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Abstract
We study the motion of a Brownian particle subjected to Lorentz force due to an external magnetic
field. Each spatial degree of freedom of the particle is coupled to a different thermostat. We show
that the magnetic field results in correlation between different velocity components in the
stationary state. Integrating the velocity autocorrelation matrix, we obtain the diffusion matrix
that enters the Fokker–Planck equation for the probability density. The eigenvectors of the
diffusion matrix do not align with the temperature axes. As a consequence the Brownian particle
performs spatially correlated diffusion. We further show that in the presence of an isotropic
confining potential, an unusual, flux-free steady state emerges which is characterized by a
non-Boltzmann density distribution, which can be rotated by reversing the magnetic field. The
nontrivial steady state properties of our system result from the Lorentz force induced coupling of
the spatial degrees of freedom which cease to exist in equilibrium corresponding to a
single-temperature system.

1. Introduction

The trajectory of a charged particle is curved by the Lorentz force due to an external magnetic field. Since
the field does not perform work on the particle, the equilibrium properties of the system are unaffected by
the applied magnetic field. However, the Lorentz force affects the dynamics of the system. For instance, it is
well known that in diffusive systems Lorentz force reduces the diffusion coefficient of the particle in the
plane perpendicular to the magnetic field, whereas the diffusion along the field is unaffected [1–3]. Even in
overdamped systems, the hallmark signature of Lorentz force—deflection of trajectories in the direction
perpendicular to the velocity—is manifested. This deflection gives rise to additional Lorentz fluxes
perpendicular to the typical diffusive fluxes [4–6].

The Lorentz fluxes, akin to the diffusive Hall effect, generate dynamics which are fundamentally
different from a purely diffusive system. We have recently shown that by driving the system into a
nonequilibrium stationary state one preserves the unusual features of the dynamics under Lorentz force.
Considering an internally driven system of active Brownian particles subjected to a spatially inhomogeneous
Lorentz force, we showed that the resulting nonequilibrium steady state is characterized by an
inhomogeneous density distribution and macroscopic fluxes [7]. In another study, we used stochastic
resetting [8–10] to drive a (passive) Brownian system into a nonequilibrium steady state with a
non-Gaussian probability distribution and Lorentz fluxes [6].

The unusual properties of the stationary regime have their origin in the fact that the Lorentz force mixes
different velocity components of the particle which results in coupling of the spatial degrees of freedom
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[11]. If one now considers that each spatial degree of freedom is coupled to a different thermostat, an
interesting steady state may be envisaged in the presence of Lorentz force. Here, we follow this approach to
drive the system into a nonequilibrium steady state. The notion of physical systems characterized by two
different temperatures was originally employed in neural networks and spin glasses with partially annealed
disorder [12–14]. Multiple thermostats are also used in the models for mixtures of active and passive
particles, in which the active species is either coupled to a higher temperature than the passive one [15–19]
or specified by a colored noise [20–25].

Recently, the notion of multiple thermostats was applied on a single-particle level: each spatial degree of
freedom of a Brownian particle was coupled to a different temperature [26–30]. In reference [26] it was
shown that in the presence of an anisotropic potential, the two-dimensional system settled into a
nonequilibrium stationary state, characterized by the presence of space-dependent particle currents and a
non-Boltzmann density distribution. The emergence of these particle currents is due to two broken
symmetries: a different temperature in each spatial degree of freedom and a mismatch between the
temperature axes, and the potential principal axes [31]. Although the interest in such systems remains
primarily theoretical, a possible experimental realisation, based on cold atoms, has been suggested in
reference [31], in which, by detuning laser intensity along the two axes, one obtains two different
temperatures in the optical trap. Including an external magnetic field in such a system is a possible
experimental realisation to test the theoretical predictions of our study.

In this paper, we study the motion of a Brownian particle subjected to Lorentz force with each spatial
degree of freedom coupled to a different thermostat. We show that the magnetic field gives rise to
correlation between different velocity components resulting in spatial cross-correlations. We demonstrate
that these correlations persist in the stationary state. Using a first-principles approach, we calculate the
diffusion matrix by integrating the velocity autocorrelation matrix and derive the Fokker–Planck equation
for the probability distribution and the corresponding fluxes. The eigenvectors of the diffusion matrix do
not align with the temperature axes. As a consequence the Brownian particle performs spatially correlated
diffusion. We show that in contrast to previous studies, even for an isotropic harmonic potential, a
nontrivial steady-state density distribution exists, which can be rotated by simply reversing the magnetic
field. The steady state, however, is flux-free. By breaking the symmetry in the system using a spatially
inhomogeneous magnetic field we show that the Lorentz force induces fluxes in the system.

The paper is structured as follows. In section 2, we provide a description of the model of a diffusion
system subjected to Lorentz force with each spatial degree of freedom coupled to a different thermostat. In
section 3, we derive the conditional probability density of the particle’s velocity. We then present the
Fokker–Planck equation for the position probability distribution, in section 4. In section 5, we derive the
steady-state solution to the Fokker–Planck equation for the system in an isotropic harmonic potential.
Finally, in section 6, we present our concluding remarks.

2. Model

We consider a single diffusing particle of mass m and charge q subjected to Lorentz force due to an external
magnetic field B = Bn, directed along the unit vector n. Each spatial degree of freedom of the particle is
coupled to a different thermostat at temperature Ti where i = x, y, z. The stochastic dynamics of the particle
are described by the following Langevin equation [1, 2, 5, 6]:

mv̇(t) = −γv + qv × B + ξ(t), (1)

where ξ(t) is Gaussian white noise with zero mean and time correlation 〈ξ(t)ξ�(t′)〉 = 2γkBTδ(t − t′)
where γ is the constant friction coefficient and kB is the Boltzmann constant. Here T = diag(Tx, Ty, Tz) is a
diagonal matrix.

Equation (1) can be rewritten as

mv̇(t) = −Γ · v(t) + ξ(t), (2)

where Γ = γ1 − qBM. The elements of the matrix M are given by Mij = εijknk, where εijk is the Levi-Civita
symbol in three dimensions.

We also perform Brownian dynamics simulations to validate our analytical predictions. Since the
Lorentz force has no effect in the direction of the applied magnetic field, we later restrict our analysis to the
motion in the xy plane by applying an external magnetic field in the z direction. Consequently, the
simulations are done for a two-dimensional system. In the simulations, the system evolves according to the
Langevin equation (1) with a mass m = 0.02. The chosen mass is sufficiently small for the dynamics to be
overdamped. The particle starts its motion from the origin, (x, y) = (0, 0) with the initial velocity
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(vx, vy) = (1, 1). The integration time step is dt = 10−4τ . Here, τ = γ/kBTx, which is the time the particle
takes to diffuse over a unit distance.

3. Velocity distribution

Below we outline the procedure to obtain P(v, t|v0), which denotes the conditional probability density that
a particle with initial velocity v0 moves with velocity v at time t. Equation (2) is a linear stochastic

differential equation which, using the transformation w(t) = e
Γ
m t · v(t), can be written as a Wiener process

(see appendix A for the details):
mẇ(t) = η(t), (3)

where η(t) is Gaussian white noise with mean 〈η(t)〉 = 0 and time correlation 〈η(t)η�(t′)〉 =
2γkB e

Γ
m t · T · e

Γ�
m tδ(t − t′), where Γ� = γ1 + qBM.

The Fokker–Planck equation corresponding to equation (3) can be derived using standard methods [32]
and is given as

∂P(w, t|w0)

∂t
= ∇w ·

[
Dw(t)∇wP(w, t|w0)

]
, (4)

where P(w, t|w0) is the conditional probability for w at time t, given that the initial value is w0 at time
t = 0. The applied magnetic field is encoded in the matrix Dw(t), given by

Dw(t) =
γkB

m2
e
Γ
m t · T · e

Γ�
m t . (5)

Note that the Fokker–Planck equation in (4) has the same form as that of an inhomogeneous diffusion
process. However, the matrix Dw is not the matrix for diffusion in position space. Also note that for a

single-temperature system, T = T1, the matrix above reduces to a diagonal matrix Dw(t) = e
2γ
m tγkBT/m21,

independent of the magnetic field.
The fundamental solution to the Fokker–Planck equation (4) is the three-dimensional Gaussian

distribution in the Cartesian components of w which when transformed back to the probability
distribution for the velocity (see appendix A for details) reads as

P(v, t|v0) =
exp

[
− 1

2

(
v − u(t;v0)e−

γ
m t
)�

·Φ(t)−1 ·
(
v − u(t;v0)e−

γ
m t
)]

√
(2π)3 e−

6γ
m t Det

(
2
∫ t

0 Dw(s)ds
) , (6)

where u(t;v0) = e
qBM

m tv0 denotes the deterministically evolving initial velocity, modulated by the
damping factor e−

γ
m t . Note that the Lorentz force does not affect the relaxation time of the velocity which

remains m/γ. The matrix Φ(t) denotes the correlation 〈(v − u(t;v0)e−
γ
m t)�(v − u(t;v0)e−

γ
m t)〉 and is

given as

Φ(t) =
2γkB

m2

∫ t

0
e−

Γ
m t′ · T · e−

Γ�
m t′dt′. (7)

We have hitherto considered a multitemperature system subjected to a magnetic field in an arbitrary
direction. We now specialize to the case in which the magnetic field points along the z direction with each
spatial degree of freedom coupled to a different thermostat. Since the Lorentz force has no effect on the
motion along which the magnetic field is pointed (i.e. the z direction), this effectively reduces the problem
to a two-dimensional system. As a consequence, we analyze the system in the xy plane. As we show below,
this provides an insight into how the Lorentz force affects the steady state properties in a nontrivial fashion.
Φ(t) is the velocity autocorrelation function for a specified initial velocity of the Brownian particle. In the
long-time limit, the system loses its memory of the initial velocity and attains a steady-state velocity
distribution for which the autocorrelation function, denoted by C(0), reads as

C(0) =
kB

2m(1 + κ2)

(
2Tx + κ2(Tx + Ty) −κ(Tx − Ty)

−κ(Tx − Ty) 2Ty + κ2(Tx + Ty)

)
, (8)

where the parameter κ = qB/γ quantifies the strength of the magnetic field relative to frictional force.
In the equilibrium scenario, i.e., Ti = T, the velocity autocorrelation reduces to the expected δijkBT/m,

which is independent of the magnetic field. In the general case of different temperatures (Tx �= Ty), there
are off-diagonal terms in the matrix which imply cross correlated velocity components in the steady state.
Note that these cross-correlations cease to exist in the absence of the magnetic field (κ = 0).
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Making a dyadic matrix by multiplying equation (2) by v�(0) from the right-hand side, and performing
an average over noise and initial velocity (in the steady state), i.e. 〈v(t)v�(0)〉, we obtain the equation for
the time evolution of the velocity autocorrelation C(t) as Ċ(t) = −Γ

mC(t), which yields

C(t) = e−
Γ
m tC(0), (9)

where C(0) is the initial value of the matrix in the steady state, which for the special case of magnetic field
along the z direction is given in equation (8).

4. Diffusion equation

The diffusion equation provides a complete statistical description of the particle’s motion in the small-mass
limit which corresponds to neglecting inertial effects (m → 0). This equation is characterized by a diffusion
coefficient which in the case of motion under the Lorentz force is a matrix. The matrix encodes the
anisotropic nature of diffusion in the presence of a magnetic field. Using the Green–Kubo relation, this
matrix can be obtained as an integral of the velocity autocorrelation in equation (9) as

D = lim
t→∞

∫ t

0
C(t′)dt′, (10)

= mΓ−1C(0). (11)

The diffusion equation for the positional probability distribution P(r, t) reads as

∂P(r, t)

∂t
= ∇ · [D∇P(r, t)], (12)

where D obtained from equations (10) and (8) is given as

D =
kB

γ

⎛
⎜⎜⎝

Tx + κ2Ty

(1 + κ2)2 −κ(Tx − Ty)

(1 + κ2)2 +
κ(Tx + Ty)

2(1 + κ2)

−κ(Tx − Ty)

(1 + κ2)2 − κ(Tx + Ty)

2(1 + κ2)

Ty + κ2Tx

(1 + κ2)2

⎞
⎟⎟⎠ . (13)

Note that when the magnetic field is absent, equation (13) reduces to the diagonal matrix consistent
with the previous studies [26, 31]. In the case of the same temperatures along the spatial degrees of
freedom and a nonzero magnetic field, the matrix D reduces to the well-known matrix [2, 5, 6], which is
given as

D =
kBT

γ

[(
1 +

κ2

1 + κ2
M2

)
− κ

1 + κ2
M

]
. (14)

The matrix D in equation (13) is unusual in the sense that it has antisymmetric part, Da, and therefore
not a typical diffusion matrix. This property of the matrix gives rise to the additional Lorentz fluxes,
given as Ja = −Da∇P(r, t), which precludes a purely diffusive description with only diffusive fluxes,
Js = −Ds∇P(r, t) even though the underlying dynamics are overdamped [2, 5, 6].

The covariance matrix, defined as 〈r(t)r�(0)〉 is determined only by the symmetric part of D as
〈r(t)r�(0)〉 = 2Dst, where Ds = (D + D�)/2 is the usual diffusion matrix. The variances of the particle’s
position in the xy plane can be written as

〈x2〉 = 2kB(Tx + κ2Ty)

γ(1 + κ2)2
t, (15)

〈y2〉 = 2kB(Ty + κ2Tx)

γ(1 + κ2)2
t, (16)

〈xy〉 = −2kBκ(Tx − Ty)

γ(1 + κ2)2
t. (17)

With different temperatures along the x and y axes, it is expected that the motion of the particle is
anisotropic. However, since 〈xy〉 in (17) is nonzero, the eigenvectors of the diffusion matrix, which are
ν1 = (κ, 1) and ν2 = (−1/κ, 1), are not aligned with the temperature axes. The anisotropy in the system
can be quantified by the ratio of the eigenvalues, which is simply Tx/Ty. In the supplemental material
(https://stacks.iop.org/NJP/22/093057/mmedia) [33] we show movies of the density distribution and fluxes
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Figure 1. (a) The variances 〈x2〉 and 〈y2〉, and the cross correlation 〈xy〉 are shown by the red, blue, and green lines from the
theory (15)–(17) with Ty = 3Tx = 3.0 and κ = −3.0. The symbols show the results from the Brownian dynamics simulations.
The ratio of variances of the displacements of the particle, R, is shown as a function of (b) Tx/Ty for different values of κ with
Ty = 3Tx = 3.0 and (c) the same as in (b) but as a function of κ for different values of Tx/Ty. In a system subjected to κ = 1.0
the parameter R is 1.0 and independent of Tx/Ty . In the case of a single temperature, Tx/Ty = 1.0 the ratio becomes
independent of the applied magnetic field. This parameter reduces to Tx/Ty in the limit that κ→ 0, whereas for a large magnetic
field , κ→∞ becomes Ty/Tx. The fluxes in system (a) and in a system with an opposite magnetic field are shown in (d) and (e)
at time t = 0.2τ , respectively. The noninteracting particles are initially uniformly distributed in a disk of radius 1 centered at the
origin and evolve according to the Fokker–Planck equation (12). The colorbar shows the magnitude of the fluxes which is
color-coded. The direction of the fluxes is shown by arrows.

in the system relaxing towards the equilibrium steady state. The system is initially isotropic by uniformly
distributing the particles in a disk. It evolves according to the Fokker–Planck equation in (12) and
becomes anisotropic. The system finally settles into the equilibrium where the density is uniformly
distributed.

It is interesting to compare the mean squared displacements along the x and y directions. The ratio of
the variances, R, is given as

R(Tx/Ty;κ) ≡ 〈x2〉
〈y2〉 =

κ2 + (Tx/Ty)

1 + κ2(Tx/Ty)
. (18)

In the case of a single temperature corresponding to equilibrium, one obtains R = 1 independent of the
applied magnetic field. In addition, for a system subjected to |κ| = 1.0, the parameter R = 1.0. However,
the motion is not isotropic; the anisotropy is encoded in the ratio of the eigenvalues of the diffusion matrix.
In the limit of small magnetic field, κ→ 0, the parameter R reduces to Tx/Ty, whereas for a large magnetic
field, κ→∞, approaches Ty/Tx.

Figure 1(a) shows the variances of the particle’s position as a function of time. The theoretical
predictions are in excellent agreement with the Brownian dynamics simulations. In figures 1(b) and (c)
we use equation (18) to plot R as a function of Tx/Ty for different values of κ, and κ for different values of
Tx/Ty, respectively. The fluxes in system (a) and in a system with an opposite magnetic field are shown in
(d) and (e) at time t = 0.2τ , respectively. The noninteracting particles are initially uniformly distributed in
a disk of radius 1 centered at the origin and evolve according to the Fokker–Planck equation (12).

It is worth considering a somewhat more intuitive approach to the derivation of the diffusion equation.
Lets consider a system with temperatures Tx and Ty along the x and y directions, respectively. The motion of
the particle is restricted to the xy plane and the applied magnetic field points in the z direction. Intuitively,
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Figure 2. Two-dimensional Brownian motion subjected to a constant magnetic field along the z direction with different
thermostats. The contour plot shows the isotropic harmonic potential U(x, y) = ε(x2 + y2)/2 with ε = 2.0.

one may reason as follows. Consider the flux in x direction. Density gradient along the x direction gives rise
to a flux that is proportional to −Tx∂xP. Due to Lorentz force induced coupling the density gradient along
the y direction also contributes to the x flux as −κTy∂yP. With this reasoning, one can now write the
components of the flux as Jx = −λ

(
Tx∂x + κTy∂y

)
P and Jy = −λ

(
Ty∂y − κTx∂x

)
P where

λ−1 = γ(1 + κ2)k−1
B and obtain the diffusion equation as a continuity equation. Comparison with

equation (13) shows that this intuitive approach is erroneous. In fact, this corresponds to a fictitious system
whose diffusion matrix has negative eigenvalues and is therefore unphysical. The first-principles approach
which we present in this work avoids this pitfall.

5. Nonequilibrium steady state

In this section, we first use the results derived in section 4 to determine the steady state of a particle
undergoing Brownian motion in the presence of an isotropic harmonic potential U(x, y) = ε(x2 + y2)/2
where ε is the elasticity constant (see figure 2). Then we present our results from simulations for a similar
system subjected to a spatially inhomogeneous magnetic field. The Langevin equation governing the
dynamics of the particle can be written as:

mv̇(t) = −Γ · v(t) −∇U + ξ(t). (19)

The Fokker–Planck equation associated with the overdamped equation corresponding to equation (19)
is given by

∂P(x, y, t)

∂t
= ∇ ·

[
D∇P(x, y, t) + Γ−1∇U(x, y)P(x, y, t)

]
, (20)

where the matrix D is given by equation (13).

5.1. Uniform magnetic field
For a constant magnetic field, the steady-state solution to equation (20) is a Gaussian distribution (see
appendix B for details), given as

P(x, y) =
ε
√

1 + κ2 e−(μ1x2+μ2y2+μ3xy)

π
√
κ2(Tx + Ty)2 + 4TxTy

, (21)

where

μ1 = ε
2Ty + κ2(Tx + Ty)

κ2(Tx + Ty)2 + 4TxTy
, (22)
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Figure 3. The stationary probability distribution of the particle’s position for the system in an isotropic harmonic potential with
ε = 2.0. The results are obtained from the analytical predictions in equations (21)–(24). (a) Corresponds to a single-temperature
system Tx = Ty = 1.0. The applied magnetic field, for the other systems, is constant such that in (b) κ = 0.0, in (c) κ = −3.0
and in (d) κ = 3.0 with Ty = 3Tx = 3.0. Reversing the direction of the applied magnetic field rotates the density profile by π/2.
A system of two conductors kept at different temperatures and coupled by the electric thermal noise, yields analogous patterns
for the joint probability of the voltages where the charges play the role of the positions in the system under study [34].

μ2 = ε
2Tx + κ2(Tx + Ty)

κ2(Tx + Ty)2 + 4TxTy
, (23)

μ3 = −ε
2κ(Ty − Tx)

κ2(Tx + Ty)2 + 4TxTy
. (24)

If μ3 �= 0, the steady-state probability distribution in equation (21) cannot be separated into a product
of two independent distributions in x and y. Since μ3 changes sign with κ, the probability distribution can
be rotated by reversing the applied magnetic field. The case μ3 = 0 corresponds either to (a) an equilibrium
system, i.e., Tx = Ty, for which, as would be expected, the steady state corresponds to the isotropic
equilibrium (Boltzmann) distribution with no dependence on the applied magnetic field or (b) κ = 0, such
that there is no coupling between the spatial degrees of freedom and the distribution is Boltzmann-like. If
one changes the handedness of the system from right-handed to left-handed, via the permutations x → y
and y → x, it is the same as reversing the applied magnetic field. This is indeed reflected in
equations (22)–(24). Under the permutation, μ1 and μ2 remain the same whereas μ3 changes sign. The
same can be obtained in the original right-handed system with reversed magnetic field.

Figure 3 shows the contour plots of the stationary probability distribution of the position of the particle
in (a) a single-temperature system, Tx = Ty = 1.0, independent of the applied magnetic field and (b)–(d)
multithermostat systems with Ty = 3Tx = 3.0 subjected to the constant magnetic fields κ = 0.0, κ = −3.0,
and κ = 3.0, respectively. The elasticity constant is ε = 2.0. The probability distribution is rotated by π/2
on reversing the direction of the applied magnetic field. These results are from the theory in
equations (21)–(24) and are in full agreement with the simulations (not shown). A system of two
conductors kept at different temperatures and coupled by the electric thermal noise, yields analogous
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Figure 4. (a) The contour plot of the stationary probability distribution of the particle’s position and (b) the fluxes for the
system in an isotropic harmonic potential with ε = 2.0, and Ty = 3Tx = 3.0. The system is divided into two half-planes by the
line x = 0. Each half plane is subjected to a constant magnetic field such that κ = −3.0 if x > 0 and κ = 3.0 otherwise. The
distribution is highly stretched along the line x = 0. The direction of the fluxes is shown by the arrows; the magnitude is color
coded.

patterns for the joint probability of the voltages where the charges play the role of the positions in the
system under study [34].

Previous studies on two-temperature Brownian systems considered an anisotropic harmonic potential
ε
(
(x2 + y2)/2 + uxy

)
[26, 31], where u is the anisotropy parameter. It was shown that the steady state is

nontrivial (not a Boltzmann) only if there exist both anisotropy and temperature difference, captured in the
single parameter u(Ty − Tx). In our system with a (constant) magnetic field, the analogous parameter is
κ(Ty − Tx) which implies that the κ plays a similar role as u: it couples x and y.

Despite the magnetic field induced coupling between the spatial degrees of freedom, there are no
steady-state fluxes in our system. It is important to note that whereas only the symmetric part of D enters
the calculation for the probability density (see appendix B for details), the flux is calculated using the matrix
D in equation (13). This flux is zero for the steady-state probability distribution in equation (21). If one
took only the symmetric part of D to calculate the fluxes, one would erroneously conclude that there are
steady-state fluxes. We have verified using simulations that the steady state is indeed flux free. The absence
of steady-state fluxes in our system is in contrast to previous studies of multithermostat systems [26, 31] in
which fluxes existed in the stationary state.

5.2. Spatially inhomogeneous magnetic field
In the previous studies, it was shown that the emergence of the fluxes is due to two broken symmetries: a
different temperature in each spatial degree of freedom and a mismatch between the principal axes of
temperature and those of the potential. Here we show that even in a system with an isotropic potential,
fluxes may be induced by breaking symmetry in the system via an inhomogeneous magnetic field. In
addition to the broken symmetry of two different temperatures along the spatial axes, we break another
symmetry in the system by using a spatially inhomogeneous magnetic field. We divide the system into two
half-planes at the line x = 0. Each half-plane is subjected to a constant magnetic field with the same
magnitude, but opposite direction such that κ = −3.0 for x > 0 and κ = 3.0 otherwise. Symmetry requires
that (a) the steady-state probability distribution is even in x and (b) zero flux in the x direction at x = 0.
Due to the applied magnetic field, the probability distribution is not symmetric in y implying that 〈y〉 �= 0.
Figure 4(a) shows a contour plot of the stationary probability distribution obtained from Brownian
dynamics simulations of equation (19). As expected, the average position of the particle is displaced from
the origin along the y axis.

In contrast to the constant magnetic field case, there are fluxes in the nonequilibrium steady state as
shown in figure 4(b) as can be seen, the x component of the fluxes is zero at x = 0.

6. Concluding remarks

Since the Lorentz force due to a magnetic field performs no work, it does not affect equilibrium properties
of a system. It does, however, give rise to dynamics which are fundamentally different from a purely
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diffusive system [4, 5]. It can generate unusual nonequilibrium steady states which are quite distinct
from those generated by other non-conservative driving forces (e.g. shear), which input energy to the
system. The stationary state is generally characterized by a non-Boltzmann density distribution and fluxes
[6, 7].

In the presence of the Lorentz force, correlations appear in the velocity due to the mixing of different
velocity components. Whereas the correlations are transient in a single-temperature (equilibrium) system,
in a multithermostat system different velocity components remain correlated in the stationary state. As a
consequence, the spatial degrees of freedom remain correlated in the stationary state giving rise to an
anisotropic diffusion matrix with its eigenvectors misaligned with those of the temperature. The Lorentz
force induced coupling is quite distinct from previous studies of multithermostat systems (without
Lorentz force) in which the spatial degrees of freedom were coupled via an anisotropic potential [26, 31].
Spatial correlations exist only when the principal axes of the potential do not match with the temperature
axes.

In this paper, we showed that on confining the particle via an isotropic harmonic potential, an
interesting stationary state emerges: it has a nontrivial density distribution that depends on the applied
magnetic field but is otherwise flux-free. However, by breaking the symmetry in the system using a spatially
inhomogeneous magnetic field, the Lorentz force induces fluxes in the system. For Tx = Ty the magnetic
field contribution drops out entirely from the equilibrium distribution. This is in fact expected from the
Bohr–van Leeuwen theorem [35] which states that the thermal average of magnetization is always zero in
an equilibrium system.

In future work, we will extend the idea of the current study to include interacting particles [36, 37]. It
would also be interesting to study the escape problem for a multithermostat system [38–41]. Moreover one
could study whether some of the phenomenology in the multithermostat system can be reproduced by
stochastically resetting the particle to the axes with different rates.

Appendix A. Derivation of velocity autocorrelation

Here, we first rewrite equation (1) as a Wiener process and derive the corresponding Fokker–Planck
equation. Then, we solve the resulting diffusion equation and perform an inverse transformation to obtain
the solution in the velocity space. We start with equation (2) and multiply both sides by the integrating

factor e
Γ
m t , which yields

d

dt

[
e
Γ
m t · v(t)

]
=

1

m
e
Γ
m t · ξ(t). (A.1)

The variable transformation w(t) = e
Γ
m t · v(t) turns this equation in a Wiener process:

ẇ(t) =
1

m
η(t), (A.2)

where η(t) is a new stochastic noise with

〈η(t)〉 = 0, (A.3)

〈η(t)η�(t′)〉 = 2γkB e
Γ
m t · T · e

Γ�
m tδ(t − t′). (A.4)

The Fokker–Planck equation corresponding to equation (A.2) can be obtained using standard methods [32]
which reads as

∂P(w, t|w0)

∂t
= −∇w · j(w, t|w0), (A.5)

where j(w, t|w0) is the flux in the w space, given as

jw(w, t|w0) = −Dw∇wP(w, t|w0), (A.6)

where Dw(t) = 〈η(t)η�(t)〉/2m2. The substitution of equation (A.6) into (A.5) results in equation (4) in
the main text. Using the Fourier transformation equation (4) can be solved. The transformed equation can
be written as

∂P̃(k, t)

∂t
= −

[
k� · Dw(t) · k

]
P̃(k, t). (A.7)

where the tilde indicates a Fourier transformation from the variable w into k. The solution to
equation (A.7) reads

9
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P̃(k, t) = exp

[
−1

2
k� ·

(
2

∫ t

0
Dw(s)ds

)
· k

]
. (A.8)

The inverse Fourier transform of equation (A.8) is

P(w, t|w0) =
exp

[
− 1

2 (w −w0)� ·
(

2
∫ t

0 Dw(s)ds
)−1

· (w −w0)

]
√

(2π)3 Det
(

2
∫ t

0 Dw(s)ds
) , (A.9)

In order to obtain the probability distribution of the velocity of the particle we use the following
transformation

P(v, t|v0) = Jw(v, t)P(w, t|w0), (A.10)

where

Jw(v, t) = Det

(
∂(w1,w2,w3)

∂(v1, v2, v3)

)
, (A.11)

= etr[ 1
m (γ1−qBM)t], (A.12)

is the Jacobian reflecting the variable transform from w to v. The trace of the matrix M is zero which

results in Jw(v, t) = e
3γ
m t

When plugged into equation (A.10) gives

P̃(v, t|v0) =
exp

[
− 1

2 (e
Γ
m tv − v0)T ·

(
2
∫ t

0 Dw(s)ds
)−1

· (e
Γ
m tv − v0)

]
√

(2π)3 e−
6γ
m t Det

(
2
∫ t

0 Dw(s)ds
) , (A.13)

where v0 = w0. Considering e
γ1
m t = e

γ
m t 1 and

(
e−

qBM
m t

)�
= e

qBM
m t , equation (A.13) results in equation (6)

in the main text, where the conditional velocity autocorrelation is defined as

Φ(t) =

[(
e
Γ
m t
)�

·
(

2

∫ t

0
Dw(s)ds

)−1

· e
Γ
m t

]−1

. (A.14)

By substituting Dw , defined after equation (A.6) into (A.14) one gets

Φ(t) =
2γkB

m2

∫ t

0
e−

Γ
m (t−s) · T · e−

Γ�
m (t−s)ds, (A.15)

Making the change in variables t′ = t − s, equation (A.15) can be written as

Φ(t) =
2γkB

m2

∫ t

0
e−

Γ
m t′ · T · e−

Γ�
m t′dt′. (A.16)

The derivation of equation (7) is complete. It can be alternatively represented in terms of the eigenvalues
and eigenvectors of the matrices Γ and Γ�, given as

ΓL = LΛ, (A.17)

Γ�R = RΛ, (A.18)

where Λ is a diagonal matrix of the eigenvalues of the matrix Γ (and Γ�), and L (and R) is the
corresponding matrix of eigenvectors. Using equations (A.17) and (A.18) one can write

e−
Γ
m t′ = L e−

Λ
m t′L−1, (A.19)

e−
Γ�

m t′ = R e−
Λ
m t′R−1. (A.20)

Plugging equations (A.19) and (A.20) into equation (A.16), one gets

Φ(t) =
2γkB

m2
L

(∫ t

0
e−

Λ
m t′ T̂ e−

Λ
m t′dt′

)
R−1, (A.21)

where T̂ = L−1TR can be interpreted as the matrix of rotated and mixed temperatures due to the magnetic
field.
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Appendix B. Derivation of the steady-state solution

In this section, we present the method which is used to obtain the solution to equation (20) which, for
convenience, we recall it:

∂P(x, y, t)

∂t
= ∇ ·

[
D∇P(x, y, t) + Γ−1∇U(x, y)P(x, y, t)

]
. (B.1)

This equation is a linear multivariate Fokker–Planck equation with a Gaussian solution, given as [31]

P(x, y, t) =
1

2π
√

Det(X)
exp

[
−1

2
(x, y)� · X−1 · (x, y)

]
, (B.2)

where X is the covariance matrix which satisfies the following Lyapunov equation:

dX

dt
= AX + XA� + B, (B.3)

where the matrix A ≡ −εΓ−1 is given by

A = − ε

γ(1 + κ2)

(
1 κ

−κ 1

)
, (B.4)

and the matrix B ≡ 2Ds is given as

B =
2kB

γ(1 + κ2)2

(
Tx + κ2Ty −κ(Tx − Ty)

−κ(Tx − Ty) Ty + κ2Tx

)
. (B.5)

For the stationary solution the stationary covariance matrix, XSS obeys the corresponding Lyapunov
equation by setting dX/dt = 0. This implies that the solution to the stationary Lyapunov equation reads

XSS =

∫ ∞

0
eAt · B · eA�tdt. (B.6)

By plugging equations (B.4) and (B.5) into equation (B.6), one gets the covariance matrix as

XSS =
1

2εkB(1 + κ2)

(
2Tx + κ2(Tx + Ty) κ(Tx − Ty)

κ(Tx − Ty) 2Ty + κ2(Tx + Ty)

)
. (B.7)

The substitution of equation (B.7) into (B.2) results in the solution to the corresponding Fokker–Planck
equation (B.1) which is given by equation (21) in the main text.
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