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The objective of this document is to provide a non-technical introduction to the field of
Artificial Intelligence. It is intended for anyone outside of the data science community curi-
ous about the subject, such as researchers from other areas looking for new instruments, legal
professionals confronted with automated decision making algorithms or legal tech tools, en-
trepreneurs interested in expanding their products into new areas, etc. No prior knowledge
of the domain is required for this introduction. External resources with technical details and
additional examples are provided in the footnotes for the interested reader.

In the following sections, we introduce the fundamental concepts in the field, aim to clarify
some commonly used terms and explain some limitations of modern AI techniques. First, we
distinguish two types of AI: the symbolic approach, consisting of systems encoding rules and
explicit knowledge, and the machine learning approach, which uses statistical methods and
models to automatically infer relations between data and tasks to solve. In the subsequent
section, we distinguish two complexity levels of these tasks. Finally, we introduce the subfield
of “Explainable Artificial Intelligence” and distinguish three classes of explanations.

1 Types

Symbolic AI. Traditional AI systems are generally implemented as expert systems: a knowl-
edge base of facts and a set of explicit logical relationships and formulas linking these facts.
By applying the logical rules on the predefined facts from the knowledge base, new conclusions
can be inferred1.

This type of AI has mostly been abandoned at the turn of the century in favor of the
statistical methods used in machine learning. Nonetheless, some usages persist2 and there is
an active research interest for hybrid systems combining the two approaches3.

1For a more detailed introduction, consider Symbolic Reasoning (Symbolic AI) and Machine Learning.
2Consider the commercial example: Cyc.
3Consider (Garcez and Lamb 2020; Garnelo, Arulkumaran, et al. 2016; Garnelo and Shanahan 2019; Marcus

2020).
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Machine Learning Systems. A plethora of end-consumers applications (translation tools,
music recommendation engines, etc.) and media attention (successes and failures in autonomous
driving technologies, DeepMind’s victory against world champion Lee Sedol at Go, etc.) have
brought modern machine learning algorithms into the limelight of public debate, economic
interests, and regulatory oversight. Interest in this category of Artificial Intelligence systems
has especially grown during the past two decades, even though its roots stretch back at least
to the 1950s4.

The various terms referring to specific techniques or subdomains in this field, such as Deep
Learning, Data Mining, Neural Networks, Pattern Recognition and Statistical Learning, are
often used interchangeably in the public discourse. For the purpose of this light introduction,
we will not delve into the distinctions between these terms. We will use the umbrella term
Machine Learning Systems when speaking of AI systems which rely on a fundamental principle
of “learning by example” to solve tasks, i.e. which function by extracting salient patterns from
training data, in order to tune the internal parameters of a statistical model. This definition of
the term learning is notably formulated by (Mitchell et al. 1997):

“A computer program is said to learn from experience E with respect to some class
of tasks T and performance measure P, if its performance at tasks in T, as measured
by P, improves with experience E.”

The functioning of such systems can thus be summarized into three essential phases5:

(1) Choosing a task to solve. Common categories of tasks are classification (assigning a
category to an input data point, e.g. recognizing objects in an image), regression (estimating
a numerical value for an input data point, e.g. predicting a risk of recidivism), natural
language processing (analyzing written texts, e.g. interpreting the meaning of a sentence)
and automated decision making (e.g. automated credit decisions)6.

Along with the task, a quality metric needs to be chosen, which will score the performance of
the system (e.g. the number of misidentified objects in an image or the error on a numerical
prediction).

The difficulty of the task determines the required size of the learning dataset (Figueroa
et al. 2012; Halevy et al. 2009). This size can vary from a few hundred examples for simple
problems to billions of data points for complex tasks such as autonomous driving or the
training of sophisticated linguistic models7.

(2) The automated learning phase. During this step, the examples are shown to the system
in order to train the model. In the case of Supervised Learning, each example consists of

4For a more detailed technical introduction to the subject, consider (Raschka et al. 2020).
5Numerous steps were grouped here for simplicity. Consider process models such as CRISP-DM (Shearer

2000) for a detailed technical description of the relevant phases.
6For a more extended list of tasks consider (Goodfellow et al. 2016, section 5.1.1).
7A recent prominent example is GPT-3 (Brown et al. 2020), trained on 500 billion words, expressions, and

phrases collected from the internet in order to learn how to hold a conversation.
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a data point to evaluate (e.g. an image of a person’s face) and the expected result (e.g.
the name of the person.). These examples are processed by the system to automatically
calculate the optimal parameters of a statistical model in order to (i) detect the important
characteristics in each example and (ii) learn the relationship between these characteristics
and the chosen objective.

In the case of Unsupervised Learning, it is not necessary to provide an expected result.
The learning phase mainly consists in finding relevant statistical patterns in the dataset,
such as groups of similar data points, anomalies, etc.

(3) Model deployment. Once the problem is modeled (phase 1) and the algorithm is trained
with a sufficient number of examples (phase 2), the learned relationships allow the machine
learning system to evaluate new examples presented without the expected result in order
to predict it. Thus, during the training phase of e.g. a facial recognition AI, the system will
have learned to detect the principal visual traits distinguishing individuals, based on the
provided examples (phase 2). Once deployed, an image from a video surveillance system
can be presented to this model (phase 3), which will try to identify the individual in the
image using the traits learned in the previous phase.
Note that in a dynamic learning system, continuous learning and improvement is also
possible, by iterating between the latter two phases.

In the case of structured data (e.g. personal profiles, criminal records) the characteristics
taken into account to calculate the prediction can be manually selected before the learning phase
in order to exclude some criteria (e.g. the ethnicity of a convict) during the feature selection
phase8. However, the relative importance of the remaining features and their interaction effects
during the final evaluation are determined automatically. Thus, intentionally excluding some
criteria can be futile, especially if the same information can be inadvertently substituted by
another property (e.g. the zip code unintentionally replacing the ethnicity in highly segregated
areas9), or by implicitly deducing it from a combination of multiple other characteristics.

Even more so in the case of unstructured data (images, voice, natural language, etc.), where
the characteristics detected by the machine will often differ from those intuitively considered
by a person. Indeed, a facial recognition AI may not necessarily learn evident factors, such
as eye color, the morphology of the faces, etc. but may consider more abstract properties,
such as contrasts, color ratios imperceptible to the human eye or various other imprecise and
unrecognizable artifacts10.

The broader category grouping such phenomena is called Shortcut Learning, presented
namely by (Geirhos et al. 2020). Much like a student only memorizing facts superficially to pass
an exam with a minimal understanding of the subject, numerous deep learning systems suffer

8Feature selection and feature engineering are not only used in order to manually exclude unwanted criteria
but are an essential step to setup any machine learning system.

9Consider e.g. (Zhang et al. 2017).
10Consider (Lin et al. 2020; Williford et al. 2020) for further investigations into the traits recognized by

machines.
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from an effect of shallow reasoning: optimizing for some unexpected artifacts, which allows the
system to achieve good performances under very specific evaluation constraints. Consider one
of their examples, in which a system developed to recognize pneumonia in radiographic images
learned to spot specific hospital markers on the images instead, thus achieving good performance
scores by identifying images from hospitals with high pneumonia prevalence rates11.

In other words, the predictions and results of a machine learning system reflect the in-
formation it detects in the training data, without distinguishing between relevant signals and
systematic biases12. Thus, decisions based on unexpected characteristics can at best be a tool
for discovering previously unknown relationships. At worst, they can subtly and unwittingly
reinforce the biases of a system13. All the aforementioned limitations relate to the topic of
Explainable AI, introduced in the last section.

2 Tasks

The initial choice of the task to solve presupposes a distinction between types of tasks which
can be solved by a machine, and those which cannot (yet).

Simple tasks. AI systems excel at solving tasks which (i) have clear, measurable, and explicit
objectives, (ii) are constrained by known specifications and rules14 and (iii) have a sufficiently
large database of training examples available. Typical examples showcasing these criteria are
games such as Go (Silver, Huang, et al. 2016), chess (McCarthy 1990) and video games (Badia
et al. 2020). Indeed, for each of these examples (i) the objective can be quantified (a final
score to maximize or intermediate probabilities to optimize), (ii) the set of possible worlds
(the allowed player actions and potential situations) are limited and unchangeable and (iii) the
system can learn from enough provided examples or can generate them by playing against itself
(Silver, Hubert, et al. 2018).

Other usual AI tasks, such as image or facial recognition, voice recognition, automatic
translation, rely on similar principles. For their functioning, enough training examples are
ideally available to cover the whole spectrum of possible situations, their field of application is
very specific and their performance can be objectively quantified.

Complex tasks. The usefulness of modern AI techniques is however exceeded when the
considered task is not restricted to a domain with clearly defined limits. Thus, an autonomous
driving system trained on usual traffic situations will be thoroughly confused by and unable

11Consider also the model presented by (Ribeiro et al. 2016), tasked to distinguish images of huskies from
wolves, which learned to recognize the presence of snow in the background instead of learning the visual dis-
tinctions between the animals.

12Note that beyond biased datasets, most other stages of system design and deployment also raise ethical
issues. Consider (Rochel and Evéquoz 2020) and (Elish and Boyd 2018) for detailed investigations of the subject.

13Consider the example of recidivism risk estimation: Machine Bias – ProPublica.
14Note however that some state-of-the-art systems are less and less dependent on having to know e.g. the

rules of a game prior to learning how to play it (Schrittwieser et al. 2020).
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to handle circumstances outside of the scope of the provided training data, such as a truck
carrying traffic lights15, uncommon billboards and sky-colored lorries crossing the highway.

Solving such tasks requires notably (i) knowledge of other domains (e.g. a facial recognition
system will not be able to distinguish images of vehicles from buildings), (ii) a high-level un-
derstanding of the processed concepts (e.g. the same AI will not understand the notion of an
individual or of a name either), (iii) common sense reasoning, (iv) intuitions, which were not,
or cannot, be encoded, and (v) an understanding of the principle of causality. To use Judea
Pearl’s wording:

“All the impressive achievements of deep learning amount to just curve fitting” .16

With the progress in machine learning techniques, a growing number of tasks can be re-
categorized from the second type into the first. Nonetheless, overestimating one’s system of
the first type as one able to solve move complex tasks frequently causes issues with significant
nefarious impact17.

3 Intelligibility and explainability

A machine learning system is not always able to show its supervisor the reasoning behind
a result or the justification for an automated decision: a phenomenon called the black box
problem (Loyola-González 2019). Thus, in the example of recidivism risk prediction based on
the personal profile of an inmate, many algorithms will not indicate which characteristics in
his profile impacted the final estimated risk. However, to meet expectations of accountability,
safety, liability, and responsibility, some level of inspection into the computation underlying a
prediction must be made available (Danks and London 2017; Kingston 2016; Kroll et al. 2017).
For this purpose (among others), the field of Explainable AI (XAI) has emerged and grown
in recent years18, providing transparency techniques for machine learning systems19. Various
explanation techniques exist and can broadly be classified according to their level of access into
the internal mechanisms of the AI system. We distinguish the methods below, broadly following
the classification by (Guidotti et al. 2019) and (Du et al. 2019) for the latter three.

Formal explanations. As a first step, and without requiring additional technical efforts,
the system designer can provide a formal description of the system’s design and operation. For
instance, he can indicate which learning algorithms were used to train the system, which dataset
was used, how the dataset was examined for possible biases, and which automatic procedures

15Consider this video recording as an example: link.
16To Build Truly Intelligent Machines, Teach Them Cause and Effect – Quanta Magazine.
17Consider the long list of incidents collected in the AIAAIC repository – AI, Algorithmic and Automation

Incident and Controversy Repository.
18For a systematic review of this domain, consider (Guidotti et al. 2019).
19The terms transparency, intelligibility, explainability, and interpretability are often used interchangeably

by different authors and popular media. For details on this subject, consider (Clinciu and Hastie 2019).
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were put in place to detect errors and problematic behavior once the model was deployed. This
will provide the user or a system inspector the initial information needed to assess whether the
system meets their expectations of rigor and reliability.

Post hoc explanations. This approach consists in reconstructing the reasoning of a machine
learning system by analyzing its results. Examples:

— Which characteristics of a convict had an impact on the estimation of his recidivism risk
(local/outcome explanation)?

— Are there population groups for whom the estimated recidivism risk is systematically
higher than for other groups (model explanation)?

— Which would have been the risk of recidivism had the convict been older, or had belonged
to another ethnic group (counter factual explanation)?

Such explanation techniques often require the construction of a second model in order to make
the first one more intelligible, thus introducing a new issue of faithfulness between the initial AI
system and the explanation model (Rudin 2019). The advantage of techniques in this category
is the low level of access required to produce the explanations since providing examples of the
system’s inputs and outputs are generally sufficient.

Partial explanations. If beyond examples of the results, access to the internal mechanisms
of the AI system is also available, more detailed explanations can be constructed, such as
visualizations of intermediate results and processes, as well as more precise indications on the
relative importance of the different criteria and their interaction effects (model inspection). A
new risk of information overload is especially pronounced in this category: providing too fine-
grained explanations may be distracting or even entirely misleading due to misunderstandings.
The HCI (Human-computer interaction) research community is actively working on this issue
(Alqaraawi et al. 2020; Wortman Vaughan and Wallach 2021).

Explainability by design. With this approach, the machine learning system is designed
in such a way that the reasoning behind a prediction, as well as all the intermediate internal
processes, are transparent and understandable by the supervisor, following the principle of
Transparent Box Design (Rudin 2019). The construction of such a system, which is intrinsically
interpretable, often requires a trade-off: by requiring additional efforts during its design and
training or, sometimes, in the form of a loss in performance.
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4 Conclusion

Artificial Intelligence is an ever-evolving domain, following a meandering path through the fields
of logic, statistics, mathematics, and engineering. Its applications have the potential to change
every field they touch, whether by deepening our understanding of the world, by automating
procedures, or simply by complementing our own problem-solving abilities. The technological
advances in computational power and the availability of large quantities of data during the
past twenty years have brought the subfield of machine learning, and especially deep learning,
to the attention of the wider public. In consequence, all fields adjacent to data analytics have
become highly coveted in numerous industries. It is however unknown where future junctions
in the road will take us, what will become possible over the next twenty years and which will
be the dominant technical paradigm by that time. Yet undoubtedly, the field will continue
impacting academic research, commercial interests, legislative efforts, and our daily lives for
the foreseeable future. An understanding of the underlying concepts will thus be a necessity to
stay on top of this evolution and will help to counteract the widespread trend of exaggerated
claims in marketing campaigns and the co-opting of technical terms as meaningless buzzwords.
With this document, we hope to have given the reader a first set of tools supporting them in
this endeavor.
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