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Identification of average treatment effects

in social experiments under alternative forms of attrition

Martin Huber

University of St. Gallen, Dept. of Economics

Abstract: As any empirical method used for causal analysis, social experiments are prone to attrition

which may flaw the validity of the results. This paper considers the problem of partially missing outcomes

in experiments. Firstly, it systematically reveals under which forms of attrition - in terms of its relation

to observable and/or unobservable factors - experiments do (not) yield causal parameters. Secondly, it

shows how the various forms of attrition can be controlled for by different methods of inverse probability

weighting (IPW) that are tailored to the specific missing data problem at hand. In particular, it discusses

IPW methods that incorporate instrumental variables when attrition is related to unobservables, which

has been widely ignored in the experimental literature before.

Keywords: experiments, attrition, inverse probability weighting.

JEL classification: C21, C93

I have benefited from comments by Eva Deuchert, Bernd Fitzenberger, Michael Lechner, Blaise Melly, and

conference/seminar participants in Freiburg i. B. (research seminar), London (EALE 2010), and Fribourg (SSES

2010). Address for correspondence: Martin Huber, SEW, University of St. Gallen, Varnbüelstrasse 14, 9000 St.

Gallen, Switzerland, martin.huber@unisg.ch.



1 Introduction

Causal inference based on experiments, which dates at least back to Neyman (1923) and Fisher

(1925, 1935), is a cornerstone of the evaluation of policy interventions. It has been used in

many different fields of research such as medicine, welfare policies, labor economics, eduction,

and development economics, see for instance the literature surveys in Duflo (2006), Harrison

and List (2004), and Imbens and Wooldridge (2009). If well conducted and appropriate to

the research question, experiments are widely regarded to be the most reliable source of causal

inference, see for instance Cochran and Chambers (1965), Freedman (2006), Rubin (2008), and

Imbens (2009), as they invoke a minimum of identifying assumptions. They neither impose

functional form assumptions as regression models nor particular correlations between observables

and unobservables which have to be assumed in observational studies. However, as any empirical

method, experiments are prone to attrition which may flaw the validity of the results, see the

discussion in Hausman and Wise (1979).

In this paper, we consider the problem that the outcome of interest is only partially observed

due to attrition, whereas the treatment and several socio-economic characteristics, which are

typically measured in baseline surveys prior to the intervention, are fully observed. Thus,

attrition here refers to the censoring problem due to missing outcomes, but not to truncation,

i.e., the absence of information on the outcome, the treatment, and further variables for some

subpopulation. The missing outcome problem arises for instance when individuals with known

pre-treatment characteristics are randomly assigned to an active labor market policy (such as

a training), but some of them do not participate in a follow-up survey that measures labor

market success (e.g., employment or income) several months or years later due to reluctance

or relocation. Similar problems are inherent in clinical trials when some of the participants

randomly assigned to medical treatments pass away before the health outcome is measured.

Finally, suppose that high-school students are randomly provided with private school vouchers

and that we are interested in their scores obtained in college entrance examinations several years

later. Attrition in the outcome arises if a subsample of students decides not to take the exam.
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Various remedies have been proposed to deal with attrition in outcome data. Multiple impu-

tation of missing values goes back to Rubin (1977, 1978), see also Rubin (1996) for a more recent

review. Based on Bayesian techniques, the idea is to use multiple attrition models to impute mul-

tiple sets of plausible values for the missing data. This allows computing a probability interval

for the parameter of interest. Several studies use single imputation methods such as regression

adjustments to correct for attrition. E.g., Hausman and Wise (1979) use a probability model of

attrition in conjunction with a random effects model of individual response in their evaluation

of the Gary Income Maintenance experiment. Angrist, Bettinger, and Kremer (2006) analyze

the effects of school vouchers on test scores in college entrance examinations in Columbia and

apply tobit regression to control for the fact that voucher winners are more likely to take the

tests than voucher losers. Another approach is based on weighting observations according to their

likelihood to respond, i.e., by the inverse of their conditional response probability, see for instance

Scharfstein, Rotnitzky, and Robins (1999). The idea of inverse probability weighting (IPW) goes

back to Horvitz and Thompson (1952), who first proposed an estimator of the population mean

in the presence of non-randomly missing data.

Barnard, Frangakis, Hill, and Rubin (2003) use a principal stratification framework (see Fran-

gakis and Rubin, 2002) to estimate treatment effects under attrition (and further missing data

and non-compliance problems) by means of a parametric mixture model. Still based on principal

stratification, Mealli and Pacini (2008) exploit discrete instruments to identify effects for partic-

ular subgroups under various assumptions. Finally, the estimation of nonparametric bounds (see

Horowitz and Manski, 1998, 2000) does not require a model for attrition at the cost of sacrific-

ing point identification even for particular subpopulations. For empirical examples, see Angrist,

Bettinger, and Kremer (2006), Lee (2009), and Grogger (2009), who assesses the effectiveness

Connecticuts Jobs First experiment and faces attrition due to relocation to a different state. See

also Zhang and Rubin (2003) and Zhang, Rubin, and Mealli (2008) who discuss the identification

of bounds in a principal stratification framework.

This paper makes two contributions to the literature on attrition in social experiments.
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Firstly, it reveals systematically under which forms of attrition - in terms of its relation

to observable or unobservable factors - experiments do (not) yield causal parameters, as a

comprehensive discussion on attrition in experiments and its implications for identification is

still lacking. Starting from a general treatment effect model, it makes explicit and formally

discusses under which conditions experiments identify average treatment effects on the entire

population and/or on the subpopulation of respondents.

Secondly, the paper shows how the alternative forms of attrition can be controlled for by

IPW methods, i.e., by reweighting observations by the inverse of their conditional response

and/or treatment probabilities. Depending on whether attrition is related to all or subsets of

observable and unobservable variables, we will apply different weighting approaches, each of

which is tailored to the specific attrition problem at hand. This provides practitioners with

straightforward solutions depending on the suspected missing data problem. Simulation results

presented further below suggest that assuming the wrong attrition process (e.g., by neglecting

attrition related to unobservables) may do worse than not controlling for attrition at all. This

underlines the importance of carefully thinking about the nature of attrition in order to choose

an attrition model that is appropriate for the empirical application considered.

The use of IPW to control for attrition related to observables, i.e., when outcomes are missing

at random (MAR, see Rubin 1976), is well established in the literature, see for instance Robins and

Rotnitzky (1995), Robins, Rotnitzky, and Zhao (1995), Rotnitzky and Robins (1995), Scharfstein,

Rotnitzky, and Robins (1999), and Wooldridge (2002, 2007). In contrast, the case when attrition

is related to unobservables such that identification requires an instrument for attrition (which

does not directly affect the outcome variable) has been widely ignored in experiments. One of the

very rare examples is DiNardo, McCrary, and Sanbonmatsu (2006) who use conventional sample

selection correction techniques based on regression, see Heckman (1976). The present work is the

first that discusses the usefulness and application of IPW under attrition on unobservables in an

experimental context. This approach is closely related to Huber (2009), who uses IPW to control

for sample selection and attrition in observational studies.
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Attrition related to unobservables is a problem likely to be found in many empirical problems.

E.g., suppose that motivation is not observed in a labor market policy or education experiment

where the outcomes of interest are employment and earnings or test scores and educational

achievement, respectively. While there is little doubt that motivation is correlated with these

outcomes, there are also good reasons to believe that it affects the response behavior. E.g.,

the least motivated individuals in a labor market policy experiment might be most reluctant

to respond to the follow-up survey and unmotivated students are likely to be less inclined to

participate in an exam than others. These and similar examples motivate the use of novel IPW

methods based on continuous instruments for attrition. Unfortunately, such instruments, which

are ideally randomly assigned in a similar way as the treatment, are rare in experiments conducted

up to date. Therefore, we argue that the creation of randomized instruments should be considered

in the design of future experiments. Two potential instruments are the number of phone calls in

follow-up surveys or financial incentives to respond to a survey.

Even though this study covers a range of attrition problems that are relevant in many em-

pirical applications, the exposition is not exhaustive as one can think of many different ways of

modeling response behavior. For an alternative set of restrictions, see Imai (2009) who assumes

that attrition is related to the outcome but is independent of the treatment conditional on the

outcome and other observable variables. As the author argues, this is plausible when response be-

havior is strongly driven by the outcome variable (e.g., when considering the outcome “voting”,

voters may be more willing to participate in post-election surveys than non-voters), whereas the

treatment represents only a mild intervention that is unlikely to affect attrition (e.g., a psycholog-

ical voting stimulus). In contrast, we focus on scenarios where the treatment drives attrition even

conditional on other variables (with the exception of the introductory case in which outcomes are

missing completely at random). Whereas identification in Imai (2009) relies on controlling for

the dependence between attrition and the treatment, we impose different assumptions that allow

us to control for the dependence between attrition and the outcome.

The remainder of this paper is organized as follows. The next section introduces a general
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treatment effect model along with attrition. Section 3 discusses identification under random at-

trition and attrition related to observables. Identification under attrition related to unobserv-

ables is treated in Section 4. Section 5 presents simulation studies based on both generated and

empirical data. An application to a U.S. labor market policy experiment is provided in Section

6. Section 7 concludes.

2 Model

Let D denote a treatment indicator, either 1 (treatment) or 0 (nontreatment), which is randomly

assigned to an i.i.d. sample of n units, indexed by i = 1, ..., n. We are interested in the effect

of D on some outcome variable Y . Utilizing the potential outcome framework of Rubin (1974),

we denote the potential outcome for individual i and some hypothetical treatment D = d as Y d
i ,

where d ∈ {0, 1}. The difference Y 1
i − Y 0

i would identify the individual treatment effect, but is

unknown to the researcher, because each individual is either treated or not treated and cannot

appear in both states of the world at the same time.

However, under particular assumptions a randomized experiment allows identifying treatment

effects by the fact that the potential outcomes are independent of the treatment assignment.

Throughout this paper we will therefore rule out any interaction effects between the individuals

participating in the experiment such as spill over, peer, or general equilibrium effects. This implies

the validity of the Stable Unit Treatment Valuation Assumption (SUTVA), see for instance Rubin

(1990). Furthermore, we will assume that treatment compliance is perfect, i.e., everybody being

assigned takes the treatment, everybody not assigned does not. If noncompliance occurred,

identification would be further complicated. In this case, one might at best recover the effect

on the subpopulation of the compliers (those behaving according to the assignment) given that

the treatment assignment is a valid instrument for the realized treatment state. Even though

we are fully aware that interaction effects and noncompliance in experiments (see for instance

Robins and Tsiatis, 1991) may occur in practice, they are beyond the scope of this paper. In the
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subsequent discussion we will exclusively focus on the identification problems related to attrition

in the outcome variable.

Under random treatment assignment the expected potential outcomes are equal to the

expected conditional outcomes given the treatment. Formally, E[Y d] = E[Y |D = d] for

d ∈ {0, 1}. Therefore, the average treatment effect (ATE), denoted as ∆, is identified by

E[Y |D = 1] − E[Y |D = 0] and is consistently estimated by the mean difference of treated

and nontreated outcomes in the sample. Causal inference becomes less straightforward when

the outcome variable is only partially observed due to attrition. The problems arising for

identification and the remedies that may be used depend on how attrition is related to the

treatment and the other parameters affecting the outcome.

To formally discuss the various forms of attrition, we consider a general treatment effect

model. Assume that the outcome Y is an unknown function of the treatment, a vector of observed

covariates X, and an unobserved term U .

Y = ϕ(D,X,U), (1)

where ϕ(·) is a general function. Throughout this paper we will maintain the assumption that

the treatment is randomly assigned:

Assumption 1

D⊥(X,U).

I.e., treatment D is independent of the joint distribution of X and U , where “⊥” denotes in-

dependence. When using the potential outcomes notation, this is implies that Y 1, Y 0⊥D. In

Section 3, we will also assume that X contains at least one continuously distributed variable. In

Section 4, X may or may not be continuous.

This model provides us with a useful framework for the evaluation of policy interventions.

Consider for instance the identification of the effect of vouchers for private schooling (D) to
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which high school students are randomly assigned on test scores in college entrance examinations

(Y ) several years later. Empirical evidence suggests that private schooling has an effect on test

scores, see Angrist, Bettinger, and Kremer (2006). Thus, we suspect the test scores to be a

function of the treatment, but also of observed baseline characteristics (X) such as age and

gender, which are usually provided in surveys accompanying randomized trials. Furthermore,

also unobserved factors U such as motivation most likely influence the test scores. As a second

example, consider labor market experiments where individuals are randomly assigned into a

training, see for instance Bloom, Orr, Bell, Cave, Doolittle, Lin, and Bos (1997). The labor

market outcomes (Y ), e.g., employment, unemployment, or income, are a function of training

(D), socio-economic characteristics like age, education, and gender (X), and unobservables (U)

such as innate ability.

To introduce attrition into our framework, let R denote a binary response variable which is 1

if Y is observed (non-attrition) and 0 otherwise. In the context of the school voucher experiment,

R represents test participation, as test scores are only observed conditional on taking part. In

contrast, we will assume that (D,X) is observed for all individuals. The fact that only Y |R = 1 is

known instead of Y may flaw the validity of experimental results. The experiment bears external

validity if it identifies the ATE on the entire population (∆ = E[Y 1]−E[Y 0]) in spite of attrition.

It bears internal validity if the ATE on the respondents, ∆R=1 = E[Y 1|R = 1] − E[Y 0|R = 1],

is identified. Whether external and/or internal validity holds depends on the nature of attrition.

The following two sections will impose different assumptions on the relation between attrition and

observed and unobserved factors in the treatment effect model and will discuss the implications

for identification. When identification fails, we will propose IPW methods to correct for attrition

bias and also discuss the required conditions.

While there is little doubt that ∆ is an interesting policy parameter (even more so in experi-

ments, where the ATE on the entire population is equal to the ATE on the treated population),

the policy relevance of ∆R=1 is less clear as it only refers to the particular subpopulation of re-

spondents. The latter might differ from the entire population in characteristics which are impor-
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tant for the effectiveness of the treatment such that ∆ and ∆R=1 need not necessarily be simi-

lar. Therefore, we generally prefer to identify ∆ rather than ∆R=1 if we have a choice. Indeed,

with the exception of Newey (2007), the latter parameter has rarely been considered neither in

the sample selection literature, which usually assumes effect homogeneity across subpopulations

(such that ∆ = ∆R=1), nor in the standard treatment evaluation framework which abstracts from

attrition.

However, under most forms of attrition the identification of ∆ requires somewhat stronger

assumptions than the identification of ∆R=1, which is intuitive because only Y |R = 1 is observed.

If these stronger assumptions are not satisfied, identification among respondents appears to be

the best we can get, see also the discussion in Newey (2007). In this case, it often seems preferable

to identify at least ∆R=1 rather than not recovering any effect at all. Depending on the empirical

context, this parameter may still bear policy relevance. E.g., in the school voucher experiment

it represents the ATE on the test takers which might be exactly what politicians want to learn

about.

3 Identification under random attrition and attrition related to

observables

The most innocuous form of attrition is the case when outcomes are missing completely at ran-

dom (MCAR), see for instance Rubin (1976) and Heitjan and Basu (1996). MCAR says that

attrition is not related with any observed or unobserved parameter in the treatment effect model.

After considering this benchmark case we will systematically investigate more severe attrition

problems.

Assumption 2

R⊥(D,X,U).

Assumption 2 states that attrition is independent of both observed and unobserved factors. Tak-
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ing the school voucher experiment outlined in the last section as an example, it says that test

participation is neither related to winning the school voucher, nor to any other variables. This

implies that the potential outcomes are independent of the response mechanism, Y 1, Y 0⊥R, and

that the potential outcomes and the response mechanism are jointly independent of the treat-

ment assignment, (Y 1, Y 0, R)⊥D. To see the implications for identification, note that the poten-

tial outcome under treatment D = d for individual i is Y d
i ≡ ϕ(d,Xi, Ui) for d ∈ {0, 1}. Further-

more, let FA denote the cdf of a random variable A and FA|B the conditional cdf given B. By

MCAR,

∫
ϕ(d,X,U)dFU,X|D=d,R=1 =

∫
ϕ(d,X,U)dFU,X|D=d =

∫
ϕ(d,X,U)dFU,X ,

where the first equality follows from Assumption 2 and the second from Assumption 1. Therefore,

the experiment bears external validity and identifies the ATE in spite of attrition:

∫
ϕ(1, X, U)dFU,X|D=1,R=1 −

∫
ϕ(0, X, U)dFU,X|D=0,R=1

= E[Y |D = 1, R = 1]− E[Y |D = 0, R = 1] = E[Y |D = 1]− E[Y |D = 0]

= E[Y 1]− E[Y 0] = ∆.

As a first deviation from MCAR, we will now assume that response is a function of the treat-

ment (e.g., winning a voucher for private schooling), but not of any other observed or unobserved

parameter in the treatment effect model.

Assumption 3

(3a) R = I{ζ(D,V ) ≥ 0},

(3b) V⊥(X,U).

I{·} denotes the indicator function and ζ(·) denotes a general function. We assume V to be an

unobserved term that is independent of (X,U), see (3b). By (3a), D shifts R such that in general,

Pr(D = 1|R = 1) is different from Pr(D = 1) unless ζ is of a very particular form. Note that
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a sufficient condition for Pr(D = 1|R = 1) 6= Pr(D = 1) is monotonicity of ζ in its arguments.

As D also affects Y , it follows that E[Y |R = 1] 6= E[Y ] because the share of treated individuals

changes due to attrition. However, this does not affect identification, because the distribution of

(X,U) is not related to the response behavior. This implies that (Y 1, Y 0, R1, R0)⊥D, where Rd

denotes the hypothetical response for D = d, and Y 1, Y 0⊥R|D. As under Assumption 2, it holds

that

∫
ϕ(d,X,U)dFU,X|D=d,R=1 =

∫
ϕ(d,X,U)dFU,X|D=d =

∫
ϕ(d,X,U)dFU,X .

where the first equality follows from Assumption 3 and the second from Assumption 1. The

experiment is again externally valid and identifies the ATE.

The forms of attrition considered under Assumptions 2 and 3 are unlikely to hold in many,

if not most social experiments. Empirical evidence suggests that response behavior is often

related to the treatment and other observed characteristics, see for instance Hausman and Wise

(1979), Fitzgerald, Gottschalk, and Moffitt (1998), and Grilo, Money, Barlow, Goddard, Gorman,

Hofmann, Papp, Shear, and Woods (1998). These characteristics X are typically measured in

baseline surveys prior to the intervention and commonly include gender, age, education, and other

socio-economic variables.

In the remainder of this section, we will assume that response is a function of the treatment

and the covariates. In a first step, we impose a very particular relationship between X and D,

namely independence conditional on response. This case is primarily chosen for illustrative

reasons rather than practical relevance. Interestingly, it entails internal validity of the

experiment while external validity no longer holds without controlling for attrition.

Assumption 4

(4a) R = I{ζ(D,X, V ) ≥ 0},

(4b) V⊥(X,U),

(4c) X⊥D|R = 1.
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By Assumption 4, attrition affects the distributions of D and X, which are, however, not

related to each other even conditional on response, see (4c). This implies that the distributional

change in X is equal across treatment states. E.g., assume that X represents age in our school

voucher experiment and that it is positively related with response (i.e., older students are

more likely to take the test). Then, the age composition must change in the same manner

for voucher winners and losers when conditioning on test participation. As U does not affect

the response the joint distribution of (X,U) conditional on R = 1 is independent of D.

Thus,
∫
ϕ(d,X,U)dFX,U |D=d,R=1 =

∫
ϕ(d,X,U)dFX,U |R=1. The mean potential outcome of

respondents is equal to the average conditional outcome given D = d among respondents.

Therefore, the experiment identifies the ATE on respondents (∆R=1) and is internally valid:

∫
ϕ(1, X, U)dFU,X|D=1,R=1 −

∫
ϕ(0, X, U)dFU,X|D=0,R=1

= E[Y |D = 1, R = 1]− E[Y |D = 0, R = 1] = E[Y 1|R = 1]− E[Y 0|R = 1] = ∆R=1.

However, it is not externally valid, which would require that ∆R=1 = ∆. The latter does not

hold because the distribution of X is not the same for respondents and non-respondents such

that
∫
ϕ(d,X,U)dFX,U |R=1 6=

∫
ϕ(d,X,U)dFX,U .

Under certain conditions, the ATE on the entire population is identified by weighting respon-

dents according to the likelihood that their observed characteristics appear in the entire popula-

tion. To this end, we define the response propensity score (see Rosenbaum and Rubin, 1983), i.e.,

the conditional response probability given (D,X), as p(D,X) ≡ Pr(R = 1|D,X). Furthermore,

we impose the following common support restriction:

Assumption 4’

Pr(R = 1|D = d,X = x) > c for all x ∈ X , d ∈ {0, 1}, c > 0.

X denotes the support of X. Assumption 4’ states that for any (D,X), the response probability

must be bounded away from zero, otherwise outcomes are never observed for particular combi-

nations of the treatment and the covariates. This allows us to reestablish external validity of the
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experiment by IPW as suggested in Proposition 1.

Proposition 1

Under Assumptions 1, 4 and 4’, the ATE is identified by

∆ = E

[
R · Y
p(1, X)

|D = 1

]
− E

[
R · Y
p(0, X)

|D = 0

]
(2)

Proof: See Appendix A.1.

Thus, weighting observations by the inverse of their respective response propensity score identifies

the ATE. The idea of using IPW to control for attrition or similar selection problems goes back to

Horvitz and Thompson (1952), who proposed an estimator of the population mean when data are

missing non-randomly. IPW has been frequently applied when the attrition process is assumed to

depend only on observables, i.e., when outcomes are missing at random (MAR) in the notation

of Rubin (1976). Formally, the MAR requires that Pr(R = 1|D,X, Y ) = Pr(R = 1|D,X), or

equivalently, that Y⊥R|D,X. E.g., Robins and Rotnitzky (1995), Robins, Rotnitzky, and Zhao

(1995), Rotnitzky and Robins (1995), and Scharfstein, Rotnitzky, and Robins (1999) use IPW to

adjust for missing data in regression models. Wooldridge (2002) considers IPW M-estimation of

missing data models and Proposition 1 fits into his general framework as a special case.

To make our framework more general, we relax Assumption 4 somewhat by omitting

Assumption (4c). This allows the gradient of X on the response process to differ across

treatment states. E.g., one could imagine that in the school voucher experiment, private schools

(D = 1) are equally successful in sending younger and older students (X=age) to college

entrance examinations (R = 1), whereas public schools (D = 0) more likely send older students.

This would change the distribution of X across treatments among test takers.

Assumption 5

(5a) R = I{ζ(D,X, V ) ≥ 0},

(5b) V⊥(X,U).

12



Without further assumptions,
∫
ϕ(d,X,U)dFX,U |D=d,R=1 6=

∫
ϕ(d,X,U)dFX,U |R=1. Thus,

internal validity no longer holds because the distribution of X generally differs across treatment

states among respondents such that the effect of D is confounded. However, it still holds that

∫
ϕ(d,X,U)dFU |D=d,X=x,R=1 =

∫
ϕ(d,X,U)dFU |D=d,X=x

=

∫
ϕ(d,X,U)dFU |X=x for all x ∈ X ,

where the first equality follows from the randomness of response conditional on (D,X) implied

by Assumption 5, which satisfies MAR, and the second from Assumption 1. Note that this would

also hold if we relaxed (5b) somewhat to V⊥U |X.

It follows that the mean potential outcome among respondents is

∫ ∫
ϕ(d,X,U)dFU |D=d,X=x,R=1dFX|R=1.

This allows us to identify the ATE on the respondents and to reestablish internal validity. Sim-

ilarly to the response propensity score, we define the treatment propensity score among respon-

dents, i.e., the conditional treatment probability given X, as π(X) ≡ Pr(D = 1|X,R = 1) and

impose the following common support assumption:

Assumption 5’

c < Pr(D = 1|X = x) < 1− c for all x ∈ X , d ∈ {0, 1}, c > 0.

Assumption 5’ states that the treatment propensity score is bounded away from 0 and 1, which

rules out arbitrarily large weights in the subsequent proposition that reestablishes internal valid-

ity of the experiment.

Proposition 2
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Under Assumptions 1, 5 and 5’, the ATE on respondents is identified by

∆R=1 = E

[
D · Y
π(X)

− (1−D) · Y
1− π(X)

|R = 1

]
. (3)

Proof: See Appendix A.2.

By reweighting the outcomes of respondents by the inverse of the (non)treatment propensity score,

we control for differences in the distributions of X across treatment states conditional on response

to identify ∆R=1. This is analogous to the application of IPW in a “selection on observables”

or “conditional independence” framework, see for instance Hirano, Imbens, and Ridder (2003).

The difference is that in the latter case, the imbalances in X exist even without attrition due

to non-random assignment whereas here, they only occur conditional on response. Yet, similar

remedies can be applied to both problems, but note that Hirano, Imbens, and Ridder (2003)

identify ∆ (not ∆R=1).

However, under somewhat stronger common support conditions we can even identify the

ATE on the entire population and reestablish external validity. To this end, note that the mean

potential in the entire population is

∫ ∫
ϕ(d,X,U)dFU |D=d,X=x,R=1dFX .

I.e., integrating over the distribution of X in the entire population identifies the potential out-

comes and the ATE. As for Proposition 1, this requires that the response probability is bounded

away from zero for any (D,X).

Proposition 3

Under Assumptions 1, 4’, 5, and 5’, the ATE is identified by

∆ = E

[
R ·D · Y

p(D,X) · π(X)
− R · (1−D) · Y
p(D,X) · (1− π(X))

]
. (4)

Proof: See Appendix A.3.
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∆ is identified by using π(X) to adjust for differences in the distributions of X across D

among respondents and p(D,X) to control for differences in (D,X) between respondents and

non-respondents. Note that the strong Assumption (5b) may be replaced by the less severe

restriction V⊥U |D,X, which might be considerably more plausible in empirical applications.

Even then, response is random conditional on (D,X), MAR is satisfied, and Propositions 2 and

3 still apply.

4 Identification under attrition related to unobservables

In the last section we considered various forms of attrition related to observables. In our treat-

ment effect model, MAR requires that U and V , the unobserved terms in the outcome and re-

sponse equations, are independent, at least conditional on observed characteristics. This assump-

tion will be no longer maintained in this section. Instead, we will assume attrition on unobserv-

ables by allowing for a nonzero correlation between U and V even conditional on D,X. Analo-

gous to sample selection models (see Heckman 1974, 1976, 1979) - at least when identification is

nonparametric (e.g., Das, Newey, and Vella, 2003, Newey, 2007, and Huber, 2009) - point identi-

fication hinges on the availability of an instrument that affects response but has no direct effect

on the outcome.

Reconsider the school voucher experiment in which only a subpopulation takes the test.

Assume that the probability to take the test is a function of unobserved motivation and

ability which are correlated with tests scores even conditional on the treatment and observed

characteristics (e.g., age and gender). Then, identification requires an instrument that shifts

test participation but has no direct effect on the test scores.

Assumption 6

(6a) R = I{ζ(D,X,Z) ≥ V },

(6b) Cov(U, V ) 6= 0 (and Cov(U, V ) 6= 0|D,X)
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By Assumption 6, R is a function of at least one element that is excluded in ϕ, namely the

instrument Z. Due to the non-zero covariance of V and U , the effect of D on Y among

respondents is confounded even conditional on X. Identification requires Z to be a good

predictor for R, to contain at least one continuous element, and not to have a direct effect on

the outcome. The following restrictions guarantee the validity of the instrument.

Assumption 6’

(6’a) Cov(Z,R|D,X) 6= 0 and Y⊥Z|D,X,

(6’b) Pr(R = 1|D = d) > c, c > 0, d ∈ {1, 0},

(6’c) (U, V )⊥(D,Z),

(6’d) FV (t), the cdf of V , is strictly monotonic in the argument t.

(6’a) states that Z shifts R but is not directly related with Y . (6’b) rules out that being treated

or nontreated predicts attrition perfectly. E.g., not winning a school voucher must not rule out

test participation. To see the usefulness of this assumption, assume the opposite such that

units with D = 0 never respond independent of the values of (X,Z). Obviously, the treatment

effect cannot be evaluated as no comparisons with D = 0 are available in the subpopulation of

respondents.

By (6’c), we impose that (D,Z) are jointly independent of the unobservables (U, V ). Indepen-

dence between (U, V ) and D is satisfied by the randomization of the treatment if V is not a post-

treatment variable. Still, it needs to be plausibly argued that (U, V )⊥Z. In the school voucher

experiment, where we only observe test scores conditional on test participation, one might think

of distance or transportation costs to the test center as a valid instrument if it is plausibly un-

related to unobserved motivation and ability. However, there may exist credible concerns that

the distribution of motivation differs for students close and distant to the test center such that

Assumption (6’c) is violated. E.g. if families with higher educated parents systematically choose

neighborhoods closer to the test centers for some reason (e.g., central location or good infras-

tructure) and if higher educated parents also better motivate their children to strive for a higher
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education, then the instrument is not independent of the unobserved terms.

As argued by DiNardo, McCrary, and Sanbonmatsu (2006), the instrument should ideally be

randomly assigned in a similar way as the treatment. This would plausibly justify Assumption

(6’c). E.g., in a follow-up telephone survey, Z may be the number of phone calls per experimental

unit which is randomized prior to the treatment assignment. A higher number of attempted calls

should increase the response probability while being unrelated with other factors under random

assignment. Also financial incentives are likely to affect response behavior, see Castiglioni, Pforr,

and Krieger (2008). In the school voucher example students could be randomly offered different

levels of cash payments or refunding of travel expenses in the case that they take the test.

Of course, one would need to unambiguously communicate that the payment is conditional on

participation alone, not on the test score (otherwise the motivation to prepare oneself for the test

is likely to be affected). A further example would be the randomization of the distance to the test

center, given that the choice of various test locations is feasible in the experimental design. Note

that (6’c) could be relaxed to (U, V )⊥(D,Z)|X, i.e., conditional independence given observed

variables (such as parents’ education), which might be more plausible in applications without

randomized instruments.

Concerning assumption (6’d), first note that Pr(R = 1|D,X,Z) = Pr(ζ(D,X,Z) ≥ V ) =

FV (ζ(D,X,Z)). (6’d) states that the likelihood to respond increases strictly monotonically in

ζ. This allows us to back out the distribution of V by pinning down (D,X,Z). By comparing

individuals with the same response propensity score we control for V and thus, also for the

dependence between V and U . Without strict monotonicity, a 1:1 relation between FV (t) and ζ

would not exist such that Pr(R = 1|D,X,Z) would generally not correspond to a unique value of

V . Under (6’d), however, V can be fixed to rule out confounding of the treatment effect due to

attrition related to unobservables. I.e., the response propensity score serves as a control function

where the exogenous variation comes from Z. Control functions have been applied in semi- and

nonparametric sample selection models, e.g., Ahn and Powell (1993) and Das, Newey, and Vella

(2003) as well as in nonparametric models with endogeneity, see, for example, Newey, Powell,
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and Vella (1999), Blundell and Powell (2003), and Imbens and Newey (2009). Furthermore,

strict monotonicity is implicit in linear index restrictions used in the parametric sample selection

literature, see Heckman (1974, 1976, 1979).

However, conditioning on the response propensity score alone does not suffice for causal in-

ference. A first reason is that similar to Assumptions 4 and 5, response is a function of X and D.

Therefore, random treatment assignment does not necessarily entail independence of D and X

among respondents as the distribution of X might differ across treatment states conditional on

R = 1. Secondly, this is even more likely to be the case conditional on the response propensity

score. To see this, note that individuals in different treatment states D but with equal values of

X and Z must have distinct response propensity scores. I.e., Pr(R = 1|D = 1, X = x, Z = z) 6=

Pr(R = 1|D = 0, X = x, Z = z). As we need to compare treated and nontreated individuals with

identical response propensity scores to control for the attrition bias, these individuals necessarily

differ with respect to (X,Z). Despite the randomization of the treatment in the entire popula-

tion, identification requires conditioning on both the response propensity score and the covariates

among respondents. I.e., conditional on X = x we need to compare the outcomes of treated and

nontreated observations that satisfy Pr(R = 1|D = 1, X = x, Z = z′) = Pr(R = 1|D = 0, X =

x, Z = z′′) for some z′, z′′ in the support of Z. This generally forces the instrument to include at

least one continuous element, otherwise comparable treated and nontreated observations might

not exist.

We will now formally discuss identification. For notational ease, let W ≡ (D,X,Z) and

the response propensity score p(W ) ≡ Pr(R = 1|D,X,Z). Under Assumption (6’c) U and D

are independent conditional on p(W ) and X, which can be shown analogously to the proof of

Theorem 1 in Newey (2007). Let a(U) denote any bounded function of U . Note that {R = 1} =
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{F−1V (p(W )) ≥ V }. Then,

E [a(U)|D,X, p(W ), R = 1] = E
[
E [a(U)|V,D,X,Z] |D,X, p(W ), F−1V (p(W )) ≥ v

]
= E

[
E [a(U)|V,X] |D,X, p(W ), F−1V (p(W )) ≥ v

]
= E

[
E [a(U)|V,X] |X, p(W ), F−1V (p(W )) ≥ v

]
= E [E [a(U)|V,X, p(W )] |X, p(W ), R = 1]

= E [a(U)|X, p(W ), R = 1] ,

where the first equality follows from iterated expectations, the second and third from (6’c), the

fourth from the fact that E[E[A|B]|B,C] = E[E[A|B,C]|B,C] for any variables A,B,C, and the

last from a backward application of the law of iterated expectations.

Thus, treatment effects are identified by conditioning on the response propensity score and

the covariates. To see this, note that the conditional ATE given X and p(W ) conditional on

response is defined as

∆R=1(x, p(w)) =

∫
ϕ(1, x, u)dFu|X=x,p(W )=p(w),R=1

−
∫
ϕ(0, x, u)dFu|X=x,p(W )=p(w),R=1

= E[Y 1|X = x, p(W ) = p(w), R = 1]− E[Y 0|X = x, p(W ) = p(w), R = 1].

E[Y d|X = x, p(W ) = p(w), R = 1] is the expected potential outcome for a hypothetical treatment

d given X and p(W ) among respondents. By the conditional independence of U and D given

p(W ) and X, it holds that

E[Y d|X = x, p(W ) = p(w), R = 1] =

∫
ϕ(d, x, u)dFu|X=x,p(W )=p(w),R=1

=

∫
ϕ(d, x, u)dFu|D=d,X=x,p(W )=p(w),R=1

= E[Y |D = d,X = x, p(W ) = p(w), R = 1].
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Hence, the expected potential outcome is equal to the expected conditional outcome given D = d.

The ATE on respondents ∆R=1 is identified by the integration over the marginal distributions of

X and p(W ) in the subpopulation with observed outcomes.

∫ ∫
[E[Y |D = 1, X = x, p(W ) = p(w), R = 1]

−E[Y |D = 0, X = x, p(W ) = p(w), R = 1]]dFx|p(W )=p(w),R=1dFp(w)|R=1

=

∫ ∫
[E[Y 1|X = x, p(W ) = p(w), R = 1]

−E[Y 0|X = x, p(W ) = p(w), R = 1]]dFx|p(W )=p(w),R=1dFp(w)|R=1

= E[Y 1 − Y 0|R = 1] = ∆R=1. (5)

Therefore, the identification of ∆R=1 hinges on the common support of the treatment in X and

p(W ). ∆ is not identified without further assumptions, see also Newey (2007), as Y is not even

observed when R = 0. However, under the additional restrictions that the response propensity

score is positive for any (X, p(W )) and that Y is homoscedastic conditional on (D,X) one also

identifies the ATE on the entire population. To this end, we impose the following assumption:

Assumption 6”

(6”a) Pr(R = 1|D = d,X = x, Z = z) > c, c > 0, for all x ∈ X , for all Z ∈ Z,

(6”b) c < Pr(D = 1|X = x, p(W ) = p(w)) < 1− c, for all x ∈ X , for all p(w) ∈ P, c > 0,

(6”c) Y = ϕ(D,X) + U .

Z,P denote the support regions of Z and p(W ). Note that (6”a) is stronger than (6’b). Effects

on the entire population could not be identified if there existed individuals with a response

propensity score equal to zero as this would rule out suitable comparisons in the subpopulation

of respondents. (6”c) decreases the generality of our model due to separability of the observed

and unobserved terms, see also Das, Newey, and Vella (2003), but ensures homoscedasticity of

Y given (D,X). This is required for the identification of ∆, as outlined further below. Similar

to the last section, let π(X, p(W )) denote the treatment propensity score, π(X, p(W )) ≡ Pr(D =
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1|X, p(W ), R = 1). Propositions 4 and 5 show identification of the ATEs on the respondents and

on the entire population.

Proposition 4

Under Assumptions 1, 6, 6’, and (6”b), the ATE on the respondents is identified by

∆R=1 = E

[
D · Y

π(X, p(W ))
|R = 1

]
− E

[
(1−D) · Y

1− π(X, p(W ))
|R = 1

]
. (6)

Proof: See Appendix A.4.

By weighting observations by the inverse of the (non-)treatment propensity score, we adjust

for differences in the distributions of X and p(W ) between treated and nontreated respondents.

Proposition 4 is similar to Proposition 3, with the exception that we have to additionally condition

on the response propensity score in the treatment propensity score to control for attrition on

unobservables.

It seems useful to compare our approach based on the propensity score and a continuous in-

strument to Mealli and Pacini (2008) who control for attrition by conditioning on a binary instru-

ment (Z ∈ {0,1}) directly. This allows them to classify the population into subgroups (or “latent

strata”) according to their response behavior conditional on hypothetical values of the treatment

and the instrument (here for a given X). Identification relies (among other restrictions) on the

fact that attrition is random for individuals with the same response behavior. One assumption

considered by Mealli and Pacini (2008) is a perfect instrument: R = 1 always holds if Z = 1,

such that treated and nontreated individuals with Z = 1 have the same response behavior. In

terms of the response propensity score this implies that p(D = 1, X = x, Z = 1) = p(D = 0, X =

x, Z = 1) = 1.

This example illustrates that conditioning on the propensity score is equivalent to conditioning

on the response behavior, which can be easily shown in a principal stratification framework. For

this reason and as already discussed before, effects are identified if particular combinations of

D and Z yield the same response propensity scores across treatment states (which need not
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necessarily be equal to one) for a given X, e.g., if p(D = 1, X = x, Z = 0) = p(D = 0, X = x, Z =

1). However, for a discrete Z the existence of comparable propensity scores across treatment

states does not hold in general (not even for a subpopulation) such that Mealli and Pacini (2008)

also consider further assumptions. In contrast, it holds in the presence of a sufficiently strong

continuous instrument. There obviously exists a trade-off between identification and econometric

feasibility between the two approaches if the instrument is not perfect. Discrete instruments on

the one hand are easier to find in empirical applications but only allow for partial identification

or at best point identification in some subpopulation. Continuous instruments on the other hand

are very hard to find in reality, but have more identifying power. They even allow us to identify

the ATE on the entire population, given that the common support assumption 6” is satisfied.

Proposition 5

Under Assumptions 1, 6, 6’, and 6”, the ATE is identified by

∆ = E

[
R ·D · Y

p(W ) · π(X, p(W ))

]
− E

[
R · (1−D) · Y

p(W ) · (1− π(X, p(W )))

]
. (7)

Proof: See Appendix A.5.

The ATE on the entire population is identified based on reweighting observations (in addition to

the inverse treatment propensity score) by the inverse of the response propensity score, i.e., by

using the relative likelihood of a particular triple (D,X,Z) to appear in the entire population, as

weighting function.

This result may seem surprising given the fact that outcomes are only partially

observed and observed outcomes do not allow inferring on the unobserved outcomes. I.e.,

E[Y |D = d,X = x, p(W ) = p(w), R = 1] 6= E[Y |D = d,X = x, p(W ) = p(w), R = 0]

due to different conditional distributions of the unobserved term U . Nevertheless, As-

sumptions 6’ and 6” imply that ∆R=1(x, p(w)) = ∆R=0(x, p(w)). To see this, note that

22



FU |D=d,X=x,p(W )=p(w),R=r = FU |X=x,p(W )=p(w),R=r for r ∈ {0, 1} by (6’c) such that

∆R=1(x, p(w)) =

∫
[ϕ(1, x) + u]dFU |X=x,p(W )=p(w),R=1

−
∫

[ϕ(0, x) + u]dFU |X=x,p(W )=p(w),R=1,

∆R=0(x, p(w)) =

∫
[ϕ(1, x) + u]dFU |X=x,p(W )=p(w),R=0

−
∫

[ϕ(0, x) + u]dFU |X=x,p(W )=p(w),R=0.

∆R=1(x, p(w)) and ∆R=0(x, p(w)) only differ with respect to the integrals over different condi-

tional distributions of U given R = 1 and R = 0, which cancel out in the subtractions by (6”c).

Thus, ∆R=1(x, p(w)) = ∆R=0(x, p(w)). Therefore, reweighting the conditional treatment effects

of the respondents according to the distribution of (D,X,Z) in the entire population identifies

∆.

For completeness, we will briefly discuss identification under a particular deviation from the

previous model, assuming that response is a function of D, Z, and V , but is not related with the

covariates X.

Assumption 7

(7a) R = I{ζ(D,Z) ≥ V },

(7b) Cov(U, V ) 6= 0

Under this particular form of attrition the response behavior is merely a function of the treatment

and unobservables, but unrelated to the observed covariates. Whether Assumption 7 is plausible

depends on the evaluation problem at hand and may even be tested (by testing the explanatory

power of X on R). The response propensity score is now p(D,Z) ≡ Pr(R = 1|D,Z). We impose

the following instrumental variable and common support assumptions.

Assumption 7’

(7’a) Cov(Z,R|D) 6= 0 and Y⊥Z|D,

23



(7’b) Pr(R = 1|D = d) > c, c > 0, d ∈ {1, 0},

(7’c) (X,U, V )⊥(D,Z),

(7’d) FV (t), the cdf of V , is strictly monotonic in the argument t.

Assumption 7”

(7”a) Pr(R = 1|D = d, Z = z) > c, c > 0, for all x ∈ X , for all Z ∈ Z,

(7”b) c < Pr(D = 1|p(D,Z) = p(d, z)) < 1− c, for all x ∈ X , for all p(d, z) ∈ P, c > 0,

(7”c) Y = ϕ(D,X) + U .

Assumption 7’ and 7” are straightforward modifications of 7’ and 7”, with the exception of

(7’c), which assumes independence of the (D,Z) also with respect to X. Again, the treatment

is independent by randomization, whereas the independence of Z and X may or may not be

plausible and might be tested. By Assumptions 1, 7, and (7’c) it holds that X is independent

of D conditional on p(D,Z) and R = 1, because FX|D,p(D,Z),R=1 = FX|D = FX . Therefore,

treatment effects are identified conditional on p(D,Z) or on the simplified treatment propensity

score π(p(D,Z)) ≡ Pr(D = 1|p(D,Z)), respectively. Similar to Propositions 4 and 5, the ATEs

on the respondents and the entire population can be expressed by the following equations:

Proposition 6

Under Assumptions 1, 7, 7’, and (7”b), the ATE on the respondents is identified by

∆R=1 = E

[
D · Y

π(p(D,Z))
|R = 1

]
− E

[
(1−D) · Y

1− π(p(D,Z))
|R = 1

]
. (8)

Proof: See Appendix A.6.

Proposition 7

Under Assumptions 1, 7, 7’, and 7”, the ATE is identified by

∆ = E

[
R ·D · Y

p(D,Z) · π(p(D,Z))

]
− E

[
R · (1−D) · Y

p(D,Z) · (1− π(p(D,Z)))

]
. (9)

Proof: See Appendix A.7.
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In the last two sections we have covered several forms of attrition and provided a guideline

on which weighting methods are appropriate under specific assumptions. In particular, the use of

IPW incorporating instrumental variables when attrition is on unobservables has been discussed, a

case widely ignored in the experimental literature. The subsequent sections will present simulation

results and an empirical application to a U.S. labor market policy experiment.

5 Simulation studies

In this section, we run a horse race between the experimental mean difference estimator not

controlling for attrition and IPW estimators assuming that attrition is related to observables and

unobservables as treated under Assumptions 5 and 6, respectively. For this reason, we conduct

simulation studies based on both generated and empirical data. Starting with the former scenario,

we consider the following data generating process (DGP):

Yi = α1Di + α2Xi + α2DiXi + Ui,

Yi is observed if Ri = 1,

Ri = I{β1Di + β2Xi + β3Zi + Vi > 0}.

Apart from the treatment D, the covariate X, and the unobserved term U , the outcome Y also

depends on an interaction term of D and X, which introduces effect heterogeneity with respect

to X. X and Z are uniformly distributed with support regions [−1, 1] and [−1, 2], respectively.

D is Bernoulli and either 1 or 0 with equal probability. (U, V ) are drawn from a multivariate

standard normal distribution. Their covariance is set to zero in the case of attrition on observables

and to 0.8 under attrition on unobservables. The coefficients in the outcome equation are set to

α1 = α2 = 1, α3 = 0.25. Under attrition on observables β1 = β2 = 1 and β3 = 0 such that roughly

two thirds of the outcomes are observed. Under attrition on unobservables, β1 = β2 = 0.5 and
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β3 = 1, i.e., R is also a function of the instrument Z which is excluded from the outcome equation.

Approximately 70 percent of the outcomes are observed in this case.

We use normalized versions (such that weights add up to unity, see Imbens, 2004, and Busso,

DiNardo, and McCrary, 2009b) of the sample analogs of Propositions 2, 3, 4, and 5 as estimators

of the ATE on the entire population (denoted as ∆̂) and on the respondents (∆̂R=1). The response

and treatment propensity scores p(W ), π(X, p(W )) are specified as probit models. We run 2000

Monte Carlo simulations for two different sample sizes (n = 500, 2000) and compare the accuracy

of IPW estimators to naively taking mean differences of treated and nontreated outcomes among

respondents. The following tables report the results for untrimmed IPW estimators as hardly any

propensity score estimate in any Monte Carlo replication is close to the boundaries of 0 and 1.

Therefore, methods incorporating propensity score trimming (see for instance Busso, DiNardo,

and McCrary, 2009a, and Crump, Hotz, Imbens, and Mitnik, 2009) yield virtually the same

results and are omitted in the paper, but are available upon request.

Table 1: Attrition on observables, simulated data

n=500

∆̂ bias s.e. MSE ∆̂R=1 bias s.e. MSE

IPW obs 1.001 0.001 0.180 0.032 0.998 -0.002 0.112 0.012
mean difference 0.883 -0.117 0.135 0.032 0.851 -0.149 0.130 0.039

true effect (normalized) 1.000 1.000

n=2000

∆̂ bias s.e. MSE ∆̂R=1 bias s.e. MSE

IPW obs 1.000 0.000 0.087 0.008 0.998 -0.002 0.056 0.003
mean difference 0.882 -0.118 0.066 0.018 0.849 -0.151 0.064 0.027

true effect (normalized) 1.000 1.000
Note: 2000 Monte Carlo replications. “IPW obs” controls for attrition related to observables.

All effects are normalized to 1.

Table 1 displays the estimates, bias, standard errors (s.e.) and mean squared errors (MSE)

for the different methods when attrition is related to observables. Note that the ATEs on the

entire population and on the respondents are normalized to unity. The IPW estimators following

from Propositions 2 and 3 are effective in controlling for attrition bias. ∆̂, ∆̂R=1 are close to the

true values and their accuracy in terms of MSE increases in the sample size. In contrast, the

mean difference estimator is substantially biased. For the estimation of the ATE on the entire
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population under the smaller sample size it is, however, competitive in terms of the MSE. This

is due to its smaller variance compared to IPW, which introduces additional uncertainty through

the estimation of two propensity scores. Under the larger sample size, the persistence of the

bias of the mean difference estimator dominates its better precision, such that IPW is clearly

superior. In conclusion, the simulation results suggest that IPW is likely to reduce the MSE

if the sample size is sufficiently large. Note that many recently conducted social experiments

exceed the sample sizes considered in the simulations and typically contain several thousand

observations, e.g., Angrist, Bettinger, and Kremer (2006), Angrist and Lavy (2009), Bertrand

and Mullainathan (2004), Gertler (2004), and Krueger and Zhu (2004), or even more (Karlan

and List, 2007).

Table 2 shows the results for IPW estimators (i) controlling for attrition on unobservables

(“IPW unobs”, following from Propositions 4 and 5) and (ii) observables alone (“IPW obs”,

following from Propositions 2 and 3) when response depends on unobservables, too. The former

methods exploiting the instrument entail only moderate biases and MSEs, whereas the accuracy of

IPW only controlling for attrition on observables is considerably lower. When estimating the ATE

on the entire population, “IPW obs” performs even worse than the mean difference estimator. I.e.,

omitting the unobserved factor in the attrition model entails poorer results than not controlling

for response bias at all. This finding bears great relevance for empirical applications. It implies

that using the wrong attrition model and/or accounting for an incomplete set of variables may

even be worse than completely ignoring the problem. This underlines the importance of carefully

thinking about the attrition process in order to choose a model that is appropriate for the empirical

problem at hand.

Finally, we use a publicly available subsample of Tennessee’s Project STAR Experiment for a

simulation study based on empirical data to illustrate the potential gains of IPW when attrition

is related to unobservables. The motivation for the use of empirical data is to conduct simulations

that are more closely linked to real world problems with the hope that they are more realistic

than studies merely based on generated data. For further examples of simulations that rely on
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Table 2: Attrition on unobservables, simulated data

n=500

∆̂ bias s.e. MSE ∆̂R=1 bias s.e. MSE

IPW unobs 0.974 -0.026 0.118 0.015 1.009 0.009 0.110 0.012
IPW obs 0.780 -0.220 0.108 0.060 0.898 -0.102 0.098 0.020

mean difference 0.891 -0.109 0.118 0.026 0.878 -0.122 0.116 0.028
true effect (normalized) 1.000 1.000

n=2000

∆̂ bias s.e. MSE ∆̂R=1 bias s.e. MSE

IPW unobs 0.979 -0.021 0.059 0.004 1.014 0.014 0.054 0.003
IPW obs 0.783 -0.217 0.055 0.050 0.900 -0.100 0.049 0.012

mean difference 0.892 -0.108 0.059 0.015 0.879 -0.121 0.058 0.018
true effect (normalized) 1.000 1.000

Note: 2000 Monte Carlo replications. “IPW unobs” controls for attrition related to observables and

unobservables, “IPW obs” only for attrition related to observables. All effects are normalized to 1.

empirical data, see for instance Bertrand, Duflo, and Mullainathan (2004), Diamond and Sekhon

(2006), Huber, Lechner, and Wunsch (2010), and Lee and Whang (2010).

Project STAR was conducted in the mid-1980s to evaluate the effects of small class sizes (target

13-17 students instead of 22-25 students in regular classes) in kindergartens and schools on student

achievement, see for example Finn and Achilles (1990, 1999) and Krueger (1999). A major issue

for the applicability of the proposed IPW methods under attrition related to unobservables is the

requirement of a continuous instrument. Therefore, future experimental designs might consider

the inclusion of (close to) continuous instruments which should ideally be randomly assigned in

a similar way as the treatment. As mentioned before, the number of phone calls or financial

incentives could be used to instrument the response rate to post-treatment surveys. Up to date,

however, such variables are typically not available in social experiments and this is also the case

for Project STAR. For this reason we will pursue a somewhat unorthodox simulation approach

to investigate the performance of IPW when estimating the ATE on the entire population under

attrition related to unobservables.

The original data set our simulations are based upon contains 6,325 children in kindergarten.

We only use those 5,852 observations for which we observe our outcome of interest (Y ), namely

the Stanford Achievement Test (SAT) in maths at the end of the kindergarten year (average test

score: 485.377, standard deviation: 47.698). 1,757 children of the sample were randomly assigned
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to a small class in kindergarten. We discard all treated observations and only keep the sample of

controls (n = 4, 095), which will serve as the population of interest in the simulations. Moreover,

a binary placebo treatment D is randomly assigned among the controls with a “treatment”

probability of 0.5. Thus, the true treatment effect is equal to zero as none of the observations

was assigned to a small class. Therefore, we know the correct ATE and can determine the bias

and MSE in our simulations despite the use of empirical data.

In a next step, the experiment is artificially broken by the introduction of the following

response process, which is designed such that roughly two thirds of the outcomes are observed:

Ri = I{β0 + β1Di + β2Xi − β3Zi − β4Ui + Vi > 0},

where β0 = 2.5, β1 = β2 = β3 = 1, β4 = 2. X denotes race (one if white and zero otherwise) which

we treat as being observed. U represents socio-economic status (one if eligible for free lunches,

zero otherwise) and is assumed not to be observed for the sake of the subsequent simulation.

The only generated variables apart from the treatment are the instrument Z (uniform, support

[−1.5, 1.5]) and the error term V (standard normal). As a side remark, note that one could also

define Z to be an empirical variable which is both continuous and unrelated with Y to even

further increase the use of real data. Unfortunately, such a variable is not available in public use

file of Project STAR. An inspection of the data shows that both X and U are strongly correlated

with Y . Thus, neglecting attrition supposedly biases estimation. Note, however, that the exact

relation between race, socio-economic status, and the SAT score is unknown due to the use of the

empirical data. This is fundamentally different to the conventional Monte Carlo design (see the

previous simulations) where the outcome equation is explicitly modeled.

In each of the 2000 Monte Carlo replications, (Y,X,U) are randomly drawn from the “pop-

ulation” without replacement and (D,Z, V ) from their respective distributions in order to com-

pute R. Then, we estimate the response propensity score by regressing R on (1, D,X,Z) and the

treatment propensity score, which is unknown in our simulation due to the use of empirical data,
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by regressing D on (1, X, p̂(W ), X × p̂(W )) using probit specifications. Contrary to the previ-

ous simulations, we estimate the effects with and without trimming of propensity scores as some

values are close to the boundaries. We consider two trimming levels, where response propensity

scores smaller than 5% (10%) and treatment propensity scores smaller than 5% (10%) or larger

than 95 % (90%) are trimmed to the respective threshold values.

Table 3 presents the results which are in line with the previous simulations. The bias of the

IPW estimator is moderate irrespective of the sample size and the trimming level, whereas it

amounts to roughly 1.8 SAT scores when taking mean differences. Yet, when considering the

smaller sample size, the mean difference estimator is superior with respect to the MSE as it is

more precise than IPW. However, as the sample size gets larger IPW increasingly outperforms

mean differences. We therefore conclude that weighting based on instruments is effective in

reestablishing the validity of experiments under attrition on unobservables, at least when the

sample size is not too small such that the gain in bias reduction outweighs the loss in precision

due to the estimation of the propensity scores and weighting. Of course, a precondition for this

result is the availability of a continuous instrument that is both relevant (sufficiently correlated

with response behavior) and valid (no direct effect on the outcome). Table 3 also reports the

average numbers of trimmed response and treatment propensity scores in the simulations, which

are acceptable even under the 10% trimming level.

In summary, both the studies based on simulated and empirical data suggest that IPW

becomes increasingly accurate in terms of the MSE and relatively superior to taking mean

differences as the sample size gets larger and given that the correct attrition process is assumed.

This is an interesting finding because there exists, as already briefly mentioned, an important

difference between the two designs: Parts of the model, e.g., the outcome equation, remain

unknown when using empirical data. Therefore, it may not be taken for granted that IPW

performs equally well in the latter case, because the threat of incorrectly specifying the

treatment propensity score remains even when assuming the correct form of attrition. This

advocates a flexible specification of the propensity scores and motivates the use of specification
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tests in the empirical application presented below.

Table 3: Attrition on unobservables, empirical data, zero treatment effect

n=500

∆̂ bias s.e. MSE av. num. of trimmed p, π

IPW unobs (untrimmed) 0.425 0.425 6.197 38.585
IPW unobs (5% trimming) 0.428 0.428 6.198 38.594 0.000, 16.191

IPW unobs (10% trimming) 0.443 0.443 6.200 38.631 0.452, 46.177
mean difference 1.768 1.768 5.420 32.389

true effect 0.000

n=2000

∆̂ bias s.e. MSE av. num. of trimmed p, π

IPW unobs (untrimmed) 0.411 0.411 2.994 9.134
IPW unobs (5% trimming) 0.412 0.412 2.994 9.137 0.000, 24.315

IPW unobs (10% trimming) 0.423 0.423 2.997 9.158 0.012, 142.857
mean difference 1.772 1.772 2.667 10.252

true effect 0.000
Note: 2000 Monte Carlo replications.

“IPW unobs” controls for attrition related to observables and unobservables.

6 Empirical application

We present an application of Propositions 4 and 5 (attrition related to observables and unobserv-

ables) to a labor market policy experiment which was conducted in the U.S. in the mid-1990s in

order to assess the publicly funded Job Corps program. This program (D), which is currently

administered by 124 local Job Corps centers throughout the U.S., targets young individuals (aged

16-24 years) that have a legal residence in the U.S. and come from a low-income household, see

Schochet, Burghardt, and Glazerman (2001) for further details. It provides participants with ap-

proximately 1100 hours of vocational training and education as well as with housing, board, and

health services over an average duration of roughly 8 months. Here, we use a subset of the ex-

perimental data analyzed by Lee (2009), namely the female sample which includes 4,044 obser-

vations.

Suppose that we would like to learn about the ATE on women’s potential log wages (Y ) one

year after program assignment (mean: 1.661, standard deviation: 0.415). However, we face the

problem that wages are only observed for the non-random subsample of the 1454 employed fe-

males (R = 1). Economic theory suggests that the latter are likely to differ from the nonworking
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with respect to unobservables such as motivation and ability. From an econometric perspective

this sample selection problem is equivalent to the attrition problem discussed in Section 4. Fur-

thermore, empirical results (see for instance Mulligan and Rubinstein, 2008, among many oth-

ers) provide strong evidence that socio-economic characteristics as education, age, race, and labor

market experience are important confounders related to both the employment probability and

potential wages. Fortunately, the data set contains information on all of these factors (X) which

were measured in the baseline survey at the program assignment. Finally, we require one or more

instruments (Z) that plausibly affect the labor supply decision, but have no direct on wages. Fol-

lowing the literature, see for instance Das, Newey, and Vella (2003), we assume the number of

children and parents’ education to be valid instruments for employment, at least given the other

information in the data.

We use a probit specification (see Appendix A.8) to estimate the labor supply equation re-

quired for the computation of the response propensity score. Interestingly, the treatment coeffi-

cient is significantly negative, which points to the prevalence of so called “lock-in” effects due to

reduced job search effort during program participation. This phenomenon is well documented in

the literature, see for instance Sianesi (2004). As expected, education, age, and a favorable labor

market history all increase the employment probability. This implies that the working females

have better labor market preconditions than the entire sample. Also mother’s education has a

positive impact, supposedly through role models, while the coefficient on number of children is

negative, albeit not significant. As a model check, we conducted the nonparametric specification

test for propensity scores suggested by Shaikh, Simonsen, Vytlacil, and Yildiz (2009). The test

yields a p-value of 0.81 and, therefore, does not reject the null hypothesis of a correct specifica-

tion. In the second step, we regress the treatment on the observed variables X and the response

propensity score in order to estimate the treatment propensity score. Again, the specification

test does not reject the null at any conventional level.

We estimate the ATEs on the respondents (∆R=1) and on the entire population (∆) by the

sample analogs of Propositions 4 and 5 and compare them to naively taking mean differences. As
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in the simulations, we use two trimming levels such that response propensity scores smaller than

5% (10%) and treatment propensity scores smaller than 5% (10%) or larger than 95 % (90%) are

trimmed to the respective threshold values. Under the first trimming rule only 1 response and

2 treatment propensity scores are trimmed, under the second rule the respective numbers are 9

and 24. I.e., most propensity scores lie well in the interior of the theoretical support. Finally,

standard errors are computed based on 1999 bootstrap replications.

Table 4 shows the results on estimation and inference. The estimates suggest that the program

increases the wages of working women on average by 5.5 % (which is only borderline significant)

and those of the entire population by 6 %, irrespective of the trimming level. These effects

are up to one third higher than the mean difference of 4.5 %. Therefore, the results, which

are robust under alternative propensity score specifications not reported here, suggest that the

mean difference may be downward biased, albeit the differences in the effects are not statistically

significant. In conclusion, the ATEs on the working and on all women are within the range (but

rather at the lower end) of those commonly found for an additional year of schooling, see for

instance Card (1999). This appears reasonable given that the scale of the Job Corps program

roughly corresponds to a full year in high school, as argued by Lee (2009).

Table 4: ATE of training participation on log wage 1 year later

Method Estimate (Standard error) p-value

IPW unobs (5% trimming): ∆R=1 0.055 (0.034) 0.108
IPW unobs (10% trimming): ∆R=1 0.055 (0.033) 0.090

IPW unobs (5% trimming): ∆ 0.060 (0.028) 0.031
IPW unobs (10% trimming): ∆ 0.060 (0.028) 0.034

mean difference conditional on employment 0.045 (0.022) 0.040
Note: Standard errors are based on 1999 bootstrap replications.

“IPW unobs” controls for attrition related to observables and unobservables.

7 Conclusion

This paper discusses the identification of treatment effects in randomized experiments when

outcomes are only partially observed due to attrition and non-response in follow-up surveys. Its
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first contribution is the systematic coverage of various forms of attrition, i.e., when outcomes are

missing completely at random and when attrition is related to observables (missing at random)

and unobservables. We treat these various forms by imposing different assumptions on the relation

between the response behavior and the treatment, the observed covariates, and the unobserved

characteristics in a fairly general treatment effect model.

The second contribution is to show point identification of average treatment effects on the

respondents and on the entire population based on different implementations of inverse probability

weighting (IPW). Each IPW method is tailored to the specific nature of attrition considered,

which provides practitioners with straightforward solutions depending on the suspected missing

data problem. In particular, we introduce an IPW approach based on an instrumental variable

(IV) strategy to tackle attrition on unobservables, which was not considered in the experimental

literature before. Our simulation results suggest that an incorrect model for attrition, which for

instance, omits attrition on unobservables, may do worse in terms of bias and mean squared error

than not controlling for the missing outcome problem at all. This highlights the importance of a

thorough analysis and correct specification of the response behavior.

Despite its technical ease of implementation, the IV-based IPW approach appears to be rarely

applicable in social experiments conducted up to date, due to the lack of credible continuous in-

struments for attrition. This is unfortunate, as attrition on unobservables seems to be a potential

threat in many fields of research where randomized trials are conducted (such as education and

labor economics), in particular when the number of observed baseline characteristics is low. E.g.,

in an education experiment unobserved motivation is likely to be correlated both with the out-

come (such as the grade or the test score) and the likelihood to respond, e.g., to participate in

a test or exam. Therefore, we argue that future experimental research should seriously consider

the creation and random assignment of instruments in order to increase the credibility of experi-

mental inference in the presence of attrition. The number of phone calls in follow-up surveys or

financial incentives for responding are just two examples for potentially interesting instruments.
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A Appendix

A.1 Proof of Proposition 1

Under Assumptions 1, 4 and 4’, the ATE is identified by

∆ = E

[
R · Y
p(1, X)

|D = 1

]
− E

[
R · Y
p(0, X)

|D = 0

]
.

Proof:

E

[
R · Y
p(1, X)

|D = 1

]
− E

[
R · Y
p(0, X)

|D = 0

]
= E

[
E

[
R · Y
p(1, X)

|X = x,D = 1

]
|D = 1

]
− E

[
E

[
R · Y
p(0, X)

|X = x,D = 0

]
|D = 0

]
= E

[
E

[
Y

p(1, X)
|R = 1, X = x,D = 1

]
· p(1, X)|D = 1

]
− E

[
E

[
Y

p(0, X)
|R = 1, X = x,D = 0

]
· p(0, X)|D = 0

]
= E [E [Y |R = 1, X = x,D = 1] |D = 1]− E [E [Y |R = 1, X = x,D = 0] |D = 0]

= E [E [Y |X = x,D = 1] |D = 1]− E [E [Y |X = x,D = 0] |D = 0]

= E [Y |D = 1]− E [Y |D = 0] = E
[
Y 1]− E [Y 0] = ∆.

The first equality follows from the law of iterated expectations, the fourth from Assumption 4, implying that Y

and R are independent conditional on (D,X). The fifth follows from a backward application of the law of iterated

expectations, and the sixth equality follows from Assumption 1.

A.2 Proof of Proposition 2

Under Assumptions 1, 5 and 5’, the ATE on respondents is identified by

∆R=1 = E

[
D · Y
π(X)

− (1−D) · Y
1− π(X)

|R = 1

]
.
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Proof:

E

[
D · Y
π(X)

− (1−D) · Y
1− π(X)

|R = 1

]
= E

[
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[
D · Y
π(X)

|X = x,R = 1

]
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[
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]
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]
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]
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]
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[
E

[
Y

1− π(X)
|D = 0, X = x,R = 1

]
· (1− π(X))|R = 1

]
= E [E [Y |D = 1, X = x,R = 1] |R = 1]− E [E [Y |D = 0, X = x,R = 1] |R = 1]

= E [E [Y |D = 1, X = x] |R = 1]− E [E [Y |D = 0, X = x] |R = 1]

= E
[
E
[
Y 1|X = x

]
|R = 1

]
− E

[
E
[
Y 0|X = x

]
|R = 1

]
= E

[
Y 1|R = 1

]
− E

[
Y 0|R = 1

]
= ∆R=1.

The first equality follows from the law of iterated expectations, the fourth from Assumption 5, implying that Y

and R are independent conditional on (D,X). The fifth follows from Assumption 1 and the sixth equality follows

from a backward application of the law of iterated expectations.

A.3 Proof of Proposition 3

Under Assumptions 1, 4’, 5, and 5’, the ATE is identified by

∆ = E

[
R ·D · Y

p(D,X) · π(X)
− R · (1−D) · Y
p(D,X) · (1− π(X))

]
.

Proof:
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]
· p(D,X) · π(X)

]
− E

[
E

[
Y
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]
· p(D,X) · (1− π(X))

]
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= E [E [Y |D = 1, X = x]]− E [E [Y |D = 0, X = x]]

= E
[
E
[
Y 1|X = x

]]
− E

[
E
[
Y 0|X = x

]]
= E

[
Y 1]− E [Y 0] = ∆.
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The first equality follows from the law of iterated expectations, the fourth from Assumption 5, implying that Y

and R are independent conditional on (D,X). The fifth follows from Assumption 1 and the sixth equality follows

from a backward application of the law of iterated expectations.

A.4 Proof of Proposition 4

Under Assumptions 1, 6, 6’, and (6”b), the ATE on the respondents is identified by

∆R=1 = E

[
D · Y

π(X, p(W ))
| R = 1

]
− E

[
(1−D) · Y

1− π(X, p(W ))
| R = 1

]
.

Proof:

E
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D · Y
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]
− E

[
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| R = 1

]
= E

p(W )

[
E
X

[
E

[
D · Y

π(X, p(W ))
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|X, p(W ), R = 1

]
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]
| R = 1

]
= E

p(W )

[
E
X

[
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Y
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]
· π(X, p(W ))

− E

[
Y

(1− π(X, p(W )))
|D = 0, X, p(W ), R = 1

]
· (1− π(X, p(W )))|p(W ), R = 1

]
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]
= E

p(W )

[
E
X
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]

= E
p(W )

[
E
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[
E
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[
E
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[∆R=1(X, p(W ))|p(W ), R = 1] | R = 1
]

= ∆R=1.

The first equality follows from the law of iterated expectations, the fourth from Assumptions 6 and 6’.

∆R=1(X, p(W )) denotes the conditional ATE given X and p(W ) in the selected subpopulation. Finally, the last

equality is a backward application of the law of iterated expectations.

A.5 Proof of Proposition 5

Under Assumptions 1, 6, 6’, and 6”, the ATE is identified by

∆ = E

[
R ·D · Y

p(W ) · π(X, p(W ))

]
− E

[
R · (1−D) · Y

p(W ) · (1− π(X, p(W )))

]
. (A.1)
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Proof:
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p(W )

[
E
X

[
E [Y |D = 1, R = 1, X, p(W )]− E [Y |D = 0, R = 1, X, p(W )] |p(W )

]]
= E

p(W )

[
E
X

[
E
[
Y 1|R = 1, X, p(W )

]
− E

[
Y 0|R = 1, X, p(W )

]
|p(W )

]]
= E

p(W )

[
E
X

[∆R=1(X, p(W ))|p(W )]
]

= E
p(W )

[
E
X

[∆(X, p(W ))|p(W )]
]

= ∆,

The first equality follows from the law of iterated expectations, the sixth from Assumptions 6 and 6’. The eighth

equality follows from Assumption (6’c) by which FU|D=d,X=x,p(W )=p(w),R=r = FU|X=x,p(W )=p(w),R=r and Assump-

tion (6”c) which imposes additivity of observed and unobserved terms. Both together imply that ∆R=1(X, p(W )),

the conditional ATE given X and p(W ) among respondents, is equal to ∆R=0(X, p(W )) and thus, ∆(X, p(W )).

Finally, the last equality is a backward application of the law of iterated expectations.

A.6 Proof of Proposition 6

Under Assumptions 1,7, 7’, and (7”b), the ATE on the respondents is identified by

∆R=1 = E

[
D · Y

π(p(D,Z))
| R = 1

]
− E

[
(1−D) · Y

1− π(p(D,Z))
| R = 1

]
.
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Proof:

E

[
D · Y

π(p(D,Z))
| R = 1

]
− E

[
(1−D) · Y

(1− π(p(D,Z)))
| R = 1

]
= E

[
E

[
D · Y

π(p(D,Z))
− (1−D) · Y

(1− π(p(D,Z)))
|p(D,Z), R = 1

]
| R = 1

]
= E

[
E

[
Y

π(p(D,Z))
|D = 1, p(D,Z), R = 1

]
· π(p(D,Z))

− E

[
Y

(1− π(p(D,Z)))
|D = 0, p(D,Z), R = 1

]
· (1− π(p(D,Z))) | R = 1

]
= E [E [Y |D = 1, p(D,Z), R = 1]− E [Y |D = 0, p(D,Z), R = 1] | R = 1]

= E
[
E
[
Y 1|p(D,Z), R = 1

]
− E

[
Y 0|p(D,Z), R = 1

]
| R = 1

]
= E [∆R=1(p(D,Z)) | R = 1] = ∆R=1.

The first equality follows from the law of iterated expectations, the fourth from Assumptions 7 and 7’.

∆R=1(X, p(W )) denotes the conditional ATE given p(D,Z) in the selected subpopulation. Finally, the last

equality is a backward application of the law of iterated expectations.

A.7 Proof of Proposition 7

Under Assumptions 1, 7, 7’, and 7”, the ATE is identified by

∆ = E

[
R ·D · Y

p(D,Z) · π(p(D,Z))

]
− E

[
R · (1−D) · Y

p(D,Z) · (1− π(p(D,Z)))

]
. (A.2)

Proof:

E

[
R ·D · Y

p(D,Z) · π(p(D,Z))

]
− E

[
R · (1−D) · Y

p(D,Z) · (1− π(p(D,Z)))

]
= E

[
E

[
R ·D · Y

p(D,Z) · π(p(D,Z))
− R · (1−D) · Y
p(D,Z) · (1− π(p(D,Z)))

|p(D,Z)

]]
= E

[
E

[
D · Y

p(D,Z) · π(p(D,Z))
− (1−D) · Y
p(D,Z) · (1− π(p(D,Z)))

|R = 1, p(D,Z)

]
· p(D,Z)

]
= E

[
E

[
D · Y

π(p(D,Z))
− (1−D) · Y

(1− π(p(D,Z)))
|R = 1, p(D,Z)

]]
= E

[
E

[
Y

π(p(D,Z))
|D = 1, R = 1, p(D,Z)

]
· π(p(D,Z))

− E

[
Y

(1− π(p(D,Z)))
|D = 0, R = 1, p(D,Z)

]
· (1− π(p(D,Z)))

]
= E

[
E [Y |D = 1, R = 1, p(D,Z)]− E [Y |D = 0, R = 1, p(D,Z)]

]
= E

[
E
[
Y 1|R = 1, p(D,Z)

]
− E

[
Y 0|R = 1, p(D,Z)

]]
= E [∆R=1(p(D,Z))|p(D,Z)] = E [∆(p(D,Z))|p(D,Z)] = ∆,
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The first equality follows from the law of iterated expectations, the sixth from Assumptions 7 and 7’. The eighth

equality follows from Assumption (7’c) by which ∆R=1(p(D,Z)), the conditional ATE given p(D,Z) among re-

spondents, is equal to ∆R=0(X, p(D,Z)) and thus, ∆(p(D,Z)). Finally, the last equality is a backward application

of the law of iterated expectations.

A.8 Specification of the response propensity score

Table 5: Probit specification of the response propensity score

Variable Coefficient Robust standard error

treatment -0.177 (0.043)
age 0.023 (0.012)
highest grade completed 0.090 (0.015)
white 0.282 (0.052)
marital status 0.175 (0.123)
had a job at assignment 0.210 (0.061)
job information missing 0.908 (0.213)
had a job one year earlier 0.177 (0.058)
months working one year earlier 0.042 (0.007)
mother’s highest grade completed 0.011 (0.004)
number of children -0.035 (0.029)
Intercept -2.077 (0.204)

Note: Pseudo-R2= 0.082. P-value of the Shaikh, Simonsen, Vytlacil, and Yildiz (2009) specification test: 0.81.
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