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ABSTRACT Allele frequencies vary across populations and loci, even in the presence of migration. While most differences may be due
to genetic drift, divergent selection will further increase differentiation at some loci. Identifying those is key in studying local
adaptation, but remains statistically challenging. A particularly elegant way to describe allele frequency differences among populations
connected by migration is the F-model, which measures differences in allele frequencies by population specific FST coefficients. This
model readily accounts for multiple evolutionary forces by partitioning FST coefficients into locus- and population-specific components
reflecting selection and drift, respectively. Here we present an extension of this model to linked loci by means of a hidden Markov
model (HMM), which characterizes the effect of selection on linked markers through correlations in the locus specific component along
the genome. Using extensive simulations, we show that the statistical power of our method is up to twofold higher than that of
previous implementations that assume sites to be independent. We finally evidence selection in the human genome by applying our
method to data from the Human Genome Diversity Project (HGDP).
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MIGRATION is a major evolutionary force homogenizing
evolutionary trajectories of populations by promoting

the exchange of genetic material. At some loci, however, the
influx of newgeneticmaterialmay bemodulated by selection.
In case of strong local adaptation, for instance, migrants may
carrymaladapted alleles that are selected against. Identifying
loci that contribute to local adaptation is of major interests in
evolutionary biology because these loci are thought to con-
stitute the first step toward ecological speciation (e.g., Wu
2001; Feder et al. 2012) and allow us to understand the role
of selection in shaping phenotypic differences between

populations and species (e.g., Bonin et al. 2006; Fournier-
Level et al. 2011).

A simple, yet flexible and useful, approach to identify loci
contributing to local adaptation is to scan the genome using
statistics that quantify divergence between populations. One
frequently used statistic is FST, which measures population
differentiation, and loci with greatly elevated FST have been
reported for many population comparisons (e.g., Jones et al.
2012; Andrew and Rieseberg 2013; Stölting et al. 2013).
While other statistics measuring absolute divergence
(Cruickshank and Hahn 2014) or incongruence between a
population tree and locus-specific genealogies (Durand
et al. 2011; Peter 2016) may be more suited in some situa-
tions, genome scans suffer from two inherent limitations.
First, multiple evolutionary scenarios may explain the devi-
ations in those statistics, making interpretation difficult
(e.g., Cruickshank and Hahn 2014; Eriksson and Manica
2012). Second, the definition of outliers is arbitrary, allowing
for the detection of candidate loci only. Indeed, loci also vary in
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their divergence between populations that were never sub-
jected to selection, but outlier approaches would still identify
outliers.

Multiple methods have thus been developed that explic-
itly incorporate the stochastic effects of genetic drift. A first
important step to improve the reliability of outlier scans was
the proposal to compare observed values of such statistics
against the distribution expected under a null model.
Among the first, Beaumont and Nichols (1996) proposed
to obtain the distribution of FST through simulations per-
formed under an island model. While the idea to evidence
selection by comparing FST to its expectations is far from
new (e.g., Lewontin and Krakauer 1973), the difficulty of
properly parameterizing the null model was quickly real-
ized (e.g., Nei and Maruyama 1975). The success of the
method by Beaumont and Nichols (1996) relies on tailoring
the parameters of the underlying island model to match the
observed heterozygosity at each locus—an approach that is
also easily extended to structured island models (Excoffier
et al. 2009).

A more formal approach is given by means of the F-model
(Rannala and Hartigan 1996; Balding 2003; Falush et al.
2003; Gaggiotti and Foll 2010), under which allele frequen-
cies are measured by locus and population specific FljST coef-
ficients that reflect the amount of drift that occurred in
population j at locus l since its divergence from a common
ancestral population. In the case of biallelic loci, the current
frequencies ~pjl are then given by a beta distribution
(Beaumont and Balding 2004)

~pjl � Betaðuljpl; uljð12 plÞÞ; (1)

where pl are the frequencies in the ancestral population and
ulj is given by

FljST ¼
1

1þ ulj
:

It is straightforward to extend this model to account for differ-
ent evolutionary forces that affect the degree of genetic differ-
entiation. For instance, Beaumont and Balding (2004)
proposed to partition the effects of genetic drift and selection
into locus-specific and population-specific components al and
bj, as well as a locus-by-population specific error term gij:

log
�
1
ulj

�
¼ al þ bj þ gij (2)

Loci with al 6¼ 0 are interpreted to be affected by either bal-
ancing (al, 0) or divergent (al. 0) selection, either because
they are targets of selection or through hitch-hiking
(Beaumont and Balding 2004). Such loci may be identified
by contrasting models with al = 0 or al 6¼ 0 for each locus l,
either through Bayesian variable selection (Riebler et al.
2008) or via reversible-jumpMCMC, as is done in the popular
software BayeScan (Foll and Gaggiotti 2008).

A common problem of this, and many other, genome-scan
methods is the assumption of independence among loci,
which is easily violated when working with genomic data.
By evaluating information from multiple linked loci jointly,
however, the statistical power to detect outlier regions is likely
increased considerably. Indeed, even a weak signal of diver-
gence may become detectable if it is shared among multiple
loci. Similarly, false positives may be avoided as their signal is
unlikely to be shared with linked loci.

Unfortunately, fully accounting for linkage is often statis-
tically challenging as well as computationally very costly.
One solution is to split the problem by first inferring haplo-
types for each sample, and then performing selection scans
on the haplotype structure. The extended haplotype homo-
zygosity (EHH) and its derived statistics (Sabeti et al. 2002;
Voight et al. 2006; Sabeti et al. 2007; Tang et al. 2007), for
instance, identify shared haplotypes of exceptional length.
More recently, Fariello et al. (2013) introduced methods
that identify haplotype clusters with particularly large
frequency differences between populations and showed
that using haplotypes rather than single markers increases
power substantially.

An alternative solution is to model linkage through the
autocorrelation of hierarchical parameters along the genome,
which does not require knowledge of the underlying haplo-
type structure. Boitard et al. (2009) and Kern and Haussler
(2010), for instance, proposed a genome-scan method in
which each locus was classified as selected or neutral, and
then used a Hidden Markov Model (HMM) to account for the
fact that linked loci likely belonged to the same class, while
ignoring autocorrelation in the genetic data itself.

Here, we build on this idea to develop a genome-scan
method based on the F-model. While an HMM implementa-
tion of the F-model was previously proposed to deal with
linked sites when inferring admixture proportions (Falush
et al. 2003), we use it here to characterize autocorrelations
in the strength of selection al among linked markers. As we
show using both simulations and an application to human
data, aggregating information across loci results in an in-
crease in power of up to twofold at the same false-discovery
rate (FDR).

Materials and Methods

A model for genetic differentiation and observations

We assume the classic F-model, in which J populations diverged
from a common ancestral population. Since divergence, each
population experienced genetic drift at a different rate.
We quantify this drift of population j ¼ 1; . . . ; J at locus
l ¼ 1; . . . ; L by ujl. We further assume each locus to be biallelic
with ancestral frequencies pl, in which case the current fre-
quencies ~pjl are given by a beta distribution (Beaumont and
Balding 2004), as shown in (2). We thus have

Pð~pjljpl;  ujlÞ ¼
1

Bðujlpl; ujlqlÞ
ð~pjlÞujlpl21ð~qjlÞujlql21; (3)
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where ql = 1 2 pl, ~qjl ¼ 12 ~pjl, Bðx; yÞ ¼ GðxÞGðyÞ=Gðx þ yÞ
and Gð�Þ is the gamma function.

Let njl denote the allele counts in a sample of Njl haplo-
types from population j at locus l, which is given by a binomial
distribution

njl � Binð~pjl;   NjlÞ

and hence

Pðnjlj~pjlÞ ¼
�
Njl
njl

�
ð~pjlÞnjlð~qjlÞNjl2njl : (4)

Equations (3) and (4) combine to a beta-binomial
distribution

Pðnjljujl;   plÞ ¼
�
Njl
njl

�
Bðujlpl þ njl;   ujlql þ Njl 2 njlÞ

Bðujlpl;   ujlqlÞ
: (5)

Model of selection

We decompose ujl into a population-specific component bj

shared by all loci, and a locus-specific component al shared
by all populations:

2logulj ¼ al þ bj

Here, the locus-specific component al quantifies an excess
or dearth of differentiation, which is attributed to the effect
of either divergent or balancing selection, respectively
(Beaumont and Balding 2004). Note that we adopt here the
formulation of Foll and Gaggiotti (2008) and omit the error
term gij of the original model of Beaumont and Balding
(2004) shown in (2), as there is generally not enough in-
formation to estimate these parameters from the data
(Beaumont and Balding 2004).

To account for autocorrelation among the locus-specific
component, we propose to discretize al = a (sl), where
sl ¼ 2 smax; 2 smax þ 1; . . . ; smax are the states of a ladder-
type Markov model with m = 2smax + 1 states such that

aðslÞ ¼
sl

smax
amax (6)

for somepositive parametersamax. The transitionmatrix of this
Markov model shall be a finite-state birth-and-death process

QðdlÞ ¼ ekdlL (7)

with elements ½QðdlÞ�ij denoting the probabilities to go from
state i at locus l 2 1 to state j at locus l given the strength of
autocorrelation measured by the positive scaling parameter k
and the known distance dl between these loci, either in phys-
ical or in recombination space. Here, L is the m 3 m gener-
ating matrix

L ¼

0
BBBBBB@

21 1 0 . . . 0 0
m 212m 1 . . . 0 0
0 m 212m . . . 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 . . . 212m m
0 0 0 . . . 1 21

1
CCCCCCA

where the middle row at position smax + 1 reflects neutrality,
and is given by the element

ð 0 . . . nm 22nm nm . . . 0 Þ:

As exemplified in Figure 1, the two parameters m and n

control the distribution of sites affected by selection (i.e.,
having al 6¼ 0) in the genome, with n affecting the number of
selected regions and m their extent and selection strength,
with higher values leading to more sites affected selection.
It is important to note that we do not assume all sites with al

6¼ 0 to be targets of selection. Instead, many will be linked to
a target of selection and experience al 6¼ 0 due to hitch-
hiking.

The stationary distribution of this Markov chain is given by

P ¼ c  � 1
1
m

1
m2 . . .

1
msmax21

1
msmaxn

1
msmax21 . . . 1

� �
;

Figure 1 (A) Expected proportion of neutral sites as a function of rates m and n. (B, C) Example paths of al along 1000 loci simulated at a distance of
dl = 100 with smax = 10 positive and negative states up to amax = 3.0. Autocorrelation among loci was simulated with log(k) = 23.0, v = 0.02, and
m = 0.91 (B, square) or m = 0.74 (C, circle), respectively. The two cases correspond to an expected proportion of 20% and 10% of the genome under
selection, as marked in (A).
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with

c21 ¼ 2
msmax 2 1

msmax 2msmax21 þ
1

msmaxn
:

Note that, as k / N, our model approaches that of Foll and
Gaggiotti (2008) implemented in BayeScan, but with discre-
tized al.

Hierarchical island models

Hierarchical island models, first introduced by Slatkin and
Voelm (1991), address the fact that divergence might vary
among groups of populations. They were previously used to
infer divergent selection, both using a simulation approach
(Excoffier et al. 2009) as well as in the case of F-models (Foll
et al. 2014). Here, we describe how our model is readily
extended to additional hierarchies.

Consider G groups each subdivided into Jg populations
with population-specific allele frequencies ~pgjl that derive
from group-specific frequencies pgl as described above with
group-specific parameters mg, vg, and kg. Analogously, we
now assume group-specific frequencies to have diverged
from a global ancestral frequency Pl according to locus-specific
and group-specific parameters Qgl. Specifically,

pgl � BðQglPl; Qglð12 PlÞÞ

such that

PðpgljPl;  QglÞ ¼
1

BðQglPl; QglQlÞ
ðpglÞQglPl21ðqglÞQglQl21; (8)

where Ql = 1 2 Pl and qgl = 1 2 pgl. The parameter Qgl is
given by

2logQgl ¼ AðSlÞ þ Bg: (9)

As above, Bg quantifies group specific drift,
Sl ¼ 2 smax; 2 smax þ 1; . . . ; smax are the states of a Markov
model with m states and transition matrix Ql ¼ ekdlL with
parameters m and n, a positive scaling parameter k, and A
(Sl) and Amax defined as in (6). Hence, we assume indepen-
dent HMM models of the exact same structure at both levels
of the hierarchy, as outlined in Figure 2. Additional levels
could be added analogously.

Inference

WedevelopedaBayesian inference scheme for theparameters
of the proposed model using a Markov chain Monte Carlo
(MCMC) approach with Metropolis–Hastings updates, as de-
tailed in the Supplementary Material. As priors, we used

bj;  Bg � N �mb;  s
2
b
�

pl � Beta
�
ap;  bp

�
log
�
ap
�
;   log

�
bp
� � Nð0;  1Þ

logðkgÞ;   logðkÞ;   logðmÞ;   logðnÞ � Uð2N;  0Þ:

Following Beaumont and Balding (2004), we used mb = 22
and s2

b ¼ 1:8 throughout. We further set ap = bp = 1.
To identify candidate regions under selection, we used

MCMC samples to determine the FDRs

qdðlÞ ¼ 12Pðal .0jn; NÞ

qbðlÞ ¼ 12Pðal, 0jn; NÞ

Table 1 Parameters used in simulations

Name J FST N Log(k)

Reference 10 0.15 50 23
Pop-2 2 0.15 50 23
Pop-5 5 0.15 50 23
Pop-20 20 0.15 50 23
Pop-50 50 0.15 50 23
FST-0.01 10 0.01 50 23
FST-0.05 10 0.05 50 23
FST-0.1 10 0.1 50 23
FST-0.25 10 0.25 50 23
Haplo-10 10 0.15 10 23
Haplo-20 10 0.15 20 23
Haplo-100 10 0.15 100 23
Haplo-200 10 0.15 200 23
log k-1 10 0.15 50 21
log k-5 10 0.15 50 25
log k-7 10 0.15 50 27
log k-9 10 0.15 50 29

Figure 2 A directed acyclic graph (DAG) of the proposed model with two
hierarchical levels.
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for divergent and balancing selection, respectively, where
n ¼ fn11; . . . ; nJLg andN ¼ fN11; . . . ;NJLg denote the full data.

Implementation

We implemented the proposed Bayesian inference scheme in
the easy-to-use C++ program Flink.

Given the heavy computational burden of the proposed
model, we introduce several approximations. Most impor-
tantly, we group the distances dl into E + 1 ensembles such
that el = log2 dl, el ¼ 0; . . . ; E; and use the same transition
matrix Q(2e) for all loci in ensemble e. We then calculate
Q(1) for the first ensemble using the computationally cheap
yet accurate approximation

Q0 ¼ ekd0L � Iþ 1
2r

kd0L
� �2r

with r ¼ log2ðD=3Þ þ 10; where D = 2smax + 1 is the dimen-
sionality of the transition matrix (Ferrer-Admetlla et al.
2016). The transition matrices of all other ensembles is
obtained through the recursion QðeÞ ¼ Qðe21Þ2: (See Sup-
plementary Information for other details regarding the
implementation).

Data availability

The authors affirm that all data necessary for confirming the
conclusions of the article are present within the article or
available from repositories as indicated. The source-code of
Flink is available through the git repository https://bitbucket.
org/wegmannlab/flink, along with detailed information on its
usage. Additional scripts used to conduct simulations are found
at https://doi.org/10.5281/zenodo.3949763. Supple-
mental material available at figshare: https://doi.org/
10.25386/genetics.13077284.

Results

Comparison with BayeScan

Simulation parameters: To quantify the benefits of account-
ing for autocorrelation in the locus specific components al

among linked loci, we first compared our method im-
plemented in Flink against the method implemented in
BayeScan (Foll and Gaggiotti 2008) on simulated data. All
simulations were conducted under the model laid out above
for a single group, using routines available in Flink and with
parameter settings similar to those used in (Foll and
Gaggiotti 2008). Specifically, we focused on a reference sim-
ulation in which we sampled N = 50 haplotypes from
J = 10 populations with bj chosen such that FljST ¼ 0:15 in
the neutral case (al = 0). Following Foll and Gaggiotti
(2008), we simulated all pl � Betað0:7; 0:7Þ and about 20%
of sites affected by selection (i.e., with al 6¼ 0) by setting m=
0.91 and v= 0.02. We further set smax = 10 (resulting inm=
21 states) and amaxg ¼ 3; and simulated 103 loci for each of
10 chromosomes, with a distance of 100 positions between
adjacent sites and strength of autocorrelation log(k) = 23.
We then varied the number of populations J, the sample size
N, FljST or the strength of autocorrelation k individually, while
keeping all other parameters constant (Table 1). We further
added a case without linkage (i.e., k / N) by simulating
each locus on its own chromosome.

To infer parameters with Flink, we set smax and amax to the
true values and ran the MCMC for 7�105 iterations, of which
we discarded the first 20�105 as burn-in. During the chain, we
recorded parameter values every 100 iterations as posterior
samples. To infer parameters with Bayescan, we used version
2.1 and set the prior odds for the neutral model to 50, which
we found to result in the same power as Flink in the reference
simulation (see below) and in the absence of linkage (k /
N). We identified loci under selection at an FDR threshold of
5% for both methods.

Power of inference: We first evaluated the power of Flink in
inferring the hierarchical parametersbj, n,m, and k. As shown
through the distributions of posterior means across all simu-
lations, these estimates were very accurate and unbiased,
regardless of the parameter values used in the simulations
(Figure 3). This suggests that the power to identify selected
loci is not limited by the number of loci we used to infer
hierarchical parameters.

Figure 3 Boxplot of the parameters b1 (left), n and m (center), and log(k) (right). The values are obtained from the mean of the posterior distributions
obtained using Flink on the 10 simulations run for each of the set of parameters reported in Table 1. The red dotted lines show the true values of the
respective parameters.
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We next studied the impact of the sample size and the
strength of population differentiation on the power (the true
positive rate) to identify loci affected by selection (i.e., loci
with al 6¼ 0). In line with findings reported by Foll and
Gaggiotti (2008), power generally increased with FjST, the
number of sampled haplotypes, and the number of sampled
populations (Figure 4, A–C). Larger sample sizes or stronger
differentiation was particularly relevant for detecting loci un-
der balancing selection, for which the power was generally
lower and virtually zero at low differentiation ðFjST ¼ 0:01Þ or
if only few populations were sampled (J = 2). Importantly,
the FDR was below the chosen 5% threshold in 100% and
98.6% of all simulations conducted for loci identified as af-
fected by divergent and balancing selection, respectively
(Supplemental Material, Figure S1). The false positive rates
(FPR) for these classes was, 0.1% in 98.6% and 97.1% of all
simulations (see Figure 4 for neutral sites).

Compared to BayeScan run on the same set of simulations,
Flink had a higher power at the same FDR across all simula-
tions, and often considerably so, unless if very many popula-
tions were sampled (Figure 4). If J = 10 populations were
sampled, for instance, the power of Flink was about 0.2
higher for loci under divergent selection, and even up to
0.4 higher for those under balancing selection (Figure 4, A
and B). Importantly, this increase in power described here is
fully explained by Flink accounting for autocorrelation
among the al values as we chose the prior odds in BayeScan
to result in the same power if the strength of autocorrelation
vanishes (i.e., k / N). Exploiting information from linked
sites to identify divergent or balancing selection can thus
strongly increase power, certainly if linkage extends to many
loci. This is maybe best illustrated by the much higher power
of Flink to identify loci under balancing selection at low dif-
ferentiation (FjST # 0:1, Figure 4A), in which case even many
neutral loci are expected to show virtually no difference in
allele frequencies and only an aggregation of loci with a sub-
tle reduction in FjST can be interpreted as a reliable signal for a
target of selection in the region (Foll and Gaggiotti 2008).

Runtime: Thanks to careful optimization, there is little to
no overhead of our implementation compared to that of
BayeScan. On the reference simulation of 104 loci from 10 pop-
ulations, for instance, Flink took on average 130 min on amod-
ern computer if calculations were spread over four CPU cores.
On the same data, BayeScan took 361 min. However, we
note that comparing the two implementations is difficult
due to many settings that strongly impact run times, such
as the number of iterations or the use of pilot runs in BayeS-
can. Without pilot runs, the run time of BayeScan reduced
to 182 min on average for the default number of iterations
(105 including burn-in). In the same time, Flink runs for close
to 106 iterations, but also requires more to converge.

But since computation times scale linearlywith thenumber
of loci, they remain prohibitively slow for whole genome
applications in a single run. However, computations are easily
spread across many computers by analyzing the genome in
independent chunks such as for each chromosome or chro-
mosome arm independently. This is justified because (1)
linkage does not persist across chromosome boundaries and
is usually weak across the centromere, and (2) because our
simulations indicate that 104 polymorphic loci were sufficient
to estimate the hierarchical parameters accurately.

Effect of model misspecification

The F-model makes the explicit assumption that the allele
frequencies in a structured population can be characterized
by a multinomial Dirichlet distribution. This distribution is
appropriate for a wide range of demographic models, but not
if some pairs of populations share amore recent ancestry than
others (Beaumont and Balding 2004; Excoffier et al. 2009).
Unsurprisingly, several previous studies found high FPRs
when challenging BayeScan with models of isolation-by-
distance (IBD), recent range expansions, recent admixture,
or asymmetric divergence (e.g., Lotterhos and Whitlock 2014;
Luu et al. 2017). These high FPRs are partially mitigated by
choosing higher prior odds (e.g., 50 as used here, Lotterhos

Figure 4 The true positive rate (power) in classifying loci as neutral (black) or under divergent (orange) or balancing selection (blue) as a function of the
FST between populations (A), the number of haplotypes N (B), the number of populations J (C), and the strength of autocorrelation k (D). Lines indicate
the mean and range of true positive rates obtained with Flink (solid) and BayeScan (dashed) across 10 replicate simulations. Filled dots and the vertical
gray line indicate the reference simulation shown in each plot.
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andWhitlock 2014) or when using the hierarchical version of
BayeScan (Foll et al. 2014), particularly in case of asymmetric
divergence. In the case of a recent range expansion or recent
admixture, however, the F-model is unlikely to be appropri-
ate and other methods have been shown to outperform
BayeScan, in particular hapFLK (Fariello et al. 2013) and
pcadapt (Luu et al. 2017).

Here, we investigated how the sensitivity of the linkage-
aware implementation of an F-model in Flink is affected by
such model misspecifications. We focused on the case of a
recent range expansion as this model is difficult to accommo-
date even with a hierarchical F-model. Using quantiNemo
(Neuenschwander et al. 2018), we simulated genomic data
from 11 populations with carrying capacity 103 each that
form a one-dimensional stepping-stone model. Initially, only
the left-most population contained individuals that then col-
onized the remaining populations through symmetric dis-
persal between neighboring populations at rate 0.1 and
with a population growth rate of 0.1. After 103 generations,
20 diploid individuals were sampled from each population.
We simulated 10 independent chromosomes of 104 neutral
loci each with initial allele frequencies drawn from a Beta
distribution fl � Betað0:7; 0:7Þ: We run these simulations
for different recombination rates by setting the total length
of the genetic map per chromosome to either 1, 10, or
100 cM. We then inferred selection on all loci still polymor-
phic at the end of the simulations with both BayeScan and
Flink for 10 replicates per set.

Across all simulations, BayeScan identified no locus as
affected as balancing selection and only 0.16% as affected
by divergent selection. This low FPR is consistent with the
generally low power of BayeScan to identify loci affected by
balancing selectionaswell as theusedprior odds of 50 in favor
of the neutral model. Similar results were obtainedwith Flink
on simulations with high recombination (genetic map of
100 cM), in which case no linkage information could be

exploited. Across these simulations, Flink identified no locus
as affected by balancing selection and only 0.14% as affected
by divergent selection. The number of false positives, how-
ever, was rising sharply with decreasing recombination rate.
At a genetic map of 10 cM, 5.0% and 2.8% of all loci were
wrongly inferred as affected by balancing and divergent se-
lection, respectively. At a genetic map of only 1 cM and,
hence, tight linkage, the corresponding FPRs were 22.7%
and 7.5%, respectively. These results thus highlight that the
power gained by Flink in exploiting linkage information also
translates into a higher FPR in case the model is misspecified.
Under such scenarios, other methods such as hapFLK
(Fariello et al. 2013) or PCAdapt (Luu et al. 2017) are thus
more appropriate.

Application to humans

To illustrate the usefulness of Flink, we applied it to SNP data
of 46 populations analyzed as part of the HGDP (Rosenberg
et al. 2002, 2005) and available at https://www.hagsc.org/
hgdp/files.html. We then used Plink v1.90 (Chang et al.
2015) to transpose the data into vcf files, and used the lift-
Over tool of the UCSC Genome Browser (Kent et al. 2002) to
convert the coordinates to the human reference GRCh38.

We divided the 46 populations into six groups (Table 2) of
between 4 and 15 populations each according to genetic
landscapes proposed by Peter et al. (2017). We then inferred
divergent and balancing selection using the hierarchical ver-
sion of Flink on all 22 autosomes, but excluded 5 Mb on each
side of the centromere and adjacent to the telomeres. The
final data set consisted of 563,589 SNPs. We analyzed each
chromosome arm individually with amax = 4.0, smax = 10
and using an MCMC chain with 7�105 iterations, of which we
discarded the first 2�105 as burn-in. Estimates of hierarchical
parameters are shown in Figure S2 and the locus-specific
FDRs qd (l) and qb (l) are shown for all loci, all groups as well
as the higher hierarchy in Figures S4–S42. All regions

Table 2 Population groups analyzed

Divergent Balancing

Group Populations SNPs (%) Regions Lengtha SNPs (%) Regions Lengtha

Africa Bantu N.E., Biaka Pygmies,
Mandenka, Mbuti Pygmies,
San, Yoruba

8,020 (1.42) 759 16.8 8,026 (1.42) 433 30.2

Middle East Mozabite, Palestinian, Druze,
Bedouin

14,324 (2.54) 1137 20.6 18,432 (3.27) 848 41.2

Europe Adygei, French, French Basque,
North Italian, Orcadian, Russian,
Sardinian, Tuscan

19,128 (3.39) 1466 22.0 37,736 (6.7) 1382 48.3

America Colombians, Karitiana, Maya, Pima,
Surui

33,062 (5.87) 1889 29.8 34,499 (6.12) 1735 39.4

Central Asia Balochi, Brahui, Burusho, Hazara,
Kalash, Makrani, Pathan, Sindhi

16,663 (2.96) 1290 22.6 25,473 (4.52) 1132 44.5

East Asia Uygur, Dai, Daur, Han, Hezhen,
Lahu, Miaozu, Mongola, Naxi,
Oroqen, She, Tu, Tujia, Xibo, Yizu

20,528 (3.64) 1832 17.3 33,678 (5.98) 1656 35.2

Higher hierarchy N/A 24,595 (4.36) 1692 26.8 20,156 (3.58) 1074 31.2
a Median length of the regions in kb.
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identified as potential targets for selection are further detailed
in the Supplementary Files. As summarized in Table 2, we
discovered between 759 and 1889 and between 433 and
1735 candidate regions for divergent and balancing selection,
respectively, spanning together about 10% of the genome.

Comparison with BayeScan

We first validated our results by running BayeScan on the
samedata.We then identifieddivergent regions as continuous
sets of SNP markers that passed an FDR threshold of 0.01 or
0.05 for each method, and determined the FDR threshold
necessary to identify at least one locus within these regions by
the other method. To ensure the observed differences be-
tween methods is due to accounting for linkage only, we used
the hierarchical version BayeScanH (Foll et al. 2014) that also
implements the same hierarchical island model as Flink.

As shown in Figure 5A for selected regions among Euro-
peans, the majority of regions identified by BayeScanH were
replicated by Flink at small FDR thresholds. In contrast, most
of the regions identified by Flink were not replicated by
BayeScanH, in line with a higher statistical power for the
former. Visual inspection indeed revealed that for most re-
gions identified by Flink but not BayeScanH, the latter also
showed a signal of selection at multiple markers, each of
which not passing the FDR threshold individually (see Figure
5B for examples). In contrast, sites identified by BayeScanH
but not Flink usually consisted of a signal at a single site,
suggestingmany of those are likely false positives (Figure 5C).

Results were similar for the other groups (Figure S3), but
the correspondence between the methods was higher for the
African group and considerably lower for theAmerican group,
likely due to the different patterns of divergence among
populations (Figure S2).

Comparison with a recent scan for selective sweeps

Positive selection acting in a subset of populations may also
lead to an increase in population differentiation (Nielsen
2005). We therefore compared our outlier regions also to

those of a recent scan for positive selection that combined
multiple test for selection using a machine learning approach
(Sugden et al. 2018). Among the 593 candidate loci reported
for the CEU population of the 1000 Genomes Project (1000
Genomes Project Consortium et al. 2015) and overlapping
the chromosomal segments studied here, 293 loci (49.4%)
fall within a region we identified as under divergent selection
either among European populations (154 loci), at the higher
hierarchy (132 loci), or both (7 loci).

To test if this overlap exceeds random expectations, we
generated 10,000 bootstrapped data sets by randomly sam-
pling the same amount of loci among all those found poly-
morphic in the 1000Genome Project CEU samples andwithin
the chromosomal segments studiedhere.We thendetermined
the overlap with our outlier regions for each data set. On
average, 46.6 loci overlapped with our regions identified
among European populations or at the higher hierarchy.
Importantly, the largest overlap observed among the boot-
strapped data set (72 loci) was much smaller than that
observed (293 loci, P , 1024).

Example: the LCT region

As an illustration, we show the FDRs qd (l) and qb (l) for
30 Mb around the LCT gene in Figure 6 for the higher hier-
archy aswell as the European,Middle Eastern, and East Asian
group. The LCT gene is a well studied target of positive se-
lection that has acted to increase lactase persistence in sev-
eral human populations, including Europeans (Bersaglieri
et al. 2004; Burger et al. 2020). Lactase persistence varies
among Europeans and decreases on a roughly north–south
cline (Bersaglieri et al. 2004; Burger et al. 2007; Leonardi
et al. 2012), consistent with the signal of divergent selection
we detected among European populations (Figure 6). In line
with previous findings (e.g., Grossman et al. 2013), we de-
tected a signal of divergent selection among Europeans also
in various genes around LCT, most notably in R3HDM1 but
alsoMIR128-1,UBXN4 andDARS. In contrast, we detected no
such signal for the other groups.

Figure 5 (A) The fraction of regions identified as divergent among Europeans by Flink (green) and BayescanH (black) at a false discovery rate (FDR) of
0.01 (solid) and 0.05 (dashed) also identified by the other method at different FDR. (B–D) Examples of regions found under divergent selection by Flink
(B), BayeScanH (C), or both (D) among Europeans. Dashed lines indicate the 0.01 FDR threshold.
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Discussion

Genome scans are common methods to identify loci that
contribute to local adaptation among populations. Here, we
extend the particularly powerful method implemented in
BayeScan (Foll and Gaggiotti 2008) to linked sites.

Accounting for linkage in population genetic methods,
while desirable, is often computationally hard. We propose
to alleviate this problem by modeling the dependence among
linked sites through autocorrelation among hierarchical pa-
rameters, rather than the population allele frequencies or
haplotypes themselves. In the context of genome scans, this
has been previously used successfully to classify each locus as
selected or neutral usingHMMs (Boitard et al. 2009; Kern and
Haussler 2010). Here, we extend this idea by modeling au-
tocorrelation among the degree of spatial differentiation act-
ing at individual loci. While ignoring autocorrelation at the
genetic level certainly leads to a loss of information, the
resulting method remains computationally tractable. And
as we showed here with simulations and an application to
human data, the resulting method features much improved
statistical power compared to BayeScan—a similar method
that ignores linkage completely.

This is particularly evident for loci with more similar allele
frequencies amongpopulations thanexpected by thegenome-
wide divergence. These loci are generally interpreted as being
under balancing selection (Beaumont and Balding 2004; Foll
and Gaggiotti 2008), but may also be the result of purifying
selection restricting alleles from reaching high allele frequen-
cies. Given the large number of loci we inferred in this class
from the HGDP data (about 5% of the genome), we speculate
that balancing selection is unlikely the main driver, and cau-
tion against overinterpreting these results. But we note that
the empirical FDR for loci under balancing selection was ex-
tremely low in our simulations, except if the assumptions
underlying the F-model was violated.

A benefit of accounting for autocorrelation among locus-
specific effectswas previously postulated byGuo et al. (2009),
who proposed a conditional autoregressive (CAR) prior on al

such that

alja2l�N
 
1
wi

X
m 6¼l

wlmam;  
1
twi

!
;

where a2l denotes the collection of all other am, m 6¼ l, wlm

indicates the covariance between loci l and m, which is
assumed to decrease exponentially with distance, and
wi ¼

P
m 6¼lwml: While Guo et al. (2009) did not evaluate

the benefit of their CAR implementation on the power of
selection inference, they found that it was a better fit to high
resolution data. Here, we show that the power increase by
exploiting autocorrelation among loci is substantial: of all
regions identified as under divergent selection by Flink, less
than half were also identified by BayeScan, despite evidence
that these consist mostly of true outliers.

In this context, it is important to note that due to compu-
tational challenges, Guo et al. (2009) suggested to run their
method on low-resolution data with few markers first, and
then to apply the CAR version on inferred candidate regions
only. As our analysis suggests, such an approach would likely
fail to harvest the full benefit of accounting for autocorrela-
tion among locus-specific parameters. Running Flink on high-
resolution data are possible because the first-order Markov
assumption on locus-specific effects al allows for cheap
MCMC updates at a single locus that does not require a recal-
culation of the prior on the full vector a ¼ fa1; . . . ;aLg. Un-
fortunately, however, no implementation of the method by
Guo et al. (2009) is available for a direct comparison.

Ourproposedmodel has yet another computational advan-
tage: while the hierarchical parameters of the exponential
decay in the model by Guo et al. (2009) need to be fixed

Figure 6 Signal of selection around the LCT gene on Chromosome 2q. The orange and blue lines indicate the locus-specific FDR for divergent (orange)
and balancing (blue) selection, respectively. The black dashed line shows the 1% FDR threshold. A zoom of the highlighted region is shown on the right
indicating the position of several genes: R3HDM1 (R3), MIR128-1 (MI), UBXN4 (UB), MCM6 (MC), DARS (DA), and DARS-AS1 (DA1). The entire
Chromosome 2q is shown in Figure S7.
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upfront due to numerical instabilities, the hierarchical pa-
rameters of the discrete Markov model proposed here are
all estimated well if sufficient sites are provided. Our simu-
lations indicated that 104 polymorphic loci were sufficient,
based on which we decided to parallelize the analysis of the
human data by chromosome arm. Smaller windows may be
considered, but the model may struggle to differentiate be-
tween population-specific and locus-specific components if
too few consecutive loci are used. The window analyzed
should therefore span significantly more loci than are
expected to be affected by selection within an outlier region.
But note that the model does not make any assumption re-
garding the spacing of loci within the analyzed window, nor
does it assume that all individuals have data: it accounts for
both the distances between loci as well as the locus-specific
sample size explicitly. Hence, Flink may well be used on data
obtained with reduced representation techniques such as
RAD-seq, albeit with little benefit over BayeScan if loci are
in weak linkage only.

Another major difference between Flink and the CAR
method of Guo et al. (2009) is that the former discretizes the
locus-specific effects al. While such a discretization leads to a
loss of precision in estimating locus specific effects, it allows to
directly calculate a FDR to identify outlier loci at any desired
level of confidence, similar to BayeScan or the method of
Riebler et al. (2008). In contrast, the method by Guo et al.
(2009) identifies outliers indirectly as those for which the pos-
terior distributions on ul are significantly different from the
distribution of ul values under the inferred hyper-parameters.
Importantly, the discretization seems to come at no cost on
power: in our simulations, Flink and BayeScan had virtually
identical power if we simulated unlinked data.

An obvious drawback of modeling the locus-specific selec-
tion coefficients as a discrete Markov Chain is that, for most
candidate regions we detected, multiple loci showed a strong
signal of selection, making it difficult to identify the causal
variant. However, once a region is identified, estimates of FST
can be obtained for each locus individually to identify the locus
with the strongest signal. Complementary methods such as
SWIF(r) (Sugden et al. 2018) may further be used on the
identified regions to infer locus-specific selection coefficients
or other statistics informative about the targets of selection.

Finally, we note that the implementation provided through
Flink allows to group populations hierarchically. Accounting
for multiple hierarchies was previously shown to reduce the
number of false positives in FST based genome scans
(Excoffier et al. 2009) and also applied in an F-model setting
(Foll et al. 2014). Aside from accounting for structure more
accurately, a hierarchical implementation also allows for ge-
nome-wide association studies (GWAS) with population
samples. In such a setting, each sampling location would
constitute a “group” of, say, two “populations”, one for each
phenotype (e.g., cases and controls). The parameters at the
higher hierarchy will then accurately describe population
structure and loci associated with the phenotype will be
identified as those highly divergent between the two

“populations”. A natural assumption would then be that the
locus-specific coefficients al are shared among all groups, i.e.,
that they are governed by a single HMM. While we have not
made use of such a setting here, we note that it is readily
available as an option in Flink.
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