
Estimating the accuracy of the MARTINI model towards the 
investigation of Peripheral Protein-Membrane Interactions 

Sriraksha Srinivasan1, Valeria Zoni1, Stefano Vanni1,*

1 Department of Biology, University of Fribourg, Switzerland

ABSTRACT: Peripheral membrane proteins play a major role in numerous biological 

processes by transiently associating with cellular membranes, often with extreme 

membrane specificity. Because of the short-lived nature of these interactions, molecular 

dynamics (MD) simulations have emerged as an appealing tool to characterize at the 

structural level the molecular details of the protein-membrane interface. Transferable 

coarse-grained (CG) MD simulations, in particular, offer the possibility to investigate the 

spontaneous association of peripheral proteins to lipid bilayers of different compositions 

at limited computational cost, but they are hampered by the lack of a reliable a priori 

estimation of their accuracy and thus typically require a posteriori experimental validation. 

In this Discussion, we investigate the ability of the MARTINI CG force field, and 

specifically of its 3 open-beta version, to reproduce known experimental observations 

regarding the membrane binding behavior of 12 peripheral membrane proteins and 

peptides. Based on observations of multiple binding and unbinding events in several 

independent replicas, we found that, despite the presence of false positives and false 

negatives, this model is mostly able to correctly characterize the membrane binding 

behavior of peripheral proteins, and to identify key residues found to disrupt membrane 

binding in mutagenesis experiments. While preliminary, our investigations suggest that 

transferable chemical-specific CG force fields have enormous potential towards the 

characterization of the membrane binding process by peripheral proteins, and that the 

identification of negative results could help drive future force field development efforts.

INTRODUCTION
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The interaction of peripheral proteins with cellular membranes plays a pivotal role in 

numerous biological processes including lipid metabolism and transport1-3,membrane 

trafficking, and signal transduction4, 5. The interaction between proteins and the 

membrane surface is often reversible and transient6, and it is tightly modulated by 

numerous factors, including protein-protein interactions, lipid post-translational 

modifications, specific binding to signaling lipids, or recognition of bulk membrane 

properties such as electrostatics or membrane packing7. 

However, due to the transient nature of protein-membrane interactions, determination of 

the three-dimensional structure of peripheral proteins is generally achieved in their 

soluble, membrane-free conformation. Furthermore, dynamic phenomena such as large-

scale conformational changes upon membrane binding, and the molecular and energetic 

details of these interactions, are extremely difficult to elucidate via experimental methods. 

Molecular dynamics (MD) simulations provide an alternative route by allowing a detailed 

investigation of protein-membrane complexes, thus enabling the study of their dynamic 

behavior and the molecular characterization of the membrane binding process8. In 

particular, coarse-grained (CG) MD simulations have emerged in the last few years as a 

powerful tool to investigate interactions between proteins and membranes, and they have 

been shown to provide a powerful cost-effective alternative to fully atomistic MD 

simulations9, 10.

In detail, one of the most widely used CG models in this context is the MARTINI model11, 

which has fully compatible parameters available for several biomolecules such as 

proteins12, 13, lipids11, 14, nucleic acids15, 16, and carbohydrates17. In the MARTINI model, 

four non-hydrogen atoms are generally represented as a single interaction site, called a 

bead. As a consequence, simulations can access much longer time- and size-scales, at 

a reasonable computational cost. 

An intrinsic drawback of this CG strategy, however, is the almost complete lack of a 

reliable a priori estimation of its accuracy. This is related to the inevitable presence of 

systematic errors associated with the development of force field parameters, which 

generally takes place in simple molecular systems, and to the lack of a detailed 

understanding of whether these errors cancel or add up in more complex molecular 

systems18, such as those involving protein-membrane interactions. Thus, corroboration 
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of the quality of a CG model is generally achieved a posteriori, based on comparison with 

experimental data. 

For what pertains the binding of peripheral proteins to lipid bilayers, the MARTINI CG 

model has shown in the last few years to be a very promising tool19, and especially with 

respect to strong or irreversible membrane binding, such as in the case of the specific 

recognition of signaling lipids such as phosphoinositides20-24 or in the case of lipidated 

proteins25, 26. On the other hand, the ability of this model to accurately describe more 

transient (“on/off”) membrane binding by peripheral proteins, as well as to reproduce the 

experimentally-determined ability of proteins to sense bulk membrane properties, such 

as electrostatics4, 27 or lipid packing density28-30, remains mostly unexplored.

A further complication of such investigations is the potential dependence of membrane 

binding to protein conformational changes or structural fluctuations. This is particularly 

challenging for the MARTINI force field as while the parameters for lipids and amino acids 

have been derived using a self-consistent strategy, a faithful representation of protein 

secondary structure in this model requires the ad-hoc use of elastic network models 

(ENMs)31. These approaches preserve the structure of the protein by generating 

additional harmonic bonds between the backbone beads of the protein and are thus 

characterized by supplementary parameters, such as the force constant of the harmonic 

bonds (fc) and the cut-off distance (RC). Tuning of these parameters can affect the 

propensity of proteins to interact with lipid bilayers, and while recent studies suggest a 

potential role of the elastic network on protein-protein interactions and clustering32, its 

influence on interactions between peripheral proteins and membranes has not yet been 

thoroughly investigated.

In this work, we investigate the ability of the MARTINI model (and specifically of the 3 

open-beta version) to accurately describe and predict the transient binding of 12 

peripheral proteins or peptides to lipid bilayers of different compositions. We design a 

simple protocol to extract information from membrane binding/unbinding time traces and 

we specifically focus on its ability to reproduce the sensing of bulk membrane properties 

displayed by certain protein families. Our data suggests that despite significant protein-

to-protein variability and the presence of false positives and false negatives, this model 

provides, for the most part, meaningful structural information of the protein-membrane 
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interface. In addition, we find that elastic network parameters have marginal influence on 

membrane binding for globular proteins, but they affect in silico binding for those proteins 

that have been shown experimentally to undergo conformational transitions upon binding.
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METHODS

Software details
All MD simulations of the protein-membrane systems were performed with the 

GROMACS (v 2018x)33 package, using the open beta version of the Martini 3 force field19. 

All molecular images were rendered using Visual Molecular Dynamics (VMD)34. 

System setup
A total of 12 peripheral proteins were studied. They are listed in Table 1 along with their 

PDB IDs, the bilayer compositions they were set up with, and the duration of the 

simulations. The protein structures were obtained from RCSB PDB35, with the exception 

of ArfGAP1 amphipathic lipid packing sensor (ALPS) helix (residues 199 to 223) that was 

modeled as an alpha helix.  For the Arf1 protein, structures of two different conformations 

(GDP-bound and GTP-bound) are present in the RCSB PDB. Since the two 

conformations are markedly different, particularly in the N-terminal region which is 

responsible for membrane binding36, we removed the ligands from the structures in our 

MD simulations. This approach is particularly justified for CG simulations since the elastic 

network employed retains the secondary structure of the protein. The atomistic structures 

were converted to CG models with an additional elastic network using the martinize12 

script. The lower and upper elastic bond cut-off were set to 0.5 nm and 0.9 nm 

respectively. For each protein system, independent simulations were performed with two 

elastic bond force constants: 500 and 1000 kJ mol-1 nm-2. Side chain dihedral corrections 

were applied to the CG models using the addDihedral.tcl and bbsc.sh scripts, as 

necessitated for the 3 open beta version of the Martini force field. 

Lipid bilayers of different compositions (as indicated in table 1) of 20 nm x 20 nm in lateral 

dimensions were constructed using the CHARMM-GUI Membrane Builder37, and were 

equilibrated according to the standard six step equilibration protocol provided by 

CHARMM-GUI. The bilayers were then stripped of water molecules and ions, and the 

protein was placed such that the minimum distance between any bead of the protein and 

any bead of the lipid molecules was at a distance of at least 2.5 nm. The initial orientation 

of the protein was such that its principal axes were aligned with the x, y, and z directions 
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of the system, with the longer dimension of the protein aligned along the z direction. The 

systems were then solvated and ionized with 0.12 M of sodium and chloride ions.

     Table 1. CG simulation details of proteins and peptides tested

Protein PDB ID fc
 (kJ mol-1 nm-2) Bilayer composition Simulation time 

(μs)
Number of 

replicas

Total 
simulation time 

(μs)

DOPC 2 5 10
 Ubiquitin 1UBQ 500,1000 DOPC/DOPS

(80:20) 2 5 10

DOPC 2 5 10
Hen egg white 

lysozyme 1AKI 500,1000 DOPC/DOPS
(80:20) 2 5 10

DOPC 4 6 24

DOPC/DOPS
(90:10) 4 6 24

DOPC/DOPS
(80:20) 4 6 24

 PDK1 PH Domain
(residues 407-549) 1W1D 500,1000

DOPC/DOPS
(70:30) 4 6 24

DOPC 2 6 12

DOPC/DOPS
(80:20) 2 6 12Evectin-2 PH Domain

(residues 1-112) 3VIA 500,1000

DOPC/DOPS
(70:30) 2 6 12

DOPC 2 6 12

DOPC/DOPS
(90:10) 2 6 12Lactadherin C2

Domain
(residues 1-158)

3BN6 500,1000

DOPC/DOPS
(80:20) 2 6 12

DOPC 3 6 18
FVa C2 Domain
(residues 1-160) 1CZT 500,1000 DOPC/DOPS

(80:20) 3 6 18

DMPC 2 5 10

DOPC 2 5 10 PLA2  1POA 500,1000
DOPC/DOPS

(80:20) 2 5 10

Arf1 - GTP 2KSQ 500,1000 DOPC 2 6 12

Arf1 - GDP 2K5U 500,1000 DOPC 2 6 12

DOPC 4 6 24
Ricin 1BR5 500,1000 DOPC/DOPS

(70:30) 4 6 24

DMPC 1 6 6

POPC 1 6 6Mastoparan  1D7N 500,1000

DOPC 1 6 6
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DMPC 2 5 10

POPC 2 5 10Osh4 ALPS peptide
(residues 1-29)  1ZHY 500,1000

DOPC 2 5 10

DMPC 2 6 12

POPC 2 6 12
ArfGAP1 ALPS 

peptide
(residues 199-223)

Helical 
model 500,1000

DOPC 2 6 12

Total simulation time (μs) 860

Simulation details  
Initial equilibration was carried out by performing energy minimization using the steepest 

descent algorithm, followed by a short MD run of 250 ps with the protein backbone beads 

restrained. Production runs were performed at 310K using a velocity-rescale 

thermostat38, with separate temperature coupling for the protein, lipids, and solvent 

particles. The pressure was maintained at 1 bar using the Parrinello-Rahman barostat39, 

along with a semi-isotropic pressure coupling scheme. The non-bonded interactions were 

calculated by generating a pair-list using the Verlet scheme with a buffer tolerance of 

0.005. The Coulombic terms were calculated using reaction-field and a cut-off distance 

of 1.1 nm. A cutoff scheme was used for the vdW terms, with a cut-off distance of 1.1 nm 

and the Verlet cut-off scheme for the potential-shift40.  The md integrator was used, with 

a time step of 20 fs. The first 100 ns of the production runs were not considered for 

analyses. 

Analysis details
Membrane binding events were characterized by analyzing the time-trace of the minimum 

distance between the protein and the lipid bilayer (Figs. S1-S11). This distance was 

computed using the gmx mindist tool in GROMACS33. 

Membrane binding was subsequently assessed by generating probability density 

distributions from these time traces using the kernel density estimation (KDE) method, 

and bound states were defined as those instances when the minimum distance was lower 

than or equal to 0.7 nm. The percentage of binding, which is the ratio between the area 

below the curve in the distribution within 0.7 nm and the total area under the curve was 
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computed in each case. Statistical errors for these values are reported as standard errors 

from the computed values in each individual replica.

Membrane-interacting residues were determined using the following protocol: a residue 

was considered to interact with the membrane if the distance between any bead of the 

residue and any lipid-bead was lower than or equal to 0.5 nm. For each residue, the 

number of instances of its interaction with the membrane during the trajectory was 

counted and summed over all the replicas, and a corresponding normalized value was 

computed. 

RESULTS
To investigate the binding of peripheral proteins to membranes, we initially positioned the 

proteins at a distance of at least 2.5 nm from equilibrated lipid bilayers of different 

compositions (Fig. 1A). After MD simulations of few microseconds, as indicated in Table 

1, binding events were identified and quantified using the protocol depicted in Fig.1. First, 

the time-trace of the minimum distance between the protein and the lipid bilayer was 

computed for all replicas (Fig. 1B, only one replica is shown), and the probability density 

distribution of these values (Fig. 1C) was generated by averaging the corresponding 

probability density distribution for all individual replicas. Membrane-bound states were 

defined as those instances when the minimum distance was lower than or equal to 0.7 

nm (Fig. 1C), roughly corresponding to the first minimum observed in the probability 

density distribution. 
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Figure 1: Protocol used in this work to characterize membrane binding. (A) Initial system set-up for a 

representative peripheral protein. The protein is shown in cartoon representation; the membrane is shown 

in gray. Water and ion beads are omitted for clarity. (B) Time trace of the minimum distance between the 

protein and the bilayer. (C) Probability density distribution of the time series in (B). Values are obtained by 

averaging over several independent replicas. 

Soluble proteins.

As a first test to evaluate the ability of the MARTINI model to estimate membrane binding 

by peripheral proteins, we investigated, as a negative control, whether the model is able 

to accurately reproduce the lack of binding by proteins that are known to remain soluble 

in the cytosol and in vitro assays41-43. To this end, we tested the binding to pure DOPC 

lipid bilayers of two well-known soluble proteins, ubiquitin (Fig. 2A) and hen-egg white 

lysozyme (Fig. 2D), at two different force constants for the elastic network model, fc=500 

kJ mol-1nm-2 and fc=1000 kJ mol-1 nm-2. In both cases, we observed no significant binding 

of the proteins to the bilayer, as indicated by the very low maximum at values below 0.7 

nm in Fig. 2B and 2E. Rather, the two proteins adopted an unbound (protein-membrane 
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minimum distance > 0.7 nm) state in solution for most (90%) of the trajectory (Fig 2C,F 

and Fig. S1). To further stress-test the methodology, we next added 20% DOPS lipids in 

our membrane composition, to potentially promote binding by means of electrostatic 

interactions. Even in those conditions, no significant binding was observed (Fig. 2C,F). 

Of note, no influence of the elastic network force constant was observed (Fig. 2B,C,E,F).

Figure 2: Binding of soluble proteins to lipid bilayers. (A,D) Representative structure of ubiquitin (A) 

and HEW Lysozyme (D). (B,E) Probability density distribution of minimum distance values for ubiquitin (B) 

and HEW Lysozyme (E), for two values of the force constant, in DOPC bilayers. No membrane binding was 

observed to DOPC bilayers for both proteins. (C,F) Percentage of binding at different membrane 

compositions. Addition of DOPS to the bilayer did not enhance binding significantly for both proteins.

Globular proteins.

Next, we evaluated whether the MARTINI model is able to reproduce the experimentally 

observed sensitivity to PS lipids that is a characteristic feature of specific protein families. 

To this end, we first tested two pleckstrin homology (PH) domains, belonging to 3-

Phosphoinositide-dependent kinase-1 (PDK1) (Fig. 3A) and evectin-2 (Fig. 3D), as well 

as two C2 domains - those of lactadherin (Fig. 5A) and human coagulation factor V (FVa) 

(Fig. 5D), that have all been shown to bind to membranes in the presence of PS lipids44-

48.
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In the case of the PH domain of PDK1, we observe significant membrane binding in the 

presence of PS lipids (Fig. 3B), in agreement with experimental observations44. When 

increasing the concentration of PS lipids, membrane binding increased almost 

monotonically, with the protein showing almost no binding in the absence of PS lipids and 

binding for more than 50% of the time during the trajectory in the presence of 30% PS 

(Fig. 3C). On the other hand, for the second PH domain we tested, that of evectin-2, we 

observed only marginal binding in the mixed PC/PS bilayers (Fig. 3E). In the absence of 

PS lipids, membrane binding further, albeit slightly, decreased (Fig. 3F), suggesting that 

the MARTINI model possibly underestimates membrane binding affinity for this protein. 

In both cases, no effect of the elastic network force constant was observed (Fig. 3C,F)

Figure 3: Binding of PH domains to lipid bilayers. (A,D) Representative structure of the PH domain of 

PDK1 (A) and evectin-2 (D). (B,E) Probability density distribution of protein-membrane minimum distances 

in PC/PS lipid bilayer. (C,F) Percentage of binding of the two proteins at different membrane compositions. 

Addition of PS to the bilayer enhanced binding significantly for the PH domain of PDK1 but not for that of 

evectin-2.

We next analyzed the membrane binding interface for both PH domains (Fig. 4A,C). To 

do so, we counted the instances of residue-membrane interactions in the simulations 

performed at high PS concentration and collected the corresponding frequencies (Fig. 

4B,D). For PDK1, we found that residues R466 and K467 have the highest probability to 

bind the bilayer (Fig. 4B), in agreement with the binding mode that has been previously 
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characterized experimentally44. For Evectin-2, on the other hand, the protein is known to 

bind to PS via a pocket made by three basic residues (R11, R18, K20) and via the 

backbone nitrogen atoms of T14, I15 and L1645, 49. Analysis of membrane interacting 

residues, however, indicates no particular preference, and the model does not identify the 

correct binding interface (Fig. 4C,D). 

Figure 4: Protein-membrane interface of PH domains. (A,C) Representative membrane binding mode 

for the PH domain of PDK1 (A) and Evectin-2 (C). Experimentally determined residues responsible for 

membrane binding are shown explicitly in licorice representation. (B,D) Normalized frequency of contacts 

for protein residues for membranes with 30% PS. The shaded regions represent the experimentally 

observed binding regions. 

Next, we performed similar analyses for the C2 domains of Lactadherin (Fig. 5A) and FVa 

(Fig. 5D). Unlike for PH domains, in our simulations, the C2 domains displayed membrane 

binding despite the absence of PS lipids (Fig. 5B,E), and PS lipids did not significantly 

increase membrane binding (Fig. 5C,F), unlike in experimental observations45, 46. 
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Figure 5: Binding of C2 domains to lipid bilayers. (A,D) Representative structure of the C2 domain of 

lactadherin (A) and FVa (D). (B,E) Probability density distribution of protein-membrane minimum distances 

in PC lipid bilayer. (C,F) Percentage of binding of the two proteins at different membrane compositions. 

Addition of PS to the bilayer did not enhance binding significantly for both the proteins.

In both cases, however, analysis of the membrane binding interface (Fig. 6A,C) , reveals 

that the model is capable of correctly identifying the experimentally known membrane 

binding interface for both the C2 domains (Fig. 6B,D). In detail, the lactadherin C2 domain 

is predicted to interact with membranes via its W26, G27, L28, F31 and F81 regions47 

while the FVa domain is predicted to do so via the residues K23, W26, W27, Q48, S78 

and L7948.
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Figure 6: Protein-membrane interface of C2 domains. (A,C) Representative membrane binding mode 

for the C2 domain of lactadherin (A) and FVa (C). Experimentally determined residues responsible for 

membrane binding are shown explicitly in licorice representation. (B,D) Normalized frequency of contacts 

for protein residues with membranes with 20% PS. The shaded regions represent the experimentally 

observed binding regions.

Next, we investigated the binding of the enzyme Phospholipase A2 (PLA2) (Fig. 7A) to 

lipid bilayers consisting of PC-only or PC-PS mixtures (Fig. 7). The membrane binding of 

PLA2 is a particularly challenging test case for the MARTINI force field, as it has been 

shown to depend on cation-pi interaction between lipid polar heads and protein aromatic 

residues50, 51, 52. We found that our model is not able to reproduce the experimentally 

observed binding to pure PC bilayers, regardless of acyl chain composition (Fig. 7B and 

S6). On the other hand, adding PS lipids significantly increases binding (Fig. 5C), 

particularly via the binding interface proposed via a combination of atomistic and 

experimental assays using single point mutations, involving several aromatic residues  

(Y3, W18, W19, W61, F64, Y110)50, 53 (Fig. 7D,E).
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Figure 7: Binding of PLA2 to lipid bilayers. (A) Representative structure of PLA2. (B,C) Probability density 

distribution of protein-membrane minimum distances in PC, and PC/PS lipid bilayers . (D) Representative 

membrane binding mode for PLA2. Experimentally determined residues responsible for membrane binding 

are shown explicitly in licorice representation. (E) Normalized frequency of contacts for protein residues for 

membranes with 20% PS. The shaded regions represent the experimentally observed binding regions.

In summary, our data suggest that the model is able, with the sole exception of the PH 

domain of Evectin-2, to identify most of the residues that have been experimentally 

identified to drive membrane association. On the other hand, the model is generally not 

well-suited to identify the correct membrane conditions for binding, including the 

experimentally observed dependency of membrane binding upon increase in membrane 

PS levels for the PH and C2 domains tested in this study, with the exception of that of 

PDK1. In all cases, varying elastic network parameters has no significant effect on the 

observed binding behavior of globular peripheral proteins. 

Peripheral proteins adopting different conformations.

We next investigated whether this approach is able to discriminate between 

conformations that have been experimentally shown to promote or prevent membrane 
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binding. To test this approach, we first focused on the protein Arf1, which has been shown 

to bind to membranes upon GDP-to-GTP exchange via its N-terminal amphipathic helix 

(AH)36. As both GDP- and GTP- bound conformations are available in the Protein Data 

Bank (Fig. 8A,D)54, 55, we tested their binding to pure DOPC bilayers. In agreement with 

experimental observations55, we found that the GDP-bound conformer of the protein does 

not bind to DOPC bilayers (Fig. 8B), while the GTP-bound conformer does (Fig. 8E). 

Analysis of the protein residues that interact with the lipid bilayer in the GTP-bound form, 

correctly identified the N-terminal AH as the main culprit for membrane binding (Fig. 8F). 

Again, no major effect of the elastic network parameters was observed (Fig. 8B,E).

Figure 8: Binding of Arf1 to lipid bilayers. (A,D) Representative structure of the Arf1 protein when bound 

to GDP (A) and GTP (D). GDP and GTP are omitted for clarity. The shaded region indicates the difference 

in the two structures at the N-terminus. (B,E) Probability density distribution of protein-membrane minimum 

distances in PC lipid bilayer. (C,F) Normalized frequency of contacts for protein residues for membranes 

with PC lipid bilayer. The shaded region represents the experimentally observed binding region.

Next, we investigated whether our protocol is able to reproduce, at least at the qualitative 

level, membrane binding events in which protein conformational changes have been 

proposed to occur. As a test system, we studied the Ricin A-chain (RTA) (Fig. 9A), a 

cytotoxic protein known to bind to PS containing vesicles, possibly upon binding-driven 

conformational changes56, 57. In agreement with experimental observations56, we 
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observed significant membrane binding in mixed PC/PS bilayers (Fig. 9B), but almost no 

binding of ricin to pure PC bilayers (Fig. 9C). Interestingly membrane binding in presence 

of PS lipids was larger when using a low fc of 500 kJ mol-1 nm-2 (Fig. 9B). On the other 

hand, when a high fc of 1000 kJ mol-1 nm-2 was used, the protein could initiate binding 

with the lipid bilayers, but this did not result into stable binding events (Fig. S8). Analysis 

of the membrane binding residues for the simulations with PS-containing bilayers 

revealed that the binding interface is mostly consistent with what has been experimentally 

determined56 (Fig. 9D,E).

Figure 9: Ricin binding to lipid bilayers. (A) Representative structure of ricin. (B) Probability density 

distribution of protein-membrane minimum distances in PC/PS lipid bilayers at two values of fc. (C) 

Percentage of binding of ricin at different membrane compositions. Addition of PS to the bilayer enhanced 

binding significantly, especially for fc = 500 kJ mol-1 nm-2. (D) Representative membrane binding mode of 

ricin. Experimentally determined residues responsible for membrane binding are shown explicitly in licorice 

representation. (E) Normalized frequency of contacts for protein residues for membranes with 30% PS. The 

shaded regions represent the experimentally observed binding region.

Amphipathic helices.

Finally, we investigated the ability of the model to reproduce the binding of AHs to lipid 

bilayers. AHs are unfolded in solution and adopt a helical conformation upon membrane 

binding, posing thus a unique challenge to our modeling strategy that requires the a priori 
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determination of the protein secondary structure. As a consequence, modeling them in 

their folded, membrane-bound, helical conformation could also intrinsically favor 

membrane binding.

To investigate membrane binding of AHs to lipid bilayers we studied the binding of three 

distinct peptides, that of mastoparan (Fig. 10A) - an antimicrobial peptide known to 

stimulate the release of histamine from mast cells58, and the Amphipathic Lipid Packing 

Sensor (ALPS) motifs of two distinct proteins, the lipid transporter Osh4 (Fig. 10B) and 

the GTPase-activating protein (GAP) for Arf1 (ArfGAP1)59 (Fig. 10C).  We studied the 

binding of these three peptides to bilayers composed of PC lipids with different acyl 

chains, that were shown to mimic an increase in lipid-packing defects60, a membrane 

property that ALPS motifs are sensitive to30, 59, and that substantially increases going from 

saturated DMPC lipids to doubly unsaturated dioleoyl chains30, 61.

Notably, the membrane binding behavior of mastoparan is affected by the choice of the 

elastic network parameters (Fig. 10D). In particular, using a fc of 500 kJ mol-1 nm-2, the 

peptide shows a consistent binding to all lipid compositions, in agreement with 

experimental observations62. On the other hand, using a fc of 1000 kJ mol-1 nm-2, the 

protein appears to exhibit sensitivity to lipid packing defects (Fig. 7A,D), even showing 

almost no binding in the presence of fully saturated DMPC lipids (Fig. 7A).

On the other hand, the ALPS motif of Osh4 displays the experimentally-observed 

sensitivity for lipid packing defects regardless of the force constant used (Fig. 10E). Of 

note, this behavior is enhanced when using an fc of 500 kJ mol-1 nm-2.

The ALPS motif of ArfGAP1, on the other hand, displays a stable irreversible binding in 

all simulations, in disagreement with the experimentally observed sensitivity for lipid-

packing defects30. We attribute this negative result, in part, to the incorrect modeling of 

the ArfGAP1 AH as a fully folded helix, in disagreement with circular dichroism 

experiments showing a helical content of approximately 45% for the membrane bound 

conformation63. This also highlights a limitation of our protocol, which is able to 

discriminate between different proteins and/or membrane conditions only when multiple 

binding/unbinding events are observed in the MD simulations.

Taken together, these results suggest that the model is able, at least in some instances, 

to reproduce important properties of the binding of AHs to model membranes, including 
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their sensitivity to lipid-packing. At the same time, special care must be taken, as the 

choice of the protein conformation and of the elastic network force constant have a strong 

influence on the final results. Using a low fc of 500 kJ mol-1 nm-2 appears to provide a 

better agreement with experimental observations. 

Figure 10: AH binding to lipid bilayers. (A-C) Representative structures of the three AHs investigated in 

this study – mastoparan (A), ALPS motif of Osh4 (B), and ALPS motif of ArfGAP1 (C).(D-F) Percentage of 

binding of the three AHs at different membrane compositions. 

DISCUSSION

In this Faraday Discussion on Peptide-membrane interactions, we investigated the ability 

of a widely-used CG model, the MARTINI force field, and more precisely its 3 open-beta 

release, to accurately describe the binding of peripheral proteins to model membranes. 

To this end, we have developed a protocol to characterize membrane binding from 

multiple replicas of unbiased MD trajectories for proteins and peptides belonging to 

different families and displaying different membrane binding mechanisms. Despite our 
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limited dataset, our simulations allow us to draw some preliminary general conclusions 

about the performance of this model. 

First, the model does not appear to overestimate protein-membrane binding affinity, as: 

1. for most of the proteins in our dataset we observed multiple binding/unbinding events 

within the timescales of our simulations (microseconds), and 2. the model is able to 

correctly identify soluble proteins that do not bind to membranes, as we did not observe 

membrane binding for the two soluble proteins we selected as negative controls: hen egg 

white lysozyme and ubiquitin. 

Second, the observed on/off behavior is paramount for the ability of our protocol to provide 

qualitative information on the binding process, and to quantify variations in membrane 

binding as a result of changes in membrane properties. For example, it allows for the 

investigation of protein sensitivity to specific membrane properties, such as electrostatics 

or lipid-packing defects. To this extent, we could correctly characterize the 

experimentally-observed sensitivity for membrane properties, for example that of the PH 

domains of PDK1 to PS lipids44, and that of the ALPS motif of Osh4 for lipid-packing 

defects59. On the other hand, we could not accurately reproduce the membrane sensitivity 

of different proteins, for example that of C2 domains for PS lipids, or that of ArfGAP1 for 

lipid packing defects. Interestingly, the membrane-binding interface of the C2 domains 

tested in this study is largely composed of aromatic residues, while that of PH domains is 

largely composed of positively-charged residues. It is thus possible that the negative 

results for C2 domains might originate from the previously established underestimation 

of aromatic residues-lipid interactions52 of the MARTINI force field, an observation that 

could also explain why we could not observe the binding of PLA2 to PC lipid bilayers that 

has been reported experimentally50. Taken together, these observations suggest that 

slight under- or over-estimation of membrane binding affinity is sufficient to severely limit 

the ability of the model to correctly predict the ability to sense specific membrane 

properties displayed by some proteins.

Lastly, our protocol succeeds in correctly characterizing the protein-membrane interface 

for all but one protein in our dataset, as we were mostly able to identify the key residues 

found to disrupt membrane binding upon mutagenesis experiments. Since our approach 

lacks the ability to investigate protein conformational changes, it is possible that negative 
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results might stem from the use of the crystal structure as the starting point, which might 

not represent the correct membrane-interacting conformation. Overall, however, when 

multiple independent binding events are observed, our findings indicate that MARTINI 3 

can be used as a predictive tool to infer the protein-membrane interface and to rationally 

prioritize mutagenesis experiments for validation of the in silico results. 

From a technical point of view, we found that varying the force constant in the elastic 

network model used to restrain the secondary structure of the protein has only minimal 

impact for folded globular proteins, but it becomes a relevant parameter in those cases 

where protein conformational flexibility plays a key role in membrane binding, as is the 

case, for example, for amphipathic helices. As the extent of conformational plasticity 

during binding is not generally known a priori, we suggest, as a practical rule, to keep the 

force constant low, to prevent unintentional biasing of the membrane binding affinity. 

In summary, our preliminary investigations suggest that transferable chemical-specific 

CG force fields have enormous potential towards the characterization of structural 

properties of the membrane binding process by peripheral proteins, even if room for 

improvement remains. We foresee that future investigations in this direction will shed 

further light into the capabilities and limitations of these approaches, possibly becoming 

part of the development and testing strategy for future releases of MARTINI or other CG 

force fields.  
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