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In this paper, we study the problem of deciding whether the total domination number 
of a given graph G can be reduced using exactly one edge contraction (called 1-Edge 
Contraction(γt )). We focus on several graph classes and determine the computational 
complexity of this problem. By putting together these results, we manage to obtain a 
complete complexity dichotomy for H-free graphs.
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1. Introduction

In this paper, we consider the problem of reducing the total domination number of a graph by contracting a single 
edge. More precisely, given a graph G = (V , E), we want to know whether there exists an edge e ∈ E such that the total 
domination number of the graph G ′ , obtained from G by contracting the edge e, is strictly less than the total domination 
number of G . This problem fits into the general framework of so-called blocker problems which have been studied intensively 
in the literature (see for instance [2–6,8–10,15,17–19]). In this framework, we ask for a specific graph parameter π to 
decrease: given a graph G , a set O of one or more graph operations and an integer k ≥ 1, the question is whether G can 
be transformed into a graph G ′ by using at most k operations from O such that π(G ′) ≤ π(G) − d for some threshold
d ≥ 0. Such problems are called blocker problems as the set of vertices or edges involved can be viewed as “blocking” the 
parameter π . Identifying such sets may provide important information about the structure of the graph G . Blocker problems 
can be seen as a kind of graph modification problems. Indeed, in such problems we are usually interested in modifying a 
given graph G , via a small number of operations, into some other graph G ′ that has a certain desired property which often 
describes a certain graph class to which G ′ must belong. Here we consider graph parameters instead of graph classes.

Blocker problems are also related to other well-known graph problems as shown for instance in [8,17]. So far, the lit-
erature mainly focused on the following graph parameters: the chromatic number, the independence number, the clique 
number, the matching number, the vertex cover number and the domination number. Furthermore, the set O usually con-
sisted of a single graph operation, namely either vertex deletion, edge contraction, edge deletion or edge addition. Since 
these blocker problems are usually NP-hard in general graphs, a particular attention has been paid to their computational 
complexity when restricted to special graph classes.

Recently, the authors in [10] studied the blocker problem with respect to the domination number and edge contractions. 
More precisely, they consider the problem of deciding if for a given connected graph G it is possible to obtain a graph G ′
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by contracting at most k edges, where k ≥ 0 is fixed, such that γ (G ′) ≤ γ (G) − 1, where γ represents the domination 
number? For k = 1, they provided an almost dichotomy (only one family of graphs remained open) for this problem when 
restricted to H-free graphs. Very recently, this last open problem was solved as well (see [11]). In this paper, we continue 
this line of research by considering the total domination number.

More specifically, let G = (V , E) be a graph. The contraction of an edge uv ∈ E removes vertices u and v from G and 
replaces them by a new vertex that is made adjacent to precisely those vertices that were adjacent to u or v in G (without 
introducing self-loops nor multiple edges). A graph obtained from G by contracting an edge e will be denoted by G/e. 
A set D ⊆ V is called a dominating set, if every vertex in V \ D has at least one neighbor in D . The domination number of a 
graph G , denoted by γ (G), is the smallest size of a dominating set in G . A set D ⊆ V is called a total dominating set, if every 
vertex in V has at least one neighbor in D . The total domination number of a graph G , denoted by γt(G), is the smallest size 
of a total dominating set in G . We consider the following problem in this paper:

1-Edge Contraction(γt )

Instance: A connected graph G = (V , E).
Question: Does there exist an edge e ∈ E such that γt(G/e) ≤ γt(G) − 1?

The problem of reducing domination parameters was first considered by Huang and Xu in [14]. The authors denote 
by ctγt (G) the minimum number of edge contractions required to transform a given graph G into a graph G ′ such that 
γt(G ′) ≤ γt(G) − 1. They prove that for a connected graph G , we have ctγt (G) ≤ 3. In other words, one can always reduce by 
at least 1 the total domination number of a connected graph G by using at most 3 edge contractions ([14, Theorem 4.3]). 
They also prove the following theorem, which is a crucial result for our work.

Theorem 1 ([14]). For a connected graph G, ctγt (G) = 1 if and only if there exists a minimum total dominating set D in G such that 
the graph induced by D contains a P3 .

As mentioned above, the authors in [10] considered the domination number, i.e. they considered the problem above 
but with γ (G) instead of γt(G) denoted by 1-Edge Contraction(γ ). In particular they showed that if H is not an induced 
subgraph of P3 + p P2 + t K1, for p ≥ 1 and t ≥ 0 then 1-Edge Contraction(γ ) is polynomial-time solvable on H-free graphs 
if and only if H is an induced subgraph of P5 + t K1, for t ≥ 0. Recently, it was shown that the problem can be solved in 
polynomial time in H-free graphs when H is an induced subgraph of P3 + p P2 + t K1, for p, t ≥ 0 (see [11]). Thus, we have 
the following dichotomy.

Theorem 2. Let H be a graph. If H is an induced subgraph of P5 + t K1 with t ≥ 0, or H is an induced subgraph of P3 + pK2 + t K1
with p, t ≥ 0 then 1-Edge Contraction(γ ) is polynomial-time solvable for H-free graphs. Otherwise, 1-Edge Contraction(γ ) is 
NP-hard or coNP-hard for H-free graphs.

In this paper, we provide a complete dichotomy for 1-Edge Contraction(γt ) in H-free graphs. Our main result is as 
follows.

Theorem 3. Let H be a graph. If H is an induced subgraph of P5 +t K1 with t ≥ 0, or H is an induced subgraph of P4 +qP3 + pK2 +t K1
with q, p, t ≥ 0 then 1-Edge Contraction(γt ) is polynomial-time solvable for H-free graphs. Otherwise, 1-Edge Contraction(γt ) is 
NP-hard or coNP-hard for H-free graphs.

It has been shown in [12] that the complexities of the problems Dominating set (i.e., given a graph G and an integer 
k ≥ 0, does there exist a dominating set of size at most k?) and Total dominating set (i.e., given a graph G and an integer 
k ≥ 0, does there exist a total dominating set of size at most k?) agree in H-free graphs for any graph H . The results above 
show that there are not only hereditary but even monogenic graph classes (i.e. H-free graphs for some graph H) for which 
the complexities of the problems 1-Edge-Contraction(γt ) and 1-Edge-Contraction(γ ) differ.

This paper is organized as follows. In Section 2, we present definitions and notations that are used throughout the 
paper. Section 3 is devoted to the hardness results of 1-Edge Contraction(γt ) while Section 4 presents cases when 1-Edge 
Contraction(γt ) is polynomial-time solvable. In Section 5 we put these results together to prove our main result, Theorem 2. 
We conclude the paper by presenting final remarks and future research directions in Section 6.

2. Preliminaries

Throughout this paper, we only consider graphs which are finite, simple and connected, unless specified otherwise.1

1 Note that if a graph G is not connected then G is a Yes-instance for 1-Edge Contraction(γt ) if and only if one of its connected components is a
Yes-instance for 1-Edge Contraction(γt ). Thus we can focus only on connected graphs.
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We refer the reader to [7] for any terminology and notation not defined here.
For n ≥ 1, the path and cycle on n vertices are denoted by Pn and Cn respectively. A path on n vertices may also be 

called an n-path. The claw is the complete bipartite graph with one partition of size one and the other of size three.
Given a graph G , we denote by V (G) its vertex set and by E(G) its edge set. For any vertex v ∈ V (G), the neighborhood 

of v in G , denoted by NG (v) or simply N(v) if it is clear from the context, is the set of vertices adjacent to v , that is, 
NG(v) = {w ∈ V (G) : v w ∈ E(G)}; the closed neighborhood of v in G , denoted by NG [v] or simply N[v] if it is clear from 
the context, is the set of vertices adjacent to v together with v , that is, NG [v] = NG(v) ∪ {v}. For any subset S ⊆ V (G), 
the neighborhood of S in G , denoted by NG(S) or simply N(S) if it is clear from context, is the set ∪v∈S N(v), and the 
closed neighborhood of S in G , denoted by NG [S] or simply N[S] if it is clear from the context, is the set NG (S) ∪ S . For an 
edge xy ∈ E(G), we may write NG (xy) (resp. NG [xy]) in place of NG ({x, y}) (resp. NG [{x, y}]) for simplicity. Similarly, for a 
family F ⊆ E(G) of edges, we may write NG(F) (resp. NG [F ]) in place of ∪e∈F NG(e) (resp. ∪e∈F NG [e]) for simplicity. Let 
A, B ⊆ V (G). We say that A is complete (resp. anticomplete) to B , if every vertex in A is adjacent (resp. nonadjacent) to 
every vertex in B . For a subset S ⊆ V (G), we let G[S] denote the subgraph induced by S , which has vertex set S and edge 
set {xy ∈ E(G) : x, y ∈ S}. Given a subset S ⊆ V (G) and a graph H , we say that S contains an (induced) H if G[S] contains H
as an (induced) subgraph. The length of a path in G is its number of edges. For any two vertices u, v ∈ V (G), the distance 
from u to v in G , denoted by dG (u, v) or simply d(u, v) if it is clear from the context, is the length of a shortest path 
from u to v in G . Similarly, for any two subset S, S ′ ⊆ V (G), the distance from S to S ′ in G , denoted by dG(S, S ′) or simply 
d(S, S ′) if it is clear from the context, is the minimum length of a shortest from a vertex in S to a vertex in S ′, that is, 
dG (S, S ′) = minx∈S,y∈S ′dG(x, y). If S consists of a single vertex, say S = {x}, we may write dG(x, S ′) in place of dG({x}, S ′) for 
simplicity. The k-subdivision of an edge uw ∈ E(G) consists in replacing it with a path uv1 . . . , vk w , where v1, . . . , vk are 
new vertices.

A subset K ⊆ V (G) is a clique of G if any two vertices of K are adjacent in G . A subset S ⊆ V (G) is an independent set of 
G if any two vertices of S are nonadjacent in G . Given two subsets S, S ′ ⊆ V (G), we say that S dominates S ′ if N(v) ∩ S 
= ∅
for every v ∈ S ′ . Given a vertex v ∈ V (G) and a subset S ⊆ V (G), we say that the vertex v dominates S if the set {v}
dominates S . If D is a total dominating set of G and v ∈ D , we say that a vertex w ∈ V (G) is a private neighbor of v with 
respect to D , or simply a private neighbor of v if it is clear from the context, if N(w) ∩ D = {v}. For a subset S ⊆ V (G), we 
say that a vertex w ∈ V (G) \ S is a private neighbor of S with respect to D , or simply a private neighbor of S if it is clear from 
the context, if N(w) ∩ D ⊆ S and |N(w) ∩ D| = 1. A subset D ⊆ V (G) is a dominating set of G if every vertex in V (G) \ D
is adjacent to at least one vertex in D; the domination number of G , denoted by γ (G), is the size of a minimum dominating 
set of G . The (Even) Dominating Set problem takes as input a graph G and an (even) integer k, and asks whether G has a 
dominating set of size at most k. The NP-hardness of these two problems follows from [13].

For a family {H1, . . . , H p} of graphs, we say that G is {H1, . . . , H p}-free if G contains no induced subgraph isomorphic to 
a graph in {H1, . . . , H p}. If p = 1, we may write H1-free in place of {H1}-free for simplicity. The union of two simple graphs 
G and H is the graph G + H with vertex set V (G) ∪ V (H) and edge set E(G) ∪ E(H). The union of k disjoint copies of G is 
denoted by kG .

For n ∈N we denote by [n] the set {1, . . . ,n}.

3. Hardness results

In this section, we will present several hardness results regarding 1-Edge Contraction(γt ) with respect to H-free graphs, 
where H is a family of at most two graphs.

Theorem 4. 1-Edge Contraction(γt ) is NP-hard when restricted to {P6, P5 + P2}-free graphs.

Proof. We reduce from Even Dominating Set with domination number at least 4. Given an instance (G, 2�) (with γ (G) ≥ 4) 
of this problem, we construct an equivalent instance G ′ of 1-Edge Contraction(γt ) as follows. Let V (G) = {v1, v2, . . . , vn}
the vertex set of G . The vertex set of G ′ consists of 2� vertices x1, x2, . . . , x2� and 2� + 1 copies of V (G), denoted by 
V 0, V 1, . . . V 2� . For any 0 ≤ i ≤ 2�, we denote the vertices of V i by vi

1, v
i
2, . . . , v

i
n . The adjacencies in G ′ are then defined as 

follows (see Fig. 1):

· V 0 is a clique

and for any 1 ≤ i ≤ 2�,

· V i is an independent set;
· for any 1 ≤ j ≤ n, vi

j is adjacent to {v0
k , vk ∈ NG [v j]};

· xi is adjacent to every vertex in V 0 ∪ V i ;
· if i(mod 2) = 1, then xi is adjacent to xi+1.

Note that the fact that for any 1 ≤ i ≤ 2� and 1 ≤ j ≤ n, vi
j is adjacent to {v0

k , vk ∈ NG [v j]} is not made explicit in Fig. 1 for 
the sake of readability. We now claim the following.
20
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V 0

x1

V 1

x2

V 2

x3

V 3
x4

V 4

· · ·
x2�−1

V 2�−1

x2�

V 2�

Fig. 1. The graph G ′ (thick lines indicate that the vertex xi is adjacent to every vertex of V 0 ∪ V i for any 1 ≤ i ≤ 2�).

Claim 1. γt(G ′) = min{γ (G), 2�}.

Proof. It is clear that {x1, x2, . . . , x2�−1, x2�} is a total dominating set of G ′; thus, γt(G ′) ≤ 2�. If γ (G) ≤ 2� and 
{vi1 , vi2 , . . . , vik } is a minimum dominating set of G , it follows from the construction above that {v0

i1
, v0

i2
, . . . , v0

ik
} is a total 

dominating set of G ′ (recall that V 0 is a clique). Thus, γt(G ′) ≤ γ (G) and so, γt(G ′) ≤ min{γ (G), 2�}. Now suppose that 
γt(G ′) < min{γ (G), 2�} and consider a minimum total dominating set D of G ′ . Then there must exist i ∈ {1, . . . , 2�} such 
that xi /∈ D; indeed, if for all i ∈ {1, . . . , 2�}, xi ∈ D then we would have that |D| ≥ 2�, thereby contradicting the fact that 
γt(G ′) < min{γ (G), 2�}. But then, D ′ = D ∩ (V 0 ∪ V i) must dominate every vertex in V i and so, |D ′| ≥ γ (G). But |D ′| ≤ |D|
which implies that γ (G) ≤ |D|, a contradiction. Therefore, γt(G ′) = min{γ (G), 2�}. �

We now show that (G, 2�) (with γ (G) ≥ 4) is a Yes-instance for Even Dominating Set if and only if G ′ is a Yes-instance 
for 1-Edge Contraction(γt ).

First assume that γ (G) ≤ 2�. Then by Claim 1, γt(G ′) = γ (G) and if {vi1 , vi2 , . . . , vik } is a minimum dominating set of G
then {v0

i1
, v0

i2
, . . . , v0

ik
} is a minimum total dominating set of G ′ containing a P3 (recall that V 0 is a clique and γ (G) ≥ 4). 

We then conclude by Theorem 1 that G ′ is a Yes-instance for 1-Edge Contraction(γt ).
Conversely, assume that G ′ is a Yes-instance for 1-Edge Contraction(γt ), that is, there exists a minimum total dominating 

set D of G ′ containing a P3 (see Theorem 1). Then there must exist i ∈ {1, . . . , 2�} such that xi /∈ D; indeed, if for all 
i ∈ {1, . . . , 2�}, xi ∈ D then |D| ≥ 2� and we conclude by Claim 1 that in fact equality holds. It follows that D consists of 
x1, x2, . . . , x2�−1, x2�; in particular, D contains no P3, a contradiction. Thus, there exists 1 ≤ i ≤ 2� such that xi /∈ D and so, 
D ′ = D ∩ (V 0 ∪ V i) must dominate every vertex in V i . It follows that |D ′| ≥ γ (G) and since |D ′| ≤ |D|, we conclude that 
γ (G) ≤ |D| ≤ 2� by Claim 1, that is, (G, 2�) is a Yes-instance for Even Dominating Set.

Finally, it is easy to see that G ′ is P6-free as well as (P5 + P2)-free which concludes the proof. �
Theorem 5. 1-Edge Contraction(γt ) is coNP-hard when restricted to 2P4-free graphs.

Proof. We reduce from 3-Sat as follows. Given an instance � of this problem, with variable set X and clause set C , we 
construct a graph G� such that � is satisfiable if and only if G� is a No-instance for 1-Edge Contraction(γt ), as follows. 
For any variable x ∈ X , we introduce the gadget Gx depicted in Fig. 2 with one distinguished positive literal vertex x and 
one distinguished negative literal vertex x̄. For any clause c ∈ C , we introduce a clause vertex c which is made adjacent to 
the (positive or negative) literal vertices whose corresponding literal occurs in c. Finally, we add an edge between any two 
clause vertices so that the set of clause vertices induces a clique denoted by K in the following.

Observation 1. For any total dominating set D of G� and any variable x ∈ X, |D ∩ V (Gx)| ≥ 2 and ux ∈ D. In particular, γt(G�) ≥
2|X |.

Indeed, since vx should be dominated, necessarily ux ∈ D and since ux should be dominated, D ∩ {vx, x, ̄x} 
=∅.

Claim 2. � is satisfiable if and only if γt(G�) = 2|X |.
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x x̄

ux

vx

Fig. 2. The variable gadget Gx .
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xdc
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cc
x

tc
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x
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xdc′′
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x

tc′′
x

gc′
x

gc
x

gc′′
x

hc
x jc

x
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f c
x

hc′
x jc′

x

ic′
x

f c′
x

hc′′
x jc′′

x

ic′′
x

f c′′
x

Fig. 3. The variable gadget Gx for a variable x contained in clauses c, c′ and c′′ (a rectangle indicates that the corresponding set of vertices induces a clique).

Proof. Assume that � is satisfiable and consider a truth assignment satisfying �. We construct a total dominating set of 
G� as follows. For any variable x ∈ X , if x is true then we add x and ux to D; otherwise, we add x̄ and ux to D . Clearly, D
is a total dominating set as every clause is satisfied and we conclude by Observation 1 that D is minimum.

Conversely, assume that γt(G�) = 2|X | and consider a minimum total dominating set D of G� . First observe that by 
Observation 1, |D ∩ V (Gx)| = 2 and |D ∩ {x, ̄x}| ≤ 1 for any x ∈ X , which implies in particular that D ∩ K = ∅. It follows that 
for any clause vertex c, there must exist x ∈ X such that the (positive or negative) literal vertex whose corresponding literal 
occurs in c belongs to D . We may thus construct a truth assignment satisfying � as follows. For any variable x ∈ X , if the 
positive literal vertex x belongs to D then we set x to true; if the negative literal vertex x̄ belongs to D then we set x to 
false; otherwise, we set x to true. �

Claim 3. γt(G�) = 2|X | if and only if G� is a No-instance for 1-Edge Contraction(γt ).

Proof. Assume that γt(G�) = 2|X | and let D be a minimum total dominating set of G� . Then by Observation 1, |D ∩
V (Gx)| = 2 for any x ∈ X which implies in particular that D ∩ K = ∅. But then, it is clear that D contains no P3, and hence 
G� is a No-instance for 1-Edge Contraction(γt ) according to Theorem 1.

Conversely, assume that G� is a No-instance for 1-Edge Contraction(γt ) and consider a minimum total dominating set 
D of G� . First observe that since D contains no P3 (see Theorem 1), necessarily |D ∩ V (Gx)| ≤ 2 for any x ∈ X ; we then 
conclude by Observation 1 that in fact equality holds for any x ∈ X . We now claim that D ∩ K = ∅. Indeed, suppose to the 
contrary that there exists a clause vertex c such that c ∈ D and consider a variable x occurring in c, say x occurs positive 
in c without loss of generality. Then (D \ {vx, ̄x}) ∪ {x} is a minimum total dominating set containing a P3, a contradiction. 
Thus, D ∩ K = ∅ and so, |D| = 2|X |. �

Now by combining Claims 2 and 3, we obtain that � is satisfiable if and only if G� is a No-instance for 1-Edge 
Contraction(γt ). Since G� is obviously 2P4-free, this concludes the proof. �
Theorem 6. 1-Edge Contraction(γt ) is coNP-hard when restricted to claw-free graphs.

Proof. We reduce from Positive Cubic 1-In-3 3-Sat which was shown to be NP-hard in [16]. It is a variant of the 3-Sat

problem where each variable occurs only nonnegated and in exactly three clauses, and the formula is satisfiable if and only 
if there exists a truth assignment to the variables such that each clause has exactly one true literal. Given an instance � of 
this problem, with variable set X and clause set C , we construct a graph G� such that � is satisfiable if and only if G� is a
No-instance for 1-Edge Contraction(γt ), as follows. For each variable x ∈ X contained in clauses c, c′ and c′′ , we introduce 
the gadget Gx depicted in Fig. 3. For each clause c ∈ C containing variables x, y and z, we introduce the gadget Gc which is 
the disjoint union of the graphs G T

c and G F
c depicted in Fig. 4; then for all � ∈ {x, y, z}, we add an edge between t�

c and tc
� , 

and f �
c and f c

� .
We begin with the following easy observations.

Observation 2. Let D be a total dominating set of G�. Then for each clause c ∈ C with variables x, y and z, the following holds.
22
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uc ay
c

ax
c

az
c

cx
c

bx
c

dx
c tx

c
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c
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c

dy
c t y

c

cz
c

bz
c

dz
c tz

c

(a) The graph G T
c (the rectangle indicates that the correspond-

ing set of vertices induces a clique).

vc wcg y
c

gx
c

gz
c

f x
c

f y
c

f z
c

(b) The graph G F
c (the rectangle indicates that the correspond-

ing set of vertices induces a clique).

Fig. 4. The clause gadget Gc is the disjoint union of GT
c and G F

c for a clause c containing variables x, y and z.

(i) |D ∩ {gx
c , g

y
c , gz

c , vc, wc}| ≥ 2 and vc ∈ D.
(ii) For any � ∈ {x, y, z}, D ∩ {a�

c , c�
c } 
=∅ and |D ∩ {a�

c , b�
c , c�

c , d�
c , t�

c }| ≥ 2.

In particular, |D ∩ V (Gc)| ≥ 8.

(i) Indeed, since wc must be dominated, necessarily vc ∈ D and since vc must be dominated, D ∩ {gx
c , g

y
c , gz

c , wc} 
=∅.
(ii) Indeed, since c�

c must be dominated, either a�
c ∈ D or c�

c ∈ D . If a�
c ∈ D then D ∩ {c�

c , t�
c } 
= ∅ as d�

c should be domi-
nated; and if c�

c ∈ D then D ∩ {a�
c , b�

c , d�
c} 
=∅ as c�

c should be dominated. �

Observation 3. Let D be a total dominating set of G�. Then for each variable x ∈ X contained in clauses c, c′ and c′′ , the following 
holds.

(i) |D ∩ {ux, vx, Tx, Fx}| ≥ 2 and ux ∈ D.
(ii) For any � ∈ {c, c′, c′′}, D ∩ {b�

x, d�
x} 
=∅ and |D ∩ {a�

x, b�
x, c�

x, d�
x, t�

x}| ≥ 2.
(iii) for any � ∈ {c, c′, c′′}, D ∩ {h�

x, j�x} 
=∅ and |D ∩ {g�
x, h�

x, i�x, j�x, f �
x }| ≥ 2.

In particular, |D ∩ V (Gx)| ≥ 14.

(i) Indeed, since vx must be dominated, necessarily ux ∈ D and since ux must be dominated, D ∩ {vx, Tx, Fx} 
=∅.
(ii) Indeed, since c�

x must be dominated, either b�
x ∈ D or d�

x ∈ D . If b�
x ∈ D then D ∩ {a�

x, c�
x, d�

x} 
= ∅ as b�
x should be 

dominated; and if d�
x ∈ D then D ∩ {b�

x, c�
x, t�

x} 
=∅ as d�
x should be dominated. The proof for (iii) is symmetric. �

We now prove the following two claims.

Claim 4. γt(G�) = 14|X | + 8|C | if and only if � is satisfiable.

Proof. Assume first that � is satisfiable and consider a truth assignment satisfying �. We construct a total dominating 
set D for G� as follows. For any variable x ∈ X contained in clauses c, c′ and c′′ , if x is true then add {ux, Tx, dc

x, dc′
x ,

dc′′
x , tc

x, tc′
x , tc′′

x , hc
x, hc′

x , hc′′
x , jc

x, jc′
x , jc′′

x } to D; otherwise add {ux, Fx, jc
x, jc′

x , jc′′
x , f c

x , f c′
x , f c′′

x , bc
x, bc′

x , bc′′
x , dc

x, dc′
x , dc′′

x } to D . For any 
clause c ∈ C containing variables x, y and z, we proceed as follows. Assume without loss of generality that x is true (and 
thus y and z are false). Then add {cx

c , ax
c, d

y
c , c y

c , dz
c, cz

c , gx
c , vc} to D . Clearly, D is a total dominating set and we conclude by 

Observations 2 and 3 that D is minimum. Thus, γt(G�) = 14|X | + 8|C |.

Conversely, assume that γt(G�) = 14|X | + 8|C |. Let us first make several observations. The following is a straightforward 
consequence of Observation 2.

Observation 4. Let D be a total dominating set of G�. Then for any clause c ∈ C containing variables x, y and z, if |D ∩ V (Gc)| = 8
then D ∩ { f x

c , f y
c , f z

c , uc} =∅.

Observation 5. Let D be a total dominating set of G�. Then for any variable x ∈ X contained in c, c′ , and c′′ , if |D ∩ V (Gx)| = 14, the 
following holds.

(i) For any � ∈ {c, c′, c′′}, if t�
x ∈ D then D ∩ {a�

x, b�
x, c�

x, d�
x, t�

x} = {d�
x, t�

x}.
(ii) For any � ∈ {c, c′, c′′}, if a�

x ∈ D then D ∩ {a�
x, b�

x, c�
x, d�

x, t�
x} = {a�

x, b�
x}.

(iii) For any � ∈ {c, c′, c′′}, if f �
x ∈ D then D ∩ {g�

x, h�
x, i�x, j�x, f �

x } = { j�x, f �
x }.
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(iv) For any � ∈ {c, c′, c′′}, if g�
x ∈ D then D ∩ {g�

x, h�
x, i�x, j�x, f �

x } = {g�
x, h�

x}.

(i) Indeed, note first that since |D ∩ V (Gx)| = 14, we have by Observation 3 that |D ∩ {a�
x, b�

x, c�
x, d�

x, t�
x}| = 2 for all 

� ∈ {c, c′, c′′}. Thus, if t�
x ∈ D then by Observation 3(ii), |D ∩ {b�

x, d�
x}| = 1 (note that in particular, a�

x /∈ D); but if b�
x ∈ D then 

b�
x is not dominated as a�

x /∈ D . Therefore, if t�
x ∈ D then d�

x ∈ D . The proof for (iii) is symmetric.
(ii) Similarly, if a�

x ∈ D then by Observation 3(ii), |D ∩ {b�
x, d�

x}| = 1 (note that in particular, t�
x /∈ D); but if d�

x ∈ D then d�
x

is not dominated as t�
x /∈ D . Therefore, if a�

x ∈ D then b�
x ∈ D . The proof for (iv) if symmetric. �

Observation 6. Let D be a total dominating set of G�. For any variable x ∈ X contained in clauses c, c′ and c′′ , if |D ∩ V (Gx)| = 14
and |D ∩ V (G�)| = 8 for all � ∈ {c, c′, c′′}, then the following holds.

(i) If there exists � ∈ {c, c′, c′′} such that t�
x ∈ D then Tx ∈ D.

(ii) If there exists � ∈ {c, c′, c′′} such that f �
x ∈ D then Fx ∈ D.

(i) Indeed, note first that since |D ∩ V (Gx)| = 14, we have by Observation 3 that |D ∩ {a�
x, b�

x, c�
x, d�

x, t�
x}| = 2 for all 

� ∈ {c, c′, c′′}. Similarly, since |D ∩ V (G�)| = 8 for all � ∈ {c, c′, c′′}, it follows from Observation 2 that |D ∩{ax
�, b

x
�, c

x
�, d

x
�, t

x
�}| =

2 for all � ∈ {c, c′, c′′}. Now assume that there exists � ∈ {c, c′, c′′} such that t�
x ∈ D , say c without loss of generality, 

and suppose to the contrary that Tx /∈ D . Then by Observation 5(i), D ∩ {ac
x, bc

x, cc
x, dc

x, tc
x} = {dc

x, tc
x}. Thus since ac

x should 
be dominated and Tx /∈ D , there must exist p ∈ {c′, c′′} such that ap

x ∈ D , say c′ without loss of generality. But then 
by Observation 5(ii), D ∩ {ac′

x , bc′
x , cc′

x , dc′
x , tc′

x } = {ac′
x , bc′

x } and so, tx
c′ ∈ D for otherwise tc′

x would not be dominated. But 
|D ∩ {ax

c′ , bx
c′ , cx

c′ , dx
c′ , tx

c′ }| = 2 and D ∩ {ax
c′ , cx

c′ } 
= ∅ by Observation 2, which implies that dx
c′ /∈ D and so, tx

c′ is not domi-
nated, a contradiction. Thus, Tx ∈ D .

(ii) Assume that there exists � ∈ {c, c′, c′′} such that f �
x ∈ D , say c without loss of generality, and suppose to the contrary 

that Fx /∈ D . Then by Observation 5(iii), D ∩ {gc
x, hc

x, ic
x, jc

x, f c
x } = { jc

x, f c
x }. Thus since gc

x should be dominated and Fx /∈
D , there must exist p ∈ {c′, c′′} such that g p

x ∈ D , say c′ without loss of generality. But then by Observation 5(iv), D ∩
{gc′

x , hc′
x , ic′

x , jc′
x , f c′

x } = {gc′
x , hc′

x } and so, f x
c′ must belong to D ( f c′

x would otherwise not be dominated) which contradicts 
Observation 4 (recall that |D ∩ V (Gc′ )| = 8). Thus, Fx ∈ D . �

Remark 1. If γt(G�) = 14|X | + 8|C | and D is a minimum total dominating set of G� , then the following hold. For any clause 
c ∈ C containing variable x, y and z, we have by Observation 2 that

(i) |D ∩ {gx
c , g

y
c , gz

c , vc, wc}| = 2 and vc ∈ D; and
(ii) for any � ∈ {x, y, z}, D ∩ {a�

c , c�
c } 
=∅ and |D ∩ {a�

c , b�
c , c�

c , d�
c , t�

c }| = 2.

Similarly by Observation 3, we have that for any variable x ∈ X contained in clauses c, c′ and c′′ ,

(i) |D ∩ {ux, vx, Tx, Fx}| = 2 and ux ∈ D;
(ii) for any � ∈ {c, c′, c′′}, D ∩ {b�

x, d�
x} 
=∅ and |D ∩ {a�

x, b�
x, c�

x, d�
x, t�

x}| = 2; and
(iii) for any � ∈ {c, c′, c′′}, D ∩ {h�

x, j�x} 
=∅ and |D ∩ {g�
x, h�

x, i�x, j�x, f �
x }| = 2.

Turning back to the proof of Claim 4, let D be a minimum total dominating set of G� . We claim the following.

Observation 7. If γt(G�) = 14|X | + 8|C | then for any minimum total dominating set D ′ and any clause c ∈ C containing variables 
x, y and z, there exists � ∈ {x, y, z} such that tc

� ∈ D ′ and for any p ∈ {x, y, z} \ {�}, f c
p ∈ D ′ .

Indeed, suppose to the contrary that for all � ∈ {x, y, z}, tc
� /∈ D ′ . Then {dx

c, d
y
c , dz

c} ⊂ D as tx
c , t

y
c and tz

c should be dom-
inated, and so D ∩ {tx

c , t
y
c , tz

c } = ∅ as D ∩ {a�
c , c�

c } 
= ∅ and |D ∩ {a�
c , b�

c , c�
c , d�

c , t�
c }| = 2 for any � ∈ {x, y, z}. But then by 

Observation 2, |D ′ ∩ {ap
c , cp

c }| = 1 for any p ∈ {x, y, z} which implies that cp
c ∈ D ′ for any p ∈ {x, y, z} for otherwise at least 

one of dx
c, d

y
c and dz

c would not be dominated. It follows that D ′ ∩ {ax
c, a

y
c , az

c} = ∅ and so uc is not dominated, a con-
tradiction. Thus, there exists � ∈ {x, y, z} such that tc

� ∈ D ′ , say x without loss of generality. Then by Observation 6(i), 
Tx ∈ D ′ and so necessarily Fx /∈ D ′ by Remark 1. But then, f c

x /∈ D ′ for otherwise by Observation 6(ii), Fx would be-
long to D ′ , and so gx

c ∈ D ′ ( f x
c would otherwise not be dominated). It then follows from Observations 2 and 4 that 

D ′ ∩ { f x
c , f y

c , f z
c , gx

c , g
y
c , gz

c , vc, wc} = {gx
c , vc} which implies that for p ∈ {y, z}, f c

p ∈ D ′ for otherwise f p
c would not be 

dominated; in particular, F p ∈ D ′ for p ∈ {y, z} by Observation 6(ii). �

Combining Remark 1 and Observations 6 and 7, we conclude that for any variable x ∈ X , |D ∩ {Tx, Fx}| = 1 and for any 
clause c containing variables x, y and z, there exists exactly one variable � ∈ {x, y, z} such that T� ∈ D . Therefore, we may 
construct a truth assignment satisfying � as follows: for any variable x ∈ X , if Tx ∈ D we set x to true, otherwise we set x
to false. This concludes the proof of Claim 4. �
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Claim 5. γt(G�) = 14|X | + 8|C | if and only if G� is a No-instance for 1-Edge Contraction(γt ).

Proof. Assume first that γt(G�) = 14|X | + 8|C | and let D be a minimum total dominating set of G� (note that Remark 1
holds). Let us show that D contains no P3.

First, consider a clause c ∈ C containing variables x, y and z. Note that by Observation 4 and Remark 1, |D ∩ V (G F
c )| = 2

and thus D ∩ V (G F
c ) cannot contain any P3 nor can it be part of a P3. Now by Observation 7, there exists � ∈ {x, y, z} such 

that tc
� ∈ D and for p ∈ {x, y, z} \ {�}, f c

p ∈ D . Assume without loss of generality that � = x and denote by c′ and c′′ the 
two other clauses in which x occurs. It follows from Observation 6 and Remark 1 that Tx ∈ D and Fx /∈ D . Then, necessarily 
t p

x ∈ D for p ∈ {c′, c′′}; indeed, since by Observation 7, there exists a variable t contained in c′ such that tc′
t ∈ D and f c′

r ∈ D
for the other variables r 
= t in c′ , necessarily t = x for otherwise we would conclude by Observation 6 that Fx ∈ D , a contra-
diction (the same reasoning applies for c′′). It then follows from Observation 5(i) that D ∩ ({t p

x , p ∈ {c, c′, c′′}} ∪ {dp
x , p ∈

{c, c′, c′′}} ∪ {cp
x , p ∈ {c, c′, c′′}} ∪ {bp

x , p ∈ {c, c′, c′′}} ∪ {ap
x , p ∈ {c, c′, c′′}} ∪ {Tx, Fx, ux, vx}) = {t p

x , p ∈ {c, c′, c′′}} ∪ {dp
x , p ∈

{c, c′, c′′}} ∪ {Tx, ux}. On the other hand, since by Observation 4, f x
p /∈ D for any p ∈ {c, c′, c′′}, necessarily jp

x ∈ D ( f p
x would 

otherwise not be dominated). But then, hp
x ∈ D for any p ∈ {c, c′, c′′} as jp

x and g p
x should be dominated (recall that Fx /∈ D) 

and so, D ∩ ({ f p
x , p ∈ {c, c′, c′′}} ∪ { jp

x , p ∈ {c, c′, c′′}} ∪ {ip
x , p ∈ {c, c′, c′′}} ∪ {hp

x , p ∈ {c, c′, c′′}} ∪ {g p
x , p ∈ {c, c′, c′′}}) = { jp

x , p ∈
{c, c′, c′′}} ∪ {hp

x , p ∈ {c, c′, c′′}}. Thus, D ∩ V (Gx) does not contain any P3. Now denote by k and k′ the two other clauses in 
which y occurs. Then, a reasoning similar to the above shows that f p

y ∈ D for p ∈ {k, k′} (recall that by assumption, f c
y ∈ D) 

and so by Observations 3 and 5(iii), we conclude that D ∩ ({ f p
y , p ∈ {c, k, k′}} ∪{ jp

y, p ∈ {c, k, k′}} ∪{ip
y, p ∈ {c, k, k′}} ∪{hp

y, p ∈
{c, k, k′}} ∪ {g p

y , p ∈ {c, k, k′}} ∪ {T y, F y, u y, v y}) = { f p
y , p ∈ {c, k, k′}} ∪ { jp

y, p ∈ {c, k, k′}} ∪ {F y, u y}. On the other hand, since 
T y /∈ D necessarily t p

y /∈ D for any p ∈ {c, k, k′} (we would otherwise conclude by Observation 6(i) that T y ∈ D). We claim that 
then dp

y ∈ D for all p ∈ {c, k, k′}. Indeed, if dp
y /∈ D for some p ∈ {c, k, k′} then necessarily t y

p ∈ D as t p
y should be dominated. 

But then since t p
y /∈ D , it must be that dy

p ∈ D for otherwise t y
p would not be dominated. But |D ∩ {t y

p , dy
p, c y

p, by
p, ay

p}| = 2

and so D ∩ {ay
p, c y

p} = ∅ thereby contradicting Observation 2(ii). Thus dc
y, dk

y, dk′
y ∈ D which implies that bp

y ∈ D for any 
p ∈ {c, k, k′} as dp

y and ap
y should be dominated (recall that T y /∈ D). In particular, D ∩ V (G y) does not contain any P3 (the 

same reasoning shows that D ∩ V (Gz) does not contain any P3 either). Now since tc
y /∈ D necessarily dy

c ∈ D as t y
c should be 

dominated. We then conclude by Remark 1 that c y
c ∈ D; indeed, |D ∩ {c y

c , ay
c }| = 1 and if ay

c ∈ D then dy
c is not dominated. 

Similarly, we conclude that D ∩ {tz
c , dz

c, cz
c , bz

c, az
c} = {dz

c, cz
c}. Thus, since uc should be dominated as well as ax

c and dx
c , we 

obtain by Observation 4 that D ∩ {uc, ax
c, bx

c, cx
c , dx

c, tx
c } = {ax

c, cx
c}. Thus, D ∩ V (G T

c ) contains no P3 nor can it be part of a P3
and so, D contains no P3.

Conversely, assume that G� is a No-instance for 1-Edge Contraction(γt ) and let D be a minimum total dominating 
set of G� . Consider a variable x ∈ X contained in clauses c, c′ and c′′ . First observe that since D ∩ {Fx, tx, ux, vx} does not 
contain a P3, it follows from Observation 3(i) that |D ∩ {Fx, Tx, ux, vx}| = 2, and we conclude by Observation 3(i) that in 
fact equality holds (recall that ux ∈ D). Similarly for any p ∈ {c, c′, c′′}, |D ∩ {ap

x , bp
x , cp

x , dp
x , t p

x }| ≤ 3. Now suppose to the 
contrary that there exists p ∈ {c, c′, c′′} such that |D ∩ {ap

x , bp
x , cp

x , dp
x , t p

x }| = 3. Then |D ∩ {bp
x , cp

x , dp
x }| ≤ 1; indeed, clearly 

|D ∩ {bp
x , cp

x , dp
x }| < 3 and if |D ∩ {bp

x , cp
x , dp

x }| = 2 then we may assume without loss of generality that D ∩ {bp
x , cp

x , dp
x } =

{bp
x , dp

x }. But then D ∩ {t p
x , ap

x } 
= ∅ and so, D ∩ {ap
x , bp

x , cp
x , dp

x , t p
x } contains a P3, a contradiction. Thus |D ∩ {bp

x , cp
x , dp

x }| ≤ 1
and we conclude by Observation 3(ii) that |D ∩ {bp

x , cp
x , dp

x }| = 1 (in fact, either bp
x ∈ D or dp

x ∈ D). It follows that t p
x , ap

x ∈ D
and so, necessarily Tx /∈ D for otherwise ap

x , Tx, ux would induce a P3 (recall that by Observation 3(i), ux ∈ D). But then, 
(D \ {ap

x , bc
x}) ∪ {Tx, dc

x} is a minimum total dominating set of G� containing a P3, a contradiction. Thus, we conclude that 
for any p ∈ {c, c′, c′′}, |D ∩ {ap

x , bp
x , cp

x , dp
x , t p

x }| ≤ 2; and by symmetry, we also conclude that |D ∩ {g p
x , hp

x , ip
x , jp

x , f p
x }| ≤ 2 for 

any p ∈ {c, c′, c′′}. It then follows from Observation 3 that for any variable x ∈ X , |D ∩ V (Gx)| = 14.
Consider now a clause c ∈ C containing variables x, y and z. First observe that since D ∩ {gx

c , g
y
c , gz

c , vc, wc} does not 
contain a P3, it follows from Observation 2(i) that |D ∩ {gx

c , g
y
c , gz

c , vc, wc}| = 2 and vc ∈ D . Now if there exists p ∈ {x, y, z}
such that f p

c ∈ D then g p
c /∈ D and so, f c

p ∈ D for otherwise f p
c would not be dominated. It follows that jc

p /∈ D (D would 
otherwise contain a P3) and ic

p /∈ D ((D \ {ic
p} ∪ { jc

p}) would otherwise contain a P3) which implies that hc
p ∈ D as ic

p

would otherwise not be dominated. But then, (D \ { f p
c }) ∪ { jc

p} is a minimum total dominating set of G� containing a 
P3, a contradiction. Thus, |D ∩ V (G F

c )| ≤ 2. Now for any p ∈ {x, y, z}, |D ∩ {ap
c , bp

c , cp
c , dp

c , t p
c }| ≤ 3 as D ∩ {ap

c , bp
c , cp

c , dp
c , t p

c }
would otherwise contain a P3. Suppose to the contrary that there exists p ∈ {x, y, z} such that |D ∩{ap

c , bp
c , cp

c , dp
c , t p

c }| = 3. If 
|D ∩ {ap

c , bp
c , cp

c }| = 1 then dp
c , t p

c ∈ D and so necessarily cp
c /∈ D . Then, since bp

c should be dominated, it must be that ap
c ∈ D . 

But then, tc
p /∈ D (tc

p, t p
c and dp

c would otherwise induce a P3) and so D ′ = (D \ {dp
c }) ∪ {tc

p} is a minimum total dominating 
set of G� with |D ′ ∩ {tc

p, dc
p, cc

p, bc
p, ac

p}| ≥ 3, thereby contradicting the above. Thus, |D ∩ {ap
c , bp

c , cp
c }| = 2 (indeed, clearly 

|D ∩ {ap
c , bp

c , cp
c }| < 3) and we may assume without loss of generality that D ∩ {ap

c , bp
c , cp

c } = {ap
c , cp

c }. It follows that dp
c /∈ D

(dp
c , ap

c and cp
c would otherwise induce a P3) and so, t p

c ∈ D . But then, it must be that tc
p ∈ D (t p

c would otherwise not 
be dominated) and so dc

p /∈ D (dc
p, tc

p and t p
c would otherwise induce a P3). It follows that D ′ = (D \ {t p

c }) ∪ {dc
p}) is a 

minimum total dominating set of G� with |D ′ ∩ {tc
p, dc

p, cc
p, bc

p, ac
p}| ≥ 3 thereby contradicting the above. Thus for any p ∈

{x, y, z}, |D ∩ {ap
x , bp

c , cp
c , dp

c , t p
c }| ≤ 2 and we conclude by Observation 2(ii) that in fact equality holds. It follows that uc /∈ D; 

indeed, if uc ∈ D then |D ∩ {ax
c, a

y
c , az

c}| ≤ 1 (D ∩ {uc, ax
c, a

y
c , az

c} would otherwise contain a P3) which implies that D ′ = (D \
25
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G H

Fig. 5. Constructing a total dominating set of H from a total dominating set of G (vertices in red belong to the corresponding total dominating set). (For 
interpretation of the colors in the figure, the reader is referred to the web version of this article.)

{uc}) ∪ {ap
c } with p ∈ {x, y, z} such that ap

c /∈ D , is a minimum total dominating set of G� with |D ′ ∩ {ap
c , bp

c , cp
c , dp

c , t p
c }| ≥ 3

thereby contradicting the above. Thus, we conclude that |D ∩ V (Gc)| = 8 for any clause c ∈ C and so, γt(G�) = |D| = 14|X |
+ 8|C |. �

Now by combining Claims 4 and 5, we obtain that � is satisfiable if and only if G� is a No-instance for 1-Edge 
Contraction(γt ) thus concluding the proof. �
Lemma 7. Let G be a graph on at least three vertices, and let G ′ be the graph obtained by 4-subdividing every edge of G. Then ctγt (G) =
1 if and only if ctγt (G ′) = 1.

Proof. Let G = (V , E) be a graph with |V | ≥ 3. In the following, given an edge e = uv of G , we denote by e1, e2 e3 and e4
the four new vertices resulting from the 4-subdivision of the edge e (where e1 is adjacent to u and e4 is adjacent to v). We 
first prove the following.

Claim 6. If H is the graph obtained from G by 4-subdividing one edge, then γt(H) = γt(G) + 2.

Proof. Assume that H is obtained by 4-subdividing the edge e = uv and consider a minimum total dominating set D of G . 
We construct a total dominating set of H as follows (see Fig. 5). If D ∩ {u, v} = ∅, then D ∪ {e2, e3} is a total dominating 
set of H . If |D ∩ {u, v}| = 1, say u ∈ D without loss of generality, then D ∪ {e3, e4} is a total dominating set of H . Finally, if 
{u, v} ⊂ D then D ∪ {e1, e4} is a total dominating set of H . We thus conclude that γt (H) ≤ γt(G) + 2.

Conversely, let D be a minimum total dominating set of H . First note that if e1 ∈ D and u /∈ D , necessarily e2 ∈
D for otherwise e1 would not be dominated. Similarly, if e4 ∈ D and v /∈ D then e3 ∈ D . Thus, if e1, e4 ∈ D then 
(D \ {e1, e2, e3, e4}) ∪ {u, v} is a total dominating set of G of size at most γt(H) − 2. Now suppose that e4 /∈ D . Then, 
necessarily e2 ∈ D for otherwise e3 would not be dominated, and if v /∈ D then e3 ∈ D for otherwise e4 would not be 
dominated. Thus, if e1 ∈ D and e4 /∈ D , either v ∈ D in which case D \ {e1, e2, e3, e4} is a total dominating set of G of size at 
most γt(H) − 2; or v /∈ D and (D \ {e1, e2, e3, e4}) ∪ {v} is a total dominating set of size at most γ (H) − 2. By symmetry, we 
conclude similarly if e4 ∈ D and e1 /∈ D . Now if both e1 and e4 do not belong to D then e2, e3 ∈ D and so, D \ {e1, e2, e3, e4}
is a total dominating set of G of size at most γt(H) − 2. Therefore, γt(G) ≤ γt(H) − 2 which concludes the proof of the 
claim. �

Remark 2. Note that the minimum total dominating set D of G constructed from a minimum total dominating D ′ of H
according to the proof of Claim 6 has the following property: if e1 ∈ D ′ (resp. e4 ∈ D ′) then v ∈ D (resp. u ∈ D).

We now prove the statement of the lemma. Let G ′ be the graph obtained by 4-subdividing every edge of G . Then, 
γt(G ′) = γt(G) + 2|E| by Claim 6.

First assume that ctγt (G) = 1. Then by Theorem 1, there exists a minimum total dominating set D of G containing a 
P3, say u, v, w . Let D ′ be the minimum total dominating set of G ′ constructed from D according to the proof of Claim 6. 
Then D ′ contains a P3, namely e4, v, f1 where e = uv , f = v w and f1 is the vertex resulting from the 4-subdivision of f
adjacent to v .

Conversely, assume that ctγt (G ′) = 1. Then by Theorem 1, there exists a minimum total dominating set D ′ of G ′ contain-
ing a P3 which we denote by P in the following. Now let D be the minimum total dominating set of G constructed from 
D ′ according to the proof of Claim 6. If P is made up of the vertices e4, v, f1, where e = uv , f = v w and f1 is the vertex 
resulting from the 4-subdivision of f adjacent to v , then u, v, w ∈ D by construction (see Remark 2). If P is made up of the 
vertices u, e1, e2, where e = uv , then we may assume that u has no other neighbor in D than e1 (we would otherwise fall 
back into the previous case). Suppose first that v ∈ D ′ . Then, e4 /∈ D ′ for otherwise D ′ \ {e2} would be a total dominating 
set of G ′ of size strictly less than that of D ′ , a contradiction. It follows that v has a neighbor f1 belonging to D , with 
f = v w (v would otherwise not be dominated); but then w ∈ D by construction (see Remark 2) and so, D contains u, v, w . 
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Thus, suppose that v /∈ D ′ . Then e4 /∈ D ′; indeed, if e4 ∈ D ′ then e3 ∈ D ′ (e4 would otherwise not be dominated) but then, 
D ′ \ {e2} is a total dominating set of G ′ of size strictly less than that of D ′ , a contradiction. It follows that v has a neighbor 
f1 belonging to D ′ , with f = v w (v would otherwise not be dominated). But then, v, w ∈ D by construction (see Remark 2) 
and so, D contains u, v, w . Suppose finally that P is made up of the vertices e1, e2, e3 with e = uv and assume that u /∈ D ′
(we would otherwise fall back into the previous case). Then v /∈ D ′ for otherwise D ′ \ {e3} would be a total dominating 
set of G ′ of size strictly less than that of D ′ , a contradiction. Suppose first that e4 ∈ D ′ . If v has another neighbor in D ′ , 
say f1 ∈ D ′ with f = v w , then by construction D contains u, v, w (see Remark 2). Thus, we may assume that v has no 
other neighbor in D ′ than e4. Now since |V | ≥ 3 and G is connected, one of u and v has a neighbor in V \ {u, v}, say 
f = v w ∈ E without loss of generality. Note that we may assume that w /∈ D ′ for otherwise D would contain u, v, w . Now 
since f1 /∈ D ′ by assumption, necessarily f2 ∈ D ′ ( f1 would otherwise not be dominated) and f3 ∈ D ′ ( f2 would otherwise 
not be dominated) and so, by considering D ′′ = (D ′ \ {e3, e4}) ∪ {v, f1}, we fall back into the previous case (indeed, D ′′
contains v, f1, f2). Second, suppose that e4 /∈ D . Clearly, v has a neighbor f1 ∈ D , with f = v w (v would otherwise not be 
dominated), and f2 ∈ D ( f1 would otherwise not be dominated). But then, by considering D ′′ = (D ′ \ {e3}) ∪ {v}, we fall 
back into the previous case (indeed, D ′′ contains v, f1, f2). Thus, G has a minimum total dominating set containing a P3
and we conclude by Theorem 1 that ctγt (G) = 1. �

By applying a 4-subdivision to an instance of 1-Edge Contraction(γt ) sufficiently many times, we deduce the following 
from Lemma 7.

Theorem 8. For any l ≥ 3, 1-Edge Contraction(γt ) is NP-hard when restricted to {C3, . . . , Cl}-free graphs.

4. Algorithms

In this section, we deal with the cases in which 1-Edge Contraction(γt ) is tractable. A first simple approach to this 
problem, from which we obtain Proposition 9, is based on brute force.

Proposition 9. 1-Edge Contraction(γt ) can be solved in polynomial-time on a graph class C , if one of the following holds:

(a) C is closed under edge contraction and Total Dominating Set is solvable in polynomial time on C; or
(b) for every G ∈ C , γt(G) ≤ q where q is a fixed constant; or
(c) C is the class of (H + K1)-free graphs where |V (H)| = q is a fixed constant and 1-Edge Contraction(γt ) is polynomial-time 

solvable on H-free graphs.

Proof. In order to prove (a), it suffices to note that if we can compute γt(G) and γt(G/e) for any edge e of G in polynomial 
time, then we can determine in polynomial time whether G is a Yes-instance for 1-Edge Contraction(γt ).

For (b), we proceed as follows. Given a graph G of C , we first check whether γt(G) = 2. If it is the case, then G is a
No-instance for 1-Edge Contraction(γt ). Otherwise, we may consider any subset S ⊆ V (G) with |S| ≤ q and check whether 
it is a total dominating set of G . Since there are at most O(nq) possible such subsets, we can determine the total domination 
number of G and check whether the conditions given in Theorem 1 are satisfied in polynomial time.

So as to prove (c), we provide the following algorithm. Let H and q be as stated and let G be an instance of 1-Edge 
Contraction(γt ) on (H + K1)-free graphs. We first test whether G is H-free (note that this can be done in time O(nq)). If 
this is the case, we use the polynomial-time algorithm for 1-Edge Contraction(γt ) on H-free graphs. Otherwise, there is a 
set S ⊆ V (G) such that G[S] is isomorphic to H ; but since G is a (H + K1)-free graph, S must then be a dominating set of 
G and so, γt(G) ≤ 2q. We then conclude by Proposition 9(b) that 1-Edge Contraction(γt ) is also polynomial-time solvable 
in this case. �
Theorem 10. 1-Edge Contraction(γt ) is polynomial-time solvable on P5-free graphs.

Proof. Let G be a P5-free graph. If γt(G) = 2, then G is clearly a No-instance for 1-Edge Contraction(γt ). Now, assume 
that γt(G) ≥ 3 and consider a minimum total dominating set D of G . Let us now show that then G is a Yes-instance for
1-Edge Contraction(γt ). If γt(G) = 3 then it is clear that D contains a P3 as every vertex in D has a neighbor in D; 
thus, by Theorem 1, G is a Yes-instance for 1-Edge Contraction(γt ). Next, suppose that γt(G) ≥ 4 and consider u, v ∈ D
such that dG (u, v) = maxx,y∈D dG(x, y). If dG(u, v) = 1, then G[D] is a clique and G is therefore a Yes-instance for 1-Edge 
Contraction(γt ) by Theorem 1. Thus, we may assume that dG (u, v) ≥ 2. Furthermore, we may assume that u and v have 
no common neighbor in D for otherwise we are done by Theorem 1. Denote by x (resp. y) a neighbor of u (resp. v) in D
and assume that x and y are not adjacent (if xy ∈ E(G) then we are done by Theorem 1). Since G is P5-free, dG(x, y) ≤ 3.

Suppose first that dG (x, y) = 3 and let a (resp. b) be the neighbor of x (resp. y) on a shortest path from x to y. Then 
u is adjacent to either a or b but not both; indeed, u is adjacent to either a or b as u, x, a, b, y would otherwise induce 
a P5. By symmetry, the same holds for v . But if u is adjacent to both, since v is adjacent to either a or b, we would 
have dG (u, v) = 2 < dG(x, y) thereby contradicting the choice of u and v . A similar reasoning shows that if u is adjacent 
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to a (resp. b) then v is adjacent to b (resp. a). Assume without loss of generality that u is adjacent to a (and thus, v is 
adjacent to b). Then, NG (u) ∪ NG(v) ⊆ NG(a) ∪ NG(b); indeed, if t is a neighbor of u then t is nonadjacent to v (recall that 
dG (u, v) ≥ dG (x, y) = 3) and thus, t is adjacent to either a or b for otherwise t, u, a, b, v would induce a P5. We conclude 
similarly if t is a neighbor of v . But then, D ′ = (D\{u, v}) ∪ {a, b} is a minimum total dominating set of G containing a P3; 
indeed, D ′ is clearly dominating and if a vertex w ∈ D were dominated by either u or v , then w is dominated a or b in D ′ . 
We then conclude by Theorem 1 that G is a Yes-instance for 1-Edge Contraction(γt ).

Now, suppose that dG (x, y) = 2 and denote by a the vertex on a shortest path from x to y. Then, a is adjacent to either 
u or v for otherwise u, x, a, y, v induce a P5. Suppose first that a is adjacent to both u and v . We may assume that both 
x and y have at least one private neighbor with respect to D; if it weren’t the case for x, then (D\{x}) ∪ {a} would be a 
minimum total dominating set of G containing a P3 (the same argument holds for y). Let t (resp. s) be a private neighbor of 
x (resp. y). Clearly, t and s must be nonadjacent since otherwise, x, t, s, y, v induce a P5. Also, at least t or s is adjacent to 
a, otherwise t, x, a, y, s induce a P5. Without loss of generality, we may assume that s is adjacent to a. If t is nonadjacent to 
a then every private neighbor r of y must be adjacent to a for otherwise t, x, a, y, r would induce a P5; thus, (D\{y}) ∪ {a}
is a minimum total dominating set of G containing a P3 and so by Theorem 1, we have that ctγt (G) = 1. Thus, we may 
assume now that t is also adjacent to a, and hence every private neighbor of x and y is adjacent to a (if there exists a 
private neighbor of x or y which is nonadjacent to a, we conclude as previously), and therefore (D\{y}) ∪ {a} is a minimum 
total dominating set of G containing a P3. The result then follows from Theorem 1. Now, if a is nonadjacent to one of u
and v , say v without loss of generality, then any neighbor t of u is adjacent to either a, y or v for otherwise t, u, a, y, v
would induce a P5; but then, (D\{u}) ∪{a} is a minimum total dominating set of G containing a P3 and thus by Theorem 1, 
ctγt (G) = 1. �
Theorem 11. For any fixed k ≥ 0, 1-Edge Contraction(γt ) is polynomial-time solvable on (P4 + kP3)-free graphs.

Proof. First observe that since Total Dominating Set is polynomial-time solvable on P4-free graphs [1, Theorem 9], 1-Edge 
Contraction(γt ) is polynomial-time solvable on P4-free graphs by Proposition 9(a) (note indeed that the class of P4-free 
graphs is closed under edge contraction). Now assume that k ≥ 1 and let G be a (P4 +kP3)-free graph containing an induced 
P4 + (k − 1)P3. Let A ⊆ V (G) be such that G[A] is isomorphic to P4 + (k − 1)P3, set B to be the set of vertices at distance 
one from A and let C = V (G) \ (A ∪ B). Note that since G is (P4 + kP3)-free, G[C] is a disjoint union of cliques.

Let K be the set of maximal cliques in G[C]. Observe that for any clique K ∈ K we have N[K ] \ K 
= ∅ since G is 
connected and N[K ] \ K ⊆ B by the maximality of K . Let K′ ⊆K be the subset of cliques such that the closed neighborhood 
of each clique in K′ does not contain an induced P4 and no clique in K′ is complete to a vertex in B . We call a clique 
K ∈ K′ a regular clique if there exist k other cliques K1, . . . , Kk ∈ K′ such that K , K1, . . . , Kk have pairwise distance at least 
four from one another. We denote by R the set of regular cliques. Note that we can identify this set in polynomial time.

Claim 7. Let K ∈ K be a clique of at least two vertices such that N[K ] is P4-free. Then there exist x, y ∈ K such that N[xy] = N[K ]
and for any v ∈ N[K ], either N[K ] ⊆ N[vx] or N[K ] ⊆ N[v y].

Proof. Let x, y ∈ K be such that |N[xy]| is maximum amongst all pairs of vertices in K . Suppose for a contradiction that 
there exists a vertex b ∈ N[K ] nonadjacent to both x and y, and let c ∈ K be a neighbor of b. Suppose that x has a neighbor 
px which is adjacent to neither c nor y, and that y has a neighbor p y which is adjacent to neither c nor x. Then px and p y
must be adjacent for otherwise px, x, y, p y would induce a P4; but then, px, p y, y, c induce a P4, a contradiction. It follows 
that N[xy] is dominated by either cx or cy, say N[xy] ⊆ N[cx] without loss of generality. Now since b ∈ N[cx] \ N[xy], 
we conclude that |N[xy]| < |N[cx]| thereby contradicting the maximality of |N[xy]|. Hence, xy dominates N[K ] and thus, 
N[xy] = N[K ]. Now consider v ∈ N[K ] \ {x, y} and assume without loss of generality that v is adjacent to x. Suppose that 
N[xy] � N[vx], that is, y has a neighbor p y which is adjacent to neither v nor x. Then y must be adjacent to v for 
otherwise v, x, y, p y would induce a P4. Now if there exists a vertex px ∈ N(x) which is adjacent to neither y nor v , then 
either px is not adjacent to p y in which case px, x, y, p y induce a P4, or px is adjacent to p y and v, x, px, p y induce a P4, 
a contradiction in both cases. Thus, we conclude that if N[xy] � N[vx] then N[xy] ⊆ N[v y]. �

Claim 8. Let K1, . . . , Kk+1 ∈ R be regular cliques which are pairwise at distance at least four from one another. For any i ∈ [k + 1], if 
v ∈ V (G) \ N[Ki] is adjacent to a vertex in N(Ki) ∩ B then there exists j ∈ [k + 1], j 
= i, such that v is complete to N(K j) ∩ B.

Proof. Assume that there exists a vertex v ∈ V (G) \ N[Ki] where i ∈ [k + 1], which is adjacent to a vertex bi ∈ N(Ki) ∩ B . Let 
ci ∈ Ki ∩ N(bi) and c′

i ∈ Ki \ N(bi) (recall that since Ki is a regular clique, bi is not complete to Ki ). Observe that v /∈ N[K j] for 
any j ∈ [k + 1] since otherwise Ki and K j would be at distance at most three. Suppose for a contradiction that there exists 
no j ∈ [k + 1] such that v is complete to N(K j) ∩ B . Then for every j ∈ [k + 1] \ {i}, there exists a vertex b j ∈ N(K j) ∩ B

which is nonadjacent to v . For every j ∈ [k + 1] \ {i}, let c j ∈ K j ∩ N(b j) and c′
j ∈ K j \ N(b j). Then 

⋃k+1
i=1 {bi, ci, c′

i} ∪ {v}
induces a P4 + kP3, a contradiction. �

Claim 9. Let D be a minimum total dominating set of G and let K ∈R be a regular clique. Then |D ∩ N[K ]| = 2.
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Proof. It is clear from the definition that |D ∩ N[K ]| ≥ 2 for any regular clique K . Now suppose for a contradiction that 
there exists a clique K1 ∈ R such that |D ∩ N[K1]| ≥ 3 and let K2, . . . , Kk+1 be k regular cliques such that K1, K2, . . . , Kk+1

are pairwise at distance at least four from one another. It follows from the above that∣∣∣∣∣∣D ∩
⋃

2≤i≤k+1

N[Ki]
∣∣∣∣∣∣ ≥ 2k.

Now by Claim 7, we have that for any i ∈ [k + 1], there exist bi ∈ B ∩ N[Ki] and ci ∈ N(bi) ∩ Ki such that bici dominates 
N[Ki]. But then D ′ = (D \ ⋃

i∈[k+1] N[Ki]) ∪ ⋃
i∈[k+1]{bi, ci} is a total dominating set of G; indeed, if v ∈ V (G) is adjacent 

to a vertex in D ∩ N[Ki], for some i ∈ [k + 1], then either v ∈ N[Ki] in which case v ∈ N[bici], or v ∈ V (G) \ N[Ki] and we 
conclude by Claim 8 that v is complete to N(K j) ∩ B for some j ∈ [k + 1] (in particular, v is adjacent to b j ). But |D ′| < |D|, 
a contradiction to the minimality of D . �

Remark 3. Note that by the proof of Claim 9, we have that for any minimum total dominating set D of G , any k + 1 regular 
cliques K1, . . . , Kk+1 ∈R which are pairwise at distance at least four from one another, any bi ∈ B ∩N(Ki) and ci ∈ Ki ∩N(bi)

such that N[Ki] ⊆ N[bici] with i ∈ [k + 1],
k+1⋃
i=1

{bi, ci} ∪
⎛
⎝D \

⋃
1≤i≤k+1

N[Ki]
⎞
⎠

is a minimum total dominating set of G .

Claim 10. If there are two regular cliques at distance at most three from one another then G is a Yes-instance for 1-Edge 
Contraction(γt ).

Proof. Assume that such two regular cliques exist and let K1 and K ′
1 be two regular cliques such that d(K1, K ′

1) =
minK ,K ′∈R d(K , K ′) (note that by assumption, d(K1, K ′

1) ≤ 3). Now suppose to the contrary that G is a No-instance for 1-

Edge Contraction(γt ). Let K2, . . . , Kk+1 (resp. K ′
2, . . . , K

′
k+1) be k regular cliques such that K1, . . . , Kk+1 (resp. K ′

1, . . . , K
′
k+1) 

have pairwise distance at least four from one another, and denote by S = K1 ∪ . . .∪ Kk+1 and S ′ = K ′
1 ∪ . . .∪ K ′

k+1. By Claim 7, 
we have that for every i ∈ [k + 1], there exist bi ∈ N(Ki) ∩ B and ci ∈ Ki ∩ N(bi) (resp. b′

i ∈ N(K ′
i ) ∩ B and c′

i ∈ K ′
i ∩ N(b′

i)) 
such that N[Ki] ⊆ N[bici] (resp. N[K ′

i ] ⊆ N[b′
ic

′
i]). Note that it is possible that Ki = K ′

j for some i, j ∈ [k + 1] and in this case 
bi = b′

j and ci = c′
j also hold. In the following, let D be a minimum total dominating set of G .

Suppose first that K1 and K ′
1 have a common neighbor v , that is, d(K1, K ′

1) = 2. Then by Claim 7, there exists c ∈
K1 ∩ N(v) such that N[K1] ⊂ N[cv]. As c has a neighbor in N(K ′

1) ∩ B (namely v), it follows from Claim 8 that there exists 
j ∈ [k +1] such that c is complete to N[K ′

j] ∩ B . By Remark 3, we then have that D ′ = (D \N[S]) ∪{
c, v,b2, c2, . . . ,bk+1, ck+1

}
is a minimum total dominating set of G . Similarly by Remark 3, we conclude that D ′′ = (D ′ \ N[S ′]) ∪

{
b′

1, c′
1, . . . ,b′

k+1, c′
k+1

}
is a minimum total dominating set of G . But as c belongs to D ′′ and is adjacent to b′

j , it follows that D ′′ contains a P3, 
a contradiction by Theorem 1. Thus, d(K1, K ′

1) ≥ 3; in particular, no two regular cliques in G have a common neighbor by 
minimality of d(K1, K ′

1).
Now since d(K1, K ′

1) ≤ 3 by assumption, there must exist w1 ∈ N(K1) ∩ B and w ′
1 ∈ N(K ′

1) ∩ B such that w1 and w ′
1 are 

adjacent. By Claim 7, there exist v1 ∈ K1 ∩ N(w1) and v ′
1 ∈ K ′

1 ∩ N(w ′
1) such that N[K1] ⊆ N[w1 v1] and N[K ′

1] ⊆ N[w ′
1 v ′

1]. 
But then by Claim 8, we have that D ′ = (D \ N[S ∪ S ′]) ∪ {w1, v1, w ′

1, v
′
1} ∪

⋃k+1
i=2

{
bi,b′

i, ci, c′
i

}
is a total dominating set 

of G of size at most that of D; indeed, since no two regular cliques have a common neighbor, it follows from Claim 9

that |D ∩ N[S ∪ S ′]| = 2 
∣∣∣{K1, . . . , Kk+1, K ′

1, . . . , K ′
k+1

}∣∣∣. Note that 
∣∣∣{K1, . . . , Kk+1, K ′

1, . . . , K ′
k+1

}∣∣∣ is not necessarily equal 

to 2(k + 1) but we have 2(k + 1) ≥
∣∣∣{K1, . . . , Kk+1, K ′

1, . . . , K ′
k+1

}∣∣∣ ≥ k + 2. But D ′ contains a P3, a contradiction by

Theorem 1. �

In the following, given a total dominating set D of G , we call an edge xy, with x, y ∈ D , a B-edge (resp. C-edge; B − C-
edge) if x, y ∈ B (resp. x, y ∈ C ; x ∈ B and y ∈ C ). Given a B − C-edge xy, we call its endvertices the B-vertex and the 
C-vertex, according to the set in which they are contained. Recall that by Theorem 1, if G is a No-instance for 1-Edge 
Contraction(γt ) then every minimum total dominating set is an induced matching.

Claim 11. Let D be a minimum total dominating set of G. If G is a No-instance for 1-Edge Contraction(γt ) then there are at most 
(k + 1) (k + |A|) − 1 B-edges in D which have no private neighbors in C.

Proof. Assume that G is a No-instance for 1-Edge Contraction(γt ) and let � = k + |A|. Suppose for a contradiction 
that there exist � (k + 1) B-edges x1 y1, . . . , x�(k+1) y�(k+1) with no private neighbor in C . For every i ∈ [k + 1], let Xi =
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{
x(i−1)�+1, . . . , x(i−1)�+k+|A|

}
. If for some i ∈ [k + 1] there were no vertex v ∈ C such that N(v) ∩ D ⊆ Xi , then (D \ Xi) ∪ A

would be a total dominating set of G containing fewer vertices than D , a contradiction. Now consider v1 ∈ C such 
that N(v1) ∩ D ⊆ X1 and let v2, . . . , vq ∈ C be a longest sequence of vertices defined as follows: for every i ∈ [q] \ {1}, 
N(vi) ∩ D ⊆ Xi and vi is anti-complete to {v1, . . . , vi−1}. We claim that q = k + 1. Indeed, if q < k + 1 then every ver-
tex v ∈ C with N(v) ∩ D ⊆ Xq+1 is adjacent to some vertex in {v1, . . . , vq} by maximality of the sequence. But then 
(D \ Xq+1) ∪ {v1, . . . , vq} ∪ A is a total dominating set of G of cardinality at most |D| containing a P3, which cannot be 
by Theorem 1. Thus, q = k + 1. Now for every i ∈ [k + 1], vi has to be adjacent to at least two vertices in Xi as no vertex 
in Xi has a private neighbor in C , say vi is adjacent to x(i−1)�+1 and x(i−1)�+2 without loss of generality. But now the set of 
vertices

{y1, x1, v1, x2} ∪
k+1⋃
i=2

{
x(i−1)�+1, x(i−1)�+2, vi

}

induces a P4 + kP3, a contradiction. �

Let D be a total dominating set of G . We say that a B-edge xy can be turned into a B − C-edge if there exists a vertex 
z ∈ C such that (D \ {x}) ∪ {z} or (D \ {y}) ∪ {z} is a total dominating set. Analogously, if xy is a B − C-edge with x ∈ B and 
y ∈ C , we say that xy can be turned into a C-edge if there is a vertex z ∈ C such that (D \ {x}) ∪ {z} is a total dominating set 
of G .

Claim 12. Let D be a minimum total dominating set of G. If G is a No-instance for 1-Edge Contraction(γt ) and there exists a B-edge 
which has a private neighbor in C and cannot be turned into a B − C-edge, then there are at most |A| + 2k B-edges.

Proof. Assume that G is a No-instance for 1-Edge Contraction(γt ) and there exists a B-edge x1 y1 such that x1 has a 
private neighbor p ∈ C and x1 y1 cannot be turned into a B − C-edge. Suppose to the contrary that there exist |A| + 2k
additional B-edges x2 y2, . . . , x|A|+2k+1 y|A|+2k+1. If every private neighbor of y1 is adjacent to p, then (D \ {y1}) ∪ {p} is 
a minimum total dominating set of G , that is, we can turn the B-edge x1 y1 into a B − C-edge which is contrary to our 
assumption. Thus, y1 has a private neighbor p′ which is not adjacent to p. Set V 1 = {

p, x1, y1, p′} and let V 2, . . . , Vq be a 
longest sequence of sets of vertices defined as follows. For every i ∈ [q] \ {1}, there is a ji ∈ [2, . . . , |A| + 2k + 1] and a vertex 
vi ∈ C such that V i = V i−1 ∪ {

x ji , y ji , vi
}

, x ji /∈ V i−1, vi is adjacent to x ji and vi is anti-complete to V i−1 ∪ y ji . We now 
claim that q ≥ k + 1. Indeed, observe first that for any j ∈ [2, . . . , |A| + 2k + 1] such that x j /∈ Vq , every neighbor of x j in C
must be adjacent to some vertex in Vq ∪ {y j} by maximality of the sequence. Now if q < k + 1, there are at least |A| + k + 1
indices j ∈ [|A| + 2k + 1] such that x j /∈ Vq and so, D ′ = (D \ {

x j : j ∈ [|A| + 2k + 1], x j /∈ Vq
}
) ∪ Vq ∪ A is a total dominating 

set of G of size at most |D|. But D ′ contains a P3, a contradiction by Theorem 1. Thus, q ≥ k + 1; but now Vk+1 induces a 
P4 + kP3, a contradiction. �

Claim 13. Let D be a minimum total dominating set. If G is a No-instance for 1-Edge Contraction(γt ) then all but at most k + |A|
B − C-edges can be turned into C-edges.

Proof. Assume that G is a No-instance for 1-Edge Contraction(γt ). First, suppose for a contradiction that there exist |A|
B − C-edges b1c1, . . . , b|A|c|A| , where bi ∈ B and ci ∈ C for all i ∈ [|A|], such that ci has no private neighbor in C for every 
i ∈ [|A|]. Then (D \{

c1, . . . , c|A|
}
) ∪ A is a minimum total dominating set of G containing a P3, a contradiction by Theorem 1. 

Thus, there exist at most |A| − 1 B − C-edges such that the C-vertex has no private neighbor in C .
Now suppose to the contrary that there exist k + |A| + 1 B − C-edges b1c1, . . . , bk+|A|+1ck+|A|+1, where bi ∈ B and ci ∈ C

for all i ∈ [k + |A| + 1], which cannot be turned into C-edges. By the above, we can assume without loss of generality that 
c1 has a private neighbor p′ in C . If every private neighbor of b1 is adjacent to p′ then (D \ {b1}) ∪ {p′} is a minimum 
total dominating set of G thereby contradicting the fact that b1c1 cannot be turned into a C-edge. Thus, b1 must have a 
private neighbor p which is not adjacent to p′ . We now claim that there are at most k − 1 indices i ∈ {2, . . . , |A| + k + 1}
such that there exists a vertex vi ∈ C which is adjacent to ci but not to bi and p. Indeed, if there were k such indices, say, 
without loss of generality, for every i ∈ [k + 1] \ {1}, there exists vi ∈ C such that vi is adjacent to ci but not to bi and p, 
then p′, c1, b1, p, v2, c2, b2, . . . , vk+1, ck+1, bk+1 would induce a P4 + kP3; indeed, since for every i, j ∈ [k + 1], ci and c j are 
non-adjacent and as vi is contained in C it follows that if vi is adjacent to ci then it is non-adjacent to c j and v j . Thus, we 
obtain a contradiction. It follows that there are at least |A| + 1 indices i ∈ {2, . . . , |A| + k + 1} such that every neighbor of ci

in C is adjacent to bi or p, say without loss of generality indices 2 to |A| + 2. But then (D \ {
c2, . . . , c|A|+2

}
) ∪ A ∪ {p} is a 

minimum total dominating set containing a P3, a contradiction by Theorem 1. �

Claim 14. If G is a No-instance for 1-Edge Contraction(γt ) then every minimum total dominating set of G is an induced matching 
and there exists a minimum total dominating set of G in which all but at most (k + 2) (k + |A|) + |A| − 1 edges are contained in C.
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Proof. First note that since G is a No-instance for 1-Edge Contraction(γt ), every minimum total dominating set of G is an 
induced matching by Theorem 1. Now let D be a minimum total dominating set of G containing as few B-edges as possible 
amongst all minimum total dominating sets of G . Then either no B-edge has a private neighbor in C in which case D
contains at most (k + 1) (k + |A|) − 1 B-edges by Claim 11; or there exists a B-edge with a private neighbor in C in which 
case D contains at most |A| + 2k B-edges by Claim 12 (indeed, note that by the choice of D , no B-edge can be turned into 
a B − C-edge). It then follows from Claim 13 that we can modify D in order to obtain a minimum total dominating set of G
which has at most k + |A| B − C-edges, and as the number of edges intersecting A is trivially not more than |A|, the claim 
follows. �

Claim 15. Assume that G is a No-instance for 1-Edge Contraction(γt ) and let D be a minimum total dominating set of G. Let x1 y1
and x2 y2 be two C-edges contained in K1 and K2 respectively, where K1, K2 ∈ K. If N[K1] and N[K2] are P4-free then K1 and K2
have distance at least four from one another.

Proof. Assume that N[K1] and N[K2] are P4-free. First, suppose for a contradiction that d(K1, K2) = 2, that is, there exists 
a vertex b ∈ N(K1) ∩ N(K2). By Claim 7, there exist c1 ∈ V (K1) ∩ N(b) and c2 ∈ V (K2) ∩ N(b) such that N[K1] ⊆ N[bc1] and 
N[K2] ⊆ N[bc2]. But then, (D \ {x1, x2, y1, y2}) ∪ {c1, c2,b} is a total dominating set of G containing fewer vertices than D , 
a contradiction. Thus, d(K1, K2) > 2.

Now suppose for a contradiction that d(K1, K2) = 3, that is, there exist b1 ∈ N(K1) ∩ B and b2 ∈ N(K2) ∩ B such that 
b1 and b2 are adjacent. By Claim 7, there exist c1 ∈ V (K1) ∩ N(b1) and c2 ∈ V (K2) ∩ N(b2) such that N[K1] ⊆ N[c1b1]
and N[K2] ⊆ N[c2b2]. But then, (D \ {x1, y1, x2, y2}) ∪ {b1,b2, c1, c2} is a minimum total dominating set containing a P3, a 
contradiction by Theorem 1. Thus, d(K1, K2) > 3. �

The following claim is a straightforward corollary of Claim 15.

Claim 16. Assume that G is a No-instance of 1-Edge Contraction(γt ) and let D be a minimum total dominating set of G. If there 
exist k + 1 cliques K1, . . . , Kk+1 ∈K containing C-edges such that for any i ∈ [k + 1], N[Ki] is P4-free and there exists no vertex b ∈ B
complete to Ki , then K1, . . . , Kk+1 are regular cliques.

Claim 17. Assume that G is a No-instance to 1-Edge Contraction(γt ) and let D be a minimum total dominating set of G. Then there 
are at most |A| − 1 cliques K ∈K containing a C-edge, for which there exists a vertex bK ∈ N(K ) ∩ B such that N[K ] ⊆ N[bK ].

Proof. Suppose for a contradiction that there are |A| cliques K1, . . . , K |A| ∈ K containing C-edges x1 y1, . . . , x|A| y|A| respec-
tively, where for any i ∈ [|A|], there exists a vertex bi ∈ N(Ki) ∩ B such that N[Ki] ⊆ N[bi]. Then, (D \{

x1, y1, . . . , x|A|, y|A|
}
) ∪{

b1, . . . ,b|A|
} ∪ A is a minimum total dominating set containing a P3, a contradiction by Theorem 1. �

Claim 18. Let D be a minimum total dominating set of G and let C be a set of C-edges pairwise at distance at least three from 
one another. Then for any subset E ⊆ C of cardinality k + 1 for which there exists an induced path G E of length three containing 
exactly two vertices from two different edges of E, there exist a set T ⊆ N(C) of cardinality at most 2(k − 1) and a set N ⊆ {xy ∈ C :
N(xy) ∩ T = ∅} of cardinality at most k2

2 − k
2 + 2, such that every private neighbor of an edge in C \ N is adjacent to V (G E ) ∪ T , and 

{xy ∈ C : {x, y} ∩ V (G E ) 
=∅} ⊆ N.

Proof. Let E ⊆ C be a set of cardinality k + 1 for which there exists an induced P4, denoted by G E , containing exactly 
two vertices from two different edges of E , and denote by xy and x′ y′ the two edges of E such that {x, y} ∩ V (G E ) 
= ∅
and 

{
x′, y′} ∩ V (G E ) 
= ∅. Let S1 ⊆ (N(C) ∩ B) \ N({xy, x′ y′}) be a maximum independent set such that every vertex in 

S1 is adjacent to exactly one endvertex from an edge in C and not adjacent to G E , and every edge in C has at most one 
neighbor in S1. Note that V (G E ) ∪ S1 ∪ {v, w : v w ∈ C, N(v w) ∩ S1 
= ∅} induces a P4 + |S1|P3 since the vertices in S1
are not adjacent to G E or to each other by construction, and any edge v w ∈ C such that N(v w) ∩ S1 
= ∅ has exactly one 
neighbor u ∈ S1 where either u ∈ N(v) \ N(w) or u ∈ N(w) \ N(v) by construction. It follows that |S1| < k. We construct a 
sequence of sets of vertices according to the following procedure.

1. Initialize i = 1 and set C1 = E1 = {e ∈ C : N(e) ∩ S1 
=∅} ∪ {
xy, x′ y′}.

2. Increase i by one.
3. Let Si ⊆ N(C) ∩ B \ (N(G E ) ∪ N(Ci−1)) be a maximum stable set such that every vertex in Si is adjacent to exactly one 

endvertex of an edge in C and every edge in C has at most one neighbor in Si .
Set Ei = {e ∈ C : N(e) ∩ Si 
=∅} and Ci = Ci−1 ∪ Ei .

4. If |Si | = |Si−1|, stop the procedure. Otherwise, return to 2.

Consider the value of i at the end of the above procedure (note that i ≥ 2). Now observe that the following holds: for 
any edge v w in C \ Ci−1, every private neighbor b of v w is adjacent to G E or Si−1 for otherwise the procedure would have 
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output Si−1 ∪ {b} in place of Si−1. Furthermore, any private neighbor b of an edge in Ei−1 must be adjacent to G E or Si

for otherwise the procedure would have output Si ∪ {b} in place of Si−1 (recall that by construction, |Si−1| = |Si |). Thus, 
it suffices to set T = Si ∪ Si−1 and N = Ci−2 if i > 2 (otherwise N = {

xy, x′ y′}). Observe that for any 1 ≤ p < q ≤ i − 1, 
|Sq| < |S p| which implies that i ≤ k + 1 as |S1| ≤ k − 1; in particular, |S j | ≤ k − j for any j ∈ [i − 1] and so

|N| = |Ci−2| = 2 +
i−2∑
j=1

|E j| = 2 +
i−2∑
j=1

|S j| ≤ 2 +
k−1∑
j=1

(k − j) = k2

2
− k

2
+ 2. �

Claim 19. Assume that G is a No-instance of 1-Edge Contraction(γt ) and let D be a minimum total dominating set of G. Let C be a 
set of C-edges pairwise at distance at least three from one another, such that for every subset E ⊆ C of cardinality k + 1, there exists 
an induced P4 containing exactly two vertices from two different edges in E. Then

|C| <
(

k2

2
+ 3k

2

)(
k2

2
+ 3k

2
+ 1

)
+ k + 1.

Proof. Suppose for a contradiction that

|C| ≥
(

k2

2
+ 3k

2

)(
k2

2
+ 3k

2
+ 1

)
+ k + 1.

For a set E ⊆ C of cardinality k + 1, denote by G E an induced P4 which contains exactly two vertices from two different 
edges in E . Note that as any two edges in C have distance at least three from one another, no other edge in C can be 
adjacent to G E .

Now let E1 ⊆ C be a set of k + 1 edges and let G E1 be as defined above. By Claim 18, there exist a set T1 ⊆ N(C) of 
cardinality at most 2(k − 1) and a set N1 ⊆ {xy ∈ C : N(xy) ∩ T1 = ∅} of cardinality at most k2

2 − k
2 + 2, such that every 

private neighbor of an edge in C \ N1 is adjacent to V (G E1 ) ∪ T1, and 
{

v w ∈ C : {v, w} ∩ V (G E1 ) 
= ∅
} ⊆ N1. We construct a 

sequence of sets of vertices according to the following procedure.

1. Initialize i = 1 and set F1 = N1 ∪ {e ∈ C : N(e) ∩ T1 
= ∅}.

2. If i > k2

2 + 3k
2 , stop the procedure. Otherwise, increase i by one.

3. Let Ei ⊆ C \ Fi−1 be a set of k + 1 edges. By Claim 18, there exist a set Ti ⊆ B ∩ N(C \ Fi−1) of cardinality at most 
2(k − 1) and a set Ni ⊆ {xy ∈ C : N(xy) ∩ Ti = ∅} of cardinality at most k2

2 − k
2 + 2, such that every private neighbor of 

an edge in C \ (Fi−1 ∪ Ni) is adjacent to V (G Ei ) ∪ Ti , and 
{

v w ∈ C : {v, w} ∩ V (G Ei ) 
= ∅
} ⊆ Ni .

Set Fi = Fi−1 ∪ Ni ∪ {e ∈ C : N(e) ∩ Ti 
=∅} and return to 2.

Note that the procedure ends with i = k2

2 + 3k
2 + 1. Indeed, at each iteration, the set F j increases by at most k2

2 − k
2 +

2 + 2(k − 1) and thus at the jth iteration, there are at least

|C| − j(
k2

2
− k

2
+ 2 + 2(k − 1)) ≥ |C| − (

k2

2
+ 3k

2
+ 1)(

k2

2
− k

2
+ 2 + 2(k − 1)) ≥ k + 1

edges left in C to form the set E j+1. Finally, we increase once more i by one (that is, set i = k2

2 + 3k
2 +2) and let Ei ⊆ C \ Fi−1

be a subset of cardinality k + 1. Applying Claim 18 with C (rather than C \ Fi−1 as above) and Ei , we obtain that there exist 
a set Ti ⊆ B ∩ N(C) of cardinality at most 2(k − 1) and a set Ni ⊆ {xy ∈ C : N(xy) ∩ Ti = ∅} of cardinality at most k2

2 − k
2 + 2, 

such that every private neighbor of an edge in C \ Ni is adjacent to V (G Ei ) ∪ Ti , and 
{

v w ∈ C : {v, w} ∩ V (G Ei ) 
= ∅
} ⊆ Ni . 

Observe that Ti could intersect the sets V (G E j ) or T j for j < i, but every private neighbor of an edge in C \ Ni is adjacent 
to G Ei or Ti .

Note that by construction for any j, j′ ∈ [i − 1] the sets V (G E j ) ∪ T j and V (G E j′ ) ∪ T j′ are disjoint and there exists no 
edge in C which is adjacent to both V (G E j ) ∪ T j and V (G E j′ ) ∪ T j′ . Since Ti contains at most 2 (k − 1) vertices and every 
vertex in Ti is adjacent to exactly one edge in C , there are at most 2(k − 1) edges in C which are adjacent to Ti . As for each 
of these edges there is at most one index j ∈ [i − 1] such that the edge is adjacent to V (G E j ) ∪ T j , it follows that there are 
at least k2

2 − k
2 + 2 + 1 indices j ∈ [i − 1] such that the sets V (G E j ) ∪ T j and V (G Ei ) ∪ Ti are disjoint and there exists no 

edge in C which is adjacent to both V (G E j ) ∪ T j and V (G Ei ) ∪ Ti . Thus, there are at least k2

2 − k
2 + 2 + 1 − |Ni | ≥ 1 indices 

j ∈ [i − 1] such that the sets V (G E j ) ∪ T j and V (G Ei ) ∪ Ti are disjoint, there exists no edge in C which is adjacent to both 
V (G E j ) ∪ T j and V (G Ei ) ∪ Ti , and every private neighbor of an edge in 

{
v w ∈ C : {v, w} ∩ N(V (G E j ) ∪ T j) 
= ∅

}
is adjacent 

to V (G Ei ) ∪ Ti . Let j be one of these indices. By construction, it holds that every private neighbor of an edge in Ei is also 
adjacent to V (G E j ) ∪ T j . Let x j y j and x′

j y′
j be the two edges in C which are adjacent to G E j and assume, without loss of 

generality, that x j and x′ are contained in V (G E j ). Let xi yi and x′ y′ be the two edges in C which are adjacent to G Ei and 
j i i
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assume, without loss of generality, that xi and x′
i are contained V (G Ei ). Let Y = {

y ∈ V (G) : ∃xy ∈ C, x ∈ N(Ti ∪ T j)
}

be the 
set of all vertices which are adjacent to neither Ti nor T j but belong to an edge in C that is adjacent to Ti or T j . Then, 
D \ ({yi, y′

i, y j, y′
j} ∪ Y ) ∪ V (G Ei ) ∪ V (G E j ) ∪ Ti ∪ T j is a minimum total dominating set containing a P3, a contradiction by 

Theorem 1. �

Claim 20. If G is a No-instance for 1-Edge Contraction(γt ) then there exists a minimum total dominating set of G in which all but 
at most

3 (|A| − 1) +
(

k2

2
+ 3k

2

)(
k2

2
+ 3k

2
+ 1

)
+ k + 1

edges are contained in regular cliques.

Proof. Assume that G is a No-instance for 1-Edge Contraction(γt ) and let D be the set of all minimum total dominating 
sets of G in which all but at most (k + 2) (k + |A|) + |A| − 1 edges are C-edges (note that D is nonempty by Claim 14). For 
every D ∈D and S ⊆ B , let Ne(D, S) be the number of C-edges which are adjacent to S . For any D ∈ D, let

S(D) = arg max
S⊆B

Ne(D, S) − |S|.

In the following, let D ∈ D be a minimum total dominating set of G such that maxS⊆B Ne(D, S) − |S| is maximum amongst 
all sets in D.

First, suppose for a contradiction that there exists a set S ⊆ B which is adjacent to s = Ne (D, S) C-edges x1 y1, . . . , xs ys , 
such that s − |S| ≥ |A|. Assume without loss of generality that S is adjacent to xi for every i ∈ [s]. Then (D \ {y1, . . . , ys}) ∪
S ∪ A is a minimum total dominating set of G containing a P3, a contradiction by Theorem 1.

Now consider a set S ∈ S(D) of minimum cardinality amongst all sets in S(D). By the above, we have that Ne (D, S) ≤
|A| − 1 + |S|. We claim that every v ∈ S must be adjacent to at least two C-edges to which no other vertex in S is adjacent. 
Indeed, if v were adjacent to no C-edge to which no other vertex in S was adjacent then S ′ = S \ {v} would be such that 
Ne(D, S ′) = Ne(D, S) and |S ′| < |S|. But then, Ne(D, S ′) − |S ′| > Ne(D, S) − |S| thereby contradicting the fact that S belongs 
to S(D). If v were adjacent to only one C-edge to which no other vertex in S is adjacent, then removing v from S would 
decrease both |S| and Ne (D, S) by one, leaving the difference unchanged and thus contradicting minimality of |S|. It follows 
that 2|S| ≤ Ne (D, S) which combined with the inequality above implies that |S| < |A| and so, Ne (D, S) ≤ 2 (|A| − 1).

Now let C be the set of C-edges which are not adjacent to S . We may assume that D satisfies the following property: 
for any edge xy ∈ C contained in a clique K ∈K, if there exist x′, y′ ∈ V (K ) such that N[xy] ⊆ N[x′ y′] then N[xy] = N[x′ y′]. 
Indeed, suppose that there exists an edge xy ∈ C contained in a clique K ∈ K for which there exist x′, y′ ∈ K such that 
N[xy] � N[x′ y′]. Then, it suffices to consider D ′ = (D \ {x, y}) ∪ {

x′, y′} in place of D . Clearly, D ′ is still a minimum total 
dominating set of G and the value of maxS ′⊂B Ne(D ′, S ′) − |S ′| does not increase by choice of D . Furthermore, the value of 
maxS ′⊂B Ne(D ′, S ′) −|S ′| does not decrease: since N[xy] � N[x′ y′], we have that Ne(D, S) ≤ Ne(D ′, S) and so by choice of D
and because S ∈ S(D), we conclude that maxS ′⊆B Ne(D, S ′) − |S ′| = Ne(D, S) − |S| = Ne(D ′, S) − |S| = maxS ′⊆B Ne(D ′, S ′) −
|S ′|. In particular, it follows that x′ y′ cannot be adjacent to S and thus, the set of C-edges in D ′ not adjacent to S has the 
same cardinality as C . By replacing each such edge of C , the resulting total dominating set satisfies the above property. In 
the following, we denote by D the resulting dominating set and by C the set of C-edges not adjacent to S for simplicity.

Now if there were two edges in C with a common neighbor v , then S ′ = S ∪ {v} would be such that |S ′| = |S| + 1 and 
Ne(D, S ′) = Ne(D, S) + 2. But then, Ne(D, S ′) − |S ′| > Ne(D, S) − |S| thereby contradicting the fact that S belongs to S(D). 
Thus, any two edges in C are at distance at least three from one another.

Now denote by C2 ⊆ C the set of all C-edges xy for which there exists a vertex in b ∈ B such that b is complete to the 
clique in K containing xy. Then by Claim 17, |C2| ≤ |A| − 1.

Finally, denote by C1 ⊆ C \ C2 the set of edges which contain an induced P4 in their closed neighborhood and suppose 
that C1 has cardinality at least k + 1. Now consider a set E ⊆ C1 of cardinality k + 1 and denote by Pe an induced P4
contained in N[e], for any e ∈ E . If any two edges in E were pairwise at distance at least four from one another then ⋃

e∈E Pe would be isomorphic to (k + 1)P4, a contradiction. Thus, there exist xy, x′ y′ ∈ E such that d(xy, x′ y′) = 3, say 
d(xy, x′ y′) = d(x, x′) without loss of generality; in particular, there exists an induced path P from x to x′ of length three 
containing exactly two vertices (namely x and x′) from two different edges of E (namely xy and x′ y′). Since this holds for 
any subset E ⊆ C1 of cardinality k + 1, we conclude by Claim 19 that |C1| <

(
k2

2 + 3k
2

)(
k2

2 + 3k
2 + 1

)
+ k + 1.

Now consider an edge xy ∈ C \ (C2 ∪ C1) which is contained in a clique K ⊆ K and let us show that N[xy] = N[K ]. 
Suppose to the contrary that there is a vertex b ∈ N[K ] \ N[xy] and let c ∈ K be a neighbor of b. By assumption on D , N[xy]
cannot be a strict subset of N[xc] or N[yc], so there exists a vertex px ∈ N(x) which is adjacent to neither y nor c and there 
exists a vertex p y ∈ N(y) which is adjacent to neither x nor c. As xy /∈ C1 it follows that px, x, y, p y cannot induce a P4 and 
thus px and p y must be adjacent. But then px, p y, y, c induce a P4, a contradiction. Hence, every edge xy ∈ C \ (C1 ∪ C2)

is contained in a clique in K ∈ K whose closed neighborhood is P4-free (recall that N[xy] = N[K ] by the above property) 
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and for which there exists no b ∈ B such that N[K ] ⊆ N[b]. Furthermore by Claim 16, either C \ (C2 ∪ C1) has cardinality at 
most k or contains only regular cliques. Thus, all but at most

2 (|A| − 1) + |C2| +
(

k2

2
+ 3k

2

)(
k2

2
+ 3k

2
+ 1

)
+ k + 1.

C-edges are contained in regular cliques, which proves the claim since |C2| ≤ |A| − 1. �

We now present an algorithm which can determine in polynomial-time whether G is a Yes-instance for 1-Edge 
Contraction(γt ) or not. In the following, we denote by f (k) = 3 (|A| − 1) +

(
k2

2 + 3k
2

)(
k2

2 + 3k
2 + 1

)
+ k + 1.

1. Determine A, B , C and R.
1.1 If R =∅, then check if there exists a minimum total dominating set of size at most f (k).

1.1.1 If the answer is no, then output Yes.
1.1.2 Else apply Proposition 9(b).

1.2 Else go to 2.
2. Check whether there exist two regular cliques in R which have distance at most three from one another. If so, output

Yes.
3. Let V 1 be the set of vertices at distance one from N[R] and let V 2 = V (G) \ (N[R] ∪ V 1). If V 2 =∅, output No.
4. Determine S = {S ⊆ V 1 ∪ V 2 : |S| ≤ 2 f (k),∀x ∈ V 2, N(x) ∩ S 
= ∅}. If S = ∅, output Yes.
5. Let S ′ be the family of all sets in S which have minimum size.

(i) If there exists a set S ∈ S ′ containing a P3, output Yes.
(ii) If there exists a set S ∈ S ′ such that S ∩ V 1 
=∅, output Yes.

6. Output No.

Finally, let us show that this algorithm outputs the correct answer. In case R = ∅, then Claim 20 tells us that G is a
Yes-instance for 1-Edge Contraction(γt ) if there exists no minimum total dominating set of size at most f (k) (see step 
1.1.1). If such a minimum total dominating set exists, then we conclude using Proposition 9(b) (see step 1.1.2). If in step 2, 
two regular cliques at distance at most three from one another are found then by Claim 10, G is a Yes-instance for 1-Edge 
Contraction(γt ). Otherwise, any two regular cliques have distance at least four to one another and by Remark 3, there exists 
a minimum total dominating set D of G such that for any regular clique K ∈ R, D ∩ N[K ] = {bK , cK } where bK ∈ N(K ) ∩ B
and cK ∈ K . In the following, we denote by D ′ = ⋃

K∈R {bK , cK }. Note that by Claim 8, for any x ∈ N[R] ∪ V 1, N(x) ∩ D ′ 
= ∅. 
Now if V 2 = ∅ then we conclude by Claim 9 and the fact that any two regular cliques are at distance at least four from 
one another, that any minimum total dominating set of G is an induced matching, that is, G is a No-instance for 1-Edge 
Contraction(γt ) (see step 3). Otherwise V 2 
= ∅ and if G is a No-instance for 1-Edge Contraction(γt ) then by Claim 20, 
there must exist a set S ⊆ V 1 ∪ V 2 of cardinality at most 2 f (k) such that for any x ∈ V 2, N(x) ∩ S 
= ∅. Thus, if S = ∅ then 
G is a Yes-instance for 1-Edge Contraction(γt ) (see step 4). Otherwise S 
= ∅, and for any S ∈ S ′ , S ∪ D ′ is a minimum 
total dominating set of G . It then follows from Theorem 1 that if there exists S ∈ S ′ such that S contains a P3 then G is 
a Yes-instance for 1-Edge Contraction(γt ) (see step 5(i)); otherwise, any S ∈ S ′ is an induced matching and if there exists 
a set S ∈ S ′ such that S ∩ V 1 
= ∅ then by Claim 8, S ∪ D ′ contains a P3 and so, G is a Yes-instance by Theorem 1 (see 
step 5(ii)). Otherwise, for any S ∈ S ′ , S is an induced matching and S ∩ V 1 = ∅ which implies that S ∪ D ′ is an induced 
matching and thus, G is a No-instance for 1-Edge Contraction(γt ). As every step can clearly be done in polynomial time, 
this concludes the proof. �
5. Proof of Theorem 3

We here give a proof of our main result, Theorem 3.

Let H be a graph. If H contains a cycle then 1-Edge Contraction(γt ) is NP-hard on H-free graphs by Theorem 8. Thus, 
we may assume that H is a forest. Now if H contains a vertex of degree at least three, then H contains an induced claw 
and so, 1-Edge Contraction(γt ) is coNP-hard on H-free graphs by Theorem 6. Assume henceforth that H is a linear forest. 
If H contains a path on at least six vertices, then 1-Edge Contraction(γt ) is NP-hard on H-free graphs by Theorem 4. 
Thus, we may assume that every connected component of H induces a path on at most five vertices. Now suppose that 
H contains a P5. If H has another connected component on more than one vertex then 1-Edge Contraction(γt ) is NP-
hard by Theorem 4. Otherwise, every other connected component of H (if any) contains exactly one vertex in which case
1-Edge Contraction(γt ) is polynomial-time solvable on H-free graphs by Theorem 10 and Proposition 9. Assume now that 
H contains a P4. Then if H has another connected component isomorphic to P4, 1-Edge Contraction(γt ) is coNP-hard by 
Theorem 5. Otherwise, every other connected component has at most three vertices and we conclude by Theorem 11 that
1-Edge Contraction(γt ) is polynomial-time solvable on H-free graphs. Finally, if the longest path in H has length at most 
two then we also conclude by Theorem 11 that 1-Edge Contraction(γt ) is polynomial-solvable on H-free graphs, which 
concludes the proof.
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6. Conclusion

In this paper, we considered the problem of deciding whether the total domination number of a given graph G can be 
reduced using exactly one edge contraction (called 1-Edge Contraction(γt )). We recall that if we were allowed to use 3 
edge contractions, the answer to this problem would always be yes due to a result of Huang et al. ([14], Theorem 4.3). We 
focused on several graph classes and determined the computational complexity of this problem. By putting together these 
results, we obtain a complete dichotomy for H-free graphs (see Theorem 3).

In [10], the same problem was considered with respect to the domination number (called 1-Edge Contraction(γ )). 
Here the authors provided an almost dichotomy for H-free graphs (see Theorem 2). As mentioned in the introduction, the 
remaining cases left open have recently been solved. Interestingly, the two problems do not behave the same way on H-free 
graphs from a complexity point of view. This is even more interesting since it has been shown in [12] that the complexities 
of Dominating set and Total dominating set agree on H-free graphs for any graph H .

In fact, it was even shown in [12] that the complexities of Dominating set, Semi-total dominating set (given a graph G
and an integer k, does there exist a dominating set S ⊆ V (G) with |S| ≤ k such that every vertex in S is at distance at most 
two to another vertex in S) and Total dominating set agree on H-free graphs for any graph H . Thus, it would be of interest 
to look at our problem with respect to the semi-total domination number and find out how it behaves on H-free graphs. 
A few of our results can be adapted to the semi-total case, but in order to obtain a complete dichotomy for H-free graphs, 
new approaches are needed.
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