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We study high-harmonic generation in two-dimensional electron systems with Rashba and Dresselhaus spin-
orbit coupling and derive harmonic generation selection rules with the help of group theory. Based on the band
structures of these minimal models and explicit simulations we reveal how the spin-orbit parameters control the
cutoff energy in the high-harmonic spectrum. We also show that the magnetic field and polarization dependence
of this spectrum provides information on the magnitude of the Rashba and Dresselhaus spin-orbit coupling
parameters. The shape of the Fermi surface can be deduced at least qualitatively and if only one type of spin-orbit
coupling is present, the coupling strength can be determined.
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Introduction. The concept of high-harmonic generation
(HHG) has attracted interest for decades in atomic systems,
and lately also in the condensed matter community [1–4]. It
is a nonlinear process in which a system driven by light at
a certain frequency can give rise to emission at multiples of
this fundamental frequency [5,6]. In the condensed matter
context, one of the interesting aspects is that the harmonic
spectrum carries information about the microscopic model,
like the band structure or interaction parameters [6–9].

Several mechanisms have been proposed to explain the
many facets of HHG. In some cases, the physics can be
understood within a single-particle picture, but still necessi-
tates the numerical evaluation of the interband polarization
and intraband current in a coupled set of equations [5,10,11].
Which of these two processes dominates the emission has
been debated for a long time, and a unified HHG mechanism
applicable to a wide range of solids is still lacking [12].
Recently, the scope of HHG studies has been extended to
strongly correlated systems [8,9,13–16], disordered systems
[17–20], the effects of spin-polarized defects [21], spin or
multiferroic systems [22,23], HHG in graphene and transition
metal dicalchogenides [24,25], to mention a few.

The effect of spin-orbit coupling (SOC) on HHG, to the
best of our knowledge, has not been systematically explored.
SOC is a relativistic effect in solids which locks the spin
direction in relation to the electron momentum [26–28]. It
acts on the electron’s motion like an effective momentum-
dependent magnetic field and gives rise to an intrinsic spin
Hall effect [26,29]. SOC plays an important role in topological
insulators [30] and HHG has been used as a tool for detecting
topological properties such as the Berry curvature [31]. In this
Rapid Communication, we however want to study the effect
of SOC in an isolated way, focusing on minimal models of
two-dimensional (2D) SOC systems. The goal is to under-
stand how SOC affects the HHG cutoffs and how the type
of SOC and the coupling parameters can be extracted from

characteristic features of the spectrum. For our analysis, we
will adapt the existing theory for harmonic generation (HG)
selection rules to models defined in momentum space [32,33],
using concepts similar to nonsymmorphic symmetries in Flo-
quet topological insulators [34]. While this type of symmetry
analysis has been used before [33,35,36], it is formulated here
in a way which is convenient for SOC systems.

Model and symmetries. Several previous works have dis-
cussed the Rashba and Dresselhaus Hamiltonians in a tight-
binding framework [37–39], which yields

Ĥ =
∑

k

�
†
k {ε(k) ⊗ σ0 − [α sin(kya) − γ sin(kxa)] ⊗ σx

+ [α sin(kxa) − γ sin(kya)] ⊗ σy + Bσz}�k, (1)

with �k = (ĉk,↑, ĉk,↓)T a spinor combining the annihilation
operators for momentum k and spin up and down, ε(k) =
2th[4 − cos(kxa) − cos(kya)] the dispersion of the lattice, σ0

the identity matrix, and σi=x,y,z the Pauli matrices. α denotes
the strength of the Rashba SOC, γ that of the Dresselhaus
SOC [40], and B an external magnetic field and/or exchange
field [41,42], which is assumed to couple only to the spin (no
Landau levels). a and th are the lattice spacing and the hopping
parameter, respectively, and we will set both to 1 in the
following, i.e., energy is expressed in units of th. Justifications
for applying the tight-binding model at high momenta can
be found in, e.g., Refs. [43,44], where topological invariants
involving quantities defined over the entire Brillouin zone
are considered. This type of SOC represents the most typical
form in 2D materials [45]. We incorporate the electric field
through the Peierls substitution k → k + A(t ), where A(t )
denotes the vector potential. When developing selection rules
for the HHG spectra, we will assume an AC field driving with
frequency � = 2π

T , so that the Hamiltonian satisfies Ĥ (t ) =
Ĥ (t + T ). Following Refs. [32,33] we combine operators
acting on space, time, and spin to define symmetry operations
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for the periodically driven system. This analysis is applicable
to Hamiltonians of the general form Ĥ (t ) = ∑

k �
†
k h(k, t )�k.

The process of identifying the HG selection rules for a
momentum-resolved quantity O(k, t ) contains the following
two steps: (i) Identify a group, G, of symmetry operations
ĝ, leaving h(k, t ) invariant, i.e., ĝh(k, t )ĝ−1 = h(k, t ). (ii) For
ĝ ∈ G analyze the restrictions on n which follow from the
condition ĝO(k, t )ein�t ĝ−1 ≡ O(k, t )ein�t for the generator ĝ
of G. The latter requirement is equivalent to saying that
O(k, t )ein�t belongs to the trivial representation of G [32].
As the density matrix is also a time-dependent quantity which
must be factored into the calculation of any observable, we as-
sume that (ii) holds for the density matrix and the observable
combined, i.e., ĝρ(t )O(k, t )ein�t ĝ−1 = ρ(t )O(k, t )ein�t .

To illustrate this formalism, let us derive the well-known
result that inversion symmetry implies odd order harmon-
ics. For this purpose we consider the Hamiltonian Ĥ (t ) =∑

k cos [k + A0 cos(�t )]ĉ†
k ĉk , and, since we are interested in

HHG, choose as operator O the charge velocity v(k, t ) =
∂
∂k h(k, t ) = − sin [k + A0 cos(�t )], which yields the current
J (t ) = ∑

k v(k, t )〈ĉ†
k ĉk〉. Whereas h(k, t ) = h(−k, t ) in equi-

librium (A0 = 0), in the presence of the drive, we need to
extend the symmetry operation to include time as follows:

P ⊗ T2 ≡
{

k → −k
t → t + T/2 .

Clearly, the group generated by this operation is isomorphic
to Z2 if we identify t with t + T . Labeling the group element
above as ĝ, we expand both sides of ĝv(k, t )ein�t ĝ−1 =
v(k, t )ein�t to obtain v(−k, t + T/2)ein�(t+T/2) =
v(k, t )ein�t . Since v(−k, t + T/2) = −v(k, t ), n is const-
rained by einπ = −1, which implies that n is odd.

Returning to model (1) we begin by listing the generators
of symmetry groups which are isomorphic to some cyclic
group Zn. One symmetry which holds for both linearly and
circularly polarized light is

P ⊗ T2 ⊗ S(−) =
⎧⎨
⎩

k → −k
t → t + T/2
(σx, σy, σz ) → (−σx,−σy, σz )

.

For the Rashba-Dresselhaus model with α = ±γ , and for B =
0, we have the additional symmetry

P ⊗ T2 ⊗ Sx,∓y =
⎧⎨
⎩

k → −k
t → t + T/2
σx(y) → ∓σy(x)

, (2)

also valid for circular and linear polarization. In the
case of circularly polarized light, where we define A(t ) =
(Ax(t ), Ay(t )) = A0( sin(�t ), cos(�t )), the following addi-
tional symmetries are found:

R90◦ ⊗ T4 ⊗ S±90◦ =
⎧⎨
⎩

(kx, ky) → (ky,−kx )
t → t + T/4
(σx, σy, σz ) → (±σy,∓σx, σz )

, (3)

where the upper sign is for γ = 0 and the lower sign for
α = 0. Note that the t → t + T/4 transforms A as (Ax, Ay) →
(Ay,−Ax ). For the case where both α �= 0 and γ �= 0, there
is no symmetry involving t → t + T/4, because the Fermi
surfaces only have a twofold rotational symmetry [26].

Selection rules. For linearly polarized light described by
Ax(t ) = A0 cos(�t ), let us consider the charge velocity

vx(k, t ) = ∂h(k, t )

∂kx
= 2 sin[kx + Ax(t )]σ0

+α cos[kx + Ax(t )]σy + γ cos[kx + Ax(t )]σx

(4)

and the symmetry g ≡ P ⊗ T2 ⊗ S(−). Since the spin
transformation does not mix the σ0, σx, and σy matrices
it is sufficient to consider ĝcos [kx + Ax(t )]ein�tσx,yĝ−1 =
cos[−kx−Ax(t )]ein�(t+T/2)(−σx,y)

!= cos[kx + Ax(t )]× ein�t

σx,y, which leads to einπ = −1, i.e., odd order harmonics
only. We proceed to demonstrate how the spin current—a
quantity often studied in spintronics applications—is linked
to HHG [28]. The momentum-resolved spin current operator
is defined as [46]

Vi j (k, t ) = 1

2

[
σi · v j (k, t ) + v j (k, t ) · σi

]
, (5)

where i, j = x, y, z. We denote the spin current by Ji j (t ) =
N−1

k

∑
k Tr[ρ(t )Vi j (k, t )] with Nk the number of k points in

the Brillouin zone. Using the group generator ĝ ≡ P ⊗ T2 ⊗
S(−) on

Vyx(k, t ) = γ cos [kx + Ax(t )]σ0 + 2 sin [kx + Ax(t )]σy, (6)

the constraint following from ĝVyx(k, t )ein�t ĝ−1 ≡
Vyx(k, t )ein�t implies even order harmonics only. (The
presence of a Dresselhaus SOC yields a nonzero Vxx

component, which gives the same constraint on the
harmonics.) This prediction is consistent with Ref. [47],
which discussed a second harmonic signal in the spin current
based on symmetry arguments. Furthermore, one can apply
selection rules to Vzy, which is the component relevant for the
spin Hall effect [29]. As this expression is the anticommutator
of a term with even harmonics and one with odd harmonic
orders, the result is odd. Additional results and derivations
regarding the selection rules can be found in the Supplemental
Material (SM) [48].

Let us briefly mention the role of inversion symmetry.
We have seen that despite the breaking of inversion sym-
metry (which has been linked to even order harmonics [26])
model (1) only produces odd order harmonics in the longi-
tudinal charge velocity. To understand this let us consider
the general Hamiltonian Ĥ (t ) = ∑

k ĉ†
k,α

hα,β [k + A(t )]ĉk,β

with the indices denoting the relevant (orbital, spin, etc.)
degrees of freedom. In the Rashba model, we clearly have
that hα,β [k + A(t )] �= hα,β [−k − A(t )]. However, as long as
there exists a transformation ĝ for which the action on
the additional degrees of freedom yields hα,β [k + A(t )] =
hg(α),g(β )[−k − A(t )], the HHG radiation is restricted to odd
harmonics.

To test the selection rules, we simulate model (1) at inverse
temperature β = 1/kBT = 400 (with kB = 1). We apply lin-
ear and circularly polarized pulses of the form

A(t ) = E0

�
sin

[
�(t − tavg)

]

× cos2
(�(t − tavg)

2M

)
{θ (t ) − θ (t − MT )}, (7)
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FIG. 1. High-harmonic spectra for the charge current, Jx , and two
components of the spin current, Jyx and Jzy, of the Rashba model with
α = 2.5, γ = 0, μ = 3.5, and B = 0. A linearly polarized light field
with E0 = 0.2, central frequency � = 0.3, and polarization along the
x direction is used.

where E0 is the electric field strength, � the cen-
tral frequency, M the number of cycles, T the pe-
riod, and tavg = T M

2 . High-harmonic spectra are calculated

through the formula |iωJi(ω) + ω2

c Mi(ω)|2 where Ji(ω) and
Mi(ω) denote the Fourier transform of the charge current
Ji(t ) = N−1

k

∑
k Tr[ρ(t )vi(k, t )], and magnetization, Mi(t ) =

N−1
k

∑
k Tr[ρ(t ) σi

2 ], in the i = x, y, z direction, respectively.
c is 137 in our units. We calculate the spectra for the spin
current as |iωJi j (ω)|2. Prior to the Fourier transform, we apply
a Blackman window to all quantities. This is given as fB(t ) =
0.42–0.5 cos( 2πt

MT ) + 0.08 cos( 4πt
MT ) [22]. Care must be taken

with the spin current as it has a DC component [46]. Here,
the DC contribution at t = 0 is subtracted before applying the
Blackman window.

Figure 1 displays the numerically obtained HHG spectra
for two different components of the spin current, Jyx and Jzy,
as well as the charge current Jx. (Note that the magnetization
yields no contribution to the radiation emitted along the x
direction when γ = 0. Hence, the black line represents the
total spectrum.) To the right of the plateau, we see as expected
that both Jx and Jzy display odd order harmonics, whereas Jyx

displays even order harmonics.
HHG cutoffs. We will next demonstrate how the energy

scale related to SOC, α, manifests itself in the HHG spectra.
(Swapping α and γ does not produce any change in the
position of the cut-offs.) A linearly polarized pulse is applied
along the x direction and the chemical potential is set to
μ = ε(k = 0). As shown in the top panel of Fig. 2, for α >

th = 1, a plateau emerges, which increases with increasing
α. Upon diagonalizing Eq. (1) and setting ky = 0, we see
that the maximum energy difference between the spin split
bands is �E = 2α for B = 0 (see inset). In units of �, this
cutoff prediction is consistent with the plateaus in Fig. 2. In
Fig. 3 we compare �E/� to the measured cutoffs in different
simulations.

FIG. 2. α dependence of the HHG spectrum for γ = B = 0. A
linearly polarized light field with E0 = 0.2, central frequency � =
0.3, and polarization along the x direction is used. The inset shows
the two branches of the band dispersion of Eq. (1) for ky = 0. The
dashed lines indicate the values of the chemical potential. In the top
panel, the chemical potential is fixed at μ = 4, while in the bottom
panel, the filling of the system is kept constant.

Whereas in the top panel of Fig. 2 the filling changes as
we increase α while keeping μ constant, the dependence on α

with constant filling should also be investigated.
In the lower panel of Fig. 2 we present spectra for simu-

lations where the filling is fixed to the value corresponding
to α = 1.5 and μ = 4. Since these cutoff scalings are very
similar, one may conclude that the HHG cutoffs are controlled
by the spin-orbit parameters rather than the filling.

We have also measured the cutoffs in the HHG spectra
for the Jzy component of the spin current (4), which closely
follows the charge current (see also Fig. 1). The corresponding
cutoff values, fsc(α), are presented in Fig. 3 alongside those
for the charge current, fcc(α), and exhibit the same α depen-
dence. Note that because there is no transverse charge current,
we have a pure spin current—in line with the intrinsic spin
Hall effect [29,49].

Magnetic field effects. Setting B �= 0 will turn model
(1) into a two-band model in the basis of eigenstates of
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FIG. 3. HHG cutoffs for the charge current, fcc(α), and the Jzy

spin current component, fsc(α) when μ = 4 and γ = B = 0. 2α/�

corresponds to the maximum band gap in units of �. The uncertainty
in determining the cutoff values is estimated to be δ f ≈ 2.0.

Ŝz. Thus, for positive B, the lower (upper) band will be
polarized in the spin-down (up) direction. Although the mag-
netic field/exchange field strengths considered in this section
might seem high, we direct attention to a previous work
where exchange fields of comparable strengths have been
used to describe aspects of the anomalous Hall effect in a
2D Rashba ferromagnet [41]. SOC introduces a momentum-
dependent interband matrix element vanishing at the � point
as well as the edges of the Brillouin zone. The result is a
harmonic spectrum as shown in Fig. 4. The low-order harmon-
ics show the characteristic signature of intraband harmonics,
while the grouping of harmonics starting at ω/� > 13 can
be explained by multiphoton processes across the band gap
created by B. Indeed, the minimal band gap is �E = 2B
so that the minimal number of photons is 2B/� ≈ 13. The

FIG. 4. α dependence of the high harmonic spectrum of the
Rashba model with γ = 0.0, B = 2.5, and μ = 4. A linearly po-
larized light field with E0 = 0.2, central frequency � = 0.3, and
polarization along the x direction is used.

FIG. 5. Dependence of the HHG spectra on the polarization di-
rection. The top panel shows the total spectrum, whereas the bottom
panel shows the contribution from the magnetization term. The inset
shows the band structure along cuts parametrized by k〈1, 1〉 (black)
and k〈1, −1〉 (red), i.e., along the direction of the field polarization.
α = γ = 1.5 and B = 1.8. The field strength is set to E0 = 0.5
and μ = 2.

maximum band gap is 2
√

2α2 + B2, which nicely explains
the upper edges of the harmonic groupings in Fig. 4 (in
units of �). In contrast to previous HHG studies of two-
band semiconductors [10,50], the high-energy part of the
spectrum does not exhibit a plateau structure, but rather a
dome shape. We interpret this as a result of the vanishing
interband coupling at the � point and at the Brillouin zone
boundary.

If both α and γ are nonzero, the Fermi surface of model (1)
has a nontrivial shape [26] and it is thus interesting to ask if
the magnetic field and angular dependence of the HHG spectra
allows one to extract the spin-orbit parameters. For α = γ the
energy gap is bounded by 2B � �E � 2

√
B2 + 8α2, and we

expect to see a difference in the spectra when setting the lin-
ear polarization of the fields to �pol ≡ tan−1(Ay/Ax ) = ±π

4 ,
while measuring along the x direction. The results of such
calculations are shown in Fig. 5. The two spectra show the
total radiation (top panel) and the magnetization contribution
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(bottom panel). A strong enhancement of harmonic intensity
within the predicted plateau region is seen for �pol = −π

4 rel-
ative to �pol = π

4 in the total radiation, while the bottom panel
indicates that the magnetization dynamics is the origin of this
strong polarization dependence. Note also the similarity in
the cutoff positions in both panels. Both for �pol = ±π

4 , the
upper bound of �E coincides well with the observed cutoffs.
To demonstrate that these results are generic for the given
Hamiltonian, we present a simulation with μ = 4 in Fig. 4
in the SM [48].

The directional anisotropy appears because the spin expec-
tation values (in equilibrium) are constant along lines with
�pol = π

4 while they vary along �pol = −π
4 when α = γ

[51]. The figure furthermore demonstrates that the magnetic
radiation contribution is non-negligible in some cases. This
also holds for the Dresselhaus model when the radiation is
measured along the driving direction, as suggested by the
spin-momentum locking picture. It should also be pointed out
that the larger field strength used here (relative to the previous
figures) implies that the electrons sample a larger region of the
Brillouin zone.

Conclusions. We have explored ways of extracting SOC
parameters from HHG spectra. If only a Rashba or Dressel-
haus coupling is present, the coupling strength can be directly
deduced from the cutoff of the HHG plateau or a charac-
teristic grouping of harmonics in strong magnetic/exchange
fields. If both couplings are nonzero, insight into the rela-
tive size of the SOC parameters can be gained by studying
the polarization dependence. In particular, a large change in

the HHG intensity upon rotation by 90◦ indicates that α and γ

are of comparable magnitude. The general symmetry analysis
for linearly and circularly polarized fields can help to deter-
mine relevant aspects of a microscopic model on the basis
of HHG spectra, at least for systems with strong SOC. We
have also shown that the Jzy spin current is strongly correlated
with the Jx charge current and that both follow the same
cutoff scaling with increasing α. Since there is much interest
in the control of spin currents, high-harmonic generation and
detection methods may be useful for identifying SOC materi-
als with ideal properties for spintronics applications. Further
effects, such as spin relaxation through the D’yakonov-Perel’
mechanism, or the influence of electron-electron scattering
may warrant more detailed investigations. How interaction-
induced dephasing affects the coherence needed to form
a Floquet state has recently been studied in Ref. [52],
and similar techniques could also be applied to models
with SOC.
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[28] I. Žutić, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323
(2004).

081121-5

https://doi.org/10.1103/PhysRevA.49.2117
https://doi.org/10.1038/s41567-018-0315-5
https://doi.org/10.1103/RevModPhys.81.163
https://doi.org/10.1038/nphys1847
https://doi.org/10.1103/PhysRevLett.113.073901
https://doi.org/10.1038/nature14456
https://doi.org/10.1103/PhysRevLett.115.193603
https://doi.org/10.1103/PhysRevLett.121.057405
https://doi.org/10.1103/PhysRevB.101.195139
https://doi.org/10.1103/PhysRevB.77.075330
https://doi.org/10.1038/nature14652
https://doi.org/10.1038/nphys3946
https://doi.org/10.1038/s41566-018-0129-0
https://doi.org/10.1103/PhysRevB.98.075102
https://doi.org/10.1103/PhysRevLett.124.157404
https://doi.org/10.1103/PhysRevLett.121.097402
https://doi.org/10.1103/PhysRevA.99.063408
https://doi.org/10.1103/PhysRevB.98.144307
https://doi.org/10.1364/JOSAB.35.000680
https://doi.org/10.1103/PhysRevResearch.2.013033
https://doi.org/10.1038/s41524-020-0275-z
https://doi.org/10.1103/PhysRevB.99.184303
https://doi.org/10.1103/PhysRevB.100.214424
https://doi.org/10.1126/science.aam8861
https://doi.org/10.1038/s41467-019-11697-6
https://doi.org/10.1038/nmat4360
https://doi.org/10.1016/j.jmmm.2020.166711
https://doi.org/10.1103/RevModPhys.76.323


LYSNE, MURAKAMI, SCHÜLER, AND WERNER PHYSICAL REVIEW B 102, 081121(R) (2020)

[29] S.-Q. Shen, Phys. Rev. B 70, 081311(R) (2004).
[30] B. A. Bernevig and T. L. Hughes, Topological Insulators

and Topological Superconductors (Princeton University Press,
Princeton, NJ, 2013).

[31] T. T. Luu and H. J. Wörner, Nat. Commun. 9, 916 (2018).
[32] O. E. Alon, V. Averbukh, and N. Moiseyev, Phys. Rev. Lett. 80,

3743 (1998).
[33] O. Neufeld, D. Podolsky, and O. Cohen, Nat. Commun. 10, 405

(2019).
[34] T. Morimoto, H. C. Po, and A. Vishwanath, Phys. Rev. B 95,

195155 (2017).
[35] N. Saito, P. Xia, F. Lu, T. Kanai, J. Itatani, and N. Ishii, Optica

4, 1333 (2017).
[36] T. N. Ikeda, K. Chinzei, and H. Tsunetsugu, Phys. Rev. A 98,

063426 (2018).
[37] F. Mireles and G. Kirczenow, Phys. Rev. B 64, 024426

(2001).
[38] T. Pareek and P. Bruno, Pramana 58, 293 (2002).
[39] T. P. Pareek and P. Bruno, Phys. Rev. B 63, 165424 (2001).
[40] E. I. Rashba, Phys. E (Amsterdam, Neth.) 34, 31 (2006).
[41] I. A. Ado, I. A. Dmitriev, P. M. Ostrovsky, and M. Titov, Phys.

Rev. Lett. 117, 046601 (2016).

[42] A. Qaiumzadeh, R. A. Duine, and M. Titov, Phys. Rev. B 92,
014402 (2015).

[43] S.-Q. Shen, Topological Insulators (Springer, New York, 2012),
Vol. 174.

[44] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005).
[45] R. Winkler, S. Papadakis, E. De Poortere, and M. Shayegan,

Spin-Orbit Coupling in Two-Dimensional Electron and Hole
Systems (Springer, New York, 2003), Vol. 41.

[46] E. I. Rashba, Phys. Rev. B 68, 241315(R) (2003).
[47] K. Hamamoto, M. Ezawa, K. W. Kim, T. Morimoto, and N.

Nagaosa, Phys. Rev. B 95, 224430 (2017).
[48] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevB.102.081121 for the derivation of certain
selection rules and additional simulation data.

[49] J. Sinova, D. Culcer, Q. Niu, N. A. Sinitsyn, T. Jungwirth, and
A. H. MacDonald, Phys. Rev. Lett. 92, 126603 (2004).

[50] M. Wu, S. Ghimire, D. A. Reis, K. J. Schafer, and M. B. Gaarde,
Phys. Rev. A 91, 043839 (2015).

[51] M.-H. Liu, K.-W. Chen, S.-H. Chen, and C.-R. Chang, Phys.
Rev. B 74, 235322 (2006).

[52] M. Schüler, U. De Giovannini, H. Hübener, A. Rubio, M. A.
Sentef, T. P. Devereaux, and P. Werner, arXiv:2003.11621.

081121-6

https://doi.org/10.1103/PhysRevB.70.081311
https://doi.org/10.1038/s41467-018-03397-4
https://doi.org/10.1103/PhysRevLett.80.3743
https://doi.org/10.1038/s41467-018-07935-y
https://doi.org/10.1103/PhysRevB.95.195155
https://doi.org/10.1364/OPTICA.4.001333
https://doi.org/10.1103/PhysRevA.98.063426
https://doi.org/10.1103/PhysRevB.64.024426
https://doi.org/10.1007/s12043-002-0015-z
https://doi.org/10.1103/PhysRevB.63.165424
https://doi.org/10.1016/j.physe.2006.02.014
https://doi.org/10.1103/PhysRevLett.117.046601
https://doi.org/10.1103/PhysRevB.92.014402
https://doi.org/10.1103/PhysRevLett.95.146802
https://doi.org/10.1103/PhysRevB.68.241315
https://doi.org/10.1103/PhysRevB.95.224430
http://link.aps.org/supplemental/10.1103/PhysRevB.102.081121
https://doi.org/10.1103/PhysRevLett.92.126603
https://doi.org/10.1103/PhysRevA.91.043839
https://doi.org/10.1103/PhysRevB.74.235322
http://arxiv.org/abs/arXiv:2003.11621

