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Abstract

Location prediction is a key problem in human mo-
bility modeling, which predicts a user’s next loca-
tion based on historical user mobility traces. As
a sequential prediction problem by nature, it has
been recently studied using Recurrent Neural Net-
works (RNNs). Due to the sparsity of user mo-
bility traces, existing techniques strive to improve
RNNSs by considering spatiotemporal contexts. The
most adopted scheme is to incorporate spatiotem-
poral factors into the recurrent hidden state pass-
ing process of RNNs using context-parameterized
transition matrices or gates. However, such a
scheme oversimplifies the temporal periodicity and
spatial regularity of user mobility, and thus can-
not fully benefit from rich historical spatiotemporal
contexts encoded in user mobility traces. Against
this background, we propose Flashback, a general
RNN architecture designed for modeling sparse
user mobility traces by doing flashbacks on hid-
den states in RNNs. Specifically, Flashback ex-
plicitly uses spatiotemporal contexts to search past
hidden states with high predictive power (i.e., his-
torical hidden states sharing similar contexts as
the current one) for location prediction, which can
then directly benefit from rich spatiotemporal con-
texts. Our extensive evaluation compares Flash-
back against a sizable collection of state-of-the-art
techniques on two real-world LBSN datasets. Re-
sults show that Flashback consistently and signifi-
cantly outperforms state-of-the-art RNNs involving
spatiotemporal factors by 15.9% to 27.6% in the
next location prediction task.

1 Introduction

User mobility modeling is one of the most important prob-
lems in understanding human dynamics, which also serves as
a fundamental ingredient for developing smart city applica-
tions. One key task of user mobility modeling is to predict a
user’s next location based on users’ historical mobility traces
[Noulas et al., 2012]. Traditional methods often resort to user
mobility features — either hand-crafted features such as his-
torical visit counts [Noulas et al., 2012], or automatically-

learnt features using graph embedding techniques [Xie et al.,
2016]) — to capture user mobility patterns. However, by gen-
erating static features from historical data, these techniques
predict user locations without really considering the sequen-
tial patterns of user mobility, which have been shown as an
important clue for location prediction [Liu erf al., 2016].

Recently, Recurrent Neural Networks (RNNs) have been
shown as a successful tool to model sequential data and thus
started to be used also for user mobility modeling [Zhao et
al., 2019]. However, classical RNN architectures, such as
vanilla RNN, Long Short-Term Memory (LSTM) and Gated
Recurrent Unit (GRU), were originally designed for language
modeling to learn from word sequences (sentences) and they
are not able to handle sparse (and incomplete) mobility traces.
For example, on Foursquare, one of the most popular Loca-
tion Based Social Networks (LBSNs), a user’s mobility trace
is stored as a sequence of check-ins, where each check-in
represents the user’s presence at a specific Point of Interests
(POIs) such as a restaurant or a gym, at a specific time. As
users share their check-ins on a voluntary basis on this plat-
form, such mobility traces are often sparse; on our collected
Foursquare dataset, we find that the average time between
successive check-ins are about 59 hours. Such sparsity and
incompleteness of input sequences hinders the application of
RNN:Ss to the location prediction problem [Feng et al., 2018].
To handle such sparse mobility traces, existing works strive
to incorporate spatiotemporal factors into RNN architectures,
as spatiotemporal contexts have indeed been shown as strong
predictors for user mobility prediction [Yang e al., 2015].

In the current literature, the most popular scheme to
achieve this goal is to incorporate spatiotemporal factors
into the recurrent hidden state passing process of RNNs.
Specifically, given a user mobility trace represented as a
sequence of POIs {...,p;—1,pi,Pi+1,..-},» @ classical RNN
learns from the sequence by outputting a hidden state h;
from the current POI p; and the previous hidden state h;_1,
ie., h; = F(pi,hi—1) where F(-) denotes a RNN unit
(e.g., vanilla RNN, LSTM or GRU). Subsequently, to add
spatiotemporal factors, existing techniques first compute the
temporal and spatial distances between the previous check-
in and the current check-in, denoted as AT;_q ;, AD;_4 ;,
respectively, and then feed them as additional inputs to the
RNN unit, i.e., h; = ]:(pi, hi—1, ATi*l,ia ADifl,i% as il-
lustrated in Figure 1. In the current literature, this scheme



Figure 1: The most popular scheme adding spatiotemporal factors
into RNNs. While a classical RNN unit outputs h; = F(p;, hi—1), a
spatiotemporal RNN outputs h; = F(pi, hi—1, ATi—1,5, ADi—1,),
where AT;_1; and AD;_;; denote the temporal and spatial dis-
tances between the previous check-in and the current check-in.

has been instantiated by either using spatiotemporal-specific
transition matrices parameterized by AT;_; ; and AD;_; ; in
RNN s [Liu et al., 2016], or extending/adding gates controlled
by AT;,_1,; and AD;_;, to LSTM [Kong and Wu, 2018;
Zhao et al., 2019]. However, this scheme cannot fully bene-
fit from rich historical spatiotemporal contexts encoded in the
mobility trace, due to the following reasons.

First, from a temporal perspective, feeding temporal dis-
tances between successive check-ins to the RNN unit may
ignore the temporal periodicity of user mobility. Specifi-
cally, the periodicity of human activities is universal [Gon-
zalez et al., 2008]. Figure 2(a) shows the return probabil-
ity of user check-ins over time, defined as the probability of
a user re-checking in at a POI a certain period of time af-
ter her first check-in at that POI, on our collected Foursquare
dataset. We observe a clear daily (periodic) revisiting pattern.
In the context of location prediction, such a periodicity im-
plies that historical check-ins with a temporal distance (taken
from the current time) closer to these daily peaks (1 day, 2
days, etc.) have higher predictive power. However, iteratively
feeding temporal distances between successive check-ins into
the RNN unit (as shown in Figure 1) often fails to benefit
from this periodicity property. Figure 2(a) illustrates such an
example, where AT;_; ; and AT; ;41 refers to the temporal
distances between successive check-in pairs p;_; — p; and
Dpi — Di+1, respectively. If we consider the temporal distance
in two steps (p;—1 — pi+1), we find that AT;_; ;11 is close
to the 1 day peak, indicating that p;_1 is very helpful for pre-
dicting the next location. In contrast, this cannot be captured
if we iteratively feed temporal distances AT;_; ; and AT} ;41
into the RNN unit.

Second, from a spatial perspective, feeding spatial dis-
tances between successive check-ins to the RNN unit over-
simplifies the spatial regularity of user mobility. Specifically,
it has been found that a user’s check-ins in a region that she
frequently visited are highly biased to certain POIs [Yang et
al., 2015]. In other words, those regions often have certain
implicit “functions”, such as working or shopping. Subse-
quently, the closer the user is to such a region, the more pre-
dictable her behavior is. This suggests that the closer a past
check-in is located to the current location, the more helpful it
is for the next location prediction. However, only considering
spatial distances between successive check-ins fails to capture
such distances over space. Figure 2(b) shows an example.
We observe that the spatial distance in two steps AD;_1 ;41
is much smaller than both AD;_; ; and AD; ;11, suggest-

Return Probability

(a) (b)

Figure 2: Spatiotemporal factors in user check-in data. a) Temporal
factor shown as periodicity, where the example in the box shows that
considering temporal distances between successive check-ins only
(AT;_1,; and AT; ;41) cannot capture such a periodicity. b) Spatial
factor where the example shows that considering spatial distances
between successive check-ins only (AD;_1 ; and AD; ;41) cannot
capture the proper distances AD;_1 ;+1. In both cases, the corre-
sponding techniques fail to fully benefit from the historical check-ins
with high predictive power when predicting location.

ing that p;_; is more helpful for location prediction. In con-
trast, this cannot be captured if we consider spatial distances
ADifl,i and ADi’iJ’,l only.

Against this background, we propose Flashback, a general
RNN architecture designed for modeling sparse user mobil-
ity traces, with a particular consideration on leveraging rich
historical spatiotemporal contexts by considering flashbacks
on hidden states in RNNs. More precisely, departing from the
widely adopted scheme of adding spatiotemporal factors into
the recurrent hidden state passing process of the RNNs, our
solution explicitly uses the spatiotemporal context to search
past hidden states with high predictive power (i.e., histori-
cal hidden states that share similar spatiotemporal contexts to
the current one) for predicting the next location; as a result,
our scheme can directly benefit from rich temporal (i.e, pe-
riodicity as shown in Figure 2(a)) and spatial (i.e., distances
over space as shown in Figure 2(b)) contexts encoded in user
mobility traces. Moreover, as we do not modify the hidden
state passing process of RNNs (while many existing tech-
niques do), our Flashback can be easily instantiated with any
RNN units (e.g., vanilla RNN, LSTM or GRU). We conduct
a thorough evaluation of our method compared to a sizable
collection of baselines on two real-world LBSN datasets. Re-
sults show that Flashback consistently and significantly out-
performs all baseline techniques. In particular, it yields an
improvement of 15.9% to 27.6% over the best performing
spatiotemporal RNNs.

2 Related Work

Location prediction is a key problem in human mobility mod-
eling, which predicts the location of a user based on the user’s
historical mobility traces. Traditional methods for location
prediction often resort to various mobility features, such as
hand-craft features including historical visit counts [Noulas
et al., 2012; Yang er al., 2016] and activity preferences [Yang
et al., 2015], or automatically-learnt features using graph em-
bedding techniques [Xie e al., 2016; Yang et al., 2019].
In addition, generative/factorization models have also been
used to solve location prediction/recommendation problems
[Kurashima et al., 2013; Yang et al., 2013a; 2013b]. How-



ever, these techniques have intrinsic limitations when captur-
ing the sequential patterns of user mobility.

To capture user sequential mobility patterns, (Hidden)
Markov Chains have been widely used for sequential predic-
tion [Mathew et al., 2012; Cheng et al., 2013; Feng et al.,
2015]. The basic idea is to estimate a transition matrix en-
coding the probability of a behavior based on previous be-
haviors. A typical technique here is Factorizing Personal-
ized Markov Chains (FPMC) [Rendle et al., 2010], which
estimates a personalized transition matrix via matrix factor-
ization techniques. FPMC has been extended to the location
prediction problem by further considering spatial constraints
[Cheng et al., 2013; Feng et al., 2015] in building the transi-
tion matrices.

Recently, Recurrent Neural Networks (RNNs) have been
shown as a successful tool to model sequential data [Mikolov
et al., 2010], capturing complex long- and short-term depen-
dency over input sequences. To handle sparse and incom-
plete sequences, existing techniques strive to add context fac-
tors into the RNNs. For example, temporal factors can be
added by truncating each sparse input sequence into several
short sessions [Hidasi et al., 2016; Feng et al., 2018], or by
considering temporal factors as additional inputs to the RNN
units [Neil et al., 2016; Zhu et al., 2017]. For the problem
of location prediction over sparse user mobility sequences,
spatiotemporal factors have been shown as strong predictors
[Yang er al., 2015]. The most popular scheme to incorporate
spatiotemporal factors into RNNs is adding the spatiotempo-
ral distances between (mostly successive) check-ins as addi-
tional inputs to the RNN units (as illustrated in Figure 1).
For example, STRNN [Liu et al., 2016] uses spatiotemporal-
specific transition matrices parameterized by the spatiotem-
poral distances in RNNs; HST-LSTM [Kong and Wu, 2018]
extends existing gates in LSTMs to let these gates take the
spatiotemporal distance as an additional input; STGN [Zhao
et al., 2019] adds additional gates controlled by the spa-
tiotemporal distances to LSTMs. However, as discussed in
the Introduction, such schemes cannot fully benefit from the
rich historical spatiotemporal contexts encoded in mobility
traces. Therefore, we propose in this paper Flashback, a gen-
eral RNN architecture that explicitly uses spatiotemporal con-
texts to search past hidden states with high predictive power
for location prediction, in order to directly benefit from the
rich spatiotemporal contexts encoded in user mobility traces.

3 Flashback

Flashback is designed for modeling sparse user mobility
traces, with a particular focus on leveraging rich spatiotem-
poral contexts by doing flashbacks on hidden states in RNNs.
Instead of implicitly considering context factors by adding
spatiotemporal factors into the recurrent hidden state passing
process of RNNs (as most existing techniques do), our solu-
tion explicitly uses the spatiotemporal contexts to search past
hidden states with high predictive power (i.e., historical hid-
den states that share similar contexts as the current one) for
location prediction; it can thus directly benefit from rich spa-
tiotemporal contexts encoded in user mobility traces.

3.1 Overview

Figure 3 shows an overview of our Flashback architec-
ture. Given a user’s mobility trace represented as a POI se-
quence {...,p;—3, Pi—2, Di—1, Pis Pi+1--- }» we denote the tem-
poral and spatial distances between two check-ins p; and p;
as AT; j and AD; ;, respectively. As shown in Figure 3, our
recurrent hidden state passing process remains unaltered from
classical RNNs i.e., h; = F(p;, h;—1), letting RNNs capture
sequential user mobility patterns. However, instead of using
only the current hidden state h; to predict the next location
pi+1 (as classical RNNs do), we leverage the spatiotempo-
ral context to search past hidden states with high predictive
power. To achieve this goal, we compute the weighted aver-
age of the historical hidden states hj, j < i, with a weight
W(AT; ;, AD; ;) as an aggregated hidden state. This weight
is parameterized by the temporal and spatial distances (AT ;
and AD; ;, respectively) between check-in p; and p; and
measures the predictive power of the hidden state h; (more
information on this point below). Finally, in order to model
individual users preferences, we define a learnable user em-
bedding vector for each user, which is concatenated with the
aggregated hidden state and then fed into a fully connected
layer for predicting the next location, as shown in Figure 3.
In summary, to effectively predict locations from sparse
user mobility traces, Flashback 1) uses RNNs to capture
sequential patterns, 2) leverages spatiotemporal contexts to
search past hidden states with high predictive power, and 3)
incorporates user embeddings to consider users preferences.

3.2 Context-Aware Hidden State Weighting

The weight W(AT; ;, AD; ;) is designed to measure the pre-
dictive power of the hidden state h; according to its spa-
tiotemporal contexts.

First, from a temporal perspective, our primary goal is
to incorporate the periodicity property of user behavior (as
shown in Figure 2(a)) into W(AT; ;, AD; ;). Specifically,
we use a Havercosine function, a typical periodic function
with outputs bounded in [0, 1], parameterized by AT; ; (in
days) as follows:

Wperiod(AT; ;) = hve(2mAT; ) (D
where hve(z) = H%S(z) is the Havercosine function model-

ing the daily periodicity. Moreover, as we can see from Figure
2(a), the return probability exponentially decreases when in-
creasing AT; ;, which indicates that besides the periodicity,
the older a check-in is, the less impact it has for prediction.
Subsequently, we add a temporal exponential decay weight to
model this factor:

wT(AEJ) = wper'iod(AE,j) : eiaATi’j
= hve(2rAT; ;) - e~ AT

where « is a temporal decay rate, controlling how fast the
weight decreases over time AT; ;.

Second, from a spatial perspective, we consider the fact
that the closer a check-in is to the current location, the more
helpful it is for location prediction (as shown in Figure 2(b)).
Accordingly, we use a distance exponential decay weight to
model this factor:

ws(AD; ;) = e PAPw 3)

2
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Figure 3: Overview of our Flashback architecture for next location prediction
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Figure 4: Visualization of our proposed weight W(AT; ;, AD; ;)
over space and time. AD; ; is illustrated as L2 distance from the
origin over spatial space (latitude and longitude axes). We observe
both a periodicity pattern over time (AT; ;) and a spatiotemporal
decay over space and time. The transparency of the slices on the
time axis is proportional to the weights (the lower the weight is, the
more transparent a slice is).

where AD; ; is the L2 distance between the GPS coordinates
of POIs p; and p;, and 3 is a spatial decay rate, controlling
how fast the weight decreases over spatial distance AD; ;.

Finally, we obtain the weight W(AT; ;, AD; ;) by com-
bining the temporal and spatial weights together:

W(ATZ'J, ADi’j) = wT(ATM) . 'U}S(ADZ'J')

= hVC(27TATi7j)e_O‘ATM e_BADi,,j

“

where the first Havercosine term captures the periodicity
property of user check-ins, and the exponential terms model
the spatiotemporal decay of the impact of historical check-ins
on location prediction. Figure 4 offers a visualization of the
weights over space and time.

3.3 Discussions

Why Does Flashback Work?

By flashing back to the historical hidden states, our Flashback
can discount the “noise” from the recurrent hidden state pass-
ing process of the RNNs over sparse user mobility traces, and
also create an explicit “attention” mechanism by leveraging
past hidden states with high predictive power (i.e., historical
hidden states that share similar contexts as the current hidden
state) for location prediction. Figure 5 shows a toy exam-
ple from the temporal perspective. On one hand, Figure 5(a)
shows an actual (complete) user mobility trace with a clear se-
quential pattern (“Home-Office-Restaurant-Office-Shopping-
Bar-Home”), where classical RNNs can effectively capture
such a pattern and predict the next location “Home”. On the
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(a) Actual (complete) user mobility trace
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(b) Observed (sparse) user mobility trace

Figure 5: A toy example illustrating the working principle of Flash-
back from a temporal perspective.

other hand, for an observed (sparse) user mobility trace as
shown in Figure 5(b), the sequential pattern is difficult to be
captured by RNNs, where the hidden state passing process
becomes noisy due to the incompleteness of the sequence.
Even when considering temporal distances between succes-
sive check-ins as additional inputs of the RNN units (as many
state-of-the-art techniques do), it still falls short in capturing
long-term temporal (i.e, periodicity) dependencies. However,
by flashing back to the historical hidden states sharing a sim-
ilar temporal context as the current one (AT = 1 day captur-
ing the daily periodicity, i.e., at the similar time on the previ-
ous day), Flashback can predict the next location “Home”.

How Far to Flash Back?

As Flashback generates an aggregated hidden state from past
hidden states, an immediate question here is how many past
hidden states should be considered? To answer this question,
we review the temporal exponential decay term e~ 277 in
W(AT; ;, AD; ;). Let At denote the average time between
successive check-ins. The hidden state k-step back has an
average AT = At - k, corresponding to a temporal exponen-
tial decay term e~ 2% In practice, our empirical analysis
shows that the average time between successive check-ins At
are 51.28 (2.13 days) hours and 58.59 hours (2.44 days) on
our Gowalla and Foursquare datasets, respectively (see Sec-
tion 4.1), and the optimal temporal decay rate is 0.1 in our
experiments on both datasets (see Section 4.3). Therefore,
the temporal exponential decay term becomes a function of
k. When setting k& = 20 for example, this term is around




Dataset Gowalla Foursquare
#Users 52,979 46,065
#POlIs 121,851 69,005
#Checkins 3,300,986 9,450,342
Collection period 02/2009-10/2010  04/2012-01/2014
Average time between 51.28 hours 58.59 hours
successive check-ins (2.13 days) (2.44 days)

Table 1: Statistics of the datasets

0.01, which is indeed the upper bound of W(AT; ;, AD; ;)
as all other terms in W(AT; ;, AD; ;) are bound to [0, 1]. In
other words, a hidden state more than k-step back receives
on average a weight less than 0.01, which contributes little to
the aggregated hidden state. We also study this point in our
experiments, where prediction performance flattens out when
k > 20 (see Section 4.4).

4 Experiments

4.1 Experimental Setup

Dataset

We conduct experiments on two widely used check-in
datasets collected from two LBSNs: Gowalla and Foursquare,
respectively. Table 1 shows the statistics of the datasets. We
chronologically split all the mobility traces into 80% for train-
ing and 20% for test.

Baselines
We compare Flashback against a sizable collection of state-
of-the-art techniques from five categories:

e User Preference-based Methods: 1) WRMF [Hu er al.,
2008] learns user preferences on POIs using matrix fac-
torization; 2) BPR [Rendle et al., 2009] learns user prefer-
ences on POIs by minimizing a pairwise ranking loss.

o Feature-based methods: 1) Most Frequent Time (MFT,
the best-performing feature by [Gao et al., 2012]) ranks
a POI according to a user’s historical check-in count at a
POI and at a specific time slot (24 hours in a day) in the
training dataset; 2) LBSN2Vec [Yang er al., 2019] learns
user, time and POI feature vectors from a LBSN hyper-
graph, and ranks a POI according to its similarities with
user and time in the feature space.

o Markov-Chain-based Methods: 1) FPMC [Rendle et al.,
2010] estimates a personalized transition matrix via ma-
trix factorization techniques; 2) PRME [Feng et al., 2015]
learns user and POI embeddings to capture the personal-
ized POI transition patterns. 3) TribeFlow [Figueiredo et
al., 2016] uses a semi-Markov chain model to capture the
transition matrix over a latent environment.

e Basic RNNs: 1) RNN [Zhang et al., 2014] is a vanilla
RNN achitecture; 2) LSTM [Hochreiter and Schmidhuber,
19971 is capable of learning long-term dependency using a
memory cell and multiplicative gates; 3) GRU [Cho er al.,
2014] captures long-term dependency by controlling infor-
mation flow with two gates.

e Spatiotemporal RNNs: 1) DeepMove [Feng et al., 2018]
adds an attention mechanism to GRU for location predic-
tion over sparse mobility traces; 2) STRNN [Liu ef al.,

2016] uses customized transition matrices parameterized
by the spatiotemporal distances between check-ins within
a time window in RNNs; 3) STGN [Zhao e al., 2019] add
additional gates controlled by the spatiotemporal distances
between successive check-ins to LSTM, while STGCN is
a variant of STGN with coupled input and forget gates for
improved efficiency.

For our proposed Flashback, as it does not depend on any
specific RNN units, we instantiate it using all the three ba-
sic RNNs, named as Flashback (RNN), Flashback (LSTM),
and Flashback (GRU). We train Flashback by backpropaga-
tion through time using the Adam stochastic optimizer with
cross entropy loss. We implement Flashback in PyTorch, and
our code and datasets are available here!.

Evaluation Protocol and Metrics

We evaluate Flashback in the next location prediction task,
where we predict where a user will go next, given a sequence
of her historical check-ins, as shown in Figure 3. We report
two widely used metrics for location prediction: average Ac-
curacy@N (Acc@N), where N = 1,5,10, and Mean Re-
ciprocal Rank (MRR). We empirically set the dimension of
hidden states and all (POI and user) embedding size as 10 for
all RNN-based techniques. We search the optimal temporal
and spatial decay rate (o and f3, respectively) on a log scale
(see Section 4.3 for more details).

4.2 Location Prediction Performance

Table 2 shows the results on both Gowalla and Foursquare.
In general, we observe that Flashback consistently and sig-
nificantly outperforms all baseline techniques. In particular,
compared to the best-performing baselines (spatiotemporal
RNNs in most cases), Flashback shows an improvement of
27.7% and 15.9% in MRR, on Gowalla and Foursquare, re-
spectively.

In addition, compared to the basic RNNs, Flashback con-
sistently yields significant improvements of at least 27.5%,
showing the effectiveness of leveraging past hidden states
for next location prediction. Interestingly, we also observe
a large variation on the performance of basic RNN, LSTM,
and GRU (e.g., we see an MRR of 0.1507, 0.1144 and 0.0993
on the Gowalla dataset, respectively), showing their different
capacities of modeling sparse user mobility traces. However,
despite their different modeling capacities, Flashback imple-
mented with RNN, LSTM, and GRU has a much smaller vari-
ation in terms of its performance (with an MRR of 0.1925,
0.1778 and 0.1731 on Gowalla, respectively). Such an ob-
servation shows that Flashback can boost the performance of
any basic RNNs to a maximum extent, by fully benefiting
from rich historical spatiotemporal contexts.

4.3 Impact of Spatiotemporal Decay Rates

In this experiment, we evaluate the impact of the temporal and
spatial decay factors (« and 3, respectively) on location pre-
diction by varying e and 3 on a log scale. Figure 6 shows the
results. On one hand, when increasing the spatial decay factor
B, we observe that the prediction performance increases, and

"https://github.com/eXascaleInfolab/Flashback _code/



Method Gowalla Foursquare

Acc@]l Acc@5 Acc@10 MRR | Acc@1l Acc@5 Acc@10 MRR

User Preference | WRMF 0.0112  0.0260 0.0367 0.0178 | 0.0278  0.0619 0.0821  0.0427
based Methods BPR 0.0131 0.0363 0.0539 0.0235 | 0.0315 0.0828 0.1143  0.0538
Feature-based MET 0.0525  0.0948 0.1052  0.0717 | 0.1945  0.2692 0.2788  0.2285
Methods LBSN2Vec 0.0864 0.1186 0.1390 0.1032 | 0.2190  0.3955 0.4621 0.2781
Markov-Chain FPMC 0.0479  0.1668 0.2411 0.1126 | 0.0753  0.2384 0.3348 0.1578
based Methods PRME 0.0740  0.2146 0.2899 0.1503 | 0.0982  0.3167 0.4064  0.2040
TribeFlow 0.0256  0.0723 0.1143 0.0583 | 0.0297 0.0832 0.1239  0.0645

RNN 0.0881 0.2140 0.2717 0.1507 | 0.1824  0.4334 0.5237  0.2984

Basic RNNs LSTM 0.0621 0.1637 0.2182 0.1144 | 0.1144  0.2949 0.3761 0.2018
GRU 0.0528 0.1416 0.1915 0.0993 | 0.0606  0.1797 0.2574  0.1245

DeepMove* 0.0625  0.1304 0.1594  0.0982 | 0.2400 0.4319 0.4742  0.3270

Spatiotemporal STRNN 0.0900 0.2120 0.2730 0.1508 | 0.2290 0.4310 0.5050 0.3248
RNNs STGN 0.0624  0.1586 0.2104 0.1125 | 0.2094  0.4734 0.5470 0.3283
STGCN 0.0546  0.1440 0.1932 0.1017 | 0.1878  0.4502 0.5329 0.3062

Flashback (RNN) 0.1158  0.2754 0.3479 0.1925 | 0.2496  0.5399 0.6236  0.3805

Flashback Flashback (LSTM) | 0.1024  0.2575 0.3317 0.1778 | 0.2398  0.5169 0.6014 0.3654
Flashback (GRU) 0.0979  0.2526 0.3267 0.1731 | 0.2375 0.5154 0.6003 0.3631

Table 2: Location Prediction Performance on both Gowalla and Foursquare. The best-performing baselines and Flashback are highlighted.
(*Experiments of DeepMove are conducted on 5,000 randomly sampled users, due to its poor efficiency where it takes more than one day per
epoch using an NVIDIA V100 GPU for all users on both of our datasets.)
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Figure 6: Impact of temporal and spatial decay rate (o and (3, re-
spectively)

then flattens out after 5 = 100 (on Foursquare) or 5 = 1000
(on Gowalla). This observation verifies the fact that the spa-
tial distance is a very important factor defining context simi-
larity for next location prediction problem; with a large (3, the
context similarity decreases fast with increasing spatial dis-
tances’. On the other hand, when decreasing temporal decay
factor «, the prediction performance slightly increases, and
achieves the best performance at o« = 0.1, implying a slow
temporal decay over time which allows the hidden states at
the periodicity peak to contribute more to location prediction.
In other words, a low value of « indeed shows that the peri-
odicity helps for predicting the next location.

4.4 How Far to Flash Back?

In this experiment, we study the impact of the number of in-
volved past hidden states k£ (when flashing back) on the per-
formance of location prediction. Figure 7 shows the results.
We observe that performance increases with increasing k, as
more hidden states can better help location prediction. The
performance flattens out after £ > 20, as further hidden states
have little contribution due to the temporal decay, which cor-
responds to our previous discussion in Section 3.3.

2We compute spatial distance A D using the L2 distance (in kilo-
meters) between the GPS coordinates of two POIs.

0.2 0.385
Gowalla Foursquare
0.19 A T 0.38 o
o« / o« o
o187 0.375 //
0.17 0.37%
5 10 15 20 25 5 10 15 20 25

Number of hidden states considered Number of hidden states considered

Figure 7: Impact of the number of involved past hidden states k
when flashing back

5 Conclusion

In this paper, we propose Flashback, a general RNN archi-
tecture designed for modeling sparse user mobility traces by
leveraging rich spatiotemporal contexts. Specifically, instead
of implicitly considering context factors by adding spatiotem-
poral factors into the recurrent hidden state passing process
of RNNs (as most existing techniques do), our solution ex-
plicitly uses the spatiotemporal contexts to search past hid-
den states with high predictive power (i.e., historical hidden
states that share similar contexts as the current hidden state)
for location prediction; subsequently, Flashback can directly
benefit from rich spatiotemporal contexts encoded in user mo-
bility traces. Our extensive evaluation compares Flashback
against a sizable collection of state-of-the-art techniques on
two real-world LBSN datasets. The results show that Flash-
back consistently and significantly outperforms state-of-the-
art spatiotemporal RNNs by 15.9% to 27.6% when tackling
the next location prediction task.

In future work, we plan to incorporate learnable spatiotem-
poral decay rates to fully automate our learning process.
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