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This document contains the scattering properties of a single rod, details on the structures of the
point patterns, the band structure calculation, details on the time domain propagation videos and
all the technical information on the data analysis. The seven videos show how the electromagnetic
wave propagates in the cavity for di�erent frequency ranges (see Supplemental Material Fig. S6 for
the description of the videos).
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I. BOLTZMANN SCATTERING MEAN FREE

PATH.

In Fig. S1 we show the scattering e�ciency Q of an
individual cylinder in TM polarization calculated using
Mie theory [1] (upper panel). In the lower panel, we show
how the corresponding Boltzmann scattering mean free
path `sca(ν) = [σsca(ν)ρ]−1 (with σsca(ν) = 2rQsca the
total scattering cross section) compares with L, the size
of the system, and λ0, the wavelength in vacuum of the
wave.

II. POINT PATTERNS AND THEIR

STRUCTURE FACTORS.

Figure S2(a) shows the point patterns of the samples
studied in this study, and Fig. S2(b) the corresponding
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Figure S1. Upper panel: Scattering e�ciency Qsca of indi-
vidual cylinders in TM polarization (solid blue line), and the
three �rst terms in the Mie expansion (dashed lines). Lower
panel: optical density L/`s in the independent scattering ap-
proximation using the Boltzmann scattering mean free path
and the sample size L. Also shown is k0`s with k0 = 2π/λ
and the wavelength in vacuum λ0 (k0 = 2π/λ0).

average structure factors

S(k) =
1

N

N∑
j=1

N∑
l=1

e−ik·(Rj−Rl), (S1)

over 1000 samples generated as the ones used in this
study, where Rj are the positions of the N points, and k
is the wavevector.

III. VISUALIZATION OF THE EIGENMODES

OF THE DISORDERED CAVITY

A. Clustering of the resonances into modes

The measured spectra consist of a superposition of
peaks (see Main text Fig. 1(b)) which are associated to

mailto:geoffroy.aubry@unifr.ch


2

−100 0 100

−100

0

100
y

(m
m

)
χ = 0.15

−100 0 100

χ = 0.25

−100 0 100

χ = 0.30

−100 0 100

χ = 0.40(a)

x (mm)

0 1 2 3 4 5

ka/2π

0.0

0.5

1.0

1.5

2.0

S
(k

)

χ
0.15
0.25
0.3
0.4
Tri. latt.

(b)

Figure S2. (a) Point patterns of the studied samples. (b)
Radially averaged structure factors S(k) of the studied sam-
ples as a function of ka, where a = 1/

√
ρ and ρ denotes the

number density of scatterers. The structure factors are aver-
aged over 1000 di�erent realizations of about 200 points. The
grey vertical lines indicate the peaks of the radially averaged
triangular lattice structure factor (Bragg peaks).

the resonances of the system. We determine the fre-
quencies νi, widths γi and complex amplitudes Ai of
each resonance i = 1, . . . , N using the harmonic inver-
sion method described in ref. [2, 3]. Ideally, resonances
belonging to the same mode should all have the same fre-
quency. In practice, the presence of the mobile antenna
at every point (x, y) shifts the resonant frequency by a
small amount depending on the intensity of the electro-
magnetic �eld at the speci�c mobile antenna position [4],
see Fig. S3. Note that we minimize this perturbation
due to the mobile antenna by having it extending into
the cavity by only 1 mm whereas the height of the cavity
is 5 mm. This has the consequence that it is weakly cou-
pled to the �eld, and explains the low transmission val-
ues as seen in Main text Fig. 1(b). We identify all data
points belonging to a certain cluster by using a density-
based clustering algorithm [5] ful�lling the condition that
two points having the same coordinate (x, y) cannot be
in the same cluster. To associate each resonant signal
at position (x, y) to a speci�c mode, we apply a semi-
supervised clustering algorithm. This allows us to iden-
tify every single mode of the disordered cavity, associated
with discrete resonance frequencies, as long as the mode
amplitude is large enough to be detected by the vector
network analyzer [5, 6].
More precisely, we use a slightly modi�ed version of the

C-DBSCAN algorithm published in Ref. [5]. In our ver-
sion, step 2 of the algorithm [5] either labels the points in
the KD-tree leaf as noise ratio (if the density is too small),
or we create a local cluster for each point in the leaf. De-
pending on the frequency range, we run our modi�ed
version of C-DBSCAN either in the (x, y, ν), (x, y, ν, γ)
or (x, y, ν, γ, lnA) space to reach the best clustering re-
sults. An example of the result is shown in Fig. S3 where
the di�erent clusters, or modes, found by the algorithm
are plotted using di�erent colors.
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Figure S3. For each position (x, y), a spectrum is measured
and the frequencies are extracted using harmonic inversion:
these are the points plotted in this �gure for two di�erent
frequency ranges. The points are then clusterized: each color
corresponds to a cluster found by the algorithm. The upper
panel corresponds to a typical situation in the stealth regime
where the intensity is almost uniform over the sample (small
frequency shifts). The lower panel corresponds to the case of
localized modes with large intensities corresponding to large
frequency shifts.
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B. Electric �eld amplitude maps

In the �rst line of Main text Fig. 3, we plot the signed

amplitude E±
ν (x, y) = sgn

(
Re[S̃12]

)
|S̃12|, where S̃12 is

the transmission deduced from S12 after the ad hoc rota-
tion of the global phase making the real and imaginary
parts statistically independent [7]. This allows to repre-
sent both the real and imaginary parts of the eigenmodes
on the same map.

IV. NUMERICAL SIMULATIONS OF THE DOS

Figure S4 shows the normalized density of states
(nDOS) of the stealthy hyperuniform samples obtained
numerically for a large statistical ensemble of point pat-
terns and using periodic boundary conditions. The prop-
erties of the dielectric cylinders and their density are
identical to those of the system studied in the experi-
ment. The nDOS was calculated using the MIT Photonic
Bands [8] software using the supercell method [9] as de-
scribed earlier in ref. [10]. This dataset was obtained by
calculating 500 di�erent samples for each χ-value (be-
tween 0.1 and 0.5, every 0.05).
Figure S5 shows the average and the standard devi-

ation of the gap central frequency and width found for
the samples used in Fig. S4. The statistical variations
are large at low and intermediate χ-values (between 0.10
and 0.35). At large χ-values (≥ 0.4), the standard devia-
tion vanishes: the gap central frequencies and widths are
similar from sample to sample.
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Figure S4. Normalized density of states (nDOS) obtained by
taking the average over the band structure calculated numer-
ically for 500 system realizations at each value of χ.
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Figure S5. Spread of the �rst gap central frequency and width
found in the numerical results used to obtain Fig. S4. The er-
ror bars correspond to the standard deviations, the scattered
points to the 500 individual systems per χ-value used to com-
pute the statistics. The dashed lines correspond to the results
obtained for the triangular lattice. The right panel shows the
histograms for the χ = 0.30 samples.
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V. TIME DOMAIN PROPAGATION VIDEOS

We obtain time domain propagation signals from the
real part of the Fourier transform of the complex trans-
mission spectra multiplied by a chosen bandpass �lter
centered at f0 with a standard deviation ∆ν. We use a
Gaussian bandpass �lter to avoid window e�ects in the
Fourier transform. The excitation in the time domain
is therefore a Gaussian pulse with a temporal spread in-
versely proportional to 1/∆ν of the Gaussian bandpass
�lter.
Videos S6-1, 2 and 3 show the propagation of the wave

in the low frequency regime (well below the gap frequency
νG ' 5 GHz. We observe that for frequencies ν < νc and
at early times, the spherical wave structure is well pre-
served, indicating the absence of scattering. This bound-
ary between the stealth regime and the di�usive regime
is also shown in more detail in Fig. S7. The panels in the
green shaded polygon indicate that the Gaussian pulse
central frequency f0 is below the critical stealth frequency
νc = c

neff

√
ρχ
π , and above νc elsewhere. By eye, we see a

clear correlation between the wave front smoothness and
the transition from the stealth regime to the di�usive
regime for frequencies ν > νc. Since νc ∝

√
χ the transi-

tion is shifted to higher frequencies when increasing the
degree of stealthiness χ. Note that the wave distortion
at later times (in the videos) is explained by re�ections
of the wave on the non-ideal absorbing foam walls.

Video S6-4 (respectively S6-6) shows the electromag-
netic �eld for a Gaussian pulse centered 0.25 GHz be-
low (resp. above) the band gap and having a width
∆ν = 0.25 GHz. Video S6-7 shows the propagation of the
wave in the high frequency regime, well above the �rst
band gap. As in the low frequency regime for frequen-
cies above νc, we observe a strong scattering and wave
di�usion.

Finally, video S6-5 shows the electromagnetic �eld in
the band gap. For this video, the bandpass �lter was
chosen to be a square �lter �tting exactly the bandgaps
as extracted from Main text Fig. 2. This explains the
windowing e�ect seen in the input signal.
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1. Stealth regime (Gaussian bandpass �lter, f0 = 1.75 GHz, ∆ν = 0.25 GHz)

2. Stealth regime (Gaussian bandpass �lter, f0 = 2.25 GHz, ∆ν = 0.25 GHz)

3. Wave di�usion (Gaussian bandpass �lter, f0 = 3.5 GHz, ∆ν = 0.25 GHz)

4. Dielectric Anderson localized modes just below the bandgap (Gaussian bandpass �lter, ∆ν = 0.25 GHz)

5. Square �lter in the bandgaps

6. Air Anderson localized modes just above the bandgap (Gaussian bandpass �lter, ∆ν = 0.25 GHz)

7. Wave di�usion (Gaussian bandpass �lter, f0 = 6.5 GHz, ∆ν = 0.25 GHz)

Figure S6. Videos description. The videos are permanently stored on the Zenodo repository: https://doi.org/10.5281/
zenodo.3978032.
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Figure S7. Maps of the electric �eld amplitude for the propagation of a pulse of spectral width ∆ν = 0.125 GHz at di�erent
central frequencies f0 (for details see text and Main text Fig. 3, and �rst half of the Gaussian pulse used for the excitation.
The frames shown in the �gure are taken at the time marked by the blue vertical line. The panels in the green polygon indicate
frequencies below νc(χ). The radius of the dashed circles indicate the place where a wave emitted at the time marked by the
red vertical line should be at the time marked by the blue vertical line, for a homogeneous medium with neff = 1.8. The color
scale is adjusted for each individual panels.
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