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1. Introduction 

In competition policy, screens are specific indices derived from the bidding distribution 

in tenders for distinguishing between competition and collusion as well as for flagging 
markets and firms likely characterized by collusion. They are thus of interest for compe-
tition agencies in order to detect cartels and to enforce competition laws. In the light of
the vast variety of screens proposed in the literature (see Harrington, 2008; Jimenez and
Perdiguero, 2012; OECD, 2013; Froeb et al., 2014 ), the question arises which detection 

metho d some comp etition agency should cho ose in practice. However, very few papers, if
any, systematically investigate the performance of the screens based on statistical meth- 
ods. 

In this paper, we combine machine learning techniques with several screening meth- 
ods for predicting collusion. We evaluate the out of sample prediction accuracy in a data
set of 584 tenders that are representative for the construction sector in Switzerland. 
The data cover 4 different bid-rigging cartels and comprise both collusive and competi- 
tive (post-collusion) tenders, based on which we define a binary collusion indicator that 
serves as dependent variable. More concisely, we consider the screens proposed by Imhof 
(2017b) for detecting bid-rigging cartels and investigate the performance of machine 
learning techniques when using these screens as predictors. Firstly, we investigate lasso 
logit regression, (see Tibshirani, 1996 ), to predict collusion as a function of the screens as
well as their interactions and higher order terms. Secondly, we apply an ensemble method
that consists of a weighted average of predictions based on bagged regression trees (see
Breiman, 1996 ), random forests (see Ho, 1995; Breiman, 2001 ), and neural networks (see
McCulloch and Pitts, 1943; Ripley, 1996 ). 

We use cross validation to determine the optimal penalization in lasso regression as 
well as the optimal weighting in the ensemble method. We randomly split the data 
into training and test samples and estimate the model parameters in the training data, 
while out of sample performance is assessed in the test data. We repeat these steps
100 times to estimate the average mean squared errors and classification errors. The 
latter is defined by the mismatch of actual collusion and predicted collusion, which 

is 1 if the algorithm predicts the collusion probability to be 0.5 or higher and 0
otherwise. 

In our analysis, we distinguish between false positive and false negative predictions. 
A false positive implies that the machine learning algorithm flags a tender as collusive 
even though no collusion occurs. From the p ersp ective of a competition agency, this
might appear to be the worst kind of prediction error, as it could induce an unjustified
investigation. In contrast, a false negative implies that the metho d do es not flag a tender
as collusive, although collusion occurs. This is undesirable, to o, b ecause any metho d that
pro duces to o many false negatives appears not worth being implemented due to a lack
of statistical power in detecting collusion. A method that is attractive for competition 

agencies therefore needs to have an acceptable overall out of sample performance that 
satisfactorily trades off false positive and false negative prediction rates. 
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Our results suggest that the combination of machine learning and screening is a pow-
rful tool for detecting bid rigging. Both the lasso and the ensemble method correctly
redict 84% of all tenders out of sample or put differently, the overall misclassification
ate of either method is 16%. The lasso performs slightly better in collusive than in non-
ollusive p erio ds with 14% false negative and 18% false positive predictions, while the
pposite holds for the ensemble method with 17% false negative and 15% false positive
redictions. Therefore, the metho ds prop osed in this paper exhibit a decent performance
s the shares of false positives and negatives are low. Furthermore, we also consider
educing the share of false positives by tightening the rule for classifying tenders as col-
usive, i.e. by predicting collusion only to be 1 if the collusion probability predicted by the
lgorithm exceeds a specific threshold higher than the default value of 0.5. This exercise
ppears interesting for competition agencies to find an optimal tradeoff between false
ositives and false negatives by gauging the choice of the probability threshold. In our
ata, we not very surprisingly find that reducing false positives induces a considerable
ncrease in false negative predictions. 

As lasso is a variable selection method (based on constraining the sum of the absolute
alues of the estimated slope coefficients) for picking important predictors, it allows
etermining the most powerful screens. Among a set of 65 predictors that consist of the
riginal screens as well as their interactions and squared terms, we find that two screens
lay a major role for detecting bid-rigging cartels: the ratio of the price difference between
he second and (winning) first lowest bids to the average price difference among all bids
nd the coefficient of variation of bids in a tender. By far less important predictors are
he number and the skewness of bids. However, we also find that discarding the two most
owerful screens does not significantly affect the accuracy of the prediction, as other
creens “step in” as substitutes. 

As a policy recommendation, we propose a two-step procedure to detect bid-rigging
artels. The first step relies on our combination of machine learning and screening. Com-
etition agencies may calculate the screens for each tender from the distribution of sub-
itted bids, an information typically available in procurement processes. They may then

pply the model based on screening suggested in our paper to predict collusive and
ompetitive tenders. Concerning classification into collusive and competitive tenders, it
eems (at least in our data) advisable to use a decision rule that is based on a predicted
robability threshold between 0.5 to 0.7. The second step consists of scrutinizing ten-
ers flagged as collusive by machine learning. Following Imhof et al. (2018) , competition
gencies should investigate if specific groups of firms or regions can be linked to the
uspicious tenders. In particular, agencies can apply the bid rotation screen, see Imhof
t al. (2018) , which investigates the interaction among suspected firms, to check whether
heir group-specific interactions match a bid-rigging behavior. 

Our paper is related to a small literature on implementing screens to detect bid-rigging
artels (see Feinstein et al., 1985; Imhof et al., 2018; Imhof, 2017b ). This literature differs
rom the majority of studies on detecting bid-rigging cartels that use econometric tests
ypically not only relying on bidding information, but also on proxies for the costs of the
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firms (see Porter and Zona, 1993; 1999; Pesendorfer, 2000; Bajari and Ye, 2003; Jakob-
sson, 2007; Aryal and Gabrielli, 2013; Chotibhongs and Arditi, 2012a; 2012b; Imhof, 
2017a ). Finally, our paper is also related to studies on screens in markets not char-
acterized by an auction process (see Abrantes-Metz et al., 2006; Esposito and Ferrero, 
2006; Hueschelrath and Veith, 2011; Jimenez and Perdiguero, 2012; Abrantes-Metz et al., 
2012 ). 

The remainder of the paper is organized as follows. Section 2 reviews our data that
includes four bid-rigging cartels in the Swiss construction sector and discusses the screens 
used as predictors for collusion. Section 3 presents the machine learning techniques along 
with the empirical results. Section 4 discusses several policy recommendations of our 
method. Section 5 concludes. 

2. Bid-rigging cartels and data 

2.1. Sample description 

Our data include 584 tenders with 3799 bids for a market volume of roughly 370
million Swiss francs and contain information about four different bid-rigging cartels in 

Switzerland. The first cartel, denoted as cartel A, was formed in the canton of Ticino
(see Imhof, 2017b ), the second one, denoted as cartel B, in the canton of St. Gallen (see
Imhof et al., 2018 ). The Swiss Competition Commission (hereafter: COMCO) rendered 

a decision for bid-rigging cartel B but four firms appealed the decision. 1 The third and
fourth cartels are denoted by C and D and their data had not been considered prior to the
present paper. For confidentiality reasons, we do not report more detailed information 

on cartels C and D. All data on the four cases come from official records on the bidding
processes at the cantonal level. 

The four bid-rigging cartels concerned road construction and maintenance as well as 
related engineering services. More specialized engineering services like bridge or tunnel 
construction are, however, not included in the data. Even though the four cartels were
formed in different cantons of Switzerland, the structure of the construction sector is 
quite comparable across cantons. Therefore, the contracts included in the data are rep- 
resentative for the whole of Switzerland. 

For each of the cartels in our data, we observe collusive cartel p erio ds as well as
comp etitive p ost-cartel p erio ds. Table 1 rep orts the number of tenders by cartel and
p erio d. Firms rigged all tenders in cartel p erio ds and all firms submitting bids in cartel
p erio ds participated in the bid-rigging cartel. Therefore, when we subsequently refer to
tenders in cartel p erio ds, it is implied that the bid-rigging cartels are complete (also
called all-inclusive) in the sense that all firms participating in the tender process were
colluding. Furthermore, the firms were successful in the sense that they adhered to their
1 See https://www.weko.admin.ch/weko/fr/home/actualites/communiques- de- presse/nsb- news.msg- id- 
64011.html . 

https://www.weko.admin.ch/weko/fr/home/actualites/communiques-de-presse/nsb-news.msg-id-64011.html
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Table 1 
Number of collusive and competitive tenders. 

Collusive tenders Perc. (%) Competitive tenders Perc. (%) Total 

Cartel A 148 82 33 18 181 
Cartel B 19 50 19 50 38 
Cartel C 93 35 174 65 267 
Cartel D 39 40 59 60 98 
Total 299 51 285 49 584 
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greements. The opposite holds for all tenders in p ost-cartel p erio ds of our data, in which
rms competed to win contracts, since the selected tenders in post-cartel periods took
lace after the collapse of bid-rigging cartels or after the opening of an investigation. 
Our data therefore offer a near-ideal setting as a laboratory of detecting bid-rigging

artels. On the one hand, the completeness of the cartels excludes the possibility of a
ollapse caused by the presence of non-cartel firms. If it remained unnoticed, such a col-
apse could entail misclassifying actually competitive tenders as collusive. On the other
and, the use of data posteriori to the collapse of the bid-rigging cartels or to the opening
f an investigation should ensure that tenders are actually competitive. To sum up, we
ave an uncontaminated sample in the sense of having either p erio ds of undisputed col-
usion or undisputed competition for evaluating the performance of simple screens in our
ata. 
Collusive agreements were comparable across the four bid-rigging cartels and can be

escribed as a two-step procedure. The first step consists of determining the designated
inner of the tender by the cartel. Various factors play a role for how contracts are
istributed among firms in a cartel, namely the distance between firms and the con-
ract location, capacity constraints, and specialization in terms of competencies (see
mhof, 2017b , and the cartel convention of the Ticino cartel, which listed the main cri-
eria for contract allocation). Contract allocation has to be beneficial to all in the sense
hat all firms should win contracts, otherwise some firms would not have an incentive
o participate in bid-rigging cartels. The second step consists of determining the price
f the designated winner by the cartel. This is crucial because the cover bids should
e higher than the bid of the designated winner to ensure contract allocation as in-
ended by the cartel. In other words, all firms know the price at which the designated
inner of the cartel submits the bid. Even if cartel members communicate with each
ther on a regular base, not all members necessarily submit bids in each tender. There-
ore, we frequently observe different constellations of firms for distinct tenders in our
ata. 
In all four cartels, the pro curement pro cedure was based on a first-price sealed bid

uction. The procurement agency announced a deadline for submitting bids for a partic-
lar contract and provided all relevant documents for the tender process. Interested
rms calculated and submitted their bids prior to the deadline. After the deadline
assed, the call for bids was closed and the procurement agency opened the submit-
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ted bids to establish a bid summary, i.e. an official record of the bid opening, which
indicates the bids, the identities of the bidders, and the location and type of the con-
tract. 

Prices indicated in the bids play a major role for allocating the contracts, although 

procurement agencies in Switzerland take also further criteria into consideration. These 
include the organization of work, the quality of the solution offered by the firm, the
references of the firm, and environmental as well as so cial asp ects. Even if such additional
criteria become more important as the complexity of the contracts increases, the price 
remains the most decisive feature in the procurement process, since the lowest bids in
our data obtained the contract in most cases. Therefore, price competition was the most
important dimension. 2 

Essentially two typ es of pro cedures are used by pro curement agencies in Switzerland:
the op en pro cedure and the pro cedure by invitation. In an op en pro cedure, all firms
that meet the conditions provided in the tender documentation may submit a bid. It is
legally stated that open procedures should be used for contracts above 500’000 CHF. In
contrast, in the procedure by invitation, the procurement agency determines potential 
bidders by inviting a subset of firms (at least 3 firms, but generally more). Contracts
above 500’000 CHF cannot be tendered based on invitation. Thus, competition might 
vary depending on the type of procedure. Since information on the latter is only par-
tially available from bid summaries in our data, we include the number of bidders and
the mean value of submitted bids in a tender (to proxy contract value) as predictors
in the empirical analysis in order to account for potential differences across types of
procedure. 

In the paper, we only use information on bids coming from the official records of the
bid opening to calculate the screens for each tender. Since access to the bid summaries
is either publicly granted or easily established through procurement agencies, screening 
can be organized in a rather discrete manner. That is, competition agencies can conduct
the screening process without attracting the attention of the bid-rigging cartel, which is 
crucial for any detection method. 

2.2. Screens 

A screen is a statistical tool to verify whether collusion likely exists in a particular
market flagging unlawful behavior through economic and statistical analysis. Using a 
broader definition, screens comprise all methods designed to detect markets, industries, 
or firms for further investigation associated with an increased likeliho o d of collusion (see
OECD, 2013 ). The literature typically distinguishes b etween b ehavioral and structural 
2 In tenders in which not only the price, but also qualitative criteria play a decisive role, another valuable 
information for the allocation of contracts could be the score assigned by the procurement agency to each 
of the bids after analysing them in detail w.r.t. the various criteria. This could be the case for complex 
construction projects not included in our data, like bridges, tunnels, or other specific services. However, 
scores are typically not publicly available in official records on bid openings, as procurement agencies analyse 
and rank the bids only after the opening. 
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creens (see Harrington, 2008; OECD, 2013 ). Behavioral screens aim to detect abnor-
al behavior of firms whereas structural screens investigate the characteristics of entire
arkets that may favor collusion, in order to indicate if an industry is likely prone to

ollusion. 
Behavioral screens are divided into complex and simple methods. Complex methods

enerally use econometric tools or structural estimation of auction models to detect suspi-
ious outcomes (see Porter and Zona, 1993; 1999; Baldwin et al., 1997; Pesendorfer, 2000;
ajari and Ye, 2003; Banerji and Meenakshi, 2004; Jakobsson, 2007; Chotibhongs and
rditi, 2012a, 2012b; Aryal and Gabrielli, 2013; Imhof, 2017a ). Simple screens analyze

trategic variables as prices and market shares to determine whether firms depart from
omp etitive b ehavior. While there are many applications of simple screens to various
egular markets (see Abrantes-Metz et al., 2006; Esposito and Ferrero, 2006; Harrington,
008; Hueschelrath and Veith, 2011; Jimenez and Perdiguero, 2012; Abrantes-Metz et al.,
012; Froeb et al., 2014 , for some examples), applications to bid-rigging cases are rather
are (see Feinstein et al., 1985; Imhof et al., 2018; Imhof, 2017b , for exceptions). 

In this paper, we propose the application of simple screens combined with machine
earning to detect bid-rigging cartels. Following Imhof (2017b) , we consider several sta-
istical screens constructed from the distribution of bids in each tender to distinguish
etween competition and collusion. Because each screen captures a different aspect of
he distribution of bids, the combined use of different screens potentially allows account-
ng for different types of bid manipulation. In the following, we present the screens used
s predictors in the empirical analysis. 

First, bid rigging may affect the dispersion of bids in tenders due to coordination. We
hus consider the standard deviation of the bids in some tender as screen. Secondly, we
lso include the coefficient of variation as related screen, which is defined as the ratio of
he standard deviation and the average of bids: 

CV t = 

s t 
μt 

, (1)

here s t and μt are the standard deviation and mean of the bids, respectively, in some
ender t . 

We also suspect that bid rigging affects the convergence of bids through coordination.
e therefore consider the following kurtosis statistic as screen: 

Kurt ( b t ) = 

n ( n + 1) 
( n − 1)( n − 2)( n − 3) 

n ∑ 

i =1 

(
b it − μt 

s t 

)4 

− 3( n − 1) 2 

( n − 2)( n − 3) , (2)

here n denotes the number of bids in some tender t , b it the i th bid, s t the standard
eviation of bids, and μt the mean of bids in tender t . 3 
3 As the kurtosis can only be calculated for tenders with more than 3 bids, our data contain only tenders 
ith 4 or more bids. 
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Furthermore, it appears plausible that bid-rigging cartels manipulate the difference 
between the first and second lowest bids for allocating contracts to the designated winner
by the cartel. To analyze if differences between the second and first lowest bids in tenders
matter, we calculate the percentage difference using the following formula: 

D if f.P er c. t = 

b 2 t − b 1 t 
b 1 t 

, (3) 

where b 1 t is the lowest bid and b 2 t the second lowest bid in tender t . As an alternative
screen, we also consider the absolute difference between the first and second lowest bids
b 2 t − b 1 t in the empirical analysis. 

Moreover, bid manipulation may affect the symmetry of the distribution of bids in a
tender. We therefore include the following skewness statistic as screen: 

Skew( b t ) = 

n 

( n − 1)( n − 2) 

n ∑ 

i =1 

(
b it − μt 

s t 

)3 

, (4) 

where n denotes the number of the bids in some tender t , b it the i th bid, s t the standard
deviation of the bids, and μt the mean of the bids in tender t . 4 

Bid manipulation in bid-rigging cartels might simultaneously affect the difference be- 
tween the second and first lowest bids and the differences among losing bids. To capture
such effects, we follow Imhof et al. (2018) and construct a relative difference ratio by di-
viding the difference between the second and first lowest bids by the standard deviation 

of all losing bids. 

RD t = 

b 2 t − b 1 t 
s t,losingbids 

, (5) 

where b 1 t denotes the lowest bid, b 2 t the second lowest bid, and s t , losingbids the standard
deviation calculated among the losing bids in some tender t . A relative difference higher
than 1 indicates that the difference between the second and first lowest bids is greater than
one standard deviation among losing bids indicating a (more) asymmetric distribution 

of the bids. 
In addition, we normalize the difference between the first and second lowest bids in a

tender dividing it by the mean of the differences between all (in terms of value) adjacent
bids. We henceforth call this screen the normalized distance: 

N ORM D t = 

b 2 t − b 1 t 
( 
∑ n −1 

i =1 ,j= i +1 b jt −b it ) 
n −1 

, (6) 

where n is the number of bids, b 1 t is the lowest bid, b 2 t the second lowest bid, and b it ,
b jt are adjacent bids in some tender t , with the values of bids being ordered increasing
4 The skewness can only be computed for tenders with more than 2 bids. Our data contains only tenders 
with 4 or more bids. 
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Table 2 
Descriptive statistics. 

Screens Mean Mean Std Min Max Obs 

Cartel Periods 
Coefficient of variation 3.42 2.97 1.73 0.69 13.74 299 
Kurtosis 1.50 1.19 2.22 −4.03 8.14 299 
Perc. difference 3.92 3.96 2.37 0.43 24.93 299 
Skewness −0.58 −0.60 1.05 −2.76 2.21 299 
Relative distance 2.69 1.58 2.95 0.11 23.03 299 
Normalized distance 2.23 1.96 1.31 0.19 6.95 299 
Number of bidders 6.74 6.00 2.35 4 13 299 
Contract value 0.731 0.381 0.868 0.023 4.967 299 
Standard deviation 0.022 0.012 0.024 0.0007 0.136 299 
Absolute difference 0.028 0.011 0.035 0.0003 0.272 299 

Comp etitive p erio ds 
Coefficient of variation 8.05 7.16 4.48 1.49 34.14 285 
Kurtosis 0.07 −0.15 1.86 −5.40 6.06 285 
Perc. difference 4.89 3.52 4.87 0.03 38.93 285 
Skewness 0.27 0.25 0.84 −1.83 2.36 285 
Relative distance 0.83 0.55 1.05 0.01 8.07 285 
Normalized distance 1.01 0.85 0.74 0.01 3.77 285 
Number of bidders 6.26 6.00 2.02 4 13 285 
Contract Value 0.627 0.392 0.767 0.044 7.385 285 
Standard deviation 0.050 0.028 0.101 0.002 1.499 285 
Absolute difference 0.026 0.012 0.041 0.0001 0.323 285 

Note: “Std”, “Min”, “Max”, and “Obs” denote the standard deviation, minimum, maximum, and number 
of observations, respectively. 
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rder. A value larger than 1 indicates that the difference between the second and first
owest bids is larger than the average difference between all adjacent bids in a tender. 

As mentioned and discussed in the previous section, also the number of bidders and the
ean of the bids submitted in a tender are included in addition to the screens, yielding

ll in all 10 predictors. 

.3. Descriptive statistics for the screens 

Table 2 provides descriptive statistics for all screens, separately for collusive and com-
 etitive p erio ds. We see that most of the screens generally differ in terms of means and
tandard deviations across both groups of periods. The mean of the coefficient of varia-
ion amounts to 3.42 in cartel p erio ds which more than doubles in competitive p erio ds
8.05). Moreover, the spread of the coefficient of variation is lower in cartel p erio ds with
 standard deviation of 1.73, compared to 4.48 for competitive periods. Bids are thus
ore similar in collusive than in comp etitive p erio ds. The same applies to the standard
eviation of the bids. Moreover, the mean of the kurtosis is 1.50 in cartel p erio ds and
.07 in comp etitive p erio ds. This p oints to a more compressed distribution of bids in
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Table 3 
Statistical tests for the screens. 

Screens z-statistic p -value MW KSa p -value KS 

Coefficient of variation 16.30 < .0001 8.05 < .0001 
Kurtosis statistic −7.91 < .0001 3.42 < .0001 
Percentage difference 0.10 0.9211 2.14 0.0002 
Skewness statistic 9.69 < .0001 4.67 < .0001 
Relative distance -12.10 < .0001 5.24 < .0001 
Normalized distance −12.78 < .0001 5.63 < .0001 
Number of bidders −2.20 0.0279 1.20 0.1146 
Contract value −0.55 0.5854 0.85 0.4596 
Standard deviation 8.28 < .0001 3.75 < .0001 
Absolute difference −1.30 0.1951 1.33 0.0596 

Note: “Screens”, “z-statistic”, “p-value MW” denote the screens tested, the z-statistic of the Mann-Whitney 
test and the p-value of the Mann-Whitney test, respectively. “KSa” and “p -value KS” denote the asymptotic 
Kolmogorov–Smirnov statistic and the p -value of the Kolmogorov–Smirnov test, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

collusive p erio ds than in comp etitive p erio ds, meaning that bids converge when cartel
members rig contracts. 

Turning to skewness, we find a mean of −0.58 in cartel p erio ds, i.e. a tendency to
left skewed distributions, contrasting with a mean of 0.25 in comp etitive p erio ds. This
indicates that bid rigging transforms the distribution of the bids in a more asymmetric 
distribution than in the competitive periods. Furthermore, the means of the relative and 

normalized distances amount to 2.69 and 2.23, respectively, in cartel p erio ds, but to 0.83
and 1.01, respectively, in comp etitive p erio ds. Under collusion, the difference b etween
the first and second lowest bids tends to increase relative to differences among the total
of (losing) bids. For the percentage difference between the first and the second lowest 
bids, the relative changes across p erio ds are smaller: The mean and median amount
to 3.92 and 3.96, respectively, for cartel periods and to 4.89 and 3.52, respectively, for
comp etitive p erio ds. However, the standard deviation of the percentage difference in
cartel p erio ds (2.37) is only half of that in comp etitive p erio ds (4.87), p ointing to a
potential manipulations of the difference between the first and the second lowest bids. 
Concerning the absolute difference, we find no suspicious changes in the mean or in the
spread across p erio ds. Finally, the contract value exhibits a mean of 0.73 and a median
of 0.38 million CHF in cartel p erio ds, which is not to o different from the respective
values of 0.63 and 0.39 million CHF in comp etitive p erio ds. In b oth typ es of p erio ds,
the numb er of bidders lies b etween 6 and 7 on average, but may vary between 4 to
13. 

Table 3 reports Mann-Whitney and the Kolmogorov-Smirnov tests for the predictors. 
According to either test, the differences observed between collusive and competitive pe- 
riods are statistically significant at 1% level for the coefficient of variation, the kurtosis
statistic, the skewness statistic, the relative distance, the normalized distance and the 
standard deviation. The number of bidders is significantly different at 5% level according 
to the Mann-Whitney test but not to the Kolmogorov-Smirnov test. The difference in 

the percentage difference is significant at 1% level according to the Kolmogorov-Smirnov 
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est. Finally, the contract value (approximated by the mean of the bids) and the ab-
olute difference between the first and second lowest bids are not significantly different
t the 5% level. All in all, the numerous statistically significant results point to the po-
ential usefulness of screens for predicting collusion. Note that for the lasso procedure
iscussed in the next section, we in additional to the 10 original predictors include in-
eraction and second order terms for the predictors so that all in all 65 variables are
sed. 

. Empirical analysis using machine learning 

We apply machine learning methods to train and test models for predicting bid-rigging
artels based on the screens presented in the previous section. Specifically, we consider
wo approaches: Lasso regression (see Tibshirani, 1996 ) for logit models and a so called
nsemble method that consists of a weighted average of several algorithms, in our case
agged regression trees (see Breiman, 1996 ), random forests (see Ho, 1995; Breiman,
001 ), and neural networks (see McCulloch and Pitts, 1943; Ripley, 1996 ). 

.1. Lasso regression 

We subsequently discuss prediction based on lasso logit regression as well as the eval-
ation of its out of sample performance. First, we randomly split the data into two
ubsamples. The so-called training sample contains 75% of the total of observations and
s to be used for estimating the model parameters. The so-called test sample consists of
5% of the observations and is to be used for out of sample prediction and performance
valuation. After splitting, the presence of a cartel is estimated in the training sample as
 function of a range of predictors, namely the original screens as well as their squares
nd interaction terms to allow for a flexible functional relation. 

Lasso estimation corresponds to a penalized logit regression, where the penalty term
estricts the sum of absolute coefficients on the regressors. Depending on the value of the
enalty term, the estimator shrinks the coefficients of less predictive variables towards or
ven exactly to zero and therefore allows selecting the most relevant predictors among a
ossibly large set of candidate variables. The estimation of the lasso logit coefficients is
ased on the following optimization problem: 

max 

β0 , β

⎧ ⎨ 

⎩ 

n ∑ 

i =1 

⎡ 

⎣ y i 

⎛ 

⎝ β0 + 

p ∑ 

j=1 
βj x ij 

⎞ 

⎠ − log 
(
1 + e β0 + 

∑ p 
j=1 βj x ij 

)⎤ 

⎦ − λ

p ∑ 

j=1 
| βj | 

⎫ ⎬ 

⎭ 

. (7)

0 , β denote the intercept and slope coefficients on the predictors, respectively, x is the
ector of predictors, i indexes an observation in our data set (with n being the number
f observations), j indexes a predictor (with p being the number of predictors), and λ is
 penalty term larger than zero. We use the predictors described in the previous section
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and also include interaction and squared terms such that altogether 65 regressors are 
used in the lasso logit regression. 

We use the lasso logit procedure in the “hdm” package for the statistical software “R”
by Chernozhukov et al. (2016) and select the penalty term λ such that it minimizes the
mean squared error, which we estimate by 15-fold cross-validation. This is performed by 

randomly splitting the training sample into 15 subsamples, also called folds. 14 folds are
used to estimate the lasso coefficients under different candidate values for the penalty 

term. 1 fold is used as so-called validation data set for predicting cartels based on the
different sets of coefficients related to the various penalties and for computing the mean
squared error (MSE). The latter corresponds to the average of squared differences be- 
tween the prediction and the actual presence of a cartel in the validation data. The role
of folds is then swapped in the sense that each of them is used once as validation data set
and 14 times for coefficient estimation, yielding 15 MSEs p er p enalty term. The optimal
penalty term is chosen as the value that minimizes the average over the 15 respective
MSE estimates. 

In a next step, we run lasso logit regression in the (entire) training sample based on
the (sample-size adjusted) optimal penalty term to estimate the coefficients. Finally, we 
use these coefficients to predict the collusion probability in the test sample. To assess
the performance of out of sample prediction, we consider two measures: first, the MSE of
the predicted collusion probabilities in the test sample and second, the share of correct
classifications. To compute the latter measure, we create a variable which takes the 
value one for predicted collusion probabilities greater than or equal to 0.5 and zero
otherwise, and compare it to the actual incidence of collusion in the test sample. We
repeat random sample splitting into 75% training and 25% test data and all subsequent
steps previously mentioned 100 times and take averages of our performance measures 
over the 100 repetitions. 

3.2. Ensemble method 

Prediction and performance evaluation for the ensemble method has in principle the 
same structure as for the lasso approach. The difference is that rather than lasso logit
regression, any estimation step now consists of a weighted average of bagged classification 

trees, random forests, and neural networks. The first two algorithms depend on tree 
methods, i.e. recursively splitting the data into subsamples in a way that minimizes the
sum of squared differences of actual incidences of collusion from the collusion probabilities 
within the subsamples. Both methods estimate the trees in a large number of samples
repeatedly drawn from the original data and obtain predictions of collusion by averaging 
over the tree (or splitting) structure across samples. However, one difference is that 
bagging considers all explanatory variables as candidates for further data splitting at 
each step, while random forests only use a random subset of the total of variables to
prevent correlation of trees across samples. Finally, neural networks aim at fitting a 
system of functions that flexibly and accurately models the influence of the explanatory 
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Table 4 
Performance of the lasso and ensemble methods. 

MSE MSE.cart MSE.comp corr corr.cart corr.comp 

Lasso 0.122 0.116 0.128 0.838 0.857 0.819 
Ensemble 0.119 0.121 0.116 0.840 0.828 0.854 

Note: “MSE”, “MSE.cart”, “MSE.comp” denote the mean squared errors in the total sample, in cartel 
p erio ds, and in p erio ds with comp etition, resp ectively. “corr”, “corr.cart”, and “corr.comp” denote rates of 
correct classification in the total sample, in cartel p erio ds, and in p erio ds with competition, respectively. 
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ariables on collusion. We note that for these three machine learning algorithms, which
re explained in more detail in the appendix, no higher order or interaction terms are
ncluded in addition to the original predictors, as tree-based methods are (in contrast to
asso logit) inherently nonparametric. 

Cross-validation in the training sample determines the optimal weight each of the
hree machine learning algorithm obtains in the ensemble method, just analogously to
he determination of the optimal penalty term in lasso regression. To this end we apply
he “SuperLearner” package for “R” by van der Laan et al. (2007) with default values for
agged regression tree, random forest, and neural network algorithms in the “ipredbagg”,
cforest”, and “nnet” packages, respectively. The optimal combination of algorithms is
hen used to predict the collusion probabilities in the test sample and to compute the
erformance measures. 

.3. Empirical results 

Table 4 reports the out of sample performance of lasso regression and ensemble meth-
ds in the total of the test data, as well as separately for periods with and without
ollusion. Both algorithms perform similarly well in terms of the MSE and the share of
orrectly classified cartels in out of sample data containing both cartel and post-cartel
 erio ds. Lasso exhibits a MSE of 0.12 and a correct classification rate of 84%, quasi iden-
ical to those of the ensemble method. The overall share of incorrect predictions therefore
mounts to 16% for either method. When separately considering cartel and competitive
 erio ds, lasso p erforms slightly b etter for correctly classifying collusive tenders (86%)
han the ensemble method (83%). The latter, however, is moderately superior for classi-
ying competitive tenders (85%) than lasso regression (82%). Put differently, the results
ndicate that lasso produces 18% of false positive and 14% of false negative predictions,
hereas the ensemble metho d pro duces 15% of false positive and 17% of false negative
redictions. 
From a policy perspective, incorrectly classifying cases of non-collusion as collusion

false positives) and thus, unnecessarily filing an investigation, might be relatively more
armful than incorrectly classifying cases of collusion as non-collusion (false negatives)
nd thus not detecting a subset of bid-rigging cartels. A way to reduce the incidence
f incorrect classifications of actual non-collusion is raising the probability threshold for
lassifying a prediction as collusion from 0.5 to some higher value between 0.5 and 1.
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Fig. 1. False positive and false negative results by tightening the decision rule. 

 

 

 

 

 

 

 

 

 

 

This, however, generally comes at the cost of reducing the likeliho o d of detecting actual
cartels and increases therefore the false negative results. Competition agencies therefore 
need to appropriately trade off the likeliho o d of false positive and false negative results
to derive an optimal rule concerning the probability threshold. 

To see the tradeoffs in classification accuracy, Fig. 1 reports the correct classification 

rates of either methods in the total test data as well as separately for p erio ds with
and without collusion across different probability thresholds. As expected, the correct 
classification rate in competitive periods increases in the probability threshold for the 
decision rule (false positive results decrease). In contrast, the correct classification rate in 

cartel p erio ds deteriorates much faster in the threshold (false negative results increase). 
If a competition agency desires to minimize the risk of false positives, it could raise the

probability threshold value to 0.7. In such a case, the lasso and ensemble methods classify
roughly 70% of collusive tenders and more than 90% of the competitive tenders correctly,
implying approximatively 10% of false positive and 30% of false negative results. The gain 

of reducing the risk of false positives therefore induces a disproportionate increase in false
negatives. Moreover, any further tightening of the decision rule would lead to an even
more severe increase of false negatives: At a probability threshold of 0.8, both methods
produce 40–45% of false negatives. It therefore seems that for our data, the best-suited
probability threshold lies between values of 0.5 and 0.7. One advantage of combining 
screening methods and machine learning consists in quantifying the trade-off of false 
positives and false negatives so that competition agencies are capable to determine the 
decision rule that optimally matches their needs. 
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Table 5 
Average absolute values of important lasso coefficients. 

Variable NORMD CVBID SKEW NBRBID 

Value 1.02 0.34 0.11 0.06 

Note: “NORMD”, “CVBID”, “SKEW”, and “NBRBID” denote the the normalized difference, the coefficient 
of variation, the skewness, and the number of bids, respectively. 

Table 6 
Logit coefficients for selected screens. 

(1) (2) (3) (4) 

Constant 1.46 ∗∗∗ 1.56 ∗∗∗ 1.74 ∗∗∗ −1.92 ∗∗∗

(0.48) (0.41) (0.39) (0.20) 
NORMD 1.02 ∗∗∗ 1.04 ∗∗∗ 0.89 ∗∗∗ 1.32 ∗∗∗

(0.21) (0.20) (0.15) (0.13) 
CVBID −0.62 ∗∗∗ −0.61 ∗∗∗ −.61 ∗∗∗

(0.06) (0.06) (0.06) 
SKEW 0.20 0.23 

(0.20) (0.18) 
NBRBID 0.02 

(0.06) 
Obs 584 584 584 584 
Pseudo- R 

2 0.45 0.45 0.44 0.23 

Note: “NORMD”, “CVBID”, “SKEW”, and “NBRBID” denote the the normalized difference, the coefficient 
of variation, the skewness, and the number of bids, respectively. ∗∗∗, ∗∗, ∗ denote significance at the 1%, 
5%, and 10% level, respectively. “Obs” and “Pseudo- R 

2 ” denote the number of observations and the pseudo 
R squared. 
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To judge the relative importance of predictors for determining collusion, Table 5 re-
orts the average absolute values of lasso coefficients across regressions in the 100 train-
ngs samples (obtained by repeatedly splitting the total sample into training and test
amples) that are larger than or equal to 0.05. It needs to be pointed out that in general,
he estimates do not allow inferring causal associations, as lasso may importantly shrink
he coefficient of a relevant predictor if it is highly correlated with another relevant pre-
ictor. 5 Nevertheless, Table 5 allows spotting the most prominently selected predictors
mong the total of regressors provided in the lasso regressions. We observe that the nor-
alized difference (NORMD) and the coefficient of variation (CVBID) have by far the
ighest predictive power. 
Table 6 reports the coefficients of standard logit regressions using various sets of

creens according to their importance in lasso regression as indicated in Table 5 . The
oefficient of variation (CVBID) is negatively related with the probability of collusion.
hat is, bid rigging decreases the coefficient of variation, even conditional on the other
redictors used in the four different specifications. In contrast, the normalized difference
5 We also note that in our framework, causality goes from the dependent variable to the predictors rather 
han the other way round as it would be the case in contexts of causal inference. In causal terms, the 
ncidence of collusion as explanatory variable affects the distribution of bids and thus the screens, which 
an be regarded as outcome variables. Our prediction problem therefore consists of analyzing a reverse 
ausality: By investigating the screens, one infers the existence of their cause, namely collusion. 
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Table 7 
Marginal effects for selected screens. 

(1) (2) (3) (4) 

NORMD 0.25 ∗∗∗ 0.26 ∗∗∗ 0.22 ∗∗∗ 0.33 ∗∗∗

(0.05) (0.05) (0.04) (0.03) 
CVBID −0.15 ∗∗∗ −0.15 ∗∗∗ −0.15 ∗∗∗

(0.01) (0.01) (0.01) 
SKEW 0.05 0.06 

(0.05) (0.05) 
NBRBID 0.01 

(0.01) 

Note: “NORMD”, “CVBID”, “SKEW”, and “NBRBID” denote the normalized difference, the coefficient of 
variation, the skewness, and the numb er of bids, resp ectively. ∗∗∗, ∗∗, ∗ denote significance at the 1%, 5%, 
and 10% level, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(NORMD) has a (conditionally) positive association. Such results indicate that bid rig- 
ging affects the distribution of the bids in two manners in our data. First, it reduces
the variance in the distribution of the bids indicating that bids are closer each other
than in competitive tenders. Second, it produces asymmetry in the distribution of the 
bids since the differences between the second and first lowest bids are significantly higher
than the differences between the losing bids in cartel periods. Finally, the coefficients of
the number of bidders (NBRBIDS) are positive and therefore go against the expectation 

that a higher number of bidders should increase competition, but are never statistically 

significant at the 5% level. Skewness (SKEW) does not show any statistically significant 
association either, at least conditional on the other, more predictive screens. 

Table 7 reports the “marginal” effects (albeit not to be interpreted causally in our 
predictive framework) for the average observation in the sample (i.e. at the sample means
of the predictors) and various sets of screens. In accordance with the estimates in Table 6 ,
the coefficient of variation and the normalized distance, which are significant in all models,
have in absolute terms by far the largest marginal effects for explaining the probability 

of collusion. Augmenting the coefficient of variation by one unit decreases the probability 

of collusion by roughly 15 p ercentage p oints, while an increase of one unit in normalized
distance raise the probability of collusion by 22 to 33 percentage p oints, dep ending on
the model. The marginal effects of the other predictors are much closer to zero and not
statistically significant at the 5% level. 

3.4. Robustness analysis 

To investigate the robustness of our methods to the omission of predictors, we dis-
card the two most important variables, namely the normalized difference (NORMD) and 

the coefficient of variation (CVBID) and we apply the lasso and the ensemble method
procedures to the remaining variables. Table 8 reports the MSE and the share of correctly
classified cartels in out of sample data. Both the lasso and ensemble methods exhibit a
correct prediction rate of 83%, implying that the remaining predictors appear to be good
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Table 8 
Performance when dropping 2 most important predictors. 

MSE MSE.cart MSE.comp corr corr.cart corr.comp 

Lasso 0.129 0.128 0.130 0.830 0.827 0.835 
Ensemble 0.127 0.130 0.123 0.831 0.818 0.847 

Note: “MSE”, “MSE.cart”, “MSE.comp” denote the mean squared errors in the total sample, in cartel 
p erio ds, and in p erio ds with comp etition, resp ectively. “corr”, “corr.cart”, and “corr.comp” denote rates of 
correct classification in the total sample, in cartel p erio ds, and in p erio ds with competition, respectively. 

Table 9 
Performance using only scale-invariant variables. 

MSE MSE.cart MSE.comp corr corr.cart corr.comp 

Lasso 0.122 0.115 0.129 0.840 0.862 0.818 
Ensemble 0.122 0.124 0.119 0.836 0.827 0.847 

Note: “MSE”, “MSE.cart”, “MSE.comp” denote the mean squared errors in the total sample, in cartel 
p erio ds, and in p erio ds with comp etition, resp ectively. “corr”, “corr.cart”, and “corr.comp” denote rates of 
correct classification in the total sample, in cartel p erio ds, and in p erio ds with competition, respectively. 
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ubstitutes for the omitted ones in our context. The results show that when important
redictors are dropped, other ones become more important and “step in”, such that the
orrect prediction rates are hardly affected. This indicates that machine learning can be
uite robust to the use of a more limited set of predictors. 

To investigate the robustness of our methods with respect to the choice of the screens,
e apply the lasso and the ensemble procedures using only scale-invariant variables. 6
able 9 reports the MSE and the share of correctly classified tenders in out of sample
ata containing both cartel and post-cartel periods. Both the lasso and the ensemble pro-
edures exhibit correct prediction rates of nearly 84%, implying that the scale-invariant
ariables predict the presence or absence of bid rigging rather decently. The normal-
zed distance (NORMD) and the coefficient of variation (CVBID) again are the most
mportant predictors. 

In the next robustness check, we change how data are split into training and test
amples. Instead of randomly splitting across cartels, we train the algorithms on three
artels and use observations from the fourth cartel as test sample. In the spirit of k-fold
ross-validation, each cartel serves once as test data set and three times as training data.
able 10 reports the average values for the MSE and the share of correctly classified
artels in the out of sample data. We find a correct prediction rate of 81% for the lasso
nd of 85% for the ensemble method. Lasso regression exhibits a correct prediction rate
f 80% for collusive and of 87% for competitive periods. This contrasts with the correct
rediction rates for the ensemble method, which amounts to 97% for collusive and to 75%
or competitive periods. Such differences (also w.r.t. our main analysis above) are most
ikely explained by the unbalanced samples of collusive and competitive p erio ds for each
artel, as shown in Table 1 . Nevertheless, this robustness check by and large confirms the
6 Scale-invariant variables are the coefficient of variation, the kurtosis statistic, the percentage difference, 
he skewness statistic, the relative difference and the normalized distance. 
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Table 10 
Performance when using 3 cartels for training and 1 for testing. 

MSE MSE.cart MSE.comp corr corr.cart corr.comp 

Lasso 0.143 0.156 0.098 0.805 0.795 0.870 
Ensemble 0.112 0.034 0.179 0.853 0.970 0.748 

Note: “MSE”, “MSE.cart”, “MSE.comp” denote the mean squared errors in the total sample, in cartel 
p erio ds, and in p erio ds with comp etition, resp ectively. “corr”, “corr.cart”, and “corr.comp” denote rates of 
correct classification in the total sample, in cartel p erio ds, and in p erio ds with competition, respectively. 

Table 11 
Performance under misclassification of 15% of observations. 

MSE MSE.cart MSE.comp corr corr.cart corr.comp 

Lasso 0.195 0.185 0.205 0.725 0.769 0.680 
Ensemble 0.189 0.182 0.197 0.735 0.744 0.726 

Note: “MSE”, “MSE.cart”, “MSE.comp” denote the mean squared errors in the total sample, in cartel 
p erio ds, and in p erio ds with comp etition, resp ectively. “corr”, “corr.cart”, and “corr.comp” denote rates of 
correct classification in the total sample, in cartel p erio ds, and in p erio ds with competition, respectively. 

 

 

 

 

 

 

 

 

 

 

attractiveness of machine learning, as in particular the ensemble method attains almost 
the same correct prediction rate as in our main analysis. 

In a final check, we introduce measurement error in the outcome variable based on
randomly reclassifying 15% of observations by setting collusion to competition and vice 
versa (using the same approach for splitting the data into training and test sets as in
the main analysis). Intuitively, this introduction of measurement error is similar to an 

increase of the error term in a classical econometric model, implying that the signals of
the predictors for classifying collusion get relatively weaker. The results are presented in 

Table 11 . The correct prediction rates for the lasso and ensemble methods amount to 73%
and 74%, respectively. This appears still satisfactory in the light of the non-negligible 
amount of measurement error. 

4. Policy implications 

Our results demonstrate the usefulness of simple screens combined with machine learn- 
ing, amounting to an out of sample rate of correct classifications of 84% in our main
analysis for both the lasso and the ensemble method. Furthermore, we discussed that 
the machine learning approach allows trading off the likeliho o d of false positive and false
negative predictions by changing the probability threshold in a way that is considered 

optimal by a comp etition agency. This app ears to b e an imp ortant innovation in the
literature on detecting collusion, as to the best of our knowledge no other study has
directly assessed the performance of their method with respect to false positive and false
negative results. We subsequently discuss some further implications of our method for 
policy makers, namely its advantages in terms of data requirements and use, its appar-
ent generalizability to different empirical contexts of collusion, and its integration in a 
process of ex-ante detection of collusion. 
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.1. Data requirements and data use 

The method proposed in this paper has several advantages relative to other studies
n the field. First, data requirements are comparably low. Implementing the machine
earning approach and calculating the screens is straightforward and solely relies on
nformation coming from official records of the bid opening and the bids submitted. Not
ven the identification of bidders is essential, which allows collecting information and
mplementing the method discretionarily, without attracting the attention of a cartel.
his appears crucial, because if some cartel become aware of the process, it might destroy
vidence such that opening an investigation would be unsuccessful. In contrast, other
etection methods, such as the econometric tests proposed by Bajari and Ye (2003) ,
equire data on cost variables, which are difficult to obtain without having access to
rm level data. This may compromise the secrecy in which competition agencies should
mplement any method aimed at detecting collusion. 

We note that if the official records of the bid openings are numerous and representative
or a large share of the market, it may b e p ossible to compute cost variables for an
conometric estimation of the bidding function even without directly accessing firm level
ata, (see Imhof, 2017a ). Even in this case, the construction of the cost variables might
e time-consuming (relative to the simple screens) and therefore potentially wasteful for
ompetition agencies, which should ideally concentrate their resources on the prosecution
f cartels. The resource argument is particularly relevant in the light of the high number
f false negatives produced by the method of Bajari and Ye (2003) when applied to the
icino case, see Imhof (2017a) , implying that such cost variable-based approaches might
ave low power. 
Finally, the combination of screening and machine learning allows assessing and gaug-

ng the accuracy of classifying collusion out of sample, which is relevant for data yet
o be analyzed. It therefore tells us something about how well past data can be used
o predict collusion in future data. To the best of our knowledge, none of the other
etecting methods has so far properly assessed out of sample performance based on dis-
inguishing between training and test data. Furthermore, by applying cross-validation
o tune the algorithms, we aim at defining the best predictive model for the screens
t hand, while other approaches neglect this optimization step w.r.t. model selection.
rapping up, our paper appears to be the only one in the literature on detecting

ollusion that acknowledges the merits of machine learning for optimizing the pre-
ictive performance of estimators and for appropriately assessing their out of sample
ehavior. 

.2. Generalization of results 

An important question for the attractiveness of our method is whether it yields de-
ent results also in other contexts than that investigated in this pap er. We exp ect our
pproach to perform well even in other industries or countries whenever one can ratio-
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nally assume that bid rigging affects the distribution of the bids. This is even more true if
the pro curement pro cedure is similar to that considered in this pap er, i.e. corresp onding
to a first-sealed bid auction. Furthermore, the transferability of our approach is facili- 
tated by the use of several, distinct screens that are sensitive to different features of the
distribution of bids and thus potentially cover different bid-rigging mechanisms. 

Because the detection method based on simple screens is inductive, it, however, needs 
to be verified in the empirical context at hand. As competition agencies typically have
access to data from former cases, they could easily apply the suggested screens to check
their appropriateness even in different industries or countries. Moreover, if the data is 
large enough, an agency might directly estimate its own predictive model based on screen-
ing and machine learning to identify suspicious tenders. This is fundamentally different 
to establishing rigorous models for testing collusion in a deductive approach, see Bajari 
and Ye (2003) . While deduction allows for systematic generalization if the model is cor-
rectly specified, there is the threat that a specific empirical context does not match the
model parametrization and hypotheses it is based upon. At least for the Ticino case,
Imhof (2017a) has shown that simple screens outperform the econometric tests proposed 

Bajari and Ye (2003) . Combining screening with machine learning makes this flexible, 
data-driven approach attractive as a generally applicable tool for detecting collusion. 

4.3. Ex ante detection of collusion 

The trained predictive models obtained by machine learning can be applied to newly 

collected data in order to screen tenders for bid rigging in an ex ante procedure. Following
Imhof et al. (2018) , we outline possible steps of such a procedure. 

Initially, a competition agency has to collect data from official records of the bid
opening and compute the screens for each tender as outlined in Section 2 . Applying the
trained models, e.g. the lasso coefficients from the training data, to these screens allows 
computing the predicted collusion probabilities in the newly collected data set. Next, the 
competition agency needs to select a probability threshold to flag tenders as suspicious 
or competitive. Based on our results, we recommend to use a threshold between 0.5 
and 0.7, but this could be reconsidered in other empirical contexts. We stress that the
determination of suspicious tenders of such an approach is not (exclusively) based on 

human judgement, but data-driven and its accuracy generally improves with the amount 
of observations used to train the models. 

If a competition agency has too few or even no data on episodes of documented
cartels to train their own models for predicting bid rigging, it may instead use the model
parameters estimated in this paper for detecting suspicious cases. If tenders in other 
jurisdictions or industries share similar structural and institutional features as our Swiss 
road construction data, then our trained models have the potential to work satisfactorily 

for detecting collusion in other countries and economic sectors, too. Whether this is in
fact the case will be investigated in future research. 
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Once suspicious tenders have been identified, there appear two possible options con-
erning next steps. The first consists of immediately opening an investigation, the second
ne of substantiating the initial suspicion. The decision to launch an investigation should
e driven by the predicted results based on machine learning. If the detection method
lassifies a large share of tenders in a specific period as collusive, competition agencies
ight want to initiate a deeper investigation immediately. For instance, a share of more

han 50% may appear sufficient to inquire the opening of an investigation. In contrast,
hares between 20% and 50% might seem too small to launch a (potentially costly) in-
estigation. In this case, the market might be analyzed further to substantiate the initial
uspicion. 

Several approaches may be used to substantiate the initial suspicion for bid rigging.
irst, the firms participating in the suspicious tenders could be more closely examined
o identify a specific group logic. In order to have a well-functioning bid-rigging cartel,
rms must co op erate regularly over a certain p erio d. Regular interactions between firms
ight make it possible to find a particular group logic in suspicious tenders. Second, ge-

graphical analysis may help identifying bid-rigging cartels situated in particular regions
see also Abrantes-Metz et al., 2006 , for such a geographical screening activity). One
herefore needs to determine where the suspicious tenders are localized. If they are all
lustered in the same area, this might point to a local bid-rigging cartel. (Note also that
f one identifies a local bid-rigging cartel, one should generally also identify a colluding
roup of firms based in the region.) Third, Imhof et al. (2018) assumes that bid-rigging
artels produce a rotational pattern, which can be captured with the bid rotation screen.
f one is able to determine a specific group of firms regularly participating in suspicious
enders (e.g. in some region) and find that contract placement in the potential bid-rigging
artel operates in a rotational scheme, this provides further indices for substantiating the
nitial suspicion. 

The steps proposed by Imhof et al. (2018) are not exhaustive and competition agencies
ight want to perform further tests and checks (e.g. according to recommendations of the
ECD) to substantiate their initial suspicion. At the end of the process, the competition
gencies should ideally be capable to credibly demonstrate that the suspicious bids are
ot coincidental, but follow an identifiable logic of collusion. 

. Conclusion 

In this paper, we combined two machine learning algorithms, namely lasso regression
nd an ensemble method (including bagging, random forests, and neural networks), with
creens for predicting collusion in tender procedures within the Swiss construction sector
hat are based on patterns in the distribution of bids. We assessed the out of sample
erformance of our approach by splitting the data into training samples for model pa-
ameter estimation and test samples for model evaluation. More than 84% of the total
f bidding processes were correctly classified by both lasso regression and the ensemble

ethods as collusive or non-collusive. 
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We also investigated tradeoffs in reducing false positive vs. false negative predictions. 
That is, rather than classifying a tender process as collusive whenever the collusion 

probability predicted by machine learning is greater than or equal to 0.5, one could use a
higher probability threshold for classification. This reduces incorrect predictions among 
truly non-collusive processes, i.e. false positives, at the cost of substantially increasing 
errors among truly collusive processes, i.e. false negatives. We argued that in our data, 
probability thresholds between 0.5 and 0.7 appear appropriate. 

We found that the two most powerful screens are the coefficient of variation and the
normalized distance. Conditional on other screens, the coefficient of variation is nega- 
tively and the normalized relative distance positively associated with the probability of 
collusion. This implies that bid rigging reduces the variance of the bids and entails an
asymmetry in the distribution of bids, as the difference between the first and second
lowest bids increases whereas the difference between losing bids decreases in collusive 
tenders of our data. However, we found that dropping these two important predictors 
barely affected prediction accuracy. This implies that other screens are go o d substitutes
and ”step in” to replace them. This confirms the flexibility of our approach, which does
not rely on making strong assumptions about the exact relationship of one particular 
screen and collusion. As long as one can assume that bid rigging affects the distribution
of the bids, our approach of combining machine learning and screens will likely pick this
up through changes in patterns of screens. 

Finally, we discussed several policy implications for competition agencies aiming at 
detecting bid-rigging cartels, namely advantages of our method in terms of data re- 
quirements/use, its generalizability to different empirical contexts of collusion, and its 
integration in a process of ex-ante detection of collusion. 
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Appendix A 

We subsequently discuss in more detail the three machine learning approaches included 

in the ensemble method. Bagged trees and random forests are so-called tree-based pre- 
diction methods. The idea of a tree approach is to recursively split the predictor space
in the training data, i.e. the set of possible values of the screens, into a number of
nonoverlapping subregions. The incidence of collusion can then be predicted based on 

the share of collusive or competitive outcomes of observations that are (in terms of the
values of the screens) situated in the same subregion as the observation for which the
prediction should be made. The name of such methods comes from the fact that the
set of splitting rules for segmenting the predictor space can be summarized in a deci-
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ion tree with so-called nodes, i.e. predictor values at which the training sample is split,
nd leaves, which are the terminal no des b eyond which no further splitting occurs. The
plitting rules could, however, also be represented in regression equations by means of
ummy variables for (not) surpassing specific predictor values as well as appropriate
nteractions between the dummies. At each no de, splitting of the predictor space is p er-
ormed such that after the split, a specific goodness of fit criterion is minimized across
he newly created subregions. Popular examples for such criteria are the Gini index (as
t is used for binary outcomes like collusion) and the sum of squared residuals, i.e. the
quared differences of the actual and average outcomes in specific subregions (used for
ontinuous outcomes). The splitting process is repeated until a specific stopping rule
s reached (e.g. maximum numb er of no des or minimum number of observations in a
ubregion). 

As with any econometric method, there exists a bias-variance trade-off in terms of
odel generality. Just like adding more variables or interaction terms in a regression
odel, more splits make the specification more flexible, which reduces bias, but entails
 larger variance in the test data due to smaller subregions. A single tree with many
eaves therefore likely suffers from a high variance. This issue can, however, be miti-
ated by b o otstrap aggregation or ‘bagging’. The idea is to repeatedly draw so-called
 o otstrap samples from the original training data with replacement (such that an obser-
ation might be drawn several times or not at all in a newly created b o otstrap sample)
nd estimate the trees in all samples. Then, the outcome is predicted based on aggregat-
ng the predictions in the individual trees, e.g. by taking the most frequently predicted
alue across trees (e.g. collusion or no collusion) in case of binary outcomes, or the av-
rage of predictions in case of continuous outcomes. Random forests are similar in that
hey rely on creating b o otstrap samples for estimating many trees and aggregating pre-
ictions. They are, however, different in that at each split, only a random subset of
creens (rather than all) is chosen as potential variables for splitting. Randomly picking
redictors prevents correlated trees across b o otstrap samples, which generally further
educes the variance. 

Neural networks are different in spirit. Rather than splitting the predictor space, they
im at fitting a system of nonlinear functions that flexibly models the influence of the
redictors on collusion. Specifically, the predictors are assumed to affect specific non-
inear (conventionally sigmoid) intermediate functions, so called hidden nodes, which
hemselves affect the outcome of interest. The hidden nodes bear some similarity with
he baseline functions in spline or series estimation, with the difference that they are
earned from the data rather than predetermined, and with principal components, which
re dimension-reducing linear (rather than nonlinear) functions of the predictors. Fur-
hermore, when replacing the nonlinear functions by linear ones, neural networks collapse
o a linear model, which is why they can be thought of as a nonlinear generalization of
he latter. Depending on the model complexity, hidden nodes may affect the outcome
ither directly or through other hidden nodes, such that several layers of hidden nodes
llow modelling interactions between the functions. The number of hidden nodes and



300 M. Huber and D. Imhof / International Journal of Industrial Organization 65 (2019) 277–301 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

layers gauges the flexibility of the model, with more parameters reducing the bias but
increasing the variance. 
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