bid submitted
in a tender, therefore focusing on subgroups of two bids to calculate the
distribution of differences. However, we do not focus solely on subgroups
consisting of only the lowest bid in a tender and one of its opposing bidders.

More broadly, our study can be linked to papers on detecting bid-rigging
cartels not relying on screens. One seminal paper by Bajari and Ye (2003)
proposes two econometric tests for classifying pairs of firms as collusive.
Subsequent papers apply and refine the econometric tests suggested by Bajari
and Ye (2003) (see Jakobsson, 2007, Aryal and Gabrielli, 2013, Chotibhongs
and Arditi, 2012a,b, Imhof, 2017, Bergman, Lundberg, Lundberg, and Stake,
2020). Imhof (2017), however, questions the performance of the econometric
tests proposed by Bajari and Ye (2003) for detecting the Ticino cartel because
econometric tests produce too many false negatives by failing to classify pairs
of firms as collusiv. In contrast, the screens perform well in detecting the
Ticino cartel. Our research is also associated with papers analyzing the effect
of bid rigging (Pesendorfer, 2000, Ishii, 2009, Clark, Coviello, Gauthier, and
Shneyerov, 2018) and with papers investigating the change in bidding patterns
when bid rigging occurs (Porter and Zona, 1993, 1999).

The remainder of the paper is organized as follows. Section 3.2 outlines
our method of detection. In Section 3.3, we apply our detection method to
public procurement datasets from Italy, Japan, and Switzerland. We also
discuss the observed variance screens and the Kolmogorov-Smirnov statistic,
which are important in flagging bid-rigging cartels. Section 3.4 performs
complementary analyses. In Section 3.5, we discuss the advantages and policy
implications of our approach. Section 3.6 concludes the paper.

3.2 Detection method

In our study, we focus on supervised machine learning that entails a set
of predictors (X), also features or covariates, to predict an outcome (Y).
The outcome of our classification setting is given a value of 1 for a collusive
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coalition, which only includes cartel participants, and a value of 0 for a
competitive coalition, which is formed only by competing firms. Machine
learning requires the data to be randomly split into independent training
and test datasets. In our applications, the training and test sets consist
of 75% and 25% of the observations, respectively. We develop predictive
models using all observations in our training set, where both features and
outcomes are observed. The goal is to predict the outcomes in the test
data based on their covariates. This is closely related to discrete choice
analysis in econometrics, where statistical models specify a probability that
an outcome takes a particular value conditional on the features (Athey and
Imbens, 2019). However, machine learning aims to achieve goodness of fit in
the independent test set by minimizing deviations between the predicted and
the actual outcomes (Athey, 2019).

We assess the predictive performance of machine learning algorithms by
comparing the algorithm’s prediction with the actual outcome in the test set.
The number of correct predictions divided by the total number of observations
in the test set defines the ‘accuracy’ (also the correct classification rate)
achieved by the algorithms. For every application, we create a dataset in
which the binary outcome is balanced, i.e., with 50% collusive and 50%
competitive coalitions. Balancing the dataset each time before splitting
the sample enables the applied algorithms to build models predicting both
coalition classes, collusive and competitive, equally well. After randomly
balancing the dataset, we repeat the sample splitting into training and test
data a hundred times. The correct classification rates of our applications
are the average predictive performances of the hundred repetitions. In our
study, we train machine learning algorithms with coalition-based screens (X)
to flag collusive coalitions (Y) in the three countries of Italy, Switzerland,
and Japan. In the following, we first discuss the machine learning algorithms
used for training and testing our predictive models. We then describe the
coalition-based approach and the screens entering into the algorithms as
features.

3.2.1 Machine learning algorithms

The first machine learning algorithm we implement is the least absolute
shrinkage and selection operator (lasso) regression, introduced by Frank and
Frank and Friedman (1993) and Tibshirani (1996). In our case, a lasso
regression is a type of logit regression using shrinkage. It includes a penalty
term, restricting the sum of absolute coefficients on the regressors. Coefficients
with a low predictive power shrink, depending on the penalty term, towards
or exactly zero. As some coefficients become zero and the algorithm discards
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these variables from the model, the lasso regression can result in sparse models
with only the most powerful predictive variables. Based on the mean squared
error of prediction, we apply 15-fold cross-validation to select the penalty
term. In our applications of the lasso regression, we use the hdm package by
Chernozhukov, Hansen, and Spindler (2016) in the statistical software R.

Second, we use the random forest (see Breiman, 2001), an algorithm
predicting the outcome by a majority rule across multiple individual decision
trees. Therefore, this machine learning method draws random subsamples
from the original training set and estimates the predictive model, in our
case a decision tree, in each of the subsamples. A decision tree splits the
feature space into a number of non-overlapping regions. Each split aims to
maximize the homogeneity of the outcome according to a goodness of fit
criterion. In the case of binary variables, the Gini coefficient is a popular
criterion that measures the average gain in homogeneity of the outcome values.
The splitting continues until the tree reaches a specific stopping rule, e.g.,
the minimum number of observations in a terminal node. The tree-based
predictions of the outcome are based on whether collusive coalitions are
present or absent in the region that contains the values of features for which
the outcome is to be predicted. Using tree-based methods, there exists a
bias-variance trade-off in the out-of-sample prediction. Through more splits,
on the one hand, we reduce the bias and increase the flexibility of the model
specification. On the other hand, more splits increase the variance in the test
data due to regions being smaller. By repeatedly drawing many subsamples
from the training set and estimating the decision tree, the random forest
mitigates excessive variance in the test set. To reduce the correlation of tree
structures across the subsamples and the prediction variation, the random
forest considers each decision tree’s splitting step only a random subsample
of features. The subsample of features at each split amounts to the square
root of potential predictors in our applications. To implement the random
forest in the statistical software R, we use the randomForest package of Liaw
and Wiener (2018), with growing a thousand trees. Implementing the random
forest, we also present the most important variables according to the Gini
Index as a measure of the best split selection, which measures the impurity
of a given element with respect to the remaining classes.

Third, we implement support vector machines (Cortes and Vapnik, 1995).
Support vector classifiers are based on the idea of finding a hyperplane that
best segregates the training data into two categories. We can think of a
hyperplane as a line separating the observed points in a two-dimensional
space into two classes. We then map the observations of the test data into
the space and predict them to belong to one class based on the side of the
hyperplane on which they fall. In the training data, we want our data points
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to be as far away as possible from the hyperplane; as for these data points
confidence in producing a correct classification will be high. The distance
from the nearest data point in either of the two separated classes and the
hyperplane is known as the margin. Giving a greater chance of new data
being correctly classified, the algorithm chooses a hyperplane with the goal to
achieve the greatest possible margin. However, the idea of the hyperplane as
a line is a simplification, as a linear hyperplane might perform poorly when
the data points are not separable with a line. Support vector machines offer
an extension of the support vector classifier by enlarging the feature space
using kernels and mapping the inputs into high-dimensional feature spaces. In
our application of support vector machines, we use the e1071 package Meyer
(2015).

Fourth, we apply the SuperLearner package by van der Laan, Polley, and
Hubbard (2008), which is an ensemble method. In our case, the super learner
is a weighted average of four machine learning algorithms: gradient boosting,
random forest, lasso and neural networks, using the xgboost, cforest, glmnet
and nnet packages respectively. Gradient boosting resembles the random
forest described above, as it grows a set of decision trees. However, unlike
the later algorithm building each tree independently, gradient boosting is
an additive model working in a forward stage-wise manner and therefore
building only one tree at a time. While the random forest averages over all
decision trees at the end, gradient boosting combines the results along the way.
That is, building individual decision trees sequentially learning from mistakes
made by previous ones. Neural networks aim at fitting a system of non-linear
functions modeling the influence of the features on the outcome in a flexible
way. The algorithm uses a network of non-linear intermediate functions,
so-called hidden nodes, to model the association between the predictors and
the outcomes.

3.2.2 Coalitions and predictors

Procurement markets are seldomly characterized by a complete cartel in-
volving all firms bidding for a tender. In such cases, a suspicious group of
bidders (a coalition) must be isolated by further statistical tests, as sug-
gested, for example, by Imhof, Karagök, and Rutz (2018). As a methodical
innovation, in our paper, we develop a coalition-based approach for flagging
cartel participants. Our approach overcomes the isolation step and directly
identifies collusive coalitions. By ’coalition’ we mean a subgroup of three firms
bidding together in at least three tenders. Coalition-based screens consisting
of three bidders can detect bid-rigging cartels including more than three firms.
However, coalition-based screens consisting of four bidders would not be able
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to flag bid-rigging cartels including with only three bidders. Therefore, we
focus on three firms since our main aim is to create a method of detection
that is capable of flagging small bid-rigging cartels and large ones.2

To prepare the predictors for an observation (a coalition), we extract all
the tenders in which each of the three firms submitted a bid and discard
all bids submitted by firms that are not part of the coalition. Figure 3.2.1
illustrates the procedure. The boxes represent tenders, the circles firms. In
Figure 3.2.1, we have a sample with six tenders T1 to T6 and seven firms F1
to F7 applying for projects. We pick firms F1, F2, and F3 to form the first
coalition, henceforth called coalition 123. Each of these firms submits a bid
in each tenders T1, T2, T3, and T6 (grey). To form coalition 123, we extract
this subgroup of tenders and discard all bids submitted by firms that are not
part of the coalition. For example, in tender T1, we drop firms F4 and F5
(white circles).

Figure 3.2.1: The selection of coalition 123

In the next step, we calculate screens for the distribution of the three
extracted bids in each tender. Screens are descriptive statistics describing
the discrete distribution of bids in a tender (Abrantes-Metz, Froeb, Geweke,
and Taylor, 2006, Abrantes-Metz, Kraten, Metz, and Seow, 2012, Harrington,
2008, Jiménez and Perdiguero, 2012, Imhof, 2019). Since screens summarize
the behavior of the bidders in one tender, they refer to the category of
behavioral screens as discussed by Harrington (2008). We make the simple
hypothesis that bid rigging modifies the distribution of bids. There are two
reasons for this: (i) the members of a bid rigging cartel know the bids of their
competitors, and (ii) they coordinate the bids. Therefore, we can capture
such distributional changes with the screens. This hypothesis is common to

2Using coalitions of only two firms does not allow us to calculate all possible screens, leaving
us with a reduced set of predictors.
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detection methods such as the econometric tests suggested by Bajari and Ye
(2003).

Following Huber, Imhof, and Ishii (2020), Huber and Imhof (2019) and
Wallimann, Imhof, and Huber (2020), we implement nine screens to uncover
bid-rigging cartels. The screens can be assigned to three categories. The first
category contains variance screens such as the coefficient of variation (see e.g.
Abrantes-Metz, Froeb, Geweke, and Taylor, 2006, Abrantes-Metz, Kraten,
Metz, and Seow, 2012, Imhof, 2019, Jiménez and Perdiguero, 2012) and the
spread (see e.g. Wallimann, Imhof, and Huber, 2020). These screens capture
the possible reduction in support of the distribution of bids or the convergence
of bids when a cartel coordinates bids, and bidders exchange their bids before
submitting them in the tendering process (Imhof, 2019). The second category
contains the percentage difference, the absolute difference, the skewness, the
relative distance, the alternative distance, and the normalized distance (see
for these screens Huber and Imhof, 2019). Screens of this category measure
whether the bids exhibit an asymmetrical distribution. Cartel participants
can simultaneously affect both differences between losing bids and differences
between the first and second lowest cartel bids. Empirical observations (see,
e.g. Chassang, Kawai, Nakabayashi, and Ortner, 2020) have shown that the
differences between the first and second lowest cartel bids increase, whereas
the differences between losing bids decrease. This increases the asymmetry in
the distribution of the bids and is explained by the necessity to ensure the
contract is awarded to the winner designated by the cartel. The third category
of predictors is based on the Kolmogorov-Smirnov statistic (hereafter the KS
statistic), which is calculated to test whether the discrete distribution of bids
follows a uniform distribution (see Wallimann, Imhof, and Huber, 2020). The
KS statistic thus investigates how dissimilar the distribution of the bids is
with a uniform probability distribution due to bid rigging.

By looking again at coalition 123, we illustrate the calculation of the
screens with the coefficient of variation. For each tender in the extracted
subgroup of tenders T1, T2, T3 and T6, we first calculate the coefficient of
variation, that is, the standard deviation divided by the arithmetic mean of
the three bids of firms F1, F2 and F3. We thus obtain four coefficients of
variation, in other words, four tender-based screens. Thereafter, we calculate
the mean, median, minimum, and maximum using these tender-based screens
to obtain summary statistics for each coalition, the so-called coalition-based
screens. Calculating the coalition-based screens for each screen presented
above, we end up with 36 coalition-based screens for a coalition (observation)
in the data. We then use these coalition-based screens as features (X) in our
predictive models to determine the outcome (Y).

We repeat the building of coalitions and the calculation of the coalition-
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based screens for all possible coalitions of three firms if the three firms at
least participate together in three tenders.3

3.3 Empirical analyses in different countries

We apply our original coalition-based approach to uncover collusive cartels in
three countries: Japan, Switzerland, and Italy. These cases are discussed and
screened in earlier studies (see Conley and Decarolis, 2016, Wallimann, Imhof,
and Huber, 2020, Huber and Imhof, 2019, Ishii, 2014). While procurement
agencies in Japan and Switzerland used first-price sealed-bid auctions, agencies
in Italy used mean-price sealed-bid auctions. Therefore, we can train and
evaluate our algorithms in different countries and different auction settings.
We also present the ten most important variables ranked by the Gini Index
according to the random forest for every application. Since the most important
coalition-based screens for prediction remain stable across countries and
auction settings, we briefly discuss them for further screening applications.

3.3.1 Okinawa cartel

For our first application, we use an empirical dataset from Japan originally
introduced by Ishii (2014) and recently analyzed by Huber, Imhof, and Ishii
(2020). The dataset contains construction contracts in Okinawa from April
2003 to March 2007. As the Okinawa Prefecture consists of 47 islands, the
market is difficult to enter for firms outside this region. Thus, there is a
natural geographical barrier to their entry into the construction market.
Local agencies used a first-price sealed-bid auction to procure a contract
and specified a reserve price and a lowest acceptable price. The lowest bid
submitted between the lowest acceptable price and the reserve price won the
contract.

During the whole period, the agency invited a set of qualified firms to
submit a bid depending on the size of the tendered contract. In addition,
agencies disclosed the identity of the invited firms prior to each tender
procedure, a practice that ended in January 2006. The natural geographical
barriers, the restricted number of competitors, and the disclosure of their
identity notably simplified the emergence of bid rigging. Hence, the cartel
participants communicated with each other before each tender and met to
negotiate and agree on the firm that would win the contract and the winning

3We have chosen three projects, as this is the minimum for calculating summary statistics
and allows us to achieve the most observations possible.
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price. Thereafter, the other bidders not chosen to win the contract calculated
a cover bid that was sufficiently higher than the winning price.

In June 2005, the Japanese Fair Trade Commission (hereafter JFTC)
launched an investigation into bid-rigging conspiracies against a large number
of firms involved in these tenders. In January 2006, to limit the risk of
bid-rigging in the future, the Okinawa prefecture adapted its procurement
system by inviting more firms and not revealing the identities of firms prior
to the tendering procedure. At the same time, Japan’s competition law was
revised. Changes included increasing fines for conspiracies and introducing
a leniency program granting a complete or partial exemption from financial
penalties if a firm collaborates with the JFTC.

Table 3.1: The correct classification rates for the Okinawa cartel

Classifier
Prediction Results

CCR (%) CCR coll (%) CCR comp (%)

Lasso 92.3 93.5 91.2

Random forest 94.9 96.9 92.8

Super learner 93.9 94.7 93.1

Support vector machines 91.9 93.7 90.0

Note: ’CCR’ denotes the correct classification rate, ’CCR coll’ the correct
classification rate of the collusive coalitions, and ’CCR comp’ the correct
classification rate of competitive coalitions.

To create the Japanese collusive coalitions, we consider contracts of type
A+ in the pre-inspection period (see Huber, Imhof, and Ishii, 2020, for more
details). For the competitive coalition, we use only contracts of type A+
in the post-amendment period, in which the JFTC sanctioned the cartel
participants involved in light of Japanese competition law being revised and
procurement rules in Okinawa reinforced. After recreating the coalitions, our
final dataset contains 207 collusive and 1,793 competitive coalitions. The
average number of projects per coalition amounts to 3.4 for both the pre- and
post-amendment periods.

As stated in Table 3.1, we use the four algorithms presented above to
achieve decent correct prediction rates from 91.9% to 94.9%. Therefore, the
deviations between the predicted and actual outcomes are low. Our coalition-
based approach outperforms the application of Huber, Imhof, and Ishii (2020)
by about two to six percentage points depending on the algorithm.4 This

4We do not compare our analysis with model 1 in Huber, Imhof, and Ishii (2020) but with
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performance improvement may seem weak, but it is, in fact, notable if we
consider the error rate (also the misclassification error), defined as one minus
the correct prediction rate. In Huber, Imhof, and Ishii (2020), the error rate
amounts to approximatively eleven percentage points for models using screens
exclusively. Therefore, an improvement of two to six percentage points implies
reducing the error rate of between 18% and 55% inclusive. Such a reduction
in the error rate is valuable in light of the heavy legal consequences of a firm
being flagged as a potential cartel participant and an investigation being
opened against it. Furthermore, an investigation has procedural consequences
in being costly for both the authority, i.e., the taxpayer, and the firms.

By comparing the accuracy of the machine learning algorithms, we see from
Table 3.1 that the random forest achieves the highest correct classification
rate. Moreover, for all algorithms, differences in the predictive performance
between the collusive and competitive coalitions remain minor, despite slightly
better prediction rates for the collusive coalitions. Nevertheless, the imbalance
is the smallest for the super learner.

Figure 3.3.1: Variable importance plot for the Okinawa cartel. We compute
the variable importance using the mean decrease in the Gini index and express
it relative to the maximum.

Figure 3.3.1 depicts the relative importance of the predictors according to
the random forest. We notice that the median of the coefficient of variation,

model 2, which uses only screens, as in our approach.
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the spread, and the KS statistic are the most important coalition-based screens
for predicting bid rigging. Screens for asymmetry, however, appear to be
unimportant in predicting bid rigging when also using screens for the variance
or uniformity of bids to fit machine learning models.

3.3.2 Swiss cartels

Our second application considers the dataset from three bid-rigging cartels
in Ticino, See-Gaster and Graubünden, discussed by Wallimann, Imhof, and
Huber (2020). The Swiss Competition Commission (hereafter COMCO)
convicted cartel participants in all three cases. However, COMCO only
sanctioned cartel participants in two cases since the bid-rigging cartel in Ticino
ceased its illegal activity before the revised competition law in Switzerland
entered into force, including the possibility of sanctioning firms. The latter
cartel was active in the period from January 1999 to March 2005 and included
all firms in the road construction market in Switzerland’s southernmost canton
(see also Imhof, 2019). The firms rigged public and private contracts before
stopping their anticompetitive activity. After the cartel came to an end, prices
fell by roughly 30% (Imhof, 2019).

From 2004 to 2010, eight firms in the See-Gaster region (cantons of St.
Gallen and Schwyz) participated in a bid-rigging conspiracy. The cartel
participants met at least once a month to discuss future tenders for road
construction, asphalting and civil engineering. The cartel members designated
the winning firm, which then negotiated the price itself and the cover bids
with the cartel participants in separate meetings.

The third cartel, which was active from 2004 to 2010, included most road
construction firms in the canton of Graubünden, a canton characterized by
valleys and mountains. The cartel was divided into two groups of cartel
participants operating in the north and the south, respectively. As in the
two latter investigations, the cartel participants discussed local and cantonal
contracts for asphalting and construction tendered by the canton and the
cities. COMCO estimated that the activities of the cartel pushed up prices
by at least 10%.

In Switzerland, procurement agencies also take other criteria into account
in awarding contracts and not just price, such as quality considerations and
environmental aspects. Price, however, remains the most crucial criterion.
Therefore, the procurement process in Switzerland is characterized by a first-
price sealed-bid auction (for further explanations, see Wallimann, Imhof, and
Huber, 2020).

In this study, we pool the data of all three cartels. We use cartel par-
ticipants to construct collusive coalitions. Then, competitive coalitions are
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Table 3.2: The correct classification rates for the Swiss cartels

Classifier
Prediction Results

CCR (%) CCR coll (%) CCR comp (%)

Lasso 86.9 88.5 85.4

Random forest 89.7 88.3 91.1

Super learner 90.5 90.0 91.1

Support vector machines 87.2 88.1 86.3

Note: ’CCR’ denotes the correct classification rate, ’CCR coll’ the correct
classification rate of the collusive coalitions, and ’CCR comp’ the correct
classification rate of competitive coalitions.

Figure 3.3.2: Variable importance plot for the Swiss cartels. We compute the
variable importance using the mean decrease in the Gini index and express it
relative to the maximum.

created with former cartel participants to investigate the changes between
the collusive and competitive coalitions. At the end of the formation of
all coalitions, we end up with 646 competitive and 896 collusive coalitions.
The average number of projects per coalition amounts to 21.4 and 44.9 for
competitive and collusive coalitions.

As shown in Table 3.2, the correct prediction rates amount to 86.9%,
89.7%, 90.5%, and 87.2% for the lasso, random forest, super learner, and



116 Detecting collusive coalitions

support vector machines, respectively. The super learner reaches the lowest
misclassification error in predicting collusive and competitive coalitions in the
Swiss data. We improve the predictive performances of Wallimann, Imhof,
and Huber (2020) by three to seven percentage points if we consider only the
complete bid-rigging cartels (with no competition of firms that are not part
of the cartel) in the various models applied. Such increases in the correct
prediction rate imply a decrease of between 23% and 44% inclusive in the
error rate.

Like the Okinawa application, we observe a convergence of the algorithms
but a slightly better performance for the random forest and super learner.
We also notice that the random forest and the super learner are slightly
better at predicting competitive coalitions. Therefore, they produce fewer
false positives (one minus the correct prediction rate for competitive tenders)
than false negatives (wrongly flagging a collusive coalition as competitive).
The reverse applies to the lasso and the support vector machines, which
predict better collusive coalitions but with a lower overall correct classification
rate. All four machine learners exhibit a similar correct classification rate for
the collusive coalition, i.e., the same false negative results. Increasing false
positive results for the lasso and the support vector machines explains the
difference in the overall correct classification rates.

Figure 3.3.2 reports the most important coalition-based screens according
to the random forest. We again observe that medians for the KS statistic
and the spread and coefficient of variation are the three most important
coalition-based screens in classifying collusive coalitions. However, again, in
the ten most predictive coalition-based features, we do not find any screens
for the asymmetry of bids.

3.3.3 Italian cartels

Our third application involves contracts for roadworks tendered in the Turin
municipality of Italy between 2000 and 2003, first introduced by Conley and
Decarolis (2016). They use two datasets: a validation dataset and a main
dataset. In our application, we use the validation dataset because there are
no court decisions in the main dataset (and we would have no prior knowledge
of the existence of a cartel in this dataset).

The procurement agency in Turin used an average bid auction for tendering
the roadwork contracts. First, it defined a reserve price for a contract and
publicly announced it. Then, based on the reserve price, interested firms
submitted a bid, which was a discount based on the reserve price. Having
collected all the bids, the agency first ranked them and discarded the ten
percent lowest and highest bids to calculate a trimmed mean. The agency
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then calculated a second mean for all bids (including discarded ones) higher
than the trimmed mean in the first step. The firm with the highest bid lower
than the mean of the second step won the contract (see Conley and Decarolis,
2016, for details).

In 2008, the Court of Justice in Turin identified eight cartels involving 95
firms as potential cartel participants and sentenced 27 firms for bid-rigging
conspiracies. The firms mainly formed cartels with nearby companies. Overall,
the coordination of bids paid off because the suspected cartel participants
won 80% of the tendered contracts, though they accounted for only 10% of
all the bidders.

Table 3.3: The correct classification rates for the Italian cartels

Classifier
Prediction Results

CCR (%) CCR coll (%) CCR comp (%)

Lasso 84.8 83.9 85.8

Random Forest 89.1 87.6 90.6

Super learner 90.1 89.9 90.3

Support Vector Machines 85.2 83.2 87.3

Note: ’CCR’ denotes the correct classification rate, ’CCR coll’ the correct
classification rate of the collusive coalitions, and ’CCR comp’ the correct
classification rate of competitive coalitions.

By recreating the coalitions in the Italian data, we take 75 of the most
frequent competitive bidders and obtain 21,340 competitive coalitions with
an average of 20.7 contracts. Next, we calculate collusive coalitions within
each of the eight cartels. We end up with 1,474 collusive coalitions with an
average of 47.4 contracts.

Our coalition-based models reach correct classification rates from 84.8% to
90.1% in detecting the Italian cartels and therefore perform well in a different
kind of auction procedure (see Table 3.3). Again, we find the super learner and
the random forest to be the best performing algorithms compared to the lasso
and the support vector machines. We notice that the lasso, the support vector
machines, and the random forest perform better in predicting competitive
coalitions and thus produce fewer false negatives than false positives.

Figure 3.3.3 presents the ten most predictive coalition-based screens in
predicting Italian collusive coalitions. We again find similar important pre-
dictors as in the latter applications: the median for the KS statistic and the
coefficient of variation and spread are the most predictive coalition-based
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screens with the mean of the KS statistic. Unlike the previous cases, we notice
that two screens for the asymmetry of bids, the median of the percentage
difference and of the absolute difference, also play a role in the top-ten predic-
tors. Nevertheless, screens for the variance and uniformity of bids dominate
the best predictors.

Figure 3.3.3: Variable importance plot for the Italian cartels. We compute
the variable importance using the mean decrease in the Gini index and express
it relative to the maximum.

3.3.4 The most predictive coalition-based screens

Applying our approach to three different countries, we find the same screens
to be the most important predictors (X) for flagging collusive coalitions (Y):
we mainly find coalition-based screens for the variance, i.e., medians of the
coefficient of variation and the spread. Table 3.4 reports the mean values of
these coalition-based screens. We find that the medians of the spread and of
the coefficient of variation are, on average, considerably higher for competitive
coalitions. If the level of the variance of bids differs across countries, the effect
of bid rigging is similar in magnitude. Bid rigging affects the variance of the
bids by decreasing them by two for Swiss bid-rigging cartels and by three for
the Italian and Japanese bid-rigging cartels. Bid rigging also decreases the
spread by a factor of two for Switzerland, by a factor of three for Japan, and
by a factor of between three and four for Italy.
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Alongside screens for variance, we find that the median of the KS statistic,
calculated to test if a discrete bid distribution follows a uniform probability
distribution law, is also a powerful coalition-based screen. Table 3.4 indicates
that bid rigging notably increases the KS statistic in all cases. In other words,
the results suggest that bid rigging and the related necessary bid coordination
transform the distribution of bids in a much less uniform distribution. Again,
the level of the KS statistic differs across countries, but the effect of bid rigging
follows the same direction in all cases. For example, bid rigging on average
doubles the KS statistic for coalitions in Japan and Switzerland compared to
their competitive counterparts, whereas for the former in Italy, this screen
increases by a factor of five.
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3.4 Complementary analyses

In this section, we outline the complementary analyses we perform using the
Swiss data. First, we enlarge our set of predictors. Second, we investigate
why coalition-based screens for the variance and uniformity of bids perform
better than those for the asymmetry of bids. Finally, we form coalitions with
four firms.

3.4.1 Using additional coalition-based screens

In the previous section, we calculate coalition-based screens (X) by taking
into account the summary statistics mean, median, minimum, and maximum
of the tender-based screens for each coalition. In this section, we investigate
the robustness of these summary statistics, chosen using the Swiss data.
Therefore, we calculate the 5th, 10th, 25th, 75th, 90th, and 95th percentiles
from the tender-based screens for each coalition in the Swiss data. Then, we
add them to the coalition-based screens we use in our original application,
i.e., mean, median, minimum, and maximum. Thus, we fit our models with
ninety coalition-based screens in our first complementary analysis.

Table 3.5: Changes in accuracy when adding a new set of predictors in the
application of the Swiss cartels

Classifier
Changes in percentage points

CCR CCR collusion CCR competition

Lasso 1.8 0.7 2.9

Random forest -0.1 -0.8 0.6

Super learner 0.6 -0.1 1.3

Support vector machines 0.9 0.1 1.7

Note: ’CCR’ denotes the correct classification rate, ’CCR collusion’ the correct
classification rate of the collusive coalitions, and ’CCR competition’ the correct
classification rate of competitive coalitions.

Table 3.5 shows the increase in percentage points of the correct classifica-
tion rates when performing this analysis compared to the results obtained
using the Swiss data in Section 3.3. We observe that the overall improvement
in accuracy is relatively low, amounting to from -0.1 to 1.8 percentage points
depending on the algorithm. The increase is the highest for the lasso but
slightly negative for the random forest. Furthermore, we notice that the
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predictive performance increases more for the competitive coalitions (from 0.6
to 2.9 percentage points) while remaining stable for the collusive coalitions
(from -0.8 to 0.7 percentage points). As the overall change in the goodness of
fit for the four algorithms is quite low, we assume that the gain of additional
coalition-based screens is negligible.

Figure 3.4.1: Variable importance plot for the Swiss cartels with more
predictors. We compute the variable importance using the mean decrease in
the Gini index and express it relative to the maximum.

By looking at the three most important predictors according to the random
forest, we find the medians for the coefficient of variation, the spread, and the
KS statistic remain the most predictive coalition-based screens (see Figure
3.4.1). The upper and lower quartiles of these descriptive statistics appear in
the top-ten best predictors, but rather not at the top of the ranking.

3.4.2 The investigation of predictors measuring asymmetry

In the three different countries, predictors measuring asymmetry do not
appear to be important (according to the random forest) in flagging collusive
coalitions when also implementing coalition-based screens related to the
variance and the uniformity of bids. This result might be puzzling when we
remember that Imhof (2019), Huber, Imhof, and Ishii (2020) and Wallimann,
Imhof, and Huber (2020) find screens for the asymmetry to be relevant in
predicting the Japanese and Swiss bid-rigging cartels. In fact, asymmetry in
the distribution of bids arises when we simultaneously analyze the bids from
the winner designated by the cartel and the cover bids submitted by other
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cartel participants. However, in our coalition-based approach, we select only
three bidders and thus not necessarily the designated winner. Therefore, the
absence of the designated winner in calculating the tender-based screens with
only three cartel participants can limit the predictive power of screens based
on the asymmetry of bids.

Table 3.6: Changes in accuracy when only considering screens for the asym-
metry as predictors

Classifier
Changes in percentage points

CCR CCR collusion CCR competition

Lasso -2.9 -2.2 -1.3

Random forest -2.7 -1.4 -4.1

Super learner -2.3 -1.8 -2.7

Support vector machines -3.2 -2.3 -3.4

Note: ’CCR’ denotes the correct classification rate, ’CCR collusion’ the correct
classification rate of the collusive coalitions, and ’CCR competition’ the correct
classification rate of competitive coalitions.

To further investigate the importance of these screens, in a second comple-
mentary analysis, we discard screens for the variance and the uniformity of
bids. We then repeat our estimation procedure for the Swiss data. Table 3.6
reports that correct classification rates decrease by 2.3 to 3.2 percentage points.
Figure 3.4.2 shows that summary statistics for the percentage difference are
the most predictive coalition-based screens. However, these coalition-based
screens are related to the variance of the bids if they do not include the
designated winner’s bid. If the variance is reduced for the losing bids, and if
one takes into account mainly the losing bids in calculating the tender-based
screens, then the coalition-based screens for the percentage difference will
be smaller for collusive coalitions than for competitive coalitions. In fact, a
look at the descriptive statistics indicates that the mean of the Swiss cartels’
medians of the percentage difference for the collusive coalitions amounts to
3.3, as opposed to 5.6 for the competitive coalitions.

Therefore, in a second step, we discard coalition-based screens for the
percentage difference and the absolute difference since they might be related
to the variance screens to analyze only screens for the asymmetry of the bids.
Using sixteen predictors for the asymmetry of bids, we obtain a considerable
decrease in the correct classification rates of from 17.3 to 20.5 percentage
points (see Table 3.7). The decline is less for collusive coalitions (from 11.8 to
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Figure 3.4.2: Variable importance plot for the Swiss cartels with only screens
for the asymmetry of bids. We compute the variable importance using the
mean decrease in the Gini index, and express it relative to the maximum.

20.0 percentage points) but still large. In conclusion, coalition-based screens
for asymmetry do not seem to be important for flagging collusive coalitions.
Therefore, the variance and the uniformity of bids remain the most important
features for describing changes in the distributional pattern of the bids in
collusive coalitions.

3.4.3 Coalition-based screens with four bidders

In the last step, we investigate the correct classification rate by forming
coalitions of four firms, not three. However, it is more advisable to compute
coalitions of three firms since it allows bid-rigging cartels formed with three
bidders to be uncovered. Using coalitions with four firms makes it difficult to
detect bid-rigging cartels formed with three bidders and therefore restricts
the broader scope of applying our suggested method based on coalitions.
Moreover, calculating coalitions based on four firms might be somewhat more
intense computationally. For example, if we calculate all possible coalitions
of three firms formed with 75 firms, we obtain 67,525 potential coalitions to
calculate. With coalitions of four firms for 75 firms, the potential coalitions
amount to 1,215,450, or eighteen times the number of potential coalitions
with three firms.
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Table 3.7: Changes in accuracy when only considering screens for the asym-
metry as predictors and discarding screens for the percentage difference and
the absolute difference

Classifier
Changes in percentage points

CCR CCR collusion CCR competition

Lasso -17.7 -15.2 -18.7

Random forest -21.2 -19.8 -23.9

Super learner -20.5 -20.0 -23.0

Support vector machines -18.0 -11.8 -24.2

Note: ’CCR’ denotes the correct classification rate, ’CCR collusion’ the correct
classification rate of the collusive coalitions, and ’CCR competition’ the correct
classification rate of competitive coalitions.

Nonetheless, we calculate coalitions of four firms using the Swiss data,
which from a computation perspective, is easier since there are three datasets
for each cartel with a lower number of firms than the other cartels in Italy
and Okinawa. We end up with a total of 3,207 coalitions of four firms, 2,097
collusive, and 1,110 competitive coalitions. We then use the same coalition-
based screens as in Section 3.3 to recapitulate the changes in percentage points
for the correct classification rates (correct classification rates for coalitions of
four firms minus correct classification rates for coalitions of three firms from
Table 3.2). We find that the overall correct classification rates for coalitions
of four firms are a little higher, with an increase of from 2.1 to 4.0 percentage
points (see Table 3.8), compared to the correct classification rates for three
coalitions. It seems that the increase is mainly driven by an increase in the
correct classification rates of collusive coalitions amounting to from 5.1 to 6.1
percentage points. The correct classification rates for competitive coalitions
at the opposite fall by 1.8 to 2.3 percentage points except for the super learner
(increase of 0.9 percentage points). We also observe that coalition-based
screens for asymmetry in the form of the skewness of the bids appear in
the top-ten predictors according to the random forest with the coefficient of
variation. Including a higher number of firms in the coalition reduces the
likelihood that the winning bids will be omitted and therefore includes a
greater distance between the first and second lowest bids in the coalition,
naturally leading to more asymmetry. The fact that coalition-based screens
for the asymmetry of bids have a higher predictive power could explain the
overall rise in the correct prediction rates, specifically those of the collusive
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coalitions. The increase in the correct classification rates for coalitions with
four firms also appears unsurprising since there were four or more cartel
participants in most tenders in the Swiss data.

Table 3.8: Changes in accuracy when using coalition-based screens with four
bidders in the Swiss data

Classifier
Changes in percentage points

CCR CCR collusion CCR competition

Lasso 3.4 5.4 -1.8

Random forest 2.1 5.1 -2.3

Super learner 4.0 5.9 0.9

Support vector machines 3.6 6.1 -1.9

Note: ’CCR’ denotes the correct classification rate, ’CCR collusion’ the correct
classification rate of the collusive coalitions, and ’CCR competition’ the correct
classification rate of competitive coalitions.

3.5 Policy recommendations

3.5.1 Advantages of a coalition-based detection method

The coalition-based approach proposed in this paper has several advantages
in flagging bid-rigging cartels. We first reach correct classification rates of
90% with the super learner in Italy, Japan, and Switzerland. In other words,
we classify nine coalitions out of ten correctly on average. This result remains
stable while considering different auction formats, i.e., the first-price sealed-bid
and the average bid auction. Super learner outperforms the other algorithms
in two out of three cases and does not exhibit an imbalance in predicting both
classes (collusive and competitive coalitions). Its greater performance derives
from the use of multiple machine learning models, for which the algorithm
creates an optimally weighted average.5 Super learner is then advisable in
our case. Besides, the machine learning literature is rapidly growing, and we
assume that future research implementing novel machine learning algorithms
will increase accuracy.

Moreover, our coalition-based approach directly flags firms as cartel partic-
ipants and can detect complete and incomplete bid-rigging cartels. If correctly

5See also https://cran.r-project.org/web/packages/SuperLearner/vignettes/Guide-to-
SuperLearner.html (accessed 30 April 2021).
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calibrated, it can also flag partial cartels, that is, complete or incomplete
bid-rigging cartels active in one specific area or one specific type of contract
(see, for example, Imhof, Karagök, and Rutz, 2018, Abrantes-Metz, Froeb,
Geweke, and Taylor, 2006). In our cases, the bid-rigging cartels in Japan and
Switzerland are complete for most tenders, but the Italian bid-rigging cartels
are not. Identifying sub-groups of firms as cartel participants is important
because markets are not always characterized by bid-rigging conspiracies
affecting all contracts or involving all the firms. Therefore, our approach
is not only applicable to different countries or auction formats but also to
different kind of bid-rigging cartels. Such possible broad applications render
the coalition-based approach attractive for screening procurement markets
and future research.

Finally, the data requirement is low, as we need only the bids and the
identity of the firms to calculate coalition-based screens. Other tender-based
screens, such as those dealt with in Huber and Imhof (2019) or Wallimann,
Imhof, and Huber (2020), do not require the bidders to be identified. Such
low data requirements contrast with other methods of detection, which need
cost-related variables or firm-specific covariates to implement the econometric
tests, as suggested in Bajari and Ye (2003) or more recently in Conley and
Decarolis (2016). A low data requirement is crucial for two reasons. First, it
allows the screening of large procurement datasets. If the data are available in
a digital form, a competition or procurement agency can apply the detection
method in a minimum amount of time. Second, it could be challenging to
obtain information specific to firms without attracting the cartel’s attention to
a possible investigation. Indeed, in some cases, it could destabilize the cartel
and have a preventive effect. However, cartel participants will undoubtedly
take more precautions and destroy evidence impeding the success of a future
investigation.

3.5.2 Ex-ante Screening

When screening procurement markets, we suggest two different possibilities.
The first consists of using data from previous cartels to fit predictive models
(with machine learning algorithms) to apply them to a new dataset for which
no prior information on collusion exists. The second possibility is to use
benchmarks to isolate groups of suspicious contracts or firms. For the latter
possibility, Table 3.4 in Section 3.3 might offer a starting point for screening
procurement markets.

However, for both possibilities, one should be aware that the institutional
context of each country – for example, the choice of the auction format or
other country-specific characteristics – largely influences the distribution of
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bids in each tender. Coalition-based screens thus exhibit dissimilar values
across countries and classes. For example, the values of the coefficients of
variation for the Swiss collusive coalitions exhibit slightly higher average
values than the Japanese competitive coalitions (see Table 3.4). Therefore,
training models in one country to be able to test them in another could, in
such circumstances, be hazardous, as already noted by Huber, Imhof, and
Ishii (2020). Nonetheless, the effects of bid rigging go in the same direction,
and their magnitudes might be similar in some cases. Hence, if a competition
agency intends to apply the method to a different market or country, we
recommend using benchmarks based on the effect of bid rigging rather than
benchmarks based on the level of the screens. For example, a decrease by two
in the variance on a market could be suspicious and should be subjected to
further statistical inquiry to confirm the initial diagnostic. Moreover, further
research should investigate the possibility of normalizing bids or screens by
country to enable predictive models to be transferred directly from one country
to another.

A competition agency can implement both predictive tender-based and
coalition-based screens to fit models or assess approximate benchmarks. If
the amount of data to screen is small (e.g., fewer than a hundred firms
bidding in the data), one can directly apply the coalition-based approach.
However, if the amount of data to screen is large (e.g., more than a thousand
firms bidding in the data), the tender-based approach of Huber and Imhof
(2019) or Wallimann, Imhof, and Huber (2020) is simpler to apply (e.g., less
computationally intensive) in order to identify markets for specific products
or different geographical areas that are potentially suspicious.

To increase the confidence level, a competition agency could also combine
both types of screens, i.e., tender-based and coalition-based. Once a bench of
suspicious tenders with the tenders-based screens has been identified, one can
apply the coalition-based screens to verify whether the firms participating in
the suspicious tenders are sufficiently suspect to open an investigation. Such
a double testing procedure increases the reasonable grounds for identifying
bid-rigging conspiracies and offers greater confidence to competition agencies
in screening procurement markets. Here the coalition-based approach will
provide precious assistance because it allows the identification of potential
cartel participants to be confirmed with a high degree of confidence: the
correct prediction rates in the three different countries indicate that nine firms
out of ten are correctly classified as being competitors or cartel participants.
In other words, a firm flagged as potentially collusive using the coalition-based
approach has a 90% likelihood of being a cartel participant. The level of
likelihood should be sufficiently high to constitute reasonable grounds for
opening an investigation.
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3.6 Conclusion

Our paper contributes to the literature on cartel detection in manifold ways.
We have developed an original detection method based on screens by focusing
on coalitions. This approach allows a broader application by detecting
complete and incomplete bid-rigging cartels and partial cartels in different
auction formats. Coalition-based screens delivered more correct classification
rates than previous methods using tender-based screens. Using the super
learner, we correctly classified on average at least nine coalitions out of ten in
Italy, Japan, and Switzerland. The performance of the super learner surpassed
other algorithms and is balanced across collusive and competitive coalitions.
It thus remained the most suitable algorithm for our application.

Although an increase in the performance of three to ten percentage points
might appear low, the coalition-based screens reduced the error rate by half
in some cases. Such falls in the error rate are desirable given the heavy legal
and procedural consequences for firms that have been flagged as potential
cartel participants. Furthermore, the coalition-based screens do not oppose
the tender-based screens but constitute an interesting complement limiting
the risk of false positives in screening procurement markets.

Furthermore, we found that the levels of the most important coalition-
based screens differ considerably between countries, though the magnitude
of the effects of bid rigging is similar. Thus, a decrease by a factor of
two in the median of the coefficient of variation and the spread, as well
as an increase by a factor of two in the median of the KS statistic, could
indicate potential collusion. Future empirical research should investigate the
possibility of normalizing screens or bids by country or market to continue
developing a general screening method that is both the most reliable and
has the broadest applicability. In addition, future theoretical research should
focus on structural models explaining why bid rigging reduces the variance
and renders the distribution of bids less uniform than in competitive tenders.





Chapter 4

Business analytics meets artificial
intelligence

Assessing the demand effects of discounts on Swiss train tickets

joint with Martin Huber and Jonas Meier*

Abstract

We assess the demand effects of discounts on train tickets issued by the
Swiss Federal Railways, the so-called ‘supersaver tickets’, based on machine
learning, a subfield of artificial intelligence. Considering a survey-based sample
of buyers of supersaver tickets, we investigate which customer- or trip-related
characteristics (including the discount rate) predict buying behavior, namely:
booking a trip otherwise not realized by train, buying a first- rather than
second-class ticket, or rescheduling a trip (e.g. away from rush hours) when
being offered a supersaver ticket. Predictive machine learning suggests that
customer’s age, demand-related information for a specific connection (like
departure time and utilization), and the discount level permit forecasting
buying behavior to a certain extent. Furthermore, we use causal machine
learning to assess the impact of the discount rate on rescheduling a trip, which
seems relevant in the light of capacity constraints at rush hours. Assuming
that (i) the discount rate is quasi-random conditional on our rich set of
characteristics and (ii) the buying decision increases weakly monotonically in
the discount rate, we identify the discount rate’s effect among ‘always buyers’,

*Chapter 4 is based on a working paper. It is published as Huber, Meier, and Wallimann
(2021). We are grateful to the SBB Research Fund for financial support.
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who would have traveled even without a discount, based on our survey that
asks about customer behavior in the absence of discounts. We find that on
average, increasing the discount rate by one percentage point increases the
share of rescheduled trips by 0.16 percentage points among always buyers.
Furthermore, investigating effect heterogeneity across observables suggests
that the effects are higher for leisure travelers and during peak hours when
controlling several other characteristics.

4.1 Introduction

Organizing public transport involves a well-known trade-off between consumer
welfare and provider revenue. Typically, consumers value frequency, reliability,
space, and low fares (Redman, Friman, Gärling, and Hartig, 2013) while
suppliers aim at operating with a minimum number of vehicles to maximize
profits. In general, the allocation can be improved as providers do not account
for the positive externalities on consumers (Mohring, 1972). In particular,
service frequency reduces travelers’ access and waiting costs. This so-called
‘Mohring-effect’ leads to economies of scale, implying the need for subsidies
to achieve the first-best solution in terms of welfare. Consequently, it may be
socially optimal to subsidize railway companies to reduce fares (Parry and
Small, 2009). To assess such a measure’s effectiveness on demand, policy-
makers would need to know how individuals respond to lower fares. However,
it is generally challenging to identify causal effects of discounts on train
tickets (or goods and services in general) due to confounding or selection. For
instance, discounts might typically be provided for dates or hours with low
train utilization such that connections with and without discount are not
comparable in terms of baseline demand. A naive comparison of sold tickets
with and without discount would therefore mix the influence of the discount
with that of baseline demand. In this context, we apply machine learning (a
subfield of artificial intelligence) to convincingly assess how discounts on train
tickets for long-distance connections in Switzerland, the so-called ‘supersaver
tickets’, affect demand by exploiting a unique data set of the Swiss Federal
Railways (SBB) that combines a survey of supersaver buyers with train
utilization records.

More concisely, our study provides two use cases of machine learning for
business analytics in the railway industry: (i) Predicting buying behavior
among supersaver customers, namely whether customers booked a trip other-
wise not realized by train (additional trip), bought a first-class rather than
a second-class ticket (upselling), or rescheduled their trip e.g. away from
rush hours (demand shift); (ii) analysing the causal effect of the discount on
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demand shifts among customers that would have booked the trip even without
a discount. This is feasible because our unique survey contains information on
how supersaver buyers would have decided in the absence of a discount, e.g.,
whether they are so-called ‘always buyers’ and would have booked the connec-
tion even at the regular fare. For both prediction and causal analysis, we make
use of appropriately tailored machine learning techniques, which learn the
associations between the demand outcomes of interest, the discount rate, and
further customer or trip-related characteristics in a data-driven way and helps
avoiding model misspecification. Such a targeted combination of predictive
and causal machine learning can therefore improve demand forecasting and
decision-making in companies and organizations. While predictive machine
learning permits optimizing forecasts about demand and customer behavior
as a function of observed characteristics, causal machine learning permits
evaluating the causal effect of specific interventions like a discount regime for
optimizing the offer of such discounts. Concerning the prediction task, we use
the so-called random forest, see Breiman (2001), as machine learner to forecast
the supersaver customers’ behavior and obtain accuracy or correct (out of
sample) classification rate of 58% (demand shift), 65% (additional trip), and
82% (upselling), respectively. Trip-related characteristics like seat capacity,
utilization, departure time, and the discount rate, but also customer’s age
turn out to be strong predictors.

Concerning the causal analysis (which is more challenging than mere
prediction), we impose (i) a selection-on-observables assumption implying
that the discount rate is as good as randomly assigned when controlling
for our rich set of trip- and demand-related characteristics and (ii) weak
monotonicity of any individual’s decision to purchase an additional trip
(otherwise not realized) in the discount rate, implying that a higher (rather
than lower) discount does either positively or not affect any customer’s buying
decision. As a methodological contribution, we formally show how these
assumptions permit tackling the selectivity of discount rates and survey
responses to identify the discount rate’s effect on demand shifts (rescheduling
away from rush hours) for the subgroup ‘always buyers’, based on the survey
information on how customers would have behaved in the absence of a discount.
Furthermore, we discuss testable implications of monotonicity, namely that
among all survey respondents, the share of additional trips must increase in
the discount rate, and the selection on observables assumptions, requiring that
conditional on trip- and demand-related characteristics, the discount must not
be associated with personal characteristics (like age or gender) among always
buyers. Hypothesis tests do not point to the violation of these implications.

Based on our causal identification strategy, we estimate the marginal effect
of slightly increasing the (continuously distributed) discount rate based on the
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causal forest (CF), see Wager and Athey (2018) and Athey, Tibshirani, and
Wager (2019), and find that on average, increasing the discount rate by one
percentage point increases the share of rescheduled trips by 0.16 percentage
points among always buyers. In a second approach, we binarize the discount
rates by splitting them into two discount categories of less than 30% (relative
to the regular fare) and 30% or more. Applying double machine learning
(DML), see Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey,
and Robins (2018), we find that discount rates of 30% and more on average
increase the share of rescheduled trips 3.6 percentage points, which is in line
with the CF-based results. Therefore, our paper provides the first empirical
evidence (at least for Switzerland) that such discounts can help balance out
train utilization across time and reduce overload during peak hours, albeit
the magnitude of the impact on always buyers appears limited.

When investigating the heterogeneity of effects across all of our observed
characteristics using the CF, our results suggest that demand-related trip
characteristics (like seat capacity, utilization, departure time, and distance)
have some predictive power for the size of the discounts’ impact on shifting
demand. Such information on heterogeneous effects appears interesting for
optimizing the allocation of discounts for the purpose of shifting demand, as the
SBB has (due to its monopoly in the Swiss long-distance passenger rail market)
agreed with the Swiss price monitoring agency to provide a fixed amount of
discounted tickets per year, but is free to chose the timing and connections
for discounts. In a second heterogeneity analysis, we investigate whether
effects differ systematically across a pre-selected set of characteristics, namely:
age, gender, possession of a half fare travel card, travel distance, whether
the purpose is business, commute, or leisure, and whether the departure
time is during peak hours. Using the regression approach of Semenova and
Chernozhukov (2020), we find that conditional on the other characteristics, the
effects of increasing the discount by one percentage point on rescheduling are
by more than 0.2 percentage points higher during peak hours and for leisure
travelers, differences that are statistically significant at the 10% level when,
however, not controlling for multiple hypothesis testing. These effects appear
plausible as leisure travelers are likely more flexible and discounts during
peak hours make trips at times of increased demand even more attractive.
We do not find statistically significant effect differences for the other pre-
selected characteristics, which could, however, be due to the (for the purpose
of investigating effect heterogeneity) limited sample of several thousand
observations.

Our paper is related to a growing literature applying statistical and
machine learning methods for analyzing transport systems, as well as to
methodological studies on causal inference for so-called principal strata, see
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Frangakis and Rubin (2002), i.e., endogenous subgroups like the always
buyers. Typically, it is hard to identify the causal effect of some treatment (or
intervention) like a discount on such a non-randomly selected subgroup defined
in terms of how a post-treatment variable (e.g. buying decision) depends on the
treatment (e.g. treatment). One approach is to give up on point identification
and instead derive upper and lower bounds on a set of possible effects for
groups alike the always buyers based on the aforementioned monotonicity
assumption (and possibly further assumptions about the ordering of outcomes
of always buyers and other individuals), see for instance Zhang and Rubin
(2003), Zhang, Rubin, and Mealli (2009), Imai (2008), Lee (2009), and Blanco,
Flores, and Flores-Lagunes (2011). Alternatively, the treatment effect on
always buyers is point-identified when invoking a selection-on-observables or
instrumental variable assumption for selection into the survey, see for instance
Huber (2014), which requires sufficiently rich data on both survey participants
and non-participants for modeling survey participation. In contrast to these
previous studies, the approach in this paper point-identifies the treatment
effect by exploiting the rather unique survey feature that customers were asked
about their behavior in the absence of the discount, which under monotonicity
permits identifying the principal stratum of always buyers directly in the
data.

Furthermore, our work is related to conceptual studies on transport sys-
tems, considering, for instance, the previously mentioned positive externalities
of an increased service for customers that are not accounted for by trans-
portation providers. Such externalities typically arise from economies of scale
due to fixed costs and a ’Mohring effect’, implying that service frequency
reduces waiting costs (Mohring, 1972). The study by Parry and Small (2009)
suggests that lower fares can boost overall welfare by increasing economies of
scale (off-peak) and decreasing pollution and accidents (at peaks). Similarly,
De Palma, Lindsey, and Monchambert (2017) argue that time-dependent
ticket prices may increase overall welfare as overcrowding during peak hours is
suboptimal for both consumers and providers. As public transport is usually
highly subsidized, governments may directly manage the trade-off mentioned
above. As this involves taxpayer money, it is a question of general interest
how the subsidies should be designed. Based on their results, Parry and Small
(2009) conclude that even substantial subsidies are justified due to lower
fares’ positive welfare effect. In contrast, Basso and Silva (2014) find that
the contribution of transit subsidies to welfare diminishes once congestion is
taxed and alternatives are available, i.e., bus lanes. Irrespective of the specific
policy instrument, the consumer’s willingness to shift demand drives these
policies’ effectiveness. While many factors affect this willingness, most studies
conclude that consumers are price sensitive (Paulley, Balcombe, Mackett,
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Titheridge, Preston, Wardman, Shires, and White, 2006). In this context, we
aim at contributing to a better understanding of how time-dependent pricing
translates to consumer decisions.

More broadly, our paper relates to the literature on policies targeting
demand shifts. Among these, the setting of car parking costs, fiscal regulations,
or even free public transport has been analyzed (e.g. Batty, Palacin, and
González-Gil, 2015, Rotaris and Danielis, 2014, Zhang, Lindsey, and Yang,
2018, De Witte, Macharis, Lannoy, Polain, Steenberghen, and Van de Walle,
2006). Another stream of literature applies machine learning algorithms in
the context of public transport. Examples are short-term traffic flow forecasts
for bus rapid transit (Liu and Chen, 2017) or metro (Liu, Liu, and Jia,
2019) services. Further, Hagenauer and Helbich (2017) and Omrani (2015)
implement machine learning algorithms to predict travel mode choices. Yap
and Cats (2020) predict disruptions and their passenger delay impacts for
public transport stops. In other research fields, also applications of causal
(rather than predictive) machine learning are on the rise (see for instance
Yang, Chuang, and Kuan, 2020, Knaus, 2021). This is, to the best of our
knowledge, the first study using causal machine learning in the context of
public transport. Finally, a growing literature discusses the opportunities of
data-driven business decision-making (Brynjolfsson and McElheran, 2016) by
assessing the relevance of predictive and causal machine learning. Ascarza
(2018) and Hünermund, Kaminski, and Schmitt (2021) show that companies
may gain by designing their policies based on causal machine learning. For
instance, firms can target the relevant consumers much more effectively when
accounting for their heterogeneity in terms of reaction to a treatment. Our
study provides a use case of how the machine learning-based assessment of
discounts could also be implemented in other businesses and industries facing
capacity constraints.

This paper proceeds as follows. Section 4.2 presents the institutional
setting of passenger railway transport in Switzerland. Section 4.3 describes our
data, coming from a unique combination of a customer survey and transport
utilization data. Section 4.4 discusses the identifying assumptions underlying
the causal machine learning approach as well as testable implications. Section
4.5 outlines the predictive and causal machine learning methods. Section 4.6
presents the empirical results. Section 4.7 concludes.

4.2 Institutional background

The railway system in Switzerland is known for its high quality of service.
Examples include the high level of system integration with frequent services,
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synchronized timetables, and comprehensive fare integration, see Desmaris
(2014). In Switzerland, a country of railway tradition, the state-owned
incumbent Swiss Federal Railways (SBB) operates the long distance passenger
rail market as monopolist (Thao, von Arx, and Frölicher, 2020). Furthermore,
nationally operating long-distance coaches may only be approved if they do
not ‘substantially’ compete with existing services. Thus, the SBB competes
exclusively with motorized private transport in Swiss long-distance traffic.
The company also owns most of the rail infrastructure, which the Federal
Government funds. However, since the end of 2020, the companies Berne-
Lötschberg-Simplon Railways (BLS) and Southeast Railways (SOB) operate
a few links on behalf of the SBB. Different to regional public transport that
Swiss taxpayers subsidize with approximately CHF 1.9 bn per year, the
operation of the long distance public transport itself has to be self-sustaining
(Wegelin, 2018).

Because of the monopoly position of the SBB in long distance passenger
transport, the prices are screened by the Swiss ‘price watchdog’ (or price
monitoring agency) to prevent abuse. Based on the price monitoring act,
the watchdog keeps a permanent eye on how prices and profits develop. By
the end of 2014, the watchdog concluded that the SBB charged too high
prices. As a consequence, and through a mutual agreement, the SBB and the
Swiss price watchdog agreed on a significantly higher supply of supersaver
tickets, which were first offered in 2009. Using a supersaver ticket, customers
can travel on long distance public transport routes with a discount of up
to 70%. Thereafter, additional agreements were regularly reached regarding
the number and scope of the supersaver tickets. While only a few thousand
supersaver tickets were sold in 2014, sales increased to about 8.8 million in
2019, see Lüscher (2020).

From the SBB’s perspective, these tickets can serve two purposes. First,
the tickets might be used as means to balance out the utilization of transport
services. For instance, supersaver tickets could reduce the high demand during
peak hours which is a key challenge for public transport. Thus, balancing the
demand may reduce delays and increase the number of free seats, which is
valued by the consumers. The average load of SBBs’ seats amounts to 30% in
the long distance passenger transport.1 For this reason, there is, in the literal
sense, room for improving the allocation. Second, price sensitive customers
can be acquired during off-peak hours at rather negligible marginal costs.

Despite the increasing interest in the supersaver tickets in recent years,
many users of the Switzerland public transport network purchase a so-called
‘general abonnement’ travel ticket (GA). This (annually renewed) subscription

1See https://reporting.sbb.ch/verkehr(assessed on March 24, 2021).
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provides free and unlimited access to the public transport network in Switzer-
land. In 2019, about 0.5 million individuals owned a GA in Switzerland,
roughly 6% of the Swiss population. The GA’s cost amounts to 3,860 and
6,300 Swiss francs for the second and first class, respectively. In the same
year, about 2.7 million individuals held a relatively cheap half fare travel
ticket amounting to 185 Swiss francs. The latter implies a price reduction of
50% for public transport tickets in Switzerland. Overall, discounts provided
through supersaver tickets are slightly lower for owners of half fare tickets,
as the SBB aims to attract non-regular public transport users. In our causal
analysis, we therefore also control for the possession of a half fare ticket.

4.3 Data

To investigate supersaver tickets’ effect, we use a unique cross-sectional data
set provided by the SBB. Our sample consists of randomly surveyed buyers
of supersaver tickets that purchased their tickets between January 2018 and
December 2019. These survey data are matched with data on distances
between any two railway stops as well as utilization-related information
relevant for the supply and calculation of discounts. In section 4.6, we provide
descriptive statistics for these data.

4.3.1 Survey data

The customer survey is our primary data source. It, for instance, includes the
outcome variable ‘demand shift’, a binary indicator of whether an interviewee
rescheduled her or his trip due to buying a supersaver ticket. ‘Yes’ means
that the departure time has been advanced or postponed because of the
discount. A second variable characterizing customer behavior is an indicator
for upselling, i.e., whether someone purchased a first rather than a second-
class ticket as a reaction to the discount. Another question asks whether an
interviewee would have bought the train trip in the same or a higher class even
without being offered a discount, which permits judging whether an additional
trip has been sold through offering the discount and allows identifying the
subgroup of always buyers under the assumptions outlined further below.
Our continuously distributed treatment variable is the discount rate of a
supersaver ticket relative to the standard fare, which may take positive values
of up to 70%.

Furthermore, we observe two kinds of covariates, namely trip- or demand-
related factors and personal characteristics of the interviewee. The former
are important control variables for our causal identification strategy outlined
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below and include the difference between the days of purchase and travel,
the weekday, month, and year, an indicator for buying a half fare ticket,
departure time, peak hour,2 number of tickets purchased per person, class
(first or second), indicators for leisure trips, commutes, or business trips, the
number of companions (by children and adults if any) and a judgment of
how complicated the ticket purchase was on a scale from 1 (complicated) to
10 (easy). Furthermore, it consists of indicators for the point of departure,
destination, and public holidays. The personal characteristics include age,
gender, migrant status, language (German, French, Italian), and indicators
for owning a half fare travel ticket or other subscriptions like those of regional
tariff associations, specific connections, and Gleis 7 (‘rail 7’). The latter is a
travelcard for young adults not older than 25, providing free access to public
transport after 7pm.

4.3.2 Factors driving the supply of supersaver tickets

In addition to the survey, we have access to factors determining the supply
of supersaver tickets with various discounts. This is crucial for our causal
analysis that hinges on controlling for all characteristics jointly affecting the
discount rate and the demand shift outcome. While the information on the
distances between railway stops in Switzerland is publicly available,3 the
SBB provides us for the various connections with information on utilization
data, the number of offered seats, and contingency schemes, which define the
quantity of offered discounts. This allows us to account for travel distance,
offered seats, capacity utilization, and quantities of offered supersaver tickets
for various discount levels, as well as quantities of supersaver tickets already
sold (both quantities at the time of purchase). Furthermore, we create binary
indicators for the 27 different contingency schemes of the SBB present in our
data, which change approximately every month.

The variables listed in the previous paragraph are important, as the SBB
calculates the supply of supersaver tickets based on an algorithm considering
four types of inputs: Demand forecasts, advance booking deadlines, number
of supersaver tickets already sold, and contingency schemes defining the
amount and the size of offered discounts based on the three previous inputs.

2Peak hour is defined as a departure time between 6am and 8:59am or between 4pm and
18:59pm, from Monday to Friday. These time windows are chosen on the base of the SBB’s
train-path prices. For further details, see https://company.sbb.ch/en/sbb-as-business-
partner/services-rus/onestopshop/services-and-prices/the-train-path-price.html (assessed
on March 24 2021).

3See the Open Data Platform of the SBB: https://data.sbb.ch/explore/dataset/linie-
mitbetriebspunkte (accessed on March 24, 2021).
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The schemes are set as a function of the SBB’s self-imposed goals, such as
customer satisfaction but also depend on the requirements imposed by the
price watchdog. The algorithm calculates a journey’s final discount as a
weighted average of all discounts between any two adjacent railway stops
along a journey. The weights depend on the distances of the respective
subsections of the trip. To approximate the (not directly available) demand
forecasts of the SBB, we consider the quarterly average of capacity utilization
and the number of offered seats for any two stops, which are available by
(exact) departure time, workday, class, and weekend. In addition, we make
use of indicators for place of departure, destination, month, year, weekday,
and public holidays. We use this information to reconstruct the amount
and size of offered discounts by taking values from the contingency schemes
that correspond to our demand forecast approximation combined with the
difference between buying and travel days. Comparing this amount and
size of offered discounts with a buyer’s discount, we estimate the number of
supersaver tickets already sold for the exact date of purchase.

4.3.3 Sample construction

Our initial sample contains 12,966 long-distance train trips that cover 61,469
sections between two adjacent stops. For 12.2% of these sections, there is
no information on the capacity utilization available, which can be due to
various reasons. First, for some cases, capacity utilization data is missing.
Second, passengers traveling long-distance may switch to regional transport
in exceptional cases causing problems for determining utilization. A further
reason could be issues in data processing. Altogether, missing information
occurs in 3,967 trips of our initial sample. We tackle this problem by dropping
all journeys with more than 50% of missing information, which is the case
for 320 trips or 2.5% of our initial sample. After this step, our evaluation
sample consists of 12,646 trips. For the remaining 3,647 trips with missing
information (which now account for a maximum of 50% of all sections of
a journey), we impute capacity utilization as the average of the remaining
sections of a trip. In our empirical analysis, we include an indicator for
whether some trip information has been imputed as well as the share of
imputed values for a specific trip as control variables. Finally, we note that
our causal analysis makes (in contrast to the predictive analysis) only use of
a subsample, namely observations identified as always buyers who would have
traveled even without a discount, all in all, 6,112 observations.
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4.4 Identification

We subsequently formally discuss the identification strategy and assumptions
underlying our causal analysis of the discounts among always buyers.

4.4.1 Definition of causal effects

Let D denote the continuously distributed treatment ‘discount rate’ and Y
the outcome ‘demand shift’, a binary indicator for rescheduling a trip due
to being offered a discount. More generally, capital letters represent random
variables in our framework, while lower case letters represent specific values
of these variables. To define the treatment effects of interest, we make use
of the potential outcome framework, see for instance Rubin (1974). To this
end, Y(d) denotes the potential outcome hypothetically realized when the
treatment is set to a specific value d in the interval [0, Q], with 0 indicating
no discount and Q indicating the maximum possible discount. For instance,
Q = 0.7 would imply the maximum discount of 70% of a regular ticket
fare. The realized outcome corresponds to the potential outcome under the
treatment actually received, i.e. Y = Y(D), while the potential outcomes
under discounts different to one received remain unknown without further
statistical assumptions.

A further complication for causal inference is that our survey data only
consists of individuals that purchased a supersaver ticket, a decision that is
itself an outcome of the treatment, i.e. the size of the discount. Denoting
by S a binary indicator for purchasing a supersaver ticket and by S(d) the
potential buying decision under discount rate d, this implies that we only
observe outcomes Y for individuals with S = 1. In general, making the survey
conditional on buying introduces Heckman-type sample selection (or collider)
bias, see Heckman (1976) and Heckman (1979), if unobserved characteristics
affecting the buying decision S also likely affect the inclination of shifting
the timing of the train journey Y. Furthermore, it is worth noting that
S = S(D) implies that buying a supersaver ticket is conditional on receiving
a non-zero discount. For this reason, non-treated subjects paying regular
fares (with D = 0) are not observed in our data. Yet, the outcome in our
sample is defined relative to the behavior without treatment, as Y indicates
whether a has passenger has changed the timing of the trip because of a
discount. This implies that Y(0) = 0 by definition, such that the causal
effect of some positive discount d vs. no discount is Y(d)− Y(0) = Y(d) is
directly observable among observations that actually received d. However,
it also appears interesting to investigate whether the demand shift effect
varies across different (non-zero) discount rates d ∈ (0, Q] to see whether
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the size matters. This is complicated by the fact that supersaver customers
with different discount rates that are observed in our data might in general
differ importantly in terms of background characteristics also affecting the
outcome, exactly because they bought their trip and were selected into the
survey under non-comparable discount regimes. Our causal approach aims at
tackling exactly this issue to establish customer groups that are comparable
across discount rates in order to identify the effect of the latter.

Based on the potential notation, we can define different causal parameters
of interest. For instance, the average treatment effect (ATE) of providing
discount levels d vs. d′ (for d 6= d′) on outcome Y, denoted by ∆(d, d′),
corresponds to

∆(d, d′) = E[Y(d)−Y(d′)]. (4.4.1)

Furthermore, the average partial effect (APE) of marginally increasing the
discount level at D = d, denoted by θ(d), is defined as

θ(d) = E
[

∂Y(D)

∂D

]
. (4.4.2)

Accordingly, θ(D) corresponds to the APE when marginally increasing the
actually received discount of any individual (rather than imposing some
hypothetical value d for everyone).

The identification of these causal parameters based on observable infor-
mation requires rather strong assumptions. First, it implies that confounders
jointly affecting D and Y can be controlled for by conditioning on observed
characteristics. In our context, this appears plausible, as treatment assignment
is based on variables related to demand (like weekdays or month), contingency
schemes, capacity utilization, and supersaver tickets already sold - all of which
is available in our data, as described in section (4.3). Second, identification
requires that selection S is as good as random (i.e., not associated with out-
come Y) given the observed characteristics and the treatment, an assumption
known as missing at random (MAR), see for instance Rubin (1976) and
Little and Rubin (1987). However, the latter condition appears unrealistic
in our framework, as our data lack important socio-economic characteristics
likely affecting preferences and reservation prices for public transport, namely
education, wealth, or income. For this reason, we argue that the ATE and
APE among the individuals selected for the survey (S = 1), i.e. conditional
on buying a supersaver ticket, which are defined as

∆S=1(d, d′) = E[Y(d)−Y(d′)|S = 1], θS=1(D) = E
[

∂Y(D)

∂D

]
, (4.4.3)
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cannot be plausibly identified either. The reason is that if an increase in the
discount rate induces some customers to buy a super saver ticket, then buyers
with lower and higher discounts will generally differ in terms of their average
reservation prices and related characteristics (as education or income), which
likely also affect the demand-shift outcome Y.

To tackle this sample selection issue, we exploit the fact that our data
provide information on whether the supersaver customers would have pur-
chased a ticket for this specific train trip also in the absence of any discount.
Provided that the interviewees give accurate responses, we thus have infor-
mation on S(0), the hypothetical buying decision without treatment. Under
the assumption that each customer’s buying decision is weakly monotonic in
the treatment in the sense that anyone purchasing a trip in a specific travel
class (e.g., second class) without discount would also buy it for that class
in the case of any positive discount, this permits identifying the group of
always buyers. Importantly, we therefore define always buyers as those that
would buy the trip not in a lower travel class (namely second rather than
first class) without discount. For alway buyers, S(0) = S(d) = 1 for any
d > 0, such that their buying decision is always one and thus not affected
by the treatment, implying the absence of the selection problem. In the
denomination of Frangakis and Rubin (2002), the always buyers constitute a
so-called principal stratum, i.e., a subpopulation defined in terms of how the
selection reacts to different treatment intensities. Therefore, sample selection
bias does not occur within such a stratum, in which selection behavior is by
definition homogeneous. For this reason, we aim at identifying the ATE and
APE on the always buyers:

∆S(0)=1(d, d′) = E[Y(d)−Y(d′)|S(0) = 1]

= E[Y(d)−Y(d′)|S(0) = S(d′′) = 1] for d′′ ∈ (0, Q],

θS(0)=1(D) = E
[

∂Y(D)

∂D

∣∣∣S(0) = 1
]

= E
[

∂Y(D)

∂D

∣∣∣|S(0) = S(d′′) = 1
]

(4.4.4)

where the second equality follows from the monotonicity of S in D that is
formalized further below.

Figure 4.4.1 provides a graphical illustration of our causal framework
based on a directed acyclic graph, with arrows representing causal effects.
Observed covariates X that are related to demand are allowed to jointly affect
the discount rate D and the demand-shift outcome Y. X may influence the
potential purchasing decision under a hypothetical treatment S(d), implying
that buying a ticket given a specific discount depends on observed demand
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Figure 4.4.1: Causal framework

drivers like weekday, month, etc. Furthermore, unobserved socio-economic
characteristics V (like the reservation price) likely affect both S(d) and
Y. This introduces sample selection when conditioning on S, e.g. by only
considering survey respondents (S = 1). We also note that S is deterministic
in D and S(d) (as S = S(D)), even when controlling for X. This is the
case because conditional on S = 1, D is associated with V, which also
affects Y, thus entailing confounding of the treatment-outcome relation. A
reason for this is for instance that buyers under higher and lower discounts
are generally not comparable in terms of their reservation prices. In the
terminology of Pearl (2000), S is a collider that opens up a backdoor path
between D and Y through V. Theoretically, this could be tackled by jointly
conditioning on the potential selection states under treatment values d vs.
d′ considered in the causal analysis, namely S(d), S(d′), as controls for the
selection behavior. This is typically not feasible in empirical applications when
only the potential selection corresponding to the actual treatment assignment
is observed, S = S(D). In our application, however, we do have information
on S(0) and can thus condition on being an always buyer under the mentioned
monotonicity assumption.

4.4.2 Identifying assumptions

We now formally introduce the identification assumptions underlying our
causal analysis.

Assumption 1 (identifiability of selection under non-treatment):
S(0), is known for all subjects with S = 1.
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Assumption 1 is satisfied in our data in the absence of misreporting, as
subjects have been asked whether they would have bought the train trip even
in the absence of discount.

Assumption 2 (conditional independence of the treatment):
Y(d), S(d)⊥D|X for all d ∈ (0, Q].

By Assumption 2, there are no unobservables jointly affecting the treatment
assignment on the one hand and the potential outcomes or selection states
under any positive treatment value on the other hand conditional on covariates
X. This assumption is satisfied if the treatment is quasi-random conditional
on our demand-related factors X. Note that the assumption also implies that
Y(d)⊥D|X, S(0) = 1 for all d ∈ (1, Q].

Assumption 3 (weak monotonicity of selection in the treatment):
Pr(S(d) ≥ S(d′)|X) = 1 for all d > d′ and d, d′ ∈ (1, Q].

By Assumption 3, selection is weakly monotonic in the treatment, implying
that a higher treatment state can never decrease selection for any individual.
In our context, this means that a higher discount cannot induce a customer
to not buy a ticket that would have been purchased under a lower discount.
An analogous assumption has been made in the context of nonparametric
instrumental variable models, see Imbens and Angrist (1994) and Angrist,
Imbens, and Rubin (1996), where, however, it is the treatment that is assumed
to be monotonic in its instrument. Note that monotonicity implies the testable
implication that E[S− S(0)|X, S = 1, D = d] = E[(1− S(0)|X, S = 1, D =
d] weakly increases in treatment value d. In words, the share of customers
that bought the ticket because of the discount must increase in the discount
rate in our survey population when controlling for X.

Assumption 4 (common support):
f (d|X, S(0) = 1) > 0 for all d ∈ (1, Q].

Assumption 4 is a common support restriction requiring that f (d|X, S(0) = 1),
the conditional density of receiving a specific treatment intensity d given X and
S(0) = 1 (or conditional probability if the treatment takes discrete values),
henceforth referred to as treatment propensity score, is larger than zero among
always buyers for the treatment doses to be evaluated. This implies that the
demand-related covariates X do not deterministically affect the discount rate
received such that there exists variation in the rates conditional on X.

Our assumptions permit identifying the conditional ATE given X (CATE),
denoted by ∆X,S(0)=1(d, d′) = E[Y(d)− Y(d′)|X, S(0) = 1] for d 6= d′ and
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d, d′ ∈ (1, Q]. To see this, note that

∆X,S(0)=1(d, d′) = E[Y|D = d, X, S(0) = 1]− E[Y|D = d′, X, S(0) = 1],

= E[Y|D = d, X, S(0) = 1, S = 1]

− E[Y|D = d′, X, S(0) = 1, S = 1], (4.4.5)

where the first equality follows from Assumption 2 and the second from
Assumption 3, as monotonicity implies that asymptotically, S = 1 if S(0) = 1.
Together with Assumption 1, which postulates the identifiability of S(0), it
follows that the causal effect on always buyers is nonparametrically identified,
given that common support (Assumption 4) holds. If follows that the ATE
among always buyers is identified by averaging over the distribution of X
given S(0) = 1, S = 1:

∆S(0)=1(d, d′) = E[E[Y|D = d, X, S(0) = 1, S = 1]

−E[Y|D = d′, X, S(0) = 1, S = 1]|S(0) = 1, S = 1]. (4.4.6)

Furthermore, considering (4.4.5) and letting d− d′ → 0 identifies the condi-
tional average partial effect (CAPE) of marginally increasing the treatment at

D = d given X, S(0) = 1, denoted by θX,S(0)=1(D) = E
[

∂Y(D)
∂D

∣∣∣|X, S(0) = 1
]
:

θX,S(0)=1(d) = ∂E[Y|D=d,X,S(0)=1,S=1]
∂D . (4.4.7)

Accordingly, the APE among always buyers that averages over the distribu-
tions of X and D is identified by

θS(0)=1(D) = E
[

∂E[Y|D,X,S(0)=1,S=1]
∂D

]
. (4.4.8)

Our identifying assumptions yield a testable implication if some personal
characteristics (like customer’s age) that affect S(d) are observed, which
we henceforth denote by W. In fact, D must be statistically independent
of W conditional on X, S(0) = 1, S = 1 if X is sufficient for avoiding any
cofounding of the treatment-outcome relation. To see this, note that personal
characteristics must by Assumption 2 not influence the treatment decision
conditional on X. This statistical independence must also hold within sub-
groups (or principal strata) in which sample selection behavior (and thus
sample selection/collider bias) is controlled for like the always buyers, i.e.
conditional on S(d), S = 1.

4.5 Estimation based on machine learning

In this section, we outline the predictive and causal machine learning ap-
proaches used in our empirical analysis of the evaluation sample.
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4.5.1 Predictive machine learning

Let i ∈ {1, ...., n} be an index for the different interviewees in our sample
of size n and {Yi, Di, Xi, Wi, Si(0)} denote the outcome, treatment, the co-
variates related to the treatment and the outcome, the observed personal
characteristics, and the buying decision without discount of these interviewees
that by the sampling design all satisfy Si = 1 (because they are part of the
survey). Therefore, Yi represents customer i’s demand shift (rescheduling
behavior) under customer i’s received discount rate Di relative to no discount.
We in a first step investigate which observed predictors among the covariates
X, W as well as the size of the discount D are most powerful for predict-
ing demand shifts by machine learning algorithms. We point out that this
analysis is of descriptive nature as it does not yield the causal effects of the
various predictors, but merely their capability of forecasting Y. In particular,
our approach averages the predictions of Y over different levels of treatment
intensity D and thus different customer types in terms of reservation price
(related to S(0)) and unobserved background characteristics that likely vary
with the treatment level.

Therefore, we also perform the prediction analysis within subgroups defined
upon the treatment level to see whether the set of important predictors is
affected by the treatment intensity. To this end, we binarize the treatment
such that it consists of two categories, namely (non-zero) discounts below
30%, i.e. covering the treatment range d ∈ (0, 0.3), and more substantial
discounts of 30% and more, d ∈ [0.3, 0.7], as 70% is the highest discount
observed in our data. In the same manner, we also assess the predictive power
when considering the decision to buy a trip that would not have been realized
without discount (additional trip), i.e. Si − Si(0), as outcome. As Si = 1 is
equal to one for everyone, the outcome corresponds to 1− Si(0) and indicates
whether someone has been induced purchase the ticket because of the discount,
i.e. is not an always buyer. As a further consumer behavior-related outcome
to be predicted, we also consider buying a first-class rather than second-class
ticket because of the discount (upselling).

Prediction is based on the random forest, a nonparametric machine learner
suggested by Breiman (2001) for predicting outcomes as a function of covari-
ates. Random forests rely on repeatedly drawing subsamples from the original
data and averaging over the predictions in each subsample obtained by a
decision tree, see Breiman, Friedman, Olshen, and Stone (1984). The idea of
decision trees is to recursively split the covariate space, i.e. the set of possible
values of X, W, into a number of non-overlapping subsets (or nodes). Recursive
splitting is performed such that after each split, a statistical goodness-of-fit
criterion like the sum of squared residuals, i.e. the difference between the
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outcome and the subset-specific average outcome, is minimized across the
newly created subsets. Intuitively, this can be thought of as a regression
of the outcome on a data-driven choice of indicator functions for specific
(brackets of) covariate values. At each split of a specific tree, only a random
subset of covariates is chosen as potential variables for splitting in order to
reduce the correlation of tree structures across subsamples, which together
with averaging predictions overall subsamples reduces the estimation variance
of the random forest when compared to running a single tree in the original
data. Even when using an excessive number of splits (or indicator functions
for covariate values) such that some of them do not importantly predict the
outcome, averaging over many samples will cancel out those non-predictive
splits that are only due to sampling noise. Forest-based predictions can be
represented by smooth weighting functions that bear some resemblance with
kernel regression, with the important difference that random forests detect
predictive covariates in a data-driven way. We use the randomforest package
by Liaw and Wiener (2018) for the statistical software R to implement the
random forest based on growing 1,000 decision trees.

4.5.2 Causal machine learning

Our second part of the analysis assesses the causal effect of increasing discount
rates on demand shifts among always buyers while controlling for the selection
into the survey and the non-random assignment of the treatment based on
Assumptions 1 to 4 of section 4.4. We apply the causal forest (CF) approach
of Wager and Athey (2018), and Athey, Tibshirani, and Wager (2019) to
estimate the CAPE and APE of the continuous treatment, as well as the
double machine learning (DML) approach of Chernozhukov, Chetverikov,
Demirer, Duflo, Hansen, Newey, and Robins (2018) to estimate the ATE of
a binary treatment of a discount ≥ 30% vs. < 30% in the sample of always
buyers.

The CF adapts the random forest to the purpose of causal inference. It
is based on first running separate random forests for predicting the outcome
Y and the treatment D as a function of the covariates X using leave-one-
out cross-fitting. The latter implies that the outcome or treatment of each
observation is predicted based on all observations in the data but its own, in
order to safeguard against overfitting bias. Second, the predictions are used
for computing residuals of the outcomes and treatments, in which the influence
of X has been partialled out. Finally, a further random forest is applied to
average over so-called causal trees, see Athey and Imbens (2016), in order to
estimate the CAPE. The causal tree approach contains two key modifications
when compared to standard decision trees. First, instead of an outcome



4.5. Estimation based on machine learning 149

variable, it is the coefficient of regressing the residual of Y on the residual
of D, i.e. the causal effect estimate of the treatment, that is to be predicted.
Recursive splitting aims to find the largest effect heterogeneities across subsets
defined in terms of X to estimate the CAPE accurately. Secondly, within each
subset, different parts of the data are used for estimating (a) the tree’s splitting
structure (i.e., the definition of covariate indicator functions) and (b) the
causal effect of the treatment to prevent spuriously large effect heterogeneities
due to overfitting.

The CAPE estimate obtained by CF can be thought of as a weighted
regression of the outcome residual on the treatment residual. The random
forest-determined weight reflects the importance of a sample observation for
assessing the causal effect at specific values of the covariates. After estimating
the CAPE given X, the APE is obtained by appropriately averaging over the
distribution of X among the always buyers. For implementing CAPE and APE
estimation, we use the grf package by Tibshirani, Athey, Friedberg, Hadad,
Hirshberg, Miner, Sverdrup, Wager, and Wright (2020) for the statistical
software R. We set the number of trees to be used in a forest to 1000. We select
any other tuning parameters like the number of randomly chosen covariates
considered for splitting or the minimum number of observations per subset
(or node) by the built-in cross-validation procedure.

We also estimate the ATE among always buyers in our sample based on
DML for a binary treatment defined as D̃ = I{D ≥ 0.3}, with I{·} denoting
the indicator function that is equal to one if its argument is satisfied and zero
otherwise. Furthermore, let µd(X) = E[Y|D̃ = d, X, S(0) = 1, S = 1] denote
the conditional mean outcome and pd(X) = Pr(D̃ = d|X, S(0) = 1, S = 1)
the propensity score of receiving treatment category d (with d = 1 for a
discount ≥ 30% and d = 0 otherwise) in that population. Estimation is
based on the sample analog of the doubly robust identification expression for
the ATE, see Robins, Rotnitzky, and Zhao (1994) and Robins and Rotnitzky
(1995):

∆S(0)=1(1, 0) = E
[

µ1(X)− µ0(X) +
(Y− µ1(X)) · D̃

p1(X)
(4.5.1)

− (Y− µ0(X)) · (1− D̃)

p0(X)

∣∣S(0) = 1, S = 1
]

.

We estimate (4.5.1) using the causalweight package for the statistical software
R by Bodory and Huber (2018). As machine learners for the conditional mean
outcomes µD(X) and the propensity scores pD(X) we use the random forest
with the default options of the SuperLearner package of van der Laan, Polley,
and Hubbard (2008), which itself imports the ranger package by Wright and
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Ziegler (2017) for random forests. To impose common support in the data
used for ATE estimation, we apply trimming threshold of 0.01, implying that
we drop observations with estimated propensity scores smaller than 0.01 (or
1%) and larger than 0.99 (or 99%) from our sample.

4.6 Empirical results

4.6.1 Descriptive statistics

Before discussing the results of our machine learning approaches, we first
present some descriptive statistics for our data in Table 4.1, namely the mean
and the standard deviation of selected variables by always buyer status and
binary discount category (≥ 30% and < 30%). We see that discounts and
regular ticket fares of always buyers are on average lower than those of other
customers. Another interesting observation is that in either discount category,
we observe less leisure travelers among the always buyers than among other
customers, which can be rationalized by business travelers responding less
to price incentives by discounts. This is also in line with the finding that
always buyers tend to purchase more second-class tickets. More generally,
we see non-negligible variation in demand-related covariates across the four
subsamples defined in terms of buying behavior and discount rates. For
instance, among always buyers, the total amount of supersaver tickets offered
is on average larger in the higher discount category, while it is lower among
the remaining clients. This suggests that neither the treatment nor being
an always buyer is quasi-random, a problem we aim to tackle based on our
identification strategy outlined in section 4.4. Concerning the demand-shift
outcome, we see that always buyers change the departure time less frequently
than others. With regard to upselling,we recognise that the relative amount
of individuals upgrading their second-class to a first-class ticket is the same
for both discount categories, i.e. ≥ 30% and < 30%.

4.6.2 Predicting buying decisions

We subsequently present our predictive analysis based on the random forest
and investigate which covariates importantly predict three outcomes, namely
whether customers booked a trip otherwise not realized by train (additional
trip), bought a first-class rather than a second-class ticket (upselling), or
rescheduled their trip e.g. away from rush hours (demand shift). For this
purpose, we create three distinct datasets in which the values of the respective
binary outcome are balanced, i.e. 1 (for instance, upselling) for 50% and 0
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(no upselling) for 50% of the observations. We balance our data because
we aim to train a model that predicts both outcome values equally well.
Taking the demand shift outcome as an example, our data with non-missing
covariate or outcome information contain 3481 observations with Y = 1 and
9576 observations with Y = 0. We retain all observations with Y = 1 and
randomly draw 3481 observations with Y = 0 to obtain such a balanced
data set. In the next step, we randomly split these 6962 observations into a
training set consisting of 75% of the data and a test set (25%). In the training
set, we train the random forest using the treatment D and all covariates X, W
as predictors. In the test set, we predict the outcomes based on the trained
forest, classifying e.g. observations with a demand shift probability ≥ 0.5 as
1. We then compare the predictions to the actually observed outcomes to
assess model performance based on the correct classification rate (also known
as accuracy), i.e. the share of observations in the test data for which the
predicted outcome corresponds to the actual one.

For each of the outcomes, Table 4.2 presents the 30 most predictive
covariates in the training set ordered in decreasing order according to a
variable importance measure. The latter is defined as the total decrease in
the Gini index (as a measure of node impurity in terms of outcome values)
in a tree when including the respective covariate for splitting, averaged over
all trees in the forest. The results suggest that trip- and demand-related
characteristics like seat capacity, utilization, departure time, and distance are
important predictors. Concerning personal characteristics, also customer’s
age appears to be relevant. Furthermore, also the treatment intensity D has
considerable predictive power. Interestingly, specific connections (defined by
indicators for points of departure and destination) turn out to be less important
characteristics conditional on the other covariates already mentioned.

At the bottom of Table 4.2 we also report the correct classification rates
for the three outcomes. While the accuracy in predicting a demand shift
amounts to 58%, which is somewhat better than random guessing but not
particularly impressive, the performance is more satisfactory for predicting
decisions about additional trips with an accuracy of 65% and quite decent
for upselling (82%). We note that when predicting upselling, we drop the
variables ‘class’, which indicates whether someone travels in the first or second
class, and ‘seat capacity’, which refers to the capacity in the chosen class,
from the predictors. The reason is that upselling is defined as switching
from second to first class, and therefore, the chosen class and the related
seat capacities are actually part of the outcome to be predicted. Tables 4.8
and 4.7 in the Appendix present the predictive outcome analysis separately
for subsamples with discounts ≥ 30% and < 30%, respectively. In terms
of which classes of variables are most predictive (trip- and demand-related
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characteristics, age, discount rate) and also in terms of accuracy, the findings
are rather similar to those in Table 4.2. In general, machine learning appears
useful for forecasting customer behavior in the context of demand for train
trips, albeit not equally well for all aspects of interest. Such forecasts may
for instance serve as a base for customer segmentation, e.g. into customer
groups more and less inclined to book an additional trip or switch classes or
departure times.



4.6. Empirical results 153

Table 4.1: Mean and standard deviation by discount and type

discount < 30% ≥ 30%

always buyers No Yes No Yes

discount 0.21 0.19 0.57 0.53

(0.07) (0.08) (0.12) (0.13)

regular ticket fare 44.36 36.14 47.19 32.91

(29.38) (25.47) (30.14) (23.78)

age 47.22 47.68 45.59 48.77

(15.36) (16.14) (15.80) (16.49)

gender 0.51 0.55 0.53 0.59

(0.50) (0.50) (0.50) (0.49)

diff. purchase travel 3.42 3.23 7.72 7.19

( 6.96) ( 6.76) (11.23) (10.30)

distance 136.49 127.86 126.15 116.76

(77.38) (71.49) (69.98) (66.04)

capacity utilization 35.51 39.19 26.46 33.15

(14.16) (14.31) (13.24) (13.75)

seat capacity 328.28 429.57 303.83 445.14

(196.19) (196.10) (185.42) (188.54)

offer total 33.95 44.10 70.97 98.34

(42.57) (50.68) (69.57) (84.45)

sold total 28.04 37.29 13.70 25.75

(41.92) (50.31) (36.37) (53.67)

half fare travel ticket 0.74 0.79 0.62 0.74

(0.44) (0.40) (0.49) (0.44)

leisure 0.77 0.69 0.82 0.76

(0.42) (0.46) (0.39) (0.43)

class 1.38 1.65 1.33 1.73

(0.48) (0.48) (0.47) (0.44)

Swiss 0.89 0.92 0.88 0.88

(0.31) (0.28) (0.33) (0.32)

demand shift 0.31 0.19 0.31 0.23

(0.46) (0.40) (0.46) (0.42)

upselling 0.49 0.00 0.49 0.00

(0.50) (0.00) (0.50) (0.00)

obs. 1151 2221 5529 3745

Notes: Regular ticket fare is in Swiss francs. ‘diff. purchase travel’ denotes the difference
between purchase and travel day. ‘Offer total’ and ‘sold total’ denote the total amount of
supersaver tickets offered and the total amount of supersaver tickets sold respectively.
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4.6.3 Testing the identification strategy

Before presenting the results for the causal analysis, we consider two different
methods to partially test the assumptions underlying our identification strat-
egy. First, we test Assumption 3 (weak monotonicity) by running the CF and
DML procedures as well as a conventional OLS regression in which we use buy-
ing an additional trip (1− S(0)), i.e. not being an always buyer, as outcome
variable and X as control variables in our sample of supersaver customers.
The CF permits estimating the conditional change in the share of surveyed
customers induced to buy an additional trip by modifying the discount rate D
given X, i.e.

∂E[(1−S(0))|D,X,S=1]
∂D , as well as the average thereof across X condi-

tional on sample selection, E
[

∂E[(1−S(0))|D,X,S=1]
∂D

∣∣∣S = 1
]
. DML, on the other

hand, yields an estimate of the average difference in the share of additional trips
across the high and low treatment categories conditional on sample selection,
E[E[(1− S(0))|D < 0.3, X, S = 1]− E[(1− S(0))|D ≥ 0.3, X, S = 1]|S = 1].
Finally, the OLS regression of (1− S(0)) on D and all X in our sample tests
monotonicity when assuming a linear model.

Table 4.3 reports the results that do not provide any evidence against the
monotonicity assumption. When considering the continuous treatment D,

the CF-based estimate of E
[

∂E[(1−S(0))|D,X,S=1]
∂D

∣∣∣S = 1
]

is highly statistically

significant and suggests that augmenting the discount by one percentage
point increases the share of customers otherwise not buying the ticket by 0.56
percentage points on average. Furthermore, any estimates of the conditional

change
∂E[(1−S(0))|D,X,S=1]

∂D are positive, as displayed in the histogram of Figure
4.6.1, and 82.2% of them are statistically significant at the 10% level, 69.1%
at the 5% level. Furthermore, the OLS coefficient of 0.544 is highly significant.
Likewise, the statistically significant DML estimate points to an increase in
the share of additional trips by 18.4 percentage points when switching the
binary treatment indicator from D < 0.3 to D ≥ 0.3.

We also test the statistical independence of D and W conditional on X in
our sample of always buyers, as implied by our identifying assumptions, see
the discussion at the end of section 4.4. To this end, we randomly split the
evaluation data into a training set (25% of observations) and a test set (75%
of all observations). In the training data set, we run a linear lasso regression
(Tibshirani, 1996) of D on X in order to identify important predictors by
means of 10-fold cross-validation. In the next step, we select all covariates
in X with non-zero lasso coefficients and run an OLS regression of D on the
selected covariates in the test data. Finally, we add W to that regression in
the test data and run a Wald test to compare the predictive power of the
models with and without W. We repeat the procedure of splitting the data,
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Table 4.3: Monotonicity tests

CF: av. change OLS: coef. DML: D ≥ 0.3 vs D < 0.3
change in (1− S(0)) 0.564 0.544 0.184

standard error 0.060 0.031 0.009

p-value 0.000 0.000 0.000

trimmed observations 1760

number of observations 12924

Notes: ‘CF’, ‘OLS’, and ‘DML’ stands for estimates based on causal forests, linear
regression, and double machine learning, respectively. ‘trimmed observations’ is the number
of trimmed observations in DML when setting the propensity score-based trimming threshold
to 0.01. Control variables consist of X.

Figure 4.6.1: Monotonicity given X

performing the lasso regression in the training set, and running the OLS
regressions and the Wald test in the test set 100 times. This yields an average
p-value of 0.226, with 15 out of 100 p-values being smaller than 5%. These
results do not provide compelling statistical evidence that W is associated
with D conditional on X, even though the training sample is relatively small
and thus favors selecting too few predictors in X (due to the cross-validation
that trades off bias due to including fewer predictors and variance due to
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including more predictors).
We note that performing lasso-based variable selection and OLS-based

testing in different (training and test) data avoids correlations of these steps
that could entail an overestimation of the goodness of fit. Nonetheless, our
findings remain qualitatively unchanged when performing both steps in all of
the evaluation data. Repeating the cross-validation step for the lasso-based
covariate selection 100 times and testing in the total sample yields an even
higher average p-value of 0.360. Finally, we run a standard OLS regression of
D on all elements of X (rather than selecting the important ones by lasso) in
the total sample and compare its predictive power to a model additionally
including W. Also in this case, the Wald test entails a rather high p-value of
0.343. In summary, we conclude that our tests do not point to the violation
of our identifying assumptions.

4.6.4 Assessing the causal effect of discounts

Table 4.4 presents the main results of our causal analysis, namely the estimates
of the discount rate’s effect on the demand shift outcome, which is equal
to one if the discount induced rescheduling the departure time and zero
otherwise. We note that all covariates, i.e. both the trip- or demand-related
factors X and the personal characteristics W, are used as control variables,
even though we have previously claimed that X is sufficient for identification.
There are, however, good reasons for including W as well in the estimations.
First, conditioning on the personal characteristics available in the data may
reduce estimation bias if X is - contrarily to our assumptions and to what
our tests suggest - not fully sufficient to account for confounding. Second, it
can also reduce the variance of the estimator, e.g. if some factors like age are
strong predictors of the outcome. Third, having W in the CF allows for a
more fine-grained analysis of effect heterogeneity based on computing more
‘individualized’ partial effects that (also) vary across personal characteristics.

Considering the estimates of the CF, we obtain an average partial effect
(APE) of 0.161, suggesting that increasing the current discount rate among
always buyers by one percentage point increases the share of rescheduled trips
by 0.16 percentage points. This effect is statistically significant at the 5%
level. As a word of caution, however, we point out that the standard error is
non-negligible such that the magnitude of the impact is not very precisely
estimated. When applying DML, we obtain an average treatment effect
(ATE) of 0.038 that is significant at the 1% level, suggesting that discounts
of 30% and more on average increase the number of demand shifts by 3.8
percentage points compared to lower discounts, which is qualitatively in line
with the CF. Furthermore, we find a decent overlap or common support in



158 Business analytics meets artificial intelligence

Table 4.4: Effects on demand shift

CF: APE DML: ATE D ≥ 0.3 vs D < 0.3
effect 0.161 0.038

standard error 0.072 0.010

p-value 0.025 0.000

trimmed observations 151

number of observations 5903

Notes: ‘CF’ and ‘DML’ stands for estimates based on causal forests, linear regression, and
double machine learning, respectively. ‘trimmed observations’ is the number of trimmed
observations in DML when setting the propensity score-based trimming threshold to 0.01.
Control variables consist of both X and W.

most of our sample in terms of the estimated propensity scores across lower
and higher discount categories considered in DML, see the propensity score
histograms in Appendix 4.A. This is important as ATE evaluation hinges
on the availability of observations with comparable propensity scores across
treatment groups. Only 151 out of our 5903 observations are dropped due
to too extreme propensity scores below 0.01 or above 0.99 (pointing to a
violation of common support).4 In summary, our results clearly point to a
positive average effect of the discount rate on trip rescheduling among always
buyers, which is, however, not overwhelmingly large.

4.6.5 Effect heterogeneity

In this section, we assess the heterogeneity of the effects of D on Y across
interviewees and observed characteristics. Figure 4.6.2 shows the distribution
the CF-based conditional average effects (CAPE) of marginally increasing the
discount rate given the covariates values of the always buyers in our sample
(which are also the base for the estimation of the APE). While the CAPEs
are predominantly positive, they are quite imprecisely estimated. Only 2.9%
and 0.8% of the positive ones are statistically significant at the 10% and 5%
levels, respectively. Further, only 0.1% of the negative ones are statistically
significant at the 10% level. Yet, the distribution points to a positive marginal
effect for most always buyers and also suggests that the magnitude of the
effects varies non-negligibly across individuals.

Next, we assess the effect heterogeneity across observed characteristics
based on the CF results. First, we run a conventional random forest with

4Our findings of a positive ATE remain robust when setting the propensity score-based
trimming threshold to 0.02 (ATE: 0.042) or 0.05 (ATE: 0.045).
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Figure 4.6.2: CAPEs

the estimated CAPEs as the outcome and the covariates as predictors to
assess the covariates’ relative importance for predicting the CAPE, using
the decrease in the Gini index as importance measure as also considered in
section 4.6.2. Table 4.5 reports the 20 most predictive covariates ordered
in decreasing order according to the importance measure. Demand-related
characteristics (like seat capacity, utilization, departure time, and distance)
turn out to be the most important predictors for the size of the effects, also
customer’s age has some predictive power. Similarly as for outcome prediction
in section 4.6.2, specific connections (characterized by points of departure
or destination) are less important predictors of the CAPEs given the other
information available in the data.

While Table 4.5 provides information on the best predictors of effect
heterogeneity, it does not give insights on whether effects differ importantly
and statistically significantly across specific observed characteristics of interest.
For instance, one question relevant for designing discount schemes is whether
(marginally) increasing the discounts is more effective among always buyers
so far exposed to rather small or rather large discounts. Therefore, we
investigate whether the CAPEs are different across our binary treatment
categories defined by D̃ (30% or more and less than 30%). To this end,
we apply the approach of Semenova and Chernozhukov (2020) based on (i)
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Table 4.5: Most important covariates for predicting CAPEs

covariate importance

seat capacity 11.844

offer level C 11.164

capacity utilization 5.144

departure time 5.122

distance 4.287

offer level D 4.015

class 3.434

saturday 2.933

age 2.429

number of sections 2.373

diff. purchase travel 2.110

offer level A 1.634

offer level B 1.610

half fare 1.524

scheme 17 1.496

half fare travel ticket 1.373

rel. sold level B 0.901

ticket purchase complexity 0.847

leisure 0.773

rel. sold level A 0.770

Notes: ‘Offer level A’, ‘offer level B’, ‘offer level C’ and ‘offer level D’ denote the amount
of supersaver tickets with discount A, B, C and D respectively. ‘Rel. offer level A’, ‘rel.
offer level B’ and ‘rel. offer level C’ denote the relative amount of supersaver tickets offered
with discount A, B and C. The relative amounts are in relation to the seats offered.

plugging the CF-based predictions into a modified version of the doubly robust
functions provided within the expectation operator of (4.5.1) that is suitable
for a continuous D and (ii) linearly regressing the doubly robust functions
on the treatment indicator D̃. The results are reported in the upper panel
of Table 4.6. While the point estimate of −0.104 suggests that the demand
shifting effect of increasing the discount is on average smaller when discounts
are already quite substantial (above 30%), the difference is far from being
statistically significant at any conventional level.

Using again the method of Semenova and Chernozhukov (2020), we also
investigate the heterogeneity among a limited and pre-selected set of covariates
that appears interesting for characterizing customers and their travel purpose,
namely age, gender, and travel distance, as well as indicators for leisure trip
and commute (with business trip being the reference category), traveling
during peak hours, and possession of a half fare travel tickets. As displayed in
the lower panel of Table 4.6, we find no important effect heterogeneities across
the age or gender of always buyers or as a function of travel distance conditional
on the other information included in the regression, as the coefficients on these
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Table 4.6: Effect heterogeneity analysis

effect st. err. p-value

Discounts categories (D ≥ 0.3 vs D < 0.03)

APE for D < 0.3 (constant) 0.209 0.089 0.019

Difference APE D ≥ 0.3 vs D < 0.3 (slope coef.) -0.104 0.122 0.395

Customer and travel characteristics

constant -0.154 0.295 0.602

age -0.002 0.004 0.556

gender -0.022 0.129 0.866

distance -0.000 0.001 0.697

leisure trip 0.297 0.165 0.072

commute 0.241 0.241 0.316

half fare travel ticket 0.228 0.142 0.109

peak hours 0.222 0.133 0.094

Notes: Business trip is the reference category for the indicators ‘leisure trip’ and ‘commute’.

variables are close to zero. In contrast, the effect of demand shift is (given
the other characteristics) substantially larger among always buyers with a
half fare travel tickets and among commuters, however, neither coefficient is
statistically significant at the 10% level (even though the half fare coefficient
is close).

For leisure trips, the coefficient is even larger (0.297), suggesting that all
other included variables equal, a one percentage point increase in the discount
rate increases the share of rescheduled trips by 0.29 percentage points more
among leisure travelers than among always buyers traveling for business. The
coefficient is statistically significant at the 10% level, even though we point
out that the p-value does not account for multiple hypothesis testing of several
covariates. This finding can be rationalized by leisure travelers being likely
more flexible in terms of timing than business travelers. Also the coefficient on
peak hours is substantially positive (0.222) and statistically significant at the
10% level (again, without controlling for multiple hypothesis testing). This
could be due to peak hours being the most attractive travel time, implying
that costumers are more willing to reschedule their trips when being offered a
discount within peak hours. We conclude that even though several coefficients
appear non-negligible, statistical significance in our heterogeneity analysis is
overall limited, which could be due to the (for the purpose of investigating
effect heterogeneity) limited sample of several thousand observations.
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4.7 Conclusion

In this study, we applied causal and predictive machine learning to assess
the demand effects of discounts on train tickets issued by the Swiss Federal
Railways (SBB), the so-called ‘supersaver tickets’, based on a unique data that
combines a survey of supersaver customers with rail trip- and demand-related
information provided by the SBB. In a first step, we analyzed which customer-
or trip-related characteristics (including the discount rate) are predictive
for three outcomes characterizing buying behavior, namely: booking a trip
otherwise not realized by train (additional trip), buying a first- rather than
second-class ticket (upselling), or rescheduling a trip (e.g. a demand shift away
from rush hours) when being offered a supersaver ticket. The random forest-
based results suggested that customer’s age, demand-related information for
a specific connection (like seat capacity, departure time, and utilization), and
the discount level permit forecasting buying behavior to a certain extent, with
correct classification rates amounting to 58% (demand shift), 65% (additional
trip), and 82% (upselling), respectively.

As predictive machine learning cannot provide the causal effects of the
predictors involved, we, in a second step, applied causal machine learning
to assess the impact of the discount rate on the demand shift among always
buyers (who would have traveled even without a discount), which appears
interesting in the light of capacity constraints at rush hours. To this end,
we invoked the identifying assumptions that (i) the discount rate is quasi-
random conditional on our covariates and (ii) the buying decision increases
weakly monotonically in the discount rate and exploited survey information
about customer behavior in the absence of discounts. We also considered two
approaches for partially testing our assumptions, which did not point to a
violation of the latter. Our main results based on the causal forest suggested
that increasing the discount rate by one percentage point entails an average
increase of 0.16 percentage points in the share of rescheduled trips among
always buyers. This finding was corroborated by double machine learning
with just two discount categories, suggesting that discount rates of 30% and
more on average increase the share of rescheduled trips by 3.6 percentage
points when compared to lower discounts. Furthermore, when investigating
effect heterogeneity across a pre-selected set of characteristics, we found the
causal forest-based effects to be higher (with marginal statistical significance
when not controlling for multiple hypothesis testing) for leisure travelers and
during peak hours when also controlling for customer’s age, gender, possession
of a half fare travel card, and travel distance. Finally, our effect heterogeneity
analysis also revealed that demand-related information is most predictive for
the size of the effect of the discount rate.



4.7. Conclusion 163

Using state-of-the-art machine learning tools, our study appears to be
the first (at least for Switzerland) to provide empirical evidence on how
discounts on train tickets affect customers’ willingness to reschedule trips -
an important information for designing discount schemes aiming at balancing
out train utilization across time and reducing overload during peak hours.
Even though the overall impact on the demand shifts on always buyers
might not be as large as one could hope for, the causal forest pointed to the
existence of customer segments that are likely more responsive and could be
scrutinized when collecting a larger amount of data than available for our
analysis. Furthermore, our empirical approach may also be applied to other
countries or transport industries facing capacity constraints. For instance, we
would expect that in a setting with higher competition from alternative public
transport modes like long distance bus services (not present in Switzerland),
the impact of train discounts may well be different. More generally, our
study can be regarded as a use case for how predictive and, in particular,
causal machine learning can be fruitfully applied for business analytics and
as decision support for optimizing specific interventions like discount schemes
based on impact evaluation.
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Appendices

4.A Propensity score plots

Figure 4.A.1: Propensity score estimates in the higher discount category (
D ≥ 0.3)

Figure 4.A.2: Propensity score estimates in the lower discount category
(D < 0.3)
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4.B Further tables

Table 4.7 and Table 4.8 present the predictive outcome analysis separately for
subsamples with discounts < 30% and ≥ 30%, respectively.
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Thao, V. T., W. von Arx, and J. Frölicher (2020): “Swiss cooperation
in the travel and tourism sector: long-term relationships and superior
performance,” Journal of Travel Research, 59(6), 1044–1060.

Tibshirani, J., S. Athey, R. Friedberg, V. Hadad, D. Hirshberg,
L. Miner, E. Sverdrup, S. Wager, and M. Wright (2020): “grf:
Generalized Random Forests,” R package version 1.2.0.

Tibshirani, R. (1996): “Regression Shrinkage and Selection via The Lasso,”
Journal of the Royal Statistical Society, Series B, 58(1), 267–288.

Tkalec, M., I. Zilic, and V. Recher (2017): “The effect of film industry
on tourism: Game of Thrones and Dubrovnik,” International Journal of
Tourism Research, 19(6), 705–714.



Bibliography 181

van der Laan, M., E. C. Polley, and A. E. Hubbard (2008): “Super
Learner,” Statistical Applications of Genetics and Molecular Biology, 6(1).

Varian, H. R. (2014): “Big data: New tricks for econometrics,” Journal of
Economic Perspectives, 28(2), 3–28.

Wager, S., and S. Athey (2018): “Estimation and Inference of Heteroge-
neous Treatment Effects using Random Forests,” Journal of the American
Statistical Association, 113(523), 1228–1242.

Wallimann, H. (2020): “A complementary product of a nearby ski
lift company,” Tourism Economics, published ahead of print. doi:
10.1177/1354816620968329.

Wallimann, H., D. Imhof, and M. Huber (2020): “A Machine Learning
Approach for Flagging Incomplete Bid-rigging Cartels,”Working papers SES
513, Faculty of Economics and Social Sciences of Fribourg (Switzerland).

Wegelin, P. (2018): “Is the mere threat enough? An empirical analysis
about competitive tendering as a threat and cost efficiency in public bus
transportation,” Research in Transportation Economics, 69, 245–253.

Wilke, E. P., B. K. Costa, O. B. D. L. Freire, and M. P. Ferreira
(2019): “Interorganizational cooperation in tourist destination: Building
performance in the hotel industry,” Tourism Management, 72, 340–351.

Wright, M. N., and A. Ziegler (2017): “ranger: A fast implementation
of random forests for high dimensional data in C++ and R,” Journal of
Statistical Software, 77, 1–17.

Wyss, R., T. Luthe, and B. Abegg (2015): “Building resilience to
climate change – the role of cooperation in alpine tourism networks,” Local
Environment, 20(8), 908–922.

Yang, J.-C., H.-C. Chuang, and C.-M. Kuan (2020): “Double machine
learning with gradient boosting and its application to the Big N audit
quality effect,” Journal of Econometrics, 216(1), 268–283.

Yang, W., L. Zhang, and A. S. Mattila (2016): “Luxe for Less: How
Do Consumers React to Luxury Hotel Price Promotions? The Moderating
Role of Consumers’ Need for Status,” Cornell Hospitality Quarterly, 57(1),
82–92.

Yap, M., and O. Cats (2020): “Predicting disruptions and their passenger
delay impacts for public transport stops,” Transportation, pp. 1–29.



182 BIBLIOGRAPHY

Zehrer, A., and K. Hallmann (2015): “A stakeholder perspective on
policy indicators of destination competitiveness,” Journal of Destination
Marketing and Management, 4(2), 120–126.

Zhang, J., R. Lindsey, and H. Yang (2018): “Public transit service fre-
quency and fares with heterogeneous users under monopoly and alternative
regulatory policies,” Transportation Research Part B: Methodological, 117,
190–208.

Zhang, J., and D. B. Rubin (2003): “Estimation of Causal Effects via
Principal Stratification When Some Outcomes are Truncated by ‘Death’,”
Journal of Educational and Behavioral Statistics, 28(4), 353–368.

Zhang, J., D. B. Rubin, and F. Mealli (2009): “Evaluating The Effects of
Job Training Programs on Wages through Principal Stratification,” Journal
of the American Statistical Association, 104(485), 166–176.


	Preface
	Contents
	List of Figures
	List of Tables
	Introduction
	A complementary product of a nearby ski-lift company
	Introduction
	Literature review
	Background
	Methodology and Implementation
	Data
	Results
	The effect of the WinterCARD on accommodation businesses
	Robustness analysis

	The economic effect of the nearby complementary product
	Discussion and Conclusion
	Synthetic control method
	The municipalities in the control group
	Descriptive statistics of the independent variables
	Descriptive statistics of monthly differences in overnight stays by domestic tourists in Saas-Fee and the control group
	Constructing the synthetic Saas-Fee
	Pre-WinterCARD characteristics
	Placebo tests

	Flagging incomplete bid-rigging cartels
	Introduction
	Bid-rigging cartels and data
	Procurement Data
	The Ticino Cartel
	The Cartel in See-Gaster
	The Strassenbau Cartel in Graubünden
	Data from the Cases See-Gaster and Graubünden

	Detection methods
	Random forest
	Predictors
	Model specification

	Flagging incomplete bid-rigging cartels
	The Ticino simulation
	Application to the Swiss data
	Robustness analysis

	Conclusion
	Adjusting the benchmarking rule
	Details about lasso regression and the ensemble method
	Results for the statistical tests between the simulated bids and the competitive bids in the Ticino case
	Descriptive statistics for the Ticino Cartel
	Descriptive statistics for the Swiss data
	Descriptive statistics for predictors

	Detecting collusive coalitions
	Introduction
	Detection method
	Machine learning algorithms
	Coalitions and predictors

	Empirical analyses in different countries
	Okinawa cartel
	Swiss cartels
	Italian cartels
	The most predictive coalition-based screens

	Complementary analyses
	Using additional coalition-based screens
	The investigation of predictors measuring asymmetry
	Coalition-based screens with four bidders

	Policy recommendations
	Advantages of a coalition-based detection method
	Ex-ante Screening

	Conclusion

	Business analytics meets artificial intelligence
	Introduction
	Institutional background
	Data
	Survey data
	Factors driving the supply of supersaver tickets
	Sample construction

	Identification
	Definition of causal effects
	Identifying assumptions

	Estimation based on machine learning
	Predictive machine learning
	Causal machine learning

	Empirical results
	Descriptive statistics
	Predicting buying decisions
	Testing the identification strategy
	Assessing the causal effect of discounts
	Effect heterogeneity

	Conclusion
	Propensity score plots
	Further tables 

	Bibliography

