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Abstract:

Using a sequential conditional independence assumption, this paper discusses fully nonparametric estimation
of natural direct and indirect causal effects in causal mediation analysis based on inverse probability weight-
ing. We propose estimators of the average indirect effect of a binary treatment, which operates through inter-
mediate variables (or mediators) on the causal path between the treatment and the outcome, as well as the
unmediated direct effect. In a first step, treatment propensity scores given the mediator and observed covari-
ates or given covariates alone are estimated by nonparametric series logit estimation. In a second step, they
are used to reweigh observations in order to estimate the effects of interest. We establish root-n consistency
and asymptotic normality of this approach as well as a weighted version thereof. The latter allows evaluating
effects on specific subgroups like the treated, for which we derive the asymptotic properties under estimated
propensity scores. We also provide a simulation study and an application to an information intervention about
male circumcisions.
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1 Introduction

While a large literature in social sciences focuses on assessing the average treatment effect (ATE) of some inter-
vention, quite frequently, also the causal mechanisms through which the effect materializes appear interesting.
Gelman and Imbens (2013), for instance, argue that in many cases not only the ‘effects of causes’ seem relevant,
but also the ‘causes of effects’. When for example assessing the earnings effect of a training program, policy
makers might want to know whether the total impact comes from a change in search effort, human capital, or
other mediators that are themselves affected by the training. For this reason, causal mediation analysis aims at
disentangling a treatment effect into the indirect effect operating through one or several mediators as well as
the direct effect, net of mediation. Even under random treatment assignment, total effects can in general not
be disentangled by bluntly controlling for mediators, because this likely introduces selection bias, see Robins
and Greenland (1992). However, direct and indirect effects are identified under a particular sequential condi-
tional independence assumption that assumes the exogeneity of the treatment given observed covariates and of
the mediator given observed covariates and the treatment, see for instance Imai, Keele, and Yamamoto (2010).
Huber (2014) shows that under this assumption, identification is obtained by weighting observations by the in-
verses of particular treatment propensity scores! and considers semiparametric estimation based on parametric
propensity score models in a simulation study and an application.

This paper is the first to consider fully nonparametric estimation of natural direct and indirect effects [in the
denomination of Pearl (2001)] based on inverse probability weighting (IPW), using series logit estimation for
the computation of the propensity scores. The advantage of the latter approach is that it prevents inconsistency
of IPW due to an incorrectly specified parametric functional form of the propensity scores. We formally show
that under the sequential conditional independence assumption and particular regularity conditions, nonpara-
metric IPW is root-n consistent and asymptotically normal. Furthermore, our estimator attains the semipara-
metric efficiency bounds for mediation analysis derived by Tchetgen Tchetgen and Shpitser (2012). We therefore
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contribute to a growing literature concerned with assessing direct and indirect effects based on conditional in-
dependence under rather flexible model assumptions,2 see for instance Pearl (2001), Petersen, Sinisi, and van
der Laan (2006), Flores and Flores-Lagunes (2009), VanderWeele (2009), Imai, Keele, and Yamamoto (2010),
Hong (2010), Albert and Nelson (2011), Imai and Yamamoto (2013), Tchetgen Tchetgen and Shpitser (2012), and
Vansteelandt, Bekaert, and Lange (2012), among others.? In addition to the evaluation of these effects in the
total population, we in contrast to Huber (2014) also discuss the identification and estimation of weighted di-
rect and indirect effects. This provides a framework for evaluating causal parameters in interesting subgroups,
such as the direct and indirect effects on the treated, which are explicitly considered in this paper. Also for the
estimators of the weighted effects in general and the effects on the treated with estimated propensity scores in
particular, we show root-n consistency and asymptotic normality.

Furthermore, we investigate the finite sample performance of nonparametric IPW in a simulation study and
compare it to other estimators considered in the literature, namely estimation based on (parametrically) simu-
lating potential mediators and outcomes using the ‘mediation” package for R by Tingley et al. (2014) and IPW
with parametric propensity scores as in Huber (2014). Finally, we apply our estimator (as well as the other meth-
ods considered in the simulations) to the experimental evaluation of Chinkhumba, Godlonton, and Thornton
(2014) who investigate an information intervention about male circumcisions and HIV risk in urban Malawi.
We investigate whether the information treatment affects the event/willingness of being circumcised indirectly
through a change in the assessment of the relative HIV risk for circumcised and uncircumcised males (which
serves as mediator), or ‘directly’, i.e. through other mechanisms. The results point to a small indirect effect,
while the direct effect estimates are never statistically different from zero.

The remainder of this paper is organized as follows. Section 2 defines the average natural direct and indi-
rect effects and presents the identifying assumptions. Section 3 discusses nonparametric estimation based on
IPW as well as inference and shows root-n consistency and asymptotic normality under particular regularity
conditions. Section 4 extends the identification and estimation results to weighted effects and to the effects on
the treated under estimated propensity scores, respectively. Section 5 provides a simulation study. Section 6
presents an application to the direct and indirect effects of an information intervention about male circumci-
sions and HIV risk in urban Malawi. Section 7 concludes. All proofs are deferred to Appendix A.

2 Parameters of Interest and Identifying Assumptions

2.1 Natural Direct and Indirect Effects

We denote by D a binary intervention or treatment variable and by Y the outcome variable of interest. We would
like to disentangle the causal effect of D on Y into a direct effect and an indirect impact that works through
one or several discrete or continuous intermediate variables or mediators, denoted by M. Figure 1 provides
a graphical illustration of the causal framework, in which arrows represent causal effects from one variable
to another, but any confounders are omitted for the sake of simplicity. The definition of the total, direct, and
indirect effects makes use of the potential outcome framework, see for instance Rubin (1974), and its adaptation
to mediation analysis, see for instance Rubin (2004), Ten Have et al. (2007), and Albert (2008). M(d), Y(d, M(d))
denote the potential mediator state and the potential outcome, respectively, under treatment 4 € {0, 1}. A =
E[Y(1, M(1)) — Y(0,M(0))] yields the (total) average causal effect, also known as average treatment effect (ATE),
which has received much attention in the treatment or program evaluation literature, see for instance Imbens
and Wooldridge (2009) for a survey.

M

D * X
Figure 1: Graphical illustration of the mediation framework.

The (average) natural direct effect [using the denomination of Pearl (2001)]* is defined as the mean effect of
varying the treatment when keeping the mediator fixed at its potential value for some d € {0, 1}:

6(d) = E[Y(1,M(d)) — Y(0,M(d))], d€{0,1}. M
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Analogously, the (average) indirect effect is defined as the mean effect of shifting the mediator to its potential
values under treatment and non-treatment when keeping the treatment fixed:

6(d) = E[Y(d,M(1)) —Y(d,M(0))], d€{0,1}. 2

The ATE is the sum of the direct and indirect effects defined upon opposite treatment states:

A E[Y(1,M(1)) — Y (0,M(0))]
E[Y(1,M(0)) — Y (0,M(0))] + E[Y(1,M(1)) — Y (1,M(0))] = 6(0) + 6(1) @)

E[Y (1, M(1)) = Y (0, M(1))] + E[Y (0, M(1)) — Y (0,M(0))] = 6(1) + 6(0).

The notation 6(1), 6(0) and &(1), 5(0) point out that direct and indirect effects may be heterogeneous in the
treatment, which allows for interaction effects between the treatment and the mediator. No effect is identifiable
without assumptions, because either Y(1, M(1)) or Y(0, M(0)) (but never both) is known for any individual, while
Y(1, M(0)) and Y(0, M(1)) cannot be observed for anyone (as an individual can either be treated or non-treated,
but not both at the same time).

2.2 Identification

Like Imai, Keele, and Yamamoto (2010) and many others, we rely on a sequential conditional independence
assumption for identification. To this end, let X denote a vector of observed covariates that potentially confound
the treatment, the mediator, and the outcome. Furthermore, we denote by X, .# the supports of X and M,
respectively.

Assumption 1 (conditional independence of the treatment):
{Y(d’, m), M(d)} L D | X =xforalld’,d €{0,1}and (m,x) € M x X

Assumption 1 requires the treatment to be conditionally independent of the potential mediator states and
outcomes given X, ruling out unobserved confounders jointly affecting the treatment on the one hand and the
mediator and/or the outcome on the other hand conditional on the covariates. This restriction is known as
conditional independence, selection on observables, or exogeneity in the treatment evaluation literature.

Assumption 2 (conditional independence of the mediator):
Yd,m)yLM | D=d,X=xforalld’,d € {0,1}and (m, x) € 4 x X .

Assumption 2 requires the mediator to be conditionally independent of the potential outcomes given D
and X, ruling out unobserved confounders jointly causing the mediator and the outcome conditional on the
treatment and the covariates.

Assumption 3 (common support):
Pr(D=d| M =m, X =x) is bounded away from zero for alld € {0, 1} and (m, x) € 4 x X .

Assumption 3 is a common support restriction requiring that the conditional probability to be treated given
M, X must be bounded away from zero in either treatment state. Note that Pr(D = d | X = x) must therefore be
bounded away from zero on &, too. By Bayes’ theorem, Assumption 3 also implies Pr(M =m|D =d, X = x) >
0 or, in the case of a continuous M, that the conditional density of M given D, X is larger than zero. Therefore,
the mediator state must not be a deterministic function of the treatment conditional on X.

Identification of the natural direct and indirect effects under these or similar assumptions based on functions
of the conditional mean of Y given D, M, X and the conditional density of M given D, X (the mediation formulae)
has been demonstrated for instance in Imai, Keele, and Yamamoto (2010) and Pearl (2001). Huber (2014) shows
that the effects as well as the mean potential outcomes may alternatively be identified by inverse probability
weighting (IPW) based on the conditional probabilities Pr(D = d | M, X) and Pr(D = d | X), henceforth referred
to as propensity scores:

— YD _ Y(1-D) Pr(D=dM, X)
A a0 L N
— = r(D=1M, _ 1=Pr(D=1M,
5(d) - [Pr(l/%delNId’X)( Pr(l;:l\X) 1-Pr(D =1|X) )]’ (4)
/ — {D=d} Pr(D=d"M,X) /
ELY@,M@)] = E|55 Bl PbodX] ford,d’ € (1,0).
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I{-} is the indicator function which is one if its argument is satisfied and zero otherwise. The expressions for
8(d) and &(d) are (by Bayes’ theorem) mathematically identical to weighting-based representations of the direct
and indirect effect relying on Pr(D =1 | X) and Pr(M = m | D, X) (rather than Pr(D = 1| M, X)) suggested in Hong
(2010) and Tchetgen Tchetgen and Shpitser (2012), see their ‘strategy 3’. The practical advantage of the approach
advocated in this paper is that Pr(D = 1| M, X) may be easier to estimate than Pr(M = m | D, X) or the respective
conditional density of M in the case of a continuous M. This particularly relevant when the support of M is rich
(i.e., contains many values) or M is a vector of several variables.

We note that the identification results in (4) can be generalized in various dimensions. First, replacing Y
everywhere in (4) by an indicator function that Y is smaller than or equal to a particular value a, i.e. I{Y <
a}, allows the evaluation of distributional features and effects. In this case, the expressions for 6(d) and §(d)
provide the direct and indirect effects on the cumulative distribution function (cdf) evaluated at a rather than
the average effects. Likewise, the expressions for the mean potential outcomes identify the potential cdf’s when
Y is substituted by I{Y < a}. Inverting the cdf’s in turn allows identifying quantile treatment effects, given that Y
satisfies particular continuity conditions. See Donald and Hsu (2014) for related results in the context of (total)
treatment effect evaluation. Second, the results can be extended to the evaluation of weighted direct and indirect
effects as a function of the distribution of X in an analogous way as suggested in Hirano, Imbens, and Ridder
(2003), henceforth HIR, in the context of the ATE. As more thoroughly discussed in Section 4, this permits the
identification and (under particular assumptions) root-n-consistent estimation in specific subgroups. As one
important special case of weighted IPW, Section 4.3 shows this for the treated population. Finally, the properties
derived for our estimators also apply to the estimation of the direct and partial indirect effects discussed in
Section 2.3 of Huber (2014) when some covariates in X are themselves affected by the treatment.

3 Estimation and Inference

3.1 Nonparametric Estimation

As in Huber (2014), the proposed estimators are based on normalized versions of the sample analogs of the
IPW-based identification results of expression (4), with weights adding up to unity in either treatment state,
see Imbens (2004) and Busso, DiNardo, and McCrary (2014). The normalized estimators of the direct effects
under treatment and non-treatment, for instance, correspond to

7 2y YiDi/POXD) 5 2L, Yi(l = DM, X /[(1 = p(My, Xi))p(Xp)]

F 2L DyP) YL (1= Dpp(My X /L1 = pUMy X)pXp] © )
7 Zi:l Y;'Di(l - P(Mi/ Xi))/[P(Mi,Xi)(l - P(Xz‘))] % Zz‘:l Yi(l - Di)/(l - P(Xi))

Iy D1 = M, X)) [ [P(M;, X)) (1 — p(X)))] Iy A=Dp/a-pXp)

o(1) =

6(0)
and the normalized estimators of the indirect effects under treatment and non-treatment correspond to

Y DY /p(X;) 3 LY YD (1 — (M, X)) /[P (M, X)) (1 — p(X)))]

YL D/pX) A Y D= p(M;, X)) /(M X)) (1= pXi)]
7 ey Yi(1 = Dp(M, X) /10 = pM, X))p(Xp] 5 XL, V(1= D)/ (1 = p(Xy)
Iy (A =D)pM;, X)) /11— pM, X))P(X))] Ly 1-Dp/(1-pX))

5(1) =

(6)
5(0)

i indexes the observations in an i.i.d. sample of size n. p(X;) and p(M;, X;) denote estimates of the true propen-
sity scores Pr(D =1|X = X;) and Pr(D = 1|M = M;, X = X;), henceforth abbreviated by p(X;) and p(M;, X,),
respectively. In contrast to Huber (2014), we estimate the propensity scores nonparametrically by series logit
estimation (SLE) based on power series as in HIR. Normalized estimators for the indirect effects, denoted by
0(1), 6(0), are obtained in an analogous way. See also Appendix A.1 for the normalized estimators of the poten-
tial outcomes.

To illustrate the SLE approach consider, for instance, p(X;) and suppose that X contains only continuous
variables with dimension d,.. Let A = (A,.., A4 )" € Zi" be a d,-dimensional vector of non-negative integers
where Z, denotes the set of non-negative integers, and define the norm for 4 as |A| = Z}i;l )\]-. Furthermore,
let {A(k)};2, be a sequence including all distinct A € Zix such that |A(k)| is non-decreasing in k and let x* =

A . .
I—[}i':*l X; /. For any integer K, define REx (x) = (x*®, . xMK)Y) a5 a vector of power functions. Denote by JL(a)
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= exp(a)/(1+exp(a)) the logistic cumulative distribution function (CDF). The SLE for p(x) is defined as p(x) =
Z (RK(x)' g ) where

A, = argrr}r%x% Y (DiIn Z(RR: (X)) i) + (1= D) In (1 = Z(RK (X)) 7y ). 7)

i=1

The asymptotic properties of p(x) are discussed in Appendix A of HIR. p(m, x) is defined in an analogous way.

3.2 Asymptotic Behaviour

To show root-n-consistency and asymptotic normality of our estimators, we subsequently introduce regularity
conditions that are very much related to those in HIR.

Assumption 4 (distribution of (X, M)):

(i) The distribution of the (d,, + d,)-dimensional vector (M, X) is absolutely continuous with probability
density f(m, x); (ii) # and X, are Cartesian products of compact intervals; (iii) f(m, x) is twice continuously
differentiable, bounded above, and bounded away from 0 on ./ x .

Assumption 4 rules out that M and /or X contain any binary or discrete variables, which seems restrictive for
empirical applications. We impose this assumption for the sake of ease of discussion and note that our results
could be easily extended to include discrete covariates and mediators as in Donald, Hsu, and Lieli (2014). See
Section 3.4 for more discussion on this matter.

Assumption 5 (smoothness of propensity scores):
(i) p(x) is continuously differentiable of order p, > 7d,; (ii) p(m, x) is continuously differentiable of order p,,
>7(d,, +d,).

Assumption 5 is analogous to Assumption 4 of HIR and requires the propensity scores to be sufficiently
smooth.

Assumption 5 requires that p(x) and p(m, x) are continuously differentiable of order p, > 7d, and p,, >
7(d,, + d,), respectively. When the numbers of continuous variables in X and M are large, this condltlon may
look restrictive in practice, albeit holds in studies assuming parametric specifications of the propensity score
functions such as probit or logit models. On the other hand, if the smoothness condition is a concern in empirical
studies, then one can relax it condition by using local polynomial estimators as in Ichimura and Linton (2005)
and Donald, Hsu and Lieli (2014) or higher order kernel estimators as in Abrevaya, Hsu, and Lieli (2015).
However, a disadvantage of these methods is that the resulting estimated propensity score functions are not

necessarily bounded away from 0 and 1 in finite samples, such that trimming might be required.

Assumption 6 (series estimator):
(i) The SLE of p(x) uses a power series with K, = n”* for some d,/4(p, — d,) <v, <1/9, K3n~Y/2 - 0 and
I<;(’g"+2”lx)/zglxnl/4 — 0; (ii) The SLE of p(m, x) uses a power series with K,,, = n”» for some (d,, + d,.)/4(p, — d,,, —

d,) < vy < 1/9, K3n™'/2 — 0 and K, P30 +200/ Gty

Assumption 6 restricts the growth rate of the number of approximating functions to be included in the
series estimator of the propensity score. Note that our assumption is stronger than Assumption 5 of HIR by
requiring that K3n~1/2 — 0 and K~ P++24)/24:y1/4 _, 0, which ensures that sup, o p(x) — p(x) | = op(n_1/4). An
analogous result applies to p(m, x). These extra conditions on power series terms are needed because in contrast
to HIR, our estimation approach is based on two propensity scores. When employing mean-value expansions,
we require that the second order terms are of order op(l), for which SUP,co p(x) —px)| = op(n_l/ 4y and

SUP,,,c 4 xeq P, X) — p(m, x)| = op(n_1/4) are sufficient conditions.

We now define several conditional moments related to potential and observed outcomes: p;-(x) = E[Y(d,
M@) | X=x]and ¢ (m, x) =E[Y|M=m, X=x,D =d] ford,d’” € {0, 1}. Note that

(1— D)Y p(M,X) |X—x],

pro(x) = E ) U—p(M,X)
Y 1 —pM,X)

|5

Por(X) = E[ P pLX) |X ]
7w
[ ran

™

Gi(m,x) = DY ‘M m,X =x

p(X,M) ]
Gomx) = E[LEDX M =, X =],

1-p(X,M)
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Assumption 7 imposes some regularity conditions on these moments and the second moments of the potential
outcomes.

Assumption 7 (moments of Y):
(i) E[Y] < oo; (ii) for d, d’ € {0, 1}, py4(x) are continuously differentiable over &’; (iii) for d = 0, 1, {;(m, x) is

continuously differentiable over ./ x X

Under our assumptions, nonparametric IPW estimation of the direct and indirect effects using SLE-based
propensity scores is root-n-consistent and asymptotically normal.

Theorem 1 Under Assumptions 1 to 7,

6(1) — 6(1)
0(0) —0(0) | D

Ji 501) — 601 S H0,7), 8)
5(0) — 6(0)

where V is a 4 x 4 covariance matrix generated by ¥ = (Yg(1), Yo(0), Y5y, Ps0))” With

lpe(])(Y/M/D/X) lpll(Y/M/D/X) - lpol(Y/M/D/X)/
l/JH(O)(Y/M/D/X) ¢10(Y/M/D/X) _IPOO(Y/M/D/X)/
¢5(1)(Y/M/D/X) lpll(Y/MlD/X) _1/710(Y/M/D/X)/

lp&(o)(YrM/DrX) = ¢01(Y1M/DrX) _¢00(Y/M/D/X)/

_ DY puX)
1, (Y, M, D, X) = m— (X) (D —p(X)) = p1,
o (Y,M,D,X) = A-DY , fou) (D—p(X)) —
00 ’ Yy l—p(X) 1}{(}() 00/
¥o(Y,M,D,X) = DY 1-pMX) | o h_pixy)
10l 5 T OpMX) 1-pX) d-pXn P
P (Y, M,D,X) = P2 P D — px))

1-pM,X) p(X) pX)

(1—pM, X))p(X) ’ o

and gy = E[Y(d, M(d"))] for d, &’ € {0, 1}.

We note that the expressions in Theorem 1 imply that our estimators attain the semiparametric efficiency
bounds for mediation analysis derived in Tchetgen Tchetgen and Shpitser (2012). Finally, a relevant question for
the practical implementation of the estimator is how to choose orders K, and K,, for propensity score estimation.
In the simulations presented in Section 5, we consider cross-validation for picking either parameter, see, e.g.,
Chapter 15 of Li and Racine (2007). We also consider overfitting by one order higher than suggested by cross-
validation. Even though cross-validation w.r.t. the the functional form of the propensity score does in general
not provide the optimal order for the estimation of direct and indirect effects in a given sample, the simulation
results suggest that this approach can yield satisfactory results in practice.

3.3 Inference

Inference based on the asymptotic results in Theorem 1 requires a consistent estimator of the asymptotic co-
variance matrix, denoted by 7. We first propose uniformly consistent estimators for p;;(x) and {;(m, x) with
d, d’ € {0, 1}. Let RX+(x) and RKn(m, x) be the column vectors of power functions used for the estimation of the
propensity score functions and define
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pru(x) = (% li f(’;Z)RK ' )( %iRKX(XQRKX(xi)')_lRKx(x),

Poo(®) = (%; u- D&?RK X)) (> ZRMX YRE: (X)) RK= (),

pro) = (%; e pte e ey ) ;RKX KORE (X)) REx (),

o) = (= ; e e R0 (5 ZRK XORK: (X)) 'R (o),
&m0 = (o Z a3y R X0 - ZRKm (M, X)RKn (My, X)) ™ REn (1, ),
Zy(m,x) = (% i %RK,,, (M, X,)’ )(% ZRKW (M, X)REm (My, X)) RKn (m, x),

1

This permits defining the estimated influence functions as

@9(1) (Y/Mr D/ X)
1/39(0) (Y/M/ D/ X)
l/J(S(l) (Y/M/ D/ X)

lZ’ll(YlM/DrX) - 1201(Y/M/D;X)/
l/ilO(Y/MID!X) - l/ilO(Y/M/D/X)/
l/J(]l(Y/MlD/X) - I/JOO(Y/M/D/X)/

l/’)é(o)(Y,M,D,X) ll}lo(Y/M/D/X) _l/;OO(Y/M/D/X)/
b, (Y,M,D,X) = DY _ ﬁll(x)(D—A(X))—A
l/JII ’ 1= - ﬁ(X) Yn(x .ulll
00 ’ Yy - 1;);;()()1 (M %) AP (X) VOO’
~ — plvl, P10 -
Y,M,D,X = = — — D—p(X
Pro( ) PO, X) 1 pC%) + (1—p(X))( p(x))
(M, X) . -
—= — D —35(M, X)) — ilq,
- - pML, Oo1 "
Y,M,D, X = — = — D—9(X
Yol : M) p) | po TP
Go(M, X) . .
D —35(M, X)) — iy,
= p, 300px) - P o
where
1 L. DY, 1 1& D, 1 -D)Y; (1-D;)
””‘E;mxo n & pX; ‘EZ 1-p(X)) ;1—;6(&)’

_ l i DiYi 1-— ﬁ(MZ‘/Xi) /l 1 Di 1-— ﬁ(Mi/Xi)
=1 ﬁ(MuX ) 1-— ﬁ(X ) i=1 ﬁ(MZIX ) 1-— ﬁ(Xz) ’

- 1y _(=DpY; pM;, X)/ Z (1-D;)  pWM;,X;)

Hot = 7 Zi=1 T5M,, X)) p(Xy) =1 TPV X) Py

=

10

Furthermore, define lpi = (l/}Q(l),i/ 1159(0),1" 1/35(1)/1', 1155(0),1'), with

Yoy, = P1u(Yi, My, Dy, Xi) = 0, (Y, My, Dy, X3),
Pow),i = Pr0(Y1, My, Dy, Xi) = oo (Y, My, Dy, X3),
Vsy,i = Y1 (Y, My, Dy, Xi) = hyo(Y3, My, Dy, X3),
Vs0,i = Yo1 (Y, My, Dy, Xi) = oo (Y3, M;, Dy, X5).

Finally, let 7" = n~! >, .. By the same arguments as in HIR, one can show that V & 9. The details are
therefore omitted.

We also note that given the asymptotic normality of our estimators, the bootstrap is a consistent inference
method, too, and is used in our simulations [see Section (5)] and application [see Section (6)]. To be specific, we
draw bootstrap samples of size n with replacement. We then estimate the propensity scores with the same orders
K, and K,,, as chosen in the original sample for effect estimation and compute the direct and indirect effects in


http://rivervalleytechnologies.com/products/

Automatically generated rough PDF by ProofCheck from River Valley Technologies Ltd

== Hsuetal. DEGRUYTER

the bootstrap samples using the bootstrap estimates of the propensity scores. Then, the limiting distribution of
Vi(B(1) — (1)), for instance, can be approximated by vn (6b1) — % Zle 6% (1)) with superscript b indicating a
bootstrap estimate and B denoting the number of bootstrap samples. This allows computing the standard error
of A(1) by the standard deviation of 6b(1) across all bootstrap samples B.

3.4 Incorporating Discrete Covariates and Mediators

Our theory only considers the case in which X and M are vectors of continuous variables. We subsequently
discuss the implications of having discrete variables among the covariates and/or mediators. We to this end
assume that on top of X, there exists an additional covariate X satisfying ¥ € {0, 1} to be included in the condi-
tioning set. Even though we focus on this binary case, we note that it easily extends to more general cases with
discrete variables. For estimating the propensity score p(x, %), we stratify the sample on the values of X and
perform SLE as outlined in equation (7) separately in the subsamples satisfying X; = 1 and X; = 0, respectively,
foralli €1, ..., n. Estimation of p(m, x, ¥) proceeds analogously. Finally, to obtain 0(d) and 5(d) for d € {0, 1}, we
replace p(x) and p(m, x, ) by p(x, %) and p(m, x, ¥) in (5) and (6), respectively. Concerning the regularity condi-
tions, we note that while X needs to be added to the conditioning set, d, and d,,, continue to denote the numbers
of continuous variables in X and M, respectively. Therefore, Assumption 4, for instance, remains valid, as well
as all the other results required for asymptotic normality.

However, stratifying on all possible combinations of discrete variables may in the case of a large number of
strata entail the practical issue that the numbers of observations in some strata are very small (or zero) even for
large n. In such cases, functional form restrictions on SLE might be imposed as in Donald, Hsu, and Lieli (2014)
to mitigate such issues related to the curse of dimensionality. Firstly, one approach is to allow lower order terms
in R&(X) of equation (7) —i.e. up to some lower order L < K, — to vary across strata, while higher order terms
are assumed to be homogenous across strata (and thus to be estimated in the total sample). Secondly, one may
rule out specific interactions between discrete variables to reduce the dimension of strata. To see this, suppose
that the set of covariates is (X’, X;, X,) where X; and X, are two binary variable, implying four strata defined
by the values of X; and X,. One may implement the SLE separately for subsamples with Xi=X=0X;=1,
and X,; = 1, while not considering the finer strata Xi=X=1,X;=0X, =1),(X;; =1,X,; = 0). This rules
out interactions between X; and X, w.r.t. their effect on the probability of D = 1. These two types of restrictions
may be combined and do not affect the asymptotic theory if the restrictions are removed as n grows large.

4 Weighted Direct and Indirect Effects

4.1 Identification of Weighted Effects

In this section, we discuss the identification, estimation, and asymptotic results for weighted effects. Let to
this end g(X) denote a weighting function that depends on X or subsets thereof and satisfies |g(X)| < oo and
E[g(X)] > 0. Weighted direct and indirect effects as well as mean potential outcomes (denoted as 8,(d), 6,(d),
ag)[Y(d, M(d"))]) are identified by including g(X)/E[g(X)] in the respective expectation operators presented in

o - gl 8% YD Y(1— D) Pr(D = dM, X)
@) = E[g(X)] (Pr(D =1M,X) 1-Pr(D= 1|M,X)) Pr(D=dX) |’
s - p| 8% _YID=d} (Pr(D=1MX) 1-Pr(D=1MX) 9
@) = E[g(X)]Pr(D dM, X) ( Pr(D=1X)  1-Pr(D=1X) ) ©)
o ¢X) YD =dy Pr(D=dM,X) ,
Eg[Y(d,M(d )] = E | Elg(X)] Pr(D =AM, X) Pr(D = 71X) ] ford,d' € {1,0}.

This allows identifying the effects for specific subgroups of interest. For instance, setting ¢(X) = p(X) with E[g(X)]
= Pr(D = 1) yields the direct and indirect effects as well as the potential outcomes among the treated. To see
this, consider E [Y(d, M(d"))] = E[Y(d, M(d")) | D = 1] and note that (when M, X are continuous),
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p(X) YD =d} Pr(D=dM,X)
Elp(X)1Pr(D =dM,X) Pr(D=4d'|X)

e R
: Pr%l()x=) 1) . ’ _, '_ = /_ = MID=d", X=x X

B / m/ [Y(d, m)IM(d") = m, X = x]dF ) x=x (M)AEx (x)

= /E[Y(d,M(d’)>|X =x]$}21>zﬁx(x)

E[Y(d,M(d/)NX = x]dFX|D:1(x)
=E[Y(d,M@d)D = 1].

(10)

The first equation follows from the law of iterated expectations, the second from basic probability theory and
replacing expectations by integrals, the third and sixth from Bayes’ theorem, the fourth from Assumption 1 and
Assumption 2, and the fifth and seventh from integration. Analogously, the parameters for the nontreated are
obtained by setting g(X) =1 — p(X). Furthermore, this approach can be used to asses effect heterogeneity w.r.t.

X, e.g. by defining ¢(X) as an indicator function that X takes particular (ranges of) values.

4.2 Estimation and Asymptotics Under Known Weighting Functions

Based on (9), we propose the following estimators for a known weighting function g(X):

7 L §XDYiD/pX)  § 3L, (X Yi(1 = D)pM,, Xi) /[(1 = p(My, X)p(X)]

, (11)

0,(1) = 7 ~ 7 — — —
# IYT eX)Dy/p(X) A @(X) (1 — DppMy, X)) /11 — p(M;, X)P(X))]
0.(0) = %Z?:lg(xi)YiDi(l —PpM;, X)) /[P, X)) (1 = p(X)))] 3 %Z:;lg(xi)Yi(l —-D;)/(1—pXp))
g 3 2L 8 (X)Di(1 = pM,, X)) /[P(M;, X)) (1= p(X)))] 1YY" (1=D)/(1—pX;)
5.1y = %21 8(X)D;Y;/p(X;) _ 22 8X)YD;(1 — p(M;, X)) [ [P(M;, X)) (1 — p(X)))]
£ %Zn?:lngi/ﬁ(Xi) Lyt g(XnD;(1 — (M, X))/ [p(M;, X (1 = (X)) ’

1 ANY. (1 =DHNo(M. XN/T(1 —H(M. X-Vp(X.)] 1 Y. (1—=—DN/(1 —H(X.
S0 = LY 8(XDY;(1 = DYp(M;, X /11 = pMy, X))PX)] & XL g(X)Y;(1= D)) /(1= p(Xy)

Iy 8(X) (1 —Dy)pM;, X)) /[(1 = p(My, X))P(X)] Lyt 8Xp(1—Dy/1-pX))

Under our previously discussed assumptions, nonparametric IPW estimation of the direct and indirect effects

using SLE-based propensity scores are root-n-consistent and asymptotically normal.

Theorem 2
Suppose that | g(x)| in uniformaly bounded on X and E[g(X)] > 0. Under Assumption 1 to Assumption 7,

0, (1) — 6,(1)
03(0) = 000) | p
8 8 >
54 (0) = 8, (0)

where V is a 4 x 4 covariance matrix generated by 1, = (z,bega), zpeg(o), zp5g(1), %3(0))/ with

(12)
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Yoy, M,D,X) = 110, M,D,X) — iy o (Y, M, D, X)
Yo, 0 (Y, M,D,X) Prog (Y, M, D, X) = 0o (Y, M, D, X)
l)y&g(l)(Yer D, X) P11,4(Y, M, D, X) — 1y, (Y, M, D, X)
Yo, 0 (Y, M,D,X) = (Y, M,D,X) = ¢ (Y, M, D, X)
8(X) DY B 011 (X)

lpll,g(ylM/DrX) = E[g(X)](p(X) (X) (D_p(X)) _yllrg)’
_ 8 =D (0

Poog M DX = ooy (Yoo * 1= poo @~ P30 ~ toog)

Prog Y, MDX) = S ( o 1o po %00 (D - p(X))
10,835 s#5 =y E[g(X)] (p(M,X) 1-pX) (1-pX)) P

P(M )10(1, X)) (D —pM, X)) = g ),

e (CMD,X) = ( (i-D)Y PMX) _puX)
0Lgh =i =y [g(X)] 1-pM, X) p(X) p(X) P

(1—pM, X))p(X) ’ 08/

where pay ¢ = E[g(X)Y(d, M(d")]/E[g(X)] for d, d’ € {0, 1}.

Inference for weighted effects can be performed in a similar way as outlined in Section 3.3.

4.3 Effects on the Treated with Estimated Propensity Scores

In this section, we discuss the estimation and asymptotic results for the subgroup of treated. Note that if the
propensity score p(X) was known, the results of Section 4.2 with g(X) = p(X) would immediately apply. However,
practically more relevant is the case that p(X) is unknown and needs to be estimated, which is considered in
this section. We denote by 8,(d) and J,(d) estimates of the direct and indirect effects among the treated, 6,(d)
=E[Y(1, M(d)) — Y(0, M(d)) | D = 1] and 6,(d) = E[Y(d, M(1)) — Y(d, M(0)) | D = 1], respectively.

The normalized sample analogs of the effects in (9) with an unknown weighting function g(X) = p(X) cor-
respond to:

LY YiDi A YU, Yi(1= DYpM,, X))/ (1= p(My, X))

- %Z,;;;lDi Ly (1= DppM, X)) /(1= p(M;, X))
8,00 = 7 2iey YiDi(1 = p(M;, X)) (B(X)) /[p(M;, Xp) (1 = p(X))]
Y D1 = M, X)) (BX)) /[P, X;) (1 = p(X;))]
A2 Vil = D) (p(X)) /(1 = p(X)) 13
7 i (1= D) (X)) /(1 = p(Xy)
5.1 = 7 i DiYi %ZiZIY,’Di(l—p(Mi,Xi))(p(Xi))/[p(Ml.,Xl.)(1_p(xi))]l
AN D R Di =M, X)) (PO M, X)L —pX)]
50 = 1z Vil DOPM X/ = pMy X)) 5 Yy Yill = Do (PX)/ A = pX)

Iy A =DypM;, X))/ (1 — p(M;, X)) LY (1=-D)PX))/1-pX))

Under the same assumptions as before, nonparametric IPW estimation of the direct and indirect effects among
the treated based on SLE-based propensity scores is root-n-consistent and asymptotically normal.

Theorem 3
Under Assumptions 1 to 7,

0,(1) — 6,(1)
6;(0) — 6,(0)
0p(1) = 04(1)
0¢(0) — 6,(0)

Ji Bro7) (14)

where Vy is a 4 x 4 covariance matrix generated by P, = (Yg,1y, Yo,0), ¥s,1), Ps,0)” With
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Yo,y (Y, M,D,X) = t1,,(Y,M,D,X) —9py1,(Y,M, D, X)
¥,00)(Y, M, D, X) P10, (Y, M, D, X) = 0,:(Y,M, D, X)
¥s,0)(Y, M, D, X) P11, (Y, M, D, X) — py,(Y,M, D, X)
5.0 (Y, M,D,X) =y, 1(Y,M,D,X) = thy0,,(Y, M, D, X)

1
YO M D X0 = W(D;;);ly“g)){y (X))
_ 14 - — Loo _
Yoot (Y,M,D,X) = E[pgx)]( (X)Dyll_p(éi/)[ N +((§<;0(X> Ho0,)D),
14 — pUV, P10
Y,M,D,X) = D —p(X
1/’10,t( ) E[p(}i)}g)(gp((ﬁ’gg)) 1—P(X) l—p(X)( P( ))
p 1M,
3, %1 = pey P~ PMXD) ~ piosD),
(Y,M,D,X) = ! ((1_D)Y (MX)+M(D— (M, X)) = p1 D)
Pt (AL DR = mpn T, 0P Topanx O TP T D)

where g,y = Elp(X)Y(d, M@)]/E[p(X)] for d, &’ € {0, 1}.

5 Simulations

This section presents a brief simulation study in which we investigate the finite sample performance of nonpara-
metric IPW based on (5) and SLE of the propensity scores, as well as of alternative estimators by considering
the following data generating process:

HBX:+X,)+ep >0}, M=BD+X:+X,)+ ey,
= D+M+B[(1+D)(X?+X,) + DM + X? + X,)] + €y, (15)
with X, ep, €pr, €y ~ A(0,1), X, ~ binomial(0.5), independently of each other.

D
Y

X, and X, are observed covariates and follow standard normal and binomial distributions, respectively. We
note that X; enters the equations of the continuous outcome Y and mediator M as well as the index function of
the binary treatment D both linearly and quadratically. ¢p, €y, €y are random and standard normally distributed
unobservables. The parameter § gauges the degree of confounding, i.e. how strongly the covariates jointly affect
D, M, and Y. B also determines the level of effect heterogeneity across values of the mediator and the covariates
rooted in the interaction terms between D, M, X, and X, in the outcome equation. In our simulations with 1000
replications, we set § = 0.1, 0.2, implying low and stronger confounding and effect heterogeneity, respectively,
and consider two sample sizes of n = 1000, 4000.5

We investigate the performance of the following estimators: (i) Nonparametric IPW using SLE-based
propensity scores as outlined in Section 3, where the orders K, and K,, for the series approximations are cho-
sen by leave-one-out cross-validation for either propensity score given X;, X, and X, X,, M, respectively. For
implementation, we make use of some functions provided in the ‘LARF’” package of An and Wang (2016) for
the statistical software R. On top of IPW based on cross-validated propensity scores (ipw cv), we also consider
an overfitted version (ipw ofit) where K, and K, are one order higher than suggested by cross-validation. (ii)
Semiparametric IPW based on parametric plug-in estimators as in Huber (2014) (sem ipw), using probit mod-
els for the treatment propensity scores. Note that all IPW estimators of (i) and (ii) apply a trimming rule that
discards observations with propensity scores smaller than 0.02 or larger than 0.98 to prevent exploding weights
due to small denominators.® (iii) Simulation-based estimation (sim) as proposed by Tingley et al. (2014), see the
‘mediation” package for R. The implementation considered here estimates the mediator and outcome models
as linear functions of D, Xy, X, and D, M, D M, X, X, respectively, in order to simulate potential mediators
and outcomes and compute direct and indirect effects. It therefore omits the squared terms of X; as well as
interactions with covariates in the outcome equation.

Table 1 reports the bias, standard deviation (sd), root mean squared error (rm) of the estimators under var-
ious combinations of 8 and n. As a general pattern, nonparametric IPW becomes relatively more competitive
when compared to IPW with probit-based propensity scores and simulation-based estimation as n and/or 8
increase. In any simulation design with n = 4000, our procedure with both cross-validated or overfitted propen-
sity scores by and large dominates the other estimators in terms of the root mean squared error. This is driven
by the lower absolute bias of nonparametric IPW due to not imposing parametric assumptions on the propen-
sity score or mediator/outcome models (in particular when 3 is large), while all methods are quite comparable
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in terms of standard deviations. We also see that for n = 1000, the overfitted version of our method moderately
outperforms estimation based on cross-validation. Under the larger sample size, however, both methods are
very similar in terms of bias, standard deviation, and root mean squared error.

Table 1: Simulation results for 8= 0.1, 0.2 and n = 1000, 4000.

n = 1000 6(1) 0(0) 4(1) 8(0)
B=0.1 bias sd rm cov bias sd rm cov bias sd rm cov bias sd rm cov
ipw cv 0.01 0.07 0.07 095 0.06 010 011 093 -0.050.11 0.12 093 -0.010.07 0.07 0.95
ipw ofit —0.00 0.07 0.07 096 0.01 0.07 007 096 -0.010.08 0.09 096 -0.000.07 0.07 0.96
sem ipw 0.05 0.07 0.09 0.89 0.04 0.07 0.08 09 004 009 010 092 0.03 0.07 0.07 0.93
sim 0.05 0.07 0.08 0.88 0.03 0.07 008 091 004 009 010 091 0.03 0.07 0.07 092
=02 bias sd rm cov bias sd rm cov bias sd rm cov Dbias sd rm cov
ipw cv —0.01 0.08 0.09 097 003 013 0.13 095 -0.040.13 0.14 094 -0.01 007 0.07 095
ipw ofit —-0.03 0.08 0.09 097 -0.010.09 0.10 098 -0.000.12 0.12 096 -0.010.08 0.08 0.96
sem ipw 021 009 022 038 0.06 0.09 011 089 025 013 028 049 0.10 0.07 013 0.71
sim 019 0.09 021 040 0.04 0.09 010 092 026 014 029 046 0.11 0.07 013 0.63
n =4000 o(1) 0(0) é(1) 8(0)
B=0.1 bias sd rm cov bias sd rm cov bias sd rm cov bias sd rm cov
ipw cv 0.00 0.03 0.03 096 0.00 0.03 0.03 09 000 004 004 095 0.00 0.03 0.03 0.95
ipw ofit 0.00 0.03 0.03 096 0.00 0.03 0.03 097 000 004 004 096 0.00 0.03 0.03 0.96
sem ipw 005 0.03 0.06 066 0.04 0.03 005 084 005 004 007 076 0.03 0.03 0.05 0.81
sim 0.04 003 005 065 0.02 0.03 0.04 083 005 004 007 075 0.03 0.03 0.05 0.79
=02 bias sd rm cov bias sd rm cov bias sd rm cov bias sd rm cov
ipw cv —0.01 0.04 0.04 095 000 004 004 098 -—-0.000.05 0.05 095 0.00 0.04 0.04 095
ipw ofit —0.02 0.04 0.05 095 -0.01 004 004 097 0.00 0.06 0.06 096 0.00 0.04 004 096
sem ipw 020 005 021 0.00 0.05 0.04 007 077 026 006 027 001 011 0.04 011 0.14
sim 0.16 0.04 0.16 0.00 0.00 0.04 0.04 088 027 007 028 001 011 0.04 012 0.09

‘bias’, ‘sd’, ‘rm’, and ‘cov’ denote the bias, standard deviation, root mean squared error, and coverage rate of the true effect when
bootstrapping /simulating 199 times. ‘ipw cv’, ‘ipw ofit’, ‘sem ipw’, and ‘sim” denote IPW using SLE based on cross-validation, [IPW using
SLE based on overfitting, semiparametric IPW using probit, and simulation-based estimation, respectively.

Table 1 also provides the coverage rates (cov), i.e. the share of simulations in which the 95% confidence
intervals of the estimators include the respective true effect. For the IPW methods, the standard errors required
for computing confidence intervals in each simulation sample rely on 199 bootstrap samples in which both the
propensity scores and effects are re-estimated. Also for the method of Tingley et al. (2014), inference is based on
199 simulation steps. In the case of nonparametric IPW with cross-validation or overfitting, empirical coverage
is generally close to the nominal level of 95% for either sample size and choice of . In contrast, the coverage
rates of the biased methods, namely IPW with probit-based propensity scores and simulation-based estimation,
are in many cases substantially smaller than 95%, in particular for 8 = 0.2 and/or n = 4000.

6 Application

We apply our methods to experimental data from Chinkhumba, Godlonton, and Thornton (2014) who aim at
measuring the demand for adult medical male circumcision among 1634 uncircumcised men in urban Malawi
as a function of randomized subsidies for circumcision and comprehensive information on circumcision and
HIV. In our mediation analysis, we focus on the information campaign only, which was randomized indepen-
dently of the financial subsidies. Men receiving comprehensive information were informed that circumcision
is partially protective against HIV transmission (based on other empirical studies) at the baseline survey in
2010, while those who did not receive it were only told about the (circumcision) services of the experimenters’
partner clinic. We are interested in the effect of information (D) on a binary outcome taking the value one if
a male has already been circumcised or claimed to be willing to ever get circumcised at the follow up survey
(Y) in 2011, roughly one year after the baseline survey and treatment assignment.” We assess the direct impact
of the treatment as well as its indirect effect operating through (a change in) the risk assessment of HIV with
and without circumcision. To this end, the mediator is defined as dummy for whether uncircumcised males
are considered to be more prone to HIV risk than circumcised ones in the follow up survey (M). We therefore
aim at evaluating whether it is HIV risk assessment or other potential causal mechanisms subsumed into the
direct effect, e.g. salience about the availability of circumcision or attitudes towards circumcision, that drive
any impact of the information treatment.
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We control for the following baseline covariates (X) in our estimation, in particular to account for the endo-
geneity of the mediator, which is in contrast to the treatment not randomly assigned: age, education (measured
in categories of up to 11 years of education, 12 years, or 13 years and more), a dummy for having ever had sex,
a dummy for condom use at last sex as a proxy for sexual (risk) behavior, monthly expenditures in Malaw-
ian Kwacha (MKW), and dummies for having a working TV and/or stereo system as well as a working car as
wealth proxies. We confine our sample to those 1147 men without missing information in the covariates, the
mediator, and the outcome (while there are no missing values in the randomly assigned treatment). Table 2
provides descriptive statistics (means and standard deviations) for the covariates and the outcome across the
various treatment and mediator states. We refer to Chinkhumba, Godlonton, and Thornton (2014) for more
details about the survey design, the variables, and attrition patterns.

Table 2: Descriptives.

D=1 D=0 M=1 M=0

mean std.devn mean std.devn mean std.devn nmean std.dev

age (in years; discrete) 26.72 5.33 26.43 6.11 26.48 5.80 27.19 5.10
12 years of education (binary) 0.40 0.49 0.42 0.49 0.41 0.49 0.38 0.49
13+ years of education (binary) 0.18 0.38 0.21 0.40 0.19 0.39 0.21 0.41
ever had sex (binary) 0.87 0.34 0.88 0.32 0.88 0.33 0.85 0.35
used condom at last sex (binary) 0.38 0.48 0.42 0.49 041 0.49 0.31 0.46
expenditures (in 1000 MKW; continuous) 21.72 32.47 21.98 25.61 21.04 23.59 26.65 51.91
has a working tv/stereo system (binary) 0.78 0.42 0.78 0.41 0.79 0.41 0.76 0.43
has a working car (binary) 0.13 0.34 0.15 0.36 0.14 0.35 0.13 0.34

Y: got or would get circumcised (binary) 0.76 0.43 0.76 043 0.80 0.40 0.48 0.50

Sample consists of 1147 men without missing information in covariates, mediators, and outcomes (note that there are no missing values
in the randomly assigned treatment). ‘mean’ and ‘std.dev’ denotes the mean and standard deviation, respectively. *Believe about HIV
risk” is 0 if individual believes circumcised men to have higher HIV risk than uncircumcised men, 1 if the risk is believed to be the same
for both groups, and 2 if uncircumcised men are believed to bear a higher HIV risk.

Table 3 reports the direct and indirect effects based on the same estimators as considered in the simulations
of Section 5. In the case of IPW, we again discard observations with extreme propensity scores using the 0.02
trimming rule. No observations are affected by trimming when estimating the propensity score by probit or
based on SLE with cross-validation, while 2 subjects are discarded when using an overfitted propensity score
where SLE uses one order higher than suggested by cross-validation. Standard errors (se) of any IPW method
are based on bootstrapping the effects 1999 times® and p-values (pval) are computed using the t-statistic. For
the method of Tingley etal. (2014), p-values are computed by simulating potential mediators and outcomes
1999 times, as implemented in the ‘mediation’ package for R.?

Table 3: Application.

o) 0(0) o(1) 5(0)

est se pval est se pval est se pval est se pval

ipw cv —0.00 0.02 0.89 —0.01 0.02 0.74 0.01 0.01 0.08 0.01 0.01 0.09
ipw ofit —0.00 0.03 1.00 -0.01 0.03 0.72 0.01 0.01 0.19 0.01 0.01 0.57
semiipw  —0.00 0.02 0.89 —0.01 0.02 0.74 0.01 0.01 0.08 0.01 0.01 0.09
sim —0.00 0.86 —0.01 0.70 0.01 0.12 0.01 0.11

‘est’, ‘se’, and ‘pval’ denote the effect estimate, the standard error, and the p-value, respectively. ‘ipw cv’, “ipw ofit’, ‘semi ipw’, and ‘sim’
denote IPW using SLE based on cross-validation, IPW using SLE based on overfitting, semiparametric IPW using probit, and
simulation-based estimation, respectively. Standard errors and/or p-values are based on 1999 bootstrap replications (in the case of IPW)
or simulations (in the case of ‘sim’).

None of the direct effects is statistically different from zero at conventional levels of significance. All of the
indirect effects are positive, amounting to a small increase in (intended) circumcision of roughly one percentage
point. In the case of IPW using SLE with cross-validation or probit estimation of the propensity score, the
indirect effects are significant at the 10% level, while p-values under simulation-based estimation (sim) are
slightly higher. The p-values of IPW with overfitted propensity scores are far from any conventional level of
statistical significance, but the point estimates of the indirect effects are similar to those of other procedures. All
in all, the results suggest that the information intervention has a very moderate positive effect on the outcome
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through a change in the assessment of HIV risk with and without circumcision. In contrast, the insignificant
direct effects do not point to further important causal mechanisms through which information affects (intended)
circumcision.

7 Conclusion

This paper proposed a fully nonparametric estimator of natural direct and indirect effects in the total popula-
tion or specific subgroups based on inverse probability weighting and series logit estimation of the propensity
scores when invoking a sequential conditional independence assumption. We established the conditions re-
quired for the root-n consistency and asymptotic normality of our estimator and investigated its finite sample
performance in a simulation study. Finally, we applied our method to experimental data from Malawi to evalu-
ate the direct effect of receiving information on circumcision on the inclination towards circumcision, as well as
the indirect effect mediated by the risk assessment of HIV with and without circumcision. The results suggest a
very moderate positive indirect effect while the direct effect is virtually zero and never statistically significant.

A Appendix

A1 Proofof Theorem1

Define Y, = Y(d, M(d")) and p4p = E[Y 4] for d, d” € {0, 1}. By Assumption 1 and Assumption 2,

[(l—D)Y]
1—pX) YV
[ DY 1-pM,X)

Eoo 0 1=p) b o=

DY
P = E[m]/ Hoo =

[ (1-D)Y p(M,X)]

P = 1-pM,X) p(X)

see equations (4) and (5) of Huber (2014). This allows defining the direct and indirect effects of interest in terms
of uyz, e.g. 6(1) =ty — Hop. We estimate u - for d, d” € {0, 1} by the normalized sample analogs

- Z (1— (1-D;,)
”“: p(X)/ ;p(X) ”00_51.21 p(X)/ Z1—;5()(1-)’

R _1 ” DY, 1-pWM;X;) —p(M;, X;)
”IO_EZ;%M,,X) 1-p(X;)) / Zp(M,,X) 1-p(X;)
o1y <1—D>Y p(MZ,X)/ Z (1-D;) pM;,X;)
Hoo = 0 LT (M, X)Xy —P(M, X)) pXy)

i=

To prove Theorem 1, it is thus sufficient to show that for 4, 4" € {0, 1},

1 n
Viflga — paar) = 7 > Waar (Y1, M;, Dy, X,) + 0, (1).
n i=1

As the results regarding 1, and yg have been established by HIR, we subsequently focus on the proof for ;g
and note that the derivations for uy; proceed in an analogous way. Let fi;, be the numerator of fi,, and @,, be
the denominator of fi,,. We first show that

1 n
- Z P10(Yi, My, Dy, X) +0,(1),

Vi(fiyg — pyg) = N L

using a similar approach as HIR. Note that
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i _ 1y D;Y; 1-pWM;X;)
Vi(jiyg — pyo) = _Tl;{p(Ml,X) e _ 10}
T R T S
- ni= p(Ml’X) 1_P(Xi) 10
1 & DY, 1-pM;,X;)
+_n;{p(Ml,X) (1—p(X;))? (P(X) —p(Xi))}
+ii{ mL (P(M'/X')—P(M-,X-))}+o (1)
‘/ﬁzzl P(MZ,X)I—p(X) ir 4xg ir X 14

where the second equality holds by a second order mean valued expansion around p(X;) and p(M;, X;) and the
fact that sup __.. [p(x) — p(x)| = op(n‘1/4) an_d SUP,,c 4 veq IP(M,X) — p(m,x)| = op(n‘1/4). The converge rate of
SUP,co P(x) —px)| = Op(Kx(\/Kx/n + K~Px/%dxyy is derived in Lemma A3 of Hsu (2017) and the conditions
given in this paper are sufficient for SUP,co P(x) —px)| = 0p (n=1/4). By the same argument as in Theorem 1
of HIR, we have

D;Y; 1—-pWM;,X;) .
P, X (L= pCXpy? PO~ P
{ [ D;Y; 1—-pWM;X;)

P(Mi,Xi) (1—p(X,~))2

Ej:

i=1

%,](D; = p(Xi) } + 0, (1)

i=1

Il
- 5l 5l
M=

_ N 010(X;)
- _Tl ; { (1— p(Xz)) (Di _P(Xz))} + OP(l)'
Similarly, it holds that
Y o o (M, X)) — p(M, X))
n i=1 p (MUX) 1 _P(X)
= LS L, X, |Ds - M, X)) + 0, (1)
nia p*(M;, X;) 1 —p(X;) p
_ 1 = gl(MuX) 1

Next, one can easily show that

‘/ﬁ(fvlo - 1) = Op(l)/

by replacing Y;’s with 1’s in the proof for fi;, and acknowledging that the influence functions for @, are all
zero. Finally, it follows that

Vi(jlyy = po) = \/ﬁ(g,—f) — o)
Vii(flyg = po) — P10V (W1 — 1) +0,(1)
= Jn(jiyy — po) +0,(1),

where the second equality follows by a mean-value expansion and the last equality holds by the fact that u is
bounded and that vn(@,, — 1) = op(l). This completes the proof. O

A.2 Proofof Theorem 2

Define py4,, = EI§(X)Y 401/ E[g(X)] for d, d” € {0, 1}. Similarly,
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We estimate 1y, ford, d’ €

ﬁn,g = —Zg( i)
.ﬁOO,gz_Z X z)(l DoX
ﬁlo,g = 711 Z

ﬁOI,g:_Z ( z) a-

Z

Hi,g =

Els00 7% |

E[gX)] ’

Hoo,g =

]’ll(),g

VOl,g

E[s(X0) =05 ]

E[g(X)] 1' M)
[g(X)P(MX 16:170’()]

W oy
1
[g(X)l —p(M,X) pp(X) ]

E[g(X)]

{0, 1} by the normalized sample analogs

ﬁ(X)/ Zg( ”A(X)

Z/ Z ( l) p<X>

p(X)

D;Y; p(MZ,X ) — p(M;, X;)
$XD5, X) TPy / Z ( l”(Ml,X) T-pX)

P(MVX) ﬁ(Xi) n 4 ll—ﬁ(M,-,X,-) pP(Xy)

DEGRUYTER

Define P, = E[g(X)]. We would like to show that v7i(fi;; ¢ —ph1,4) = n=1/2 Z?:l Yy (Y3, M;, Dy, X;) +0,(1). First,
we can be demonstrated that

_ 1 5 8X0DY;  gXppn(Xy) o .
B \/ﬁ;‘( p(X) p(X;) (Di =p(X) = pug
1 n
J‘(E;g( 1>A(X) fiig - Pg)
_ 1 & gX)D; g(Xy)
_ﬁ;( p(X;) _p(Xi) (D; = p(Xp) = Pg) + 0, (1)
1

D;Y;
ﬁ(—Zg(XL(X) Fivg - Pg)

1=

== ;(g(Xi) —Pg) +0,(1).

Then by delta method, we have

Hmm"‘ gI

‘/_

(i
1

72

18
n

— Hig)

)D;Y;

8X)m (X))

p(X;) p(Xy)
(X ) ( D;Y;  pu(Xy)
E[gX)]\pXy)  p(Xp)

(D;

(D; = p(X) = i g - Py ) —

—p(X) = parg) + 0, (D).

V11 <

((X)

Pg) +op(1),and

Pg) +0,(1)

This gives the result for the yy; , case. Using the same arguments, we can derive the results for 1y ¢, Ho1,, and
M10,, t0O, which is sufficient to prove Theorem 2. 0O

A.3 Proofof Theorem3

Define ugq; = E[p(X)Y 421/ E[p(X)] for d, d’ €

16
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Hie =

Hoo,t =
Hior =

Hort =

We estimate w4, ford, d” €
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E[p)25]

Ep(0]
Elp®) 3555

=pX)
E[p(X)]

DY 1-pM,X)
[P(X) PV 1) ]

([ I(D})iz] (M, X) ,
1
[p(X)l —p(M,X) pp(X) ]

Elp(X)]

{0, 1} by the normalized sample analogs

- 1¢

Fu,tzﬁg Y/ ZDV

I B DY,

Voo,t—ﬁl;l? p(X)/ Z ( z) p(X)

T DY B(M,, X)) 1- p(M;, X,)
”“”‘E;p( ’)“(MZ,X) - p(X;) / Z ( ’)A(MZ,X) 1-p(X,)
o 1¢ D)YZAMX " (1 D;) HM,, X
VOM_EZ: w( ir )/ m( ir Xi)-

Define P; = E[p(X)]. Note that we have

=

1 1 &
\/7_1(5 = DiY; - ”lurfpf) = 7n ;(Diyi — H11,tPp),
1& (1-DyY;
‘/ﬁ(; ;P(X )W Foo.Pr)
1 ¢ p(XZ)(l_Dl)YZ VO(XZ')
- ﬁ; ( l_p(Xz) l_p(Xz) (Di_p(Xi))_.uOO,tPt)+0p(1)r
1& D)Y; 1-pM,;,X;)
G LP0 5o 3 T poky  Mel)
1 G p&XDDYi1=pM, Xi) | p10(Xi)
=— D; —p(X;
72 G Topn i pog O )
p(X )gl(Mz/X)
P, X (1 - p(x) i TPMeX0) = thaePr) + 0, (1), and
13 (1-DyY;
‘/E(EZZW P(Mi, X;) = HoyPt)
LY (P 0%, xp + 202, pa,, x,)) - g Py) +0,(1)
1’l — l—p(Ml,X) ir X (1_P(M1‘1Xi)) i ir 4N 01,t4 ¢t 14 .
Furthermore,
‘/ﬁ(% Z:'Ll D; - Pt) =+ Z?=1(Di - Py + OP(I)/
AR Y P 9L = LY D= P 40,0
noo D, " 1-p(M; X) _ n
‘/ﬁ(%Zznzlp(X )g(M X)) 1pp(X) Pt) = ‘/LZ Zi:l(Di —Py) +0p(1)/and
‘/ﬁ(%zl 1mP(M11X) ) = #Zizl(Di—Pt)‘FOp(l).

By delta method, we have

Vi(fiy e —

Hii,t)
%Zz 1P, (DY M1 Py — P’u,t(Di—Pt)) +0,(1)

= = Y P, (Di(Yi - Hu,t)) +0,(1).

17


http://rivervalleytechnologies.com/products/

Automatically generated rough PDF by ProofCheck from River Valley Technologies Ltd

== Hsuetal. DEGRUYTER

Similarly,
V(oo s — .”005())1 Doy, )
= - Zz 1 Pt( ( 1—( =) T fm;a x)(D = P(Xi) — Moo, tPr — Hoot (D _Pt>) +0,(1)
X; 1—Di Y; X,
= #21:1E(7j( 1)( 17;2)(1_) ‘000( )) + (p()o(Xl‘) _]/lo(),t)Di) +0p(1)
Next,
V(g — l"w&))D Y ML) .
= 1 noq (pX)D;Y; 1-pUMl;, X; 0
B TZ& ;ﬁg pMLX)  1p(X) * tmpy (P~ PX0)
_p(]?vfl,x )1<1 1;; X)) (D; = pM;, X)) — Zho,tDi) +0,(1),
Vi (floy s — Fm(lt)D)Y .
n i X
= % Xt 5 (st PMa X0 + 2wy (Ds = P(My, X)) = piow eDi) + 0y (1).
This completes the proof. i

A.4 Effects of Circumcision on the Treated

Table 4: Direct and indirect effects among treated.

o(1) 0(0) o(1) 5(0)

est se pval est se pval est se pval est se pval

ipw cv 0.04 0.02 0.13 0.03 0.03 0.19 0.01 0.01 0.24 0.01 0.01 0.29
ipw ofit 0.03 0.03 0.34 0.01 0.03 0.74 0.02 0.01 0.04 0.00 0.01 0.78

semi ipw 0.04 0.02 0.13 0.03 0.03 0.19 0.01 0.01 0.24 0.01 0.01 0.28

‘est’, ‘se’, and ‘pval’ denote the effect estimate, the standard error, and the p-value, respectively. ‘ipw cv’, ‘ipw ofit’, and ‘semi ipw” denote
IPW using SLE based on cross-validation, IPW using SLE based on overfitting, and semiparametric IPW using probit, respectively.
Standard errors and/or p-values are based on 1999 bootstrap replications.

Notes

1 Tchetgen Tchetgen (2013) derives a related result in the context of inverse odds-ratio weighting.

2 In contrast, the seminal papers in mediation analysis of Judd and Kenny (1981) and Baron and Kenny (1986) assume linear models for
both the mediator and the outcome.

3 See also the textbooks by MacKinnon (2008), Hong (2015), and Hayes (2017) for general discussions of mediation analysis in social
sciences.

4 Robins and Greenland (1992) and Robins (2003) refer to this parameter as the total or pure direct effect and Flores and Flores-Lagunes
(2009) as net average treatment effect.

5 For 8 =0.1, the averages of D and M are 0.56 and 0.21, respectively, in our simulations. For § = 0.2, the averages of D and M are 0.61 and
0.42, respectively.

6 Only few observations in our simulations need to be trimmed. For (8 = 0.1, n = 1000), on average 0.36 overfitted SLE-based propensity
scores including both the covariates and the mediator lie outside the [0.02, 0.98] interval. This is also the case for on average 0.05 cross-
validated SLE-based propensity scores. For (8 =0.2, n =1000), the respective numbers are 2.69 and 1.51 for the overfitted and cross-validated
SLE-based propensity scores, respectively. None of the probit-based propensity scores are trimmed in any simulation design.

7 To be concise, Y is defined as one if either the interviewee stated to be circumcised or was willing to ever get circumcised, or the admin-
istrative records of the partner clinic show that he actually got circumcised, see the discussion in Chinkhumba, Godlonton, and Thornton
(2014).

8 For IPW using SLE with cross-validation for propensity score estimation, we also considered asymptotic approximations based on Theo-
rem 1 (see Section 3.3) to compute standard errors in order to check robustness across inference methods. The obtained p-values are mostly
similar to the bootstrap-based ones reported in the first line of Table 3, namely 0.90, 0.77, 0.00, and 0.07 for estimates of 6(1), 4 6(0), 6(1),
and 6(0), respectively.

9 Note that standard errors are not provided for the simulation-based estimators.

10 While the effects discussed here refer to the total population, Appendix A.4 presents IPW-based estimates of direct and indirect effects
on the treated as an illustration of the weighting approach outlined in Section 4.3. Statistical power is, however, considerably lower and
with one exception, none of the estimates are significant at conventional levels.
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