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a b s t r a c t

In this work, we study the following problem: given a connected graph G, can we reduce
the domination number of G by at least one using k edge contractions, for some fixed
integer k > 0? We show that for k = 1 (resp. k = 2), the problem is NP-hard (resp.
coNP-hard). We further prove that for k = 1, the problem is W[1]-hard parameterized by
domination number plus the mim-width of the input graph, and that it remains NP-hard
when restricted to chordal {P6, P4 + P2}-free graphs, bipartite graphs and {C3, . . . , Cℓ}-
free graphs for any ℓ ≥ 3. We also show that for k = 1, the problem is coNP-hard
on subcubic claw-free graphs, subcubic planar graphs and on 2P3-free graphs. On the
positive side, we show that for any k ≥ 1, the problem is polynomial-time solvable on
(P5 + pK1)-free graphs for any p ≥ 0 and that it can be solved in FPT-time and XP-time
when parameterized by treewidth and mim-width, respectively. Finally, we start the
study of the problem of reducing the domination number of a graph via vertex deletions
and edge additions and, in this case, present a complexity dichotomy on H-free graphs.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In a graph modification problem, we are usually interested in modifying a given graph G, via a small number of
operations, into some other graph G′ that has a certain desired property. This property often describes a specific graph
class to which G′ must belong. Such graph modification problems allow to capture a variety of classical graph-theoretic
problems; for instance, if only k vertex deletions are allowed and G′ must be an independent set or a clique, we obtain
the Independent Set or Clique problem, respectively.

Now, instead of specifying a graph class to which G′ should belong, we may ask for a specific graph parameter π to
decrease. In other words, given a graph G, a set O of one or more graph operations and an integer k ≥ 1, the question
s whether G can be transformed into a graph G′ by using at most k operations from O such that π (G′) ≤ π (G) − d for
ome threshold d ≥ 0. Such problems are called blocker problems as the set of vertices or edges involved can be viewed
s ‘‘blocking’’ the parameter π . Identifying such sets may provide important information about the structure of the input
raph; for instance, if π = α, k = d = 1 and O = {vertex deletion}, the problem is equivalent to testing whether the
nput graph contains a vertex that is in every maximum independent set (see [24]).

Blocker problems have received much attention in the recent literature (see for instance [1–4,9,13,14,21,23–25]) and
ave been related to other well-known graph problems such as Hadwiger Number, ClubContraction and several graph
ransversal problems (see for instance [13,23]). The graph parameters considered so far in the literature include the
hromatic number, the independence number, the clique number, the matching number and the vertex cover number,
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hile the set O consists of a single graph operation, namely either vertex deletion, edge contraction, edge deletion or
dge addition. Since these blocker problems are often NP-hard in general graphs, particular attention has been paid to

their computational complexity when restricted to special graph classes.
In this paper, we study another parameter, namely the domination number γ , and we consider the following three

operations: edge contraction, vertex deletion and edge addition, the first one being the main focus of our work. To the best
of our knowledge, a systematic study of the computational complexity of the blocker problem for the domination number
has not yet been attempted in the literature. We point out that a related problem (that of characterizing the graphs for
which the contraction of any edge decreases the domination number) has already been considered in the literature (see
for instance [6–8,26]). We initiate here a study of the blocker problem for this parameter, as it has been done for other
parameters and several graph operations.

Formally, let G = (V , E) be a graph. The contraction of an edge uv ∈ E removes vertices u and v from G and
replaces them by a new vertex that is made adjacent to precisely those vertices that were adjacent to u or v in
G (without introducing self-loops nor multiple edges). We say that a graph G can be k-contracted into a graph G′, if
G can be transformed into G′ by a sequence of at most k edge contractions, for an integer k ≥ 1 (note that contracting
an edge cannot increase the domination number). The first problem we consider is the following, where k ≥ 1 is a fixed
integer.

k-Edge Contraction(γ )
Instance: A connected graph G = (V , E).
Question: Can G be k-edge contracted into a graph G′ such that γ (G′) ≤ γ (G) − 1?

Interestingly, Huang and Xu [20] showed that three edge contractions are always enough to decrease the domination
number of a graph. Hence, if k ≥ 3, k-Edge Contraction(γ ) has a simple answer: every graph with domination number
at least two is a Yes-instance to this problem. For this reason, we only consider the problem for k = 1, 2. We show
that this problem is NP-hard and W[1]-hard parameterized by γ + mim-width for k = 1, and coNP-hard for k = 2.
We then consider the problem on specific classes of graphs. We show that 1-Edge Contraction(γ ) is NP-hard and
W[1]-hard parameterized by γ on {P6, P4 + P2}-free chordal graphs. We also show that it remains NP-hard when
restricted to bipartite graphs and to {C3, . . . , Cℓ}-free graphs, for every ℓ ≥ 3, and that it is coNP-hard when restricted to
2P3-free graphs, subcubic planar graphs and subcubic claw-free graphs. Followingly, we present some positive results.
We show that 1-Edge Contraction(γ ) can be solved in polynomial time on P5-free graphs and that it can be solved
n FPT-time and XP-time when parameterized by tree-width and mim-width, respectively. We also show that 2-Edge
ontraction(γ ) is polynomial-time solvable on P6-free graphs, thus providing a graph class in which the complexities of
-Edge Contraction(γ ) and 2-Edge Contraction(γ ) are not the same. Together, these results also provide a complexity
ichotomy for 1-Edge Contraction(γ ) on H-free graphs, when H is a connected graph.
We then turn our attention to the other two operations: vertex deletion and edge addition. As opposed to the case of

dge contractions, there is no constant upper bound on the number of vertex deletions or edge additions necessary to
ecrease the domination number of a graph, as can be seen by a graph consisting of two stars having a common leaf. We
re therefore interested in the following two problems, where for a set S ⊆ V (G) (resp. S ⊆ E(G)), G − S (resp. G + S)

denotes the graph obtained from G by the deletion (resp. addition) of the elements of S.

Vertex Deletion(γ )
Instance: A connected graph G and an integer k.
Question: Is there S ⊆ V (G) such that |S|≤ k and γ (G − S) ≤ γ (G) − 1?

Edge Addition(γ )
Instance: A connected graph G and an integer k.
Question: Is there S ⊆ E(G) such that |S|≤ k and γ (G + S) ≤ γ (G) − 1?

When k is fixed and thus not part of the input, we denote by k-Vertex Deletion(γ ) and k-Edge Addition(γ ) the
corresponding problems.

We first show that Vertex Deletion(γ ) and Edge Addition(γ ) are in fact equivalent problems, a rather surprising
result as the vertex deletion and edge addition operations behave differently: while edge additions can only decrease the
domination number of a graph, vertex deletions can both increase or decrease it. Due to this equivalence, we only focus
on Vertex Deletion(γ ). We show that even for k = 1, Vertex Deletion(γ ) is NP-hard and W[1]-hard parameterized
by γ on split graphs, which rules out the possibility of algorithms running in FPT- or even XP-time parameterized by
k for this problem, unless P=NP. In view of this, we solely focus on Vertex Deletion(γ ) with k = 1. We show that
1-Vertex Deletion(γ ) remains NP-hard (resp. coNP-hard) on bipartite graphs and {C3, . . . , Cℓ}-free graphs, for ℓ ≥ 3 (resp.
claw-free graphs). Finally, we provide a few cases in which 1-Vertex Deletion(γ ) becomes polynomial-time solvable; in
particular, we show that this is the case for (P4 +kP1)-free graphs. Together, these results lead to a complexity dichotomy
for 1-Vertex Deletion(γ ) on H-free graphs.
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The paper is organized as follows: In Section 2, we present definitions and notations that are used throughout the paper,
nd also provide some preliminary results, including the equivalence between Vertex Deletion(γ ) and Edge Addition(γ ).
ection 3 is devoted to the complexity study of k-Edge Contraction(γ ), while Section 4 explores the complexity of the
-Vertex Deletion(γ ) problem. We conclude the paper in Section 5 with some final remarks and future research
irections. Extended abstracts of distinct parts of this work appeared in the proceedings of MFCS 2019 [17] and ISAAC
019 [16].

. Preliminaries

efinitions and notation. Throughout the paper, we only consider finite, undirected, connected graphs that have no
elf-loops or multiple edges. We refer the reader to [12] for any terminology and notation not defined here and to [10]
or basic definitions and terminology regarding parameterized complexity.

Let G = (V , E) be a graph and let n = |V |. For any u ∈ V , we denote by NG(u), or simply N(u) if it is clear from the
ontext, the set of vertices that are adjacent to u i.e., the neighbors of u, and let N[u] = N(u) ∪ {u}. Two vertices u, v ∈ V
re said to be true twins (resp. false twins), if N[u] = N[v] (resp. if N(u) = N(v)). If |N(v)| = 1, we say v is a leaf of G and
e denote by leaves(G) the set of leaves of G.
For a subset V ′

⊆ V , we let G[V ′
] denote the subgraph of G induced by V ′, which has vertex set V ′ and edge set

uv ∈ E | u, v ∈ V ′
}. A subset K ⊆ V (G) is a clique if any two vertices of K are adjacent in G. A vertex v ∈ V (G) is simplicial

f N(v) is a clique.
A graph is a chordal graph if it has no induced cycle of length at least four or, equivalently, if it admits a perfect

limination ordering, that is, an ordering v1v2 . . . vn of V such that for every 1 ≤ i ≤ n, vi is simplicial in the graph
[{vi, vi+1, . . . , vn}].
Given two vertex disjoint graphs H and H ′, the graph obtained from the disjoint union of H and H ′ (denoted by H +H ′)

s the graph with vertex set V (H)∪V (H ′) and edge set E(H)∪E(H ′). We say that G = kH if G is the graph obtained from the
isjoint union of k vertex-disjoint copies of a graph H . For a family {H1, . . . ,Hp} of graphs, G is said to be {H1, . . . ,Hp}-free
f G has no induced subgraph isomorphic to a graph in {H1, . . . ,Hp}; if p = 1 we may write H1-free instead of {H1}-free.
or k ≥ 1, the path and cycle on k vertices are denoted by Pk and Ck respectively. A tree is a graph that is connected and
cyclic. A graph is bipartite if every cycle contains an even number of vertices. The complete graph on k ≥ 1 vertices is
enoted by Kk; K3 is also referred to as a triangle. The diamond is the graph obtained from K4 by deleting an edge.
We denote by dG(u, v), or simply d(u, v) if it is clear from the context, the length of a shortest path from u to v in G.

imilarly, for any subset V ′
⊆ V , we denote by dG(u, V ′), or simply d(u, V ′) if it is clear from the context, the minimum

ength of a shortest path from u to some vertex in V ′ i.e., d(u, V ′) = minv∈V ′ d(u, v); and for V ′′
⊆ V , we denote by

G(V ′, V ′′), or simply d(V ′, V ′′) if it is clear from context, the minimum length of a shortest path from a vertex of V ′ to
ome vertex of V ′′ i.e., d(V ′, V ′′) = minx∈V ′,y∈V ′′ d(x, y).
For a vertex v ∈ V , we write G − v = G[V \ {v}] and for a subset V ′

⊆ V we write G − V ′
= G[V \ V ′

]. For an edge
∈ E, we denote by G\e the graph obtained from G by contracting the edge e. The k-subdivision of an edge uv consists in
eplacing it by a path u-v1-. . .-vk-v, where v1, . . . , vk are new vertices.

Given a graph H and an integer d ≥ 0, we say that G is at distance at most d from H if there exists a subset X ⊆ V such
hat |X | ≤ d and G[V \ X] is isomorphic to H .

A subset S ⊆ V is called an independent set, or is said to be independent, if any two vertices in S are nonadjacent. A
ubset D ⊆ V is called a dominating set, if every vertex in V \ D is adjacent to at least one vertex in D; the domination
umber γ (G) is the number of vertices in a minimum dominating set. For any v ∈ D and u ∈ N[v], v is said to dominate
(in particular, v dominates itself); furthermore, u is a private neighbor of v with respect to D if u has no neighbor in
\{v}. We say that D contains an edge (or more) if the graph G[D] contains an edge (or more). A vertex v ∈ V (G) is a
omination-critical vertex if its deletion results in a graph with smaller domination number. The Dominating Set problem
s to test whether a given graph G has a dominating set of size at most ℓ, for some given integer ℓ ≥ 0. If Π is a problem
hat takes as input a graph G and an integer k, we denote by (G, k) an instance of Π .

arameterized Complexity. Let Σ be an alphabet. A parameterized problem is a set Π ⊆ Σ∗
×N. A parameterized problem

is said to be fixed-parameter tractable, or contained in the complexity class FPT, if there exists an algorithm that for
ach (x, k) ∈ Σ∗

× N decides whether (x, k) ∈ Π in time f (k) · |x|c for some computable function f and fixed integer
∈ N. A parameterized problem Π is said to be contained in the complexity class XP if there is an algorithm that for
ll (x, k) ∈ Σ∗

× N decides whether (x, k) ∈ Π in time f (k) · |x|g(k) for some computable functions f and g . The basic
ay to show a parameterized problem Π is unlikely to admit an FPT algorithm when parameterized by k is to show
hat the problem is W[1]-hard under this parameterization. Analogously to the classical P versus NP setting, this is done
y providing a parameterized reduction from a known W[1]-hard problem to Π . For more detailed definitions regarding
arameterized complexity, we refer the reader to [10].

im-width. Let M ⊆ E(G) and VM be the set of vertices that are endpoints of M . We say M is an induced matching of
if G[VM ] is isomorphic to pK2 with p = |M|. Given a graph G and a partition of V into two subsets A, B, we denote
y G[A, B] the bipartite graph with vertex set V and edge set {uv ∈ E | u ∈ A, v ∈ B}. A branch decomposition

f a graph G is a pair (T ,L) where T is a tree of maximum degree three and L is a bijection L: V (G) → leaves(T ).

3
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or any subtree T ′ of T , we denote by A(T ′) the set of vertices of G that L maps to the leaves of T ′, i.e. A(T ′) =
−1(leaves(T ′)). For every e = uv ∈ E(T ), let Tu (resp. Tv) be the subtree of T − e that contains u (resp. v). Let
imvalG(uv) = max{|M|:M is an induced matching in G[A(Tu), A(Tv)]}. The mim-width of a branch decomposition (T ,L)

is defined as maxuv∈E(T ) mimvalG(uv). The mim-width of G, denoted by mimw(G), is the minimum mim-width over all
branch decompositions of G.

Preliminary results. Reducing the domination number of a graph via edge contractions was first considered by Huang
and Xu [20]; they prove that for a connected graph G such that γ (G) ≥ 2, we have ctγ (G) ≤ 3 where ctγ (G) the minimum
number of edge contractions required to transform G into a graph G′ such that γ (G′) ≤ γ (G)−1. It follows that a connected
graph G with γ (G) ≥ 2 is always a Yes-instance of k-Edge Contraction(γ ), if k ≥ 3. The authors [20] further prove the
following theorem:

Theorem 2.1 ([20]). For a connected graph G, the following hold:

(i) ctγ (G) = 1 if and only if there exists a minimum dominating set in G that is not an independent set.
(ii) ctγ (G) = 2 if and only if every minimum dominating set in G is an independent set and there exists a dominating set D

in G of size γ (G) + 1 such that G[D] contains at least two edges.

Burton and Sumner [8] initiated the study of the problem of reducing the domination number of a graph via one single
vertex deletion. In their work, they prove the following result, which nicely connects domination-critical vertices to edges
whose contraction decreases the domination number.

Lemma 2.2 ([8]). Let uv be an edge in a graph G. Then γ (G\uv) < γ (G) if and only if either there exists a minimum dominating
set D of G such that u, v ∈ D or at least one of u or v is a domination-critical vertex in G.

While Lemma 2.2 shows that if G is a Yes-instance for 1-Vertex Deletion(γ ) then G is a Yes-instance for 1-Edge
Contraction(γ ), the converse is not true, as can be seen by a graph G formed by a clique K of size at least two with two
pendant vertices attached to each vertex of K . A minimum dominating set of this graph consists of all the vertices of K ;
hence by Theorem 2.1(i), G is a Yes-instance for 1-Edge Contraction(γ ). However, it is easy to see that there is no vertex
in G whose deletion results in a graph with smaller domination number.

In the same work, Burton and Sumner [8] also introduce the notion of a selfish vertex in a minimum dominating set
D: a vertex v is selfish in D if it has no private neighbor outside D, that is, if D \ {v} is a dominating set for G − v. This
allows to obtain the following characterization of domination-critical vertices in a graph.

Lemma 2.3 ([8]). For any graph G and v ∈ V (G), γ (G − v) < γ (G) if and only if there is a minimum dominating set D of
G in which v is selfish.

In addition to edge contraction and vertex deletion, the present work also considers edge addition. To the best of our
knowledge, decreasing the domination number of a graph using this operation has not yet been studied in the literature.
As we next show, Edge Addition(γ ) and Vertex Deletion(γ ) turn out to be equivalent problems.

Proposition 2.4. A graph is a Yes-instance to Vertex Deletion(γ ) if and only if it is a Yes-instance to Edge Addition(γ ).

Proof. Let (G, k) be a Yes-instance for Vertex Deletion(γ ) and let S = {v1, . . . , vk} be a set of vertices such that
γ (G − S) < γ (G). Let D′ be a minimum dominating set of G − S and let v be a vertex of D′. Consider the set of edges
F = {vv1, . . . , vvk} \ E(G). Then |F | ≤ k. Moreover, D′ is a dominating set for the graph G + F such that |D′

| < γ (G). This
implies that γ (G + F ) < γ (G) and thus, (G, k) is a Yes-instance for Edge Addition(γ ).

Now suppose that (G, k) is a Yes-instance for Edge Addition(γ ) and let F ⊆ E(G) be such that |F | ≤ k and
γ (G + F ) < γ (G). Let F ′

⊆ F be a minimal subset of F with the property that γ (G + F ′) < γ (G). Then, |F ′
| ≤ k and

for any F ′′
⊂ F ′, γ (G + F ′′) = γ (G) (recall that edge addition cannot increase the domination number of a graph). Let

D′ be a minimum dominating set of γ (G + F ′) and let uv ∈ F ′. If D′
∩ {u, v} = ∅ or D′

∩ {u, v} = {u, v}, then we would
have a dominating set in G + (F ′

\ {uv}) of size |D′
| < γ (G), a contradiction to the minimality of F ′. This implies that for

any uv ∈ F ′, |D′
∩ {u, v}| = 1. Now, let S = {u ∈ V (G) | uv ∈ F ′ and D′

∩ {u, v} = {v}}. Then |S| ≤ |F ′
| ≤ k. Furthermore,

D′ is a dominating set of G − S as D′
∩ S = ∅. Since |D′

| < γ (G), we thus conclude that (G, k) is a Yes-instance for Vertex
Deletion(γ ). □

3. Complexity of k-Edge Contraction(γ)

In this section, we present hardness results and algorithms for k-Edge Contraction(γ ). Recall that if k ≥ 3, any graph
with domination number at least two is a Yes-instance for k-Edge Contraction(γ ). We investigate the complexity of the
problem when k = 1, 2.

We first prove hardness results for 1-Edge Contraction(γ ) in specific classes of graphs (see Section 3.1). Followingly,
the hardness of 2-Edge Contraction(γ ) is presented in Section 3.2, while Section 3.3 contains algorithms for k-Edge
Contraction(γ ), with k = 1, 2. Finally, the results obtained in Sections 3.1 and 3.3 lead to a complexity dichotomy for
H-free graphs, when H is connected; we state and discuss this result in Section 3.4.
4
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Fig. 1. The graph G′ (thick lines indicate that the vertex xi is adjacent to every vertex in V0 and Vi , for i = 0, . . . , ℓ).

.1. Hardness of 1-Edge Contraction(γ )

In this section, we present hardness results for the 1-Edge Contraction(γ ) problem. We first consider the class of
P6, P4 + P2}-free chordal graphs.

heorem 3.1. 1-Edge Contraction(γ ) is NP-hard and W[1]-hard parameterized by γ +mimw on {P6, P4 +P2}-free chordal
raphs.

roof. We give a reduction from Dominating Set. Given an instance (G, ℓ) for Dominating Set, we construct an instance
′ for 1-Edge Contraction(γ ) as follows. We denote by {v1, . . . , vn} the vertex set of G. The vertex set of the graph G′ is
iven by V (G′) = V0 ∪ · · · ∪ Vℓ ∪ {x0, . . . , xℓ, y}, where each Vi is a copy of the vertex set of G. We denote the vertices of
i by vi

1, v
i
2, . . . , v

i
n. The adjacencies in G′ are then defined as follows:

· V0 ∪ {x0} is a clique;
· yx0 ∈ E(G′);

nd for 1 ≤ i ≤ ℓ,

· Vi is an independent set;
· xi is adjacent to all the vertices of V0 ∪ Vi;
· vi

j is adjacent to {v0
a | va ∈ NG[vj]} for any 1 ≤ j ≤ n (see Fig. 1).

laim 1. γ (G′) = min{γ (G) + 1, ℓ + 1}.

roof. It is clear that {x0, x1, . . . , xℓ} is a dominating set of G′; thus, γ (G′) ≤ ℓ + 1. If γ (G) ≤ ℓ and {vi1 , . . . , vik} is a
minimum dominating set of G, it is easily seen that {v0

i1
, . . . , v0

ik
, x0} is a dominating set of G′. Thus, γ (G′) ≤ γ (G) + 1

and so, γ (G′) ≤ min{γ (G) + 1, ℓ + 1}. Now, suppose to the contrary that γ (G′) < min{γ (G) + 1, ℓ + 1} and consider a
minimum dominating set D′ of G′. We first make the following simple observation.

Observation 1. For any dominating set D of G′, D ∩ {y, x0} ̸= ∅.

Now, since γ (G′) < ℓ + 1, there exists 1 ≤ i ≤ ℓ such that xi ̸∈ D′ (otherwise, {x1, . . . , xℓ} ⊂ D′ and combined with
Observation 1, D′ would be of size at least ℓ + 1). But then, D′′

= D′
∩ V0 must dominate every vertex in Vi, and so

|D′′
| ≥ γ (G). Since |D′′

| ≤ |D′
| − 1 (recall that D′

∩ {y, x0} ̸= ∅), we then have γ (G) ≤ |D′
| − 1, a contradiction. Thus,

γ (G′) = min{γ (G) + 1, ℓ + 1}. ▲

We now show that (G, ℓ) is a Yes-instance for Dominating Set if and only if G′ is a Yes-instance for 1-Edge
Contraction(γ ).

Assume first that γ (G) ≤ ℓ. Then γ (G′) = γ (G)+1 by the previous claim, and if {vi1 , . . . , vik} is a minimum dominating
set of G, then {v0

i1
, . . . , v0

ik
, x0} is a minimum dominating set of G′ which is not independent. Hence, by Theorem 2.1(i),

G′ is a Yes-instance for 1-Edge Contraction(γ ).
Conversely, assume that G′ is a Yes-instance for 1-Edge Contraction(γ ) i.e., there exists a minimum dominating set

D′ of G′ which is not independent (see Theorem 2.1(i)). Then, Observation 1 implies that there exists 1 ≤ i ≤ ℓ such that
xi ̸∈ D′; indeed, if it were not the case, we would then have by Claim 1 γ (G′) = ℓ + 1 and thus, D′ would consist of
x1, . . . , xℓ and either y or x0. In both cases, D′ would be independent, a contradiction. It follows that D′′

= D′
∩ V0 must

dominate every vertex in Vi and thus, |D′′
| ≥ γ (G). But |D′′

| ≤ |D′
| − 1 (recall that D′

∩ {y, x0} ̸= ∅) and so by Claim 1,
γ (G) ≤ |D′

| − 1 ≤ (ℓ + 1) − 1 that is, (G, ℓ) is a Yes-instance for Dominating Set.
5
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Fig. 2. Constructing a branch decomposition (T ,L) for H = G′
[V0 ∪ V1] from the branch decomposition (S,L′) of G.

We next show that G′ is a P6-free graph. Let P be an induced path of G′. First observe that since V0 is a clique,
|V (P) ∩ V0| ≤ 2. If |V (P) ∩ V0| = 0, since each Vi is independent and the same holds for {x0, . . . , xℓ}, we have that
|V (P)| ≤ 3. We now consider the following two cases.

Case 1. |V (P) ∩ V0| = 2.
Let u, v ∈ V0 be the vertices of V (P) ∩ V0. Since P is an induced path, u and v appear consecutively in P , that is,

uv ∈ E(P). Furthermore, V (P) ∩ {x0, . . . , xℓ} = ∅ since u and v are adjacent to all the vertices of {x0, . . . , xℓ}. If u has
another neighbor w ∈ Vi in P , for some i > 0, then since N(w) ⊂ V0 ∪ {xi}, w can have no neighbor in P other than u,
hat is, w is an endpoint of the path. Symmetrically, the same holds for a neighbor of v in P different from u. Hence, we
onclude that |V (P)| ≤ 4.

ase 2. |V (P) ∩ V0| = 1.
Let u ∈ V0 be the vertex of V (P)∩V0. If V (P)∩{x0, . . . , xℓ} = ∅, then it is easy to see that |V (P)| ≤ 3, since any neighbor

f u in the path must belong to ∪1≤i≤ℓVi and, by the same argument as in Case 1, such a neighbor would have to be an
ndpoint of the path. If V (P) ∩ {x0, . . . , xℓ} ̸= ∅, let xi be a vertex that is in P . Note that since uxi ∈ E(G′), we necessarily
ave that uxi ∈ E(P). Now suppose that xi has another neighbor w in P . Then w ∈ Vi since N(xi) = V0 ∪ Vi. But then, by
he argument used above, we conclude that w is an endpoint of the path; and since u can have at most two neighbors in
x0, . . . , xℓ}, it follows that |V (P)| ≤ 5.

Now, to see that G′ is also a P4 +P2-free graph, it suffices to note that any induced P4 of G′ contains at least one vertex
f the clique V0. Finally, we provide a perfect elimination ordering for G′ which would prove that G′ is chordal. Observe
irst that any vertex in {y} ∪ V1 ∪ · · · ∪ Vℓ is simplicial in G′. Once those vertices have been deleted from G′, x0, x1, . . . , xℓ

ecome simplicial in the resulting graph; and since V0 is a clique, we obtain a perfect elimination ordering for G′.
Since Dominating Set is NP-hard, the above proves that 1-Edge Contraction(γ ) is NP-hard on {P6, P4+P2}-free chordal

graphs.
We will now show that 1-Edge Contraction(γ ) is also W[1]-hard parameterized by domination number plus mim-

width. To do so, we will use the fact recently shown by Fomin et al. [15] that Dominating Set is W[1]-hard parameterized
by solution size plus mim-width. There remains to show that γ (G′)+mimw(G′) is bounded by a function of γ (G)+mimw(G).
We first show the following.

Lemma 3.2. Let H = G′
[V0 ∪ V1]. Then mimw(H) ≤ mimw(G).

Proof. Let (S,L′) be a branch decomposition for G with width mimw(G). To show the stated result we will construct a
branch decomposition for H of width mimw(G) as well. We construct such a branch decomposition (T ,L) for H as follows.
Let T be the tree obtained from S in the following way: for every vi ∈ V (G), we replace the leaf corresponding to vi by two
leaves, one corresponding to v0

i and the other to v1
i (see Fig. 2). We will now show that the width of this decomposition

is at most mimw(G).
Recall that for any subtree T ′ of T , we denote by A(T ′) the set of vertices of H that L′ maps to the leaves of T ′, i.e.

A(T ′) = L−1(leaves(T ′)). For every e = uv ∈ E(T ), we let Tu (resp. Tv) be the subtree of T − e that contains u (resp. v).
First, if e = uv ∈ T is an edge such that either u or v is a leaf of T , then a maximum induced matching of H[A(Tu), A(Tv)]

has size one, since min{|A(Tu)|, |A(Tv)|} = 1. Let e = uv be an edge such that u and v are not leaves of T . Then, for every
1 ≤ i ≤ n, v0

i ∈ A(Tu) if and only if v1
i ∈ A(Tu) also. Let M be a maximum induced matching of H[A(Tu), A(Tv)]. We want

to show that |M| ≤ mimw(G). Note that since NH [v1
i ] ⊆ NH [v0

i ], then only one of {v0
i , v

1
i } can be covered by M . Moreover,

since V0 is a clique in H and V1 is an independent set in H , every edge of H has an endpoint in V0. Hence, if there exists i, j
such that v0

i v
0
j ∈ M , then M = {v0

i v
0
j }, as any other edge of M will have an endpoint adjacent to either v0

i or v0
j . We may

therefore assume that every edge of M has one endpoint in V0 and the other in V1. Let v0
i v

1
j ∈ M . Suppose without loss

of generality that v0
i ∈ A(Tu) and v1

j ∈ A(Tv). Since v0
i is adjacent to all vertices of V0, we can conclude that every vertex

of V0 covered by M also belongs to A(Tu). Hence, every vertex of V1 covered by M belongs to A(Tv). To conclude, consider
the edge uv in S and the partition of V (G) into A(Su) and A(Sv). By the construction of T , it holds that vi ∈ A(Su) if and
only if v0

i , v
1
i ∈ A(Tu). Let M ′ be the matching in G[A(Su), A(Sv)] defined as follows: vivj ∈ M ′ for every v0

i v
1
j ∈ M . Since M

is an induced matching in H[A(Tu), A(Tv)], then M ′ is also an induced matching of G[A(Su), A(Sv)]. Moreover, |M| = |M ′
|.
Hence, |M| ≤ mimw(G). This concludes the proof that (T ,L) is a branch decomposition of width mimw(G) for H . ▲
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We will also need the following two basic observations about the mim-width of a graph. Recall that two vertices
, v ∈ V are said to be true twins (resp. false twins), if N[u] = N[v] (resp. if N(u) = N(v)).

bservation 2. Let H be a graph and u, v ∈ V (H) be two vertices that are true (resp. false) twins in H. Then mimw(H −v) =

imw(H).

bservation 3. Let H be a graph and v ∈ V (H). Then mimw(H) ≤ mimw(H − v) + 1.

Now, note that G′ can be constructed from H = G′
[V0 ∪ V1] from the addition of false twins (V2, V3, . . . , Vℓ) plus

he addition of ℓ + 2 vertices (x0, x1, . . . , xℓ, y). By Observation 2, the addition of false twins does not increase the
im-width of a graph and, by Observation 3, the addition of a vertex can only increase the mim-width by one; thus,
imw(G′) ≤ mimw(H) + ℓ + 2. By Lemma 3.2, we have that mimw(G′) ≤ mimw(G) + ℓ + 2, which together with Claim 1
oncludes the proof. □

In order to obtain complexity results for further graph classes, let us now consider subdivisions of edges.

emma 3.3. Let G be a graph and let G′ be the graph obtained by 3-subdividing every edge of G. Then G is a Yes-instance for
-Edge Contraction(γ ) if and only if G′ is a Yes-instance for 1-Edge Contraction(γ ).

roof. Let G = (V , E) be a graph. In the following, given an edge e ∈ E, we denote by e1, e2 and e3 the three new vertices
esulting from the 3-subdivision of the edge e. We first prove the following:

laim 2. If H is the graph obtained from G by 3-subdividing one edge, then γ (H) = γ (G) + 1.

roof. Assume that H is obtained by 3-subdividing the edge e = uv (we assume in the following that e1 is adjacent to
and e3 is adjacent to v in H), and consider a minimum dominating set D of G. We construct a dominating set of H as

ollows. If D ∩ {u, v} = ∅, then D ∪ {e2} is a dominating set of H . If |D ∩ {u, v}| = 1, then we may assume without loss of
enerality that u ∈ D; but then, D ∪ {e3} is a dominating set of H . Finally, if {u, v} ⊂ D, then D ∪ {e1} is a dominating set
f H . Thus, γ (H) ≤ γ (G) + 1.
Conversely, let D′ be a minimum dominating set of H . First observe that at least one vertex among e1, e2 and e3 belongs

o D′ as e2 must be dominated. Furthermore, we may assume, without loss of generality, that {e1, e3} ̸⊂ D′; indeed, if
e1, e3} ⊂ D′ then, by minimality of D′, v ̸∈ D′ for otherwise D′

\{e3} would be a dominating set of G′ of size strictly
maller than D′, a contradiction. But then, (D′

\{e3}) ∪ {v} is a minimum dominating set of G′ not containing both e1 and
3. We next prove the following:

bservation 4. If e1 ∈ D′ (resp. e3 ∈ D′) then (D′
\{e1, e2, e3})∪ {v} (resp. (D′

\{e1, e2, e3})∪ {u}) is a dominating set of G of
ize at most γ (H) − 1.

Indeed, if e1 ∈ D′ then either v ∈ D′ and (D′
\{e1, e2, e3}) ∪ {v} = D′

\{e1, e2, e3} is a dominating set of G of size at
ost γ (H) − 1. Or v ̸∈ D′ but then e2 ∈ D′ since e3 ̸∈ D′ (recall that |D′

∩ {e1, e3}| ≤ 1) must be dominated. But again,
(D′

\{e1, e2, e3})∪ {v} is a dominating set of G of size at most γ (H)− 1. By symmetry, we conclude similarly if e3 ∈ D′. ⋄

On the other hand, if {e1, e3} ∩D′
= ∅, then e2 ∈ D′ and D′

\{e1, e2, e3} is a dominating set of G of size γ (H)− 1, which
concludes the proof of the claim. ▲

We next prove the statement of the lemma. Let G′ be the graph obtained from G by 3-subdividing every edge of G. It
then follows from Claim 2 that γ (G′) = γ (G) + |E|.

First assume that G is a Yes-instance for 1-Edge Contraction(γ ) i.e., there exists a minimum dominating set D of
G containing an edge e = uv (see Theorem 2.1(i)). Let D′ be the minimum dominating set of G′ constructed according
to the proof of Claim 2. Then by construction, the edge ue1 is contained in D′ which implies that G′ is a Yes-instance for
1-Edge Contraction(γ ).

Conversely, assume that G′ is a Yes-instance for 1-Edge Contraction(γ ) that is, there exists a minimum dominating
set D′ of G′ containing an edge f (see Theorem 2.1(i)). First note that we may assume that for any edge e = uv ∈ E,
{e1, e3} ̸⊂ D′; indeed, if {e1, e3} ⊂ D′, then by minimality of D′ we have that v ̸∈ D′ (with v adjacent to e3) for otherwise
D′

\{e3} is a dominating set of G′ of size strictly smaller than D′, a contradiction (also note that by minimality of D′, e2 ̸∈ D′).
But then, (D′

\{e3}) ∪ {v} is also a minimum dominating set of G′ containing the edge f ; indeed, since both e2 and v are
not contained in D′, e3 is not an endvertex of f . In the following, we denote by e = uv the edge of G such that f is an
edge of the 3-subdivision of e, with e1 adjacent to u and e3 adjacent to v.

Now consider the minimum dominating set D of G constructed according to the proof of Claim 2. We distinguish two
cases depending on whether f = ue1 or f = e1e2 (note that the cases where f = e3v or f = e2e3 are symmetric to those
considered).

First assume that f = ue1. Then, by Observation 4, v ∈ D and thus, uv is an edge contained in D. Now, if f = e1e2
then again, by Observation 4, v ∈ D. But then, by minimality of D′, we know that e3 ̸∈ D′ as well as v ̸∈ D′, for otherwise
D′

\{e2} would be a dominating set of G′ of size strictly smaller than D′, a contradiction. Thus, v is dominated in G′ by
some vertex e′

1 with e′
= vw ∈ E, and it follows from Observation 4 that w ∈ D. But then, D contains the edge vw, which

concludes the proof. □
7
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By 3-subdividing every edge of a graph G sufficiently many times, we deduce the following corollary from Lemma 3.3.

orollary 3.4. 1-Edge Contraction(γ ) is NP-hard when restricted to bipartite graphs and to {C3, . . . , Cℓ}-free graphs, for
ny fixed ℓ ≥ 3.

We next determine the complexity of 1-Edge Contraction(γ ) when restricted to 2P3-free graphs, subcubic planar
raphs and subcubic claw-free graphs. To this end, we first introduce the following two problems.

All Efficient MD
Instance: A connected graph G = (V , E).
Question: Is every minimum dominating set of G efficient?

All Independent MD
Instance: A connected graph G = (V , E).
Question: Is every minimum dominating set of G independent?

The following is a straightforward consequence of Theorem 2.1(i).

Fact 3.5. Given a graph G, G is a Yes-instance for 1-Edge Contraction(γ ) if and only if G is a No-instance for All
ndependent MD.

We may now proceed to state and prove the final hardness results of this subsection.

heorem 3.6. All Independent MD is NP-hard when restricted to 2P3-free graphs.

roof. We reduce from 3-Sat: given an instance Φ of this problem, with variable set X and clause set C , we construct
n equivalent instance of All Independent MD as follows: For any variable x ∈ X , we introduce a copy of C3, which we
enote by Gx, with one distinguished positive literal vertex x and one distinguished negative literal vertex x̄; in the following,

we denote by ux the third vertex in Gx. For any clause c ∈ C , we introduce a clause vertex c; we then add an edge between
and the (positive or negative) literal vertices whose corresponding literal occurs in c. Finally, we add an edge between
ny two clause vertices so that the set of clause vertices induces a clique denoted by K in the following. We denote by
Φ the resulting graph.

bservation 5. For any dominating set D of GΦ and any variable x ∈ X, |D ∩ V (Gx)| ≥ 1. In particular, γ (GΦ ) ≥ |X |.

laim 3. Φ is satisfiable if and only if γ (GΦ ) = |X |.

roof. Assume that Φ is satisfiable and consider a truth assignment satisfying Φ . We construct a dominating set D of GΦ

s follows. For any variable x ∈ X , if x is true, add the positive literal vertex x to D; otherwise, add the negative variable
ertex x̄ to D. Clearly, D is dominating and we conclude by Observation 5 that γ (GΦ ) = |X |.
Conversely, assume that γ (GΦ ) = |X | and consider a minimum dominating set D of GΦ . Then by Observation 5,

|D ∩ V (Gx)| = 1 for any x ∈ X . It follows that D ∩ K = ∅ and so, every clause vertex must be adjacent to some (positive
or negative) literal vertex belonging to D. We thus construct a truth assignment satisfying Φ as follows: for any variable
x ∈ X , if the positive literal vertex x belongs to D, set x to true; otherwise, set x to false. ▲

Claim 4. γ (GΦ ) = |X | if and only if every minimum dominating set of GΦ is independent.

Proof. Assume that γ (GΦ ) = |X | and consider a minimum dominating set D of GΦ . Then by Observation 5, |D ∩ V (Gx)| = 1
for any x ∈ X . It follows that D ∩ K = ∅ and since N[V (Gx)] ∩ N[V (Gx′ )] ⊂ K for any two x, x′

∈ X , D is independent.
Conversely, consider a minimum dominating set D of GΦ . Since D is independent, |D ∩ V (Gx)| ≤ 1 for any x ∈ X and

we conclude by Observation 5 that in fact, equality holds. Now suppose that there exists c ∈ C , containing variables x1, x2
and x3, such that the corresponding clause vertex c belongs to D (note that since D is independent, |D ∩ K | ≤ 1). Assume
without loss of generality that x1 occurs positively in c , that is, c is adjacent to the positive literal vertex x1. Then, x1 /∈ D
since D is independent and so, either ux1 ∈ D or x̄1 ∈ D. In the first case, we immediately obtain that (D \ {ux1})∪ {x1} is a
minimum dominating set of GΦ containing an edge, a contradiction. In the second case, since c ∈ D, any vertex dominated
by x̄1 is also dominated by c; thus, (D\{x̄1})∪{x1} is a minimum dominating set of GΦ containing an edge, a contradiction.
Consequently, D ∩ K = ∅ and so, γ (GΦ ) = |D| = |X |. ▲

Now by combining Claims 3 and 4, we obtain that Φ is satisfiable if and only if every minimum dominating set of
GΦ is independent, that is, GΦ is a Yes-instance for All Independent MD. There remains to show that GΦ is 2P3-free. To
see this, it suffices to observe that any induced P3 of GΦ contains at least one vertex in the clique K . This concludes the
roof. □
8
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Fig. 3. Constructing a dominating set of H from the dominating set D of G (vertices in red belong to the corresponding dominating set).

Fig. 4. The variable gadget Gx .

We now deduce the following from Theorem 3.6 and Fact 3.5.

Corollary 3.7. 1-Edge Contraction(γ ) is coNP-hard on 2P3-free graphs.

We next consider the class of subcubic planar graphs.

Theorem 3.8. All Independent MD is NP-hard when restricted to subcubic planar graphs.

Proof. We reduce from Planar Exactly 3-Bounded 3-Sat, where each variable appears in exactly three clauses and
each clause contains at least two and at most three literals. This problem is shown to be NP-complete in [11]. Given an
instance Φ of this problem, with variable set X and clause set C , we construct an equivalent instance of All Independent
MD as follows. First note that we may assume that no variable occurs only positively or only negatively. Now consider
the incidence graph G of Φ , that is, the bipartite graph with vertex set X ∪ C where x ∈ X and c ∈ C are adjacent if and
only if c contains one of the literals x and x̄ (note that by assumption G is planar). For any variable x ∈ X , let Gx be a
opy of C6 with two distinguished positive literal vertices x1 and x2, and two distinguished negative literal vertices x̄1 and
x̄2 (see Fig. 4); in the following, we denote by t1 and t2 the two other vertices of Gx. We now replace the vertex x in G
ith Gx in such a way that every (positive or negative) literal vertex in Gx is adjacent to at most one vertex in C and xi
resp. x̄i) for some i = 1, 2, is adjacent to some vertex c ∈ C if and only if x occurs positively (resp. negatively) in c; note
hat this may be done so that planarity is preserved. We denote by GΦ the resulting graph. Notice that ∆(GΦ ) = 3. Our
oal is now to show that Φ is satisfiable if and only if GΦ is a Yes-instance for All Independent MD. To this end, we first
rove the following:

bservation 6. For any dominating set D of GΦ and any variable x ∈ X, |D ∩ V (Gx)| ≥ 2. In particular, γ (GΦ ) ≥ 2|X |.

Indeed, as t i must be dominated for i = 1, 2, it follows that D ∩ {x1, x̄2, t1} ̸= ∅ and D ∩ {x2, x̄1, t2} ̸= ∅. ⋄

laim 5. Φ is satisfiable if and only if γ (GΦ ) = 2|X |.

roof. Assume that Φ is satisfiable and consider a truth assignment satisfying Φ . We construct a dominating set D of GΦ

s follows. For any variable x ∈ X , if x is true, add x1 and x2 to D; otherwise, add x̄1 and x̄2 to D. Since every clause has at
east one true literal, D is dominating. Thus, γ (GΦ ) ≤ 2|X | and we conclude by Observation 6 that in fact, equality holds.

Conversely, assume that γ (GΦ ) = 2|X | and consider a minimum dominating set D of GΦ . Then by Observation 6,
D ∩ V (Gx)| = 2 for any x ∈ X , which implies that no clause vertex belongs to D. Thus, for any x ∈ X , D ∩ V (Gx) is
minimum dominating set of Gx which implies that either {x1, x2} ⊂ D, {x̄1, x̄2} ⊂ D or {t1, t2} ⊂ D; furthermore,
very clause vertex is dominated by some (positive or negative) literal vertex. We may then construct a truth assignment
atisfying Φ as follows: for any variable x ∈ X , if {x1, x2} ⊂ D, set x to true; otherwise, set x to false. ▲

laim 6. γ (GΦ ) = 2|X | if and only if every minimum dominating set of GΦ is independent.

roof. Assume that γ (GΦ ) = 2|X | and consider a minimum dominating set D of GΦ . Then by Observation 6, |D ∩ V (Gx)| =

for any x ∈ X which implies in particular that no clause vertex belongs to D. It follows that for any x ∈ X , D ∩ V (Gx) is

minimum dominating set of Gx and thus, independent. Consequently, D is independent.

9
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Fig. 5. Construction of the graph GΦ (the rectangle indicates that the corresponding set of vertices induces a clique).

Conversely, let D be a minimum dominating set of GΦ (note that by assumption, D is independent). Suppose that there
xists a clause c ∈ C such that the corresponding clause vertex belongs to D and denote by x1, x2 and x3 the variables
ontained in c (a similar reasoning would apply if c contained only two variables). Since D is independent, none of the
positive or negative) literal vertices adjacent to c belong to D. Now, assume without loss of generality that x11 is adjacent to
. Then, we may assume the x11 has a neighbor in V (Gx1 ) belonging to D. Indeed, suppose that t1, x̄11 /∈ D. Then, necessarily

x̄12 ∈ D for otherwise t1 would not be dominated; and since D is independent and t2 must be dominated, x21 /∈ D which
implies that t2 ∈ D. But then, it suffices to consider (D \ {t2}) ∪ {x̄11} so that x11 is dominated by some vertex in V (Gx1 ).
Note that if x̄11 is dominated by some clause vertex in the set (D \ {t2}) ∪ {x̄11}, we immediately reach a contradiction.
Similarly, we may assume that the other literal vertices adjacent to c are dominated by some vertex in their gadget. But
then, (D \ {c}) ∪ {x11} is a minimum dominating set of GΦ containing an edge, a contradiction. Thus, no clause vertex
belongs to D. Now, suppose that there exists x ∈ X such that |D ∩ V (Gx)| ≥ 3. Then, since D is independent, there exists
i ∈ {1, 2} such that t i ∈ D, say t1 ∈ D without loss of generality. It then follows that x1, x̄2 /∈ D and since |D ∩ V (Gx)| ≥ 3,
necessarily x2, x̄1 ∈ D and t2 /∈ D (D would otherwise contain an edge). But then, (D\{t1})∪{x1} is a minimum dominating
set of GΦ containing an edge, a contradiction. Thus, for any x ∈ X , |D ∩ V (Gx)| ≤ 2 and we conclude by Observation 6 that
γ (GΦ ) = 2|X |. ▲

Now by combining Claims 5 and 6, we obtain that Φ is satisfiable if and only if every minimum dominating set of GΦ

is independent i.e., GΦ is aYes-instance for All Independent MD. □

We now deduce the following from Theorem 3.8 and Fact 3.5.

Theorem 3.9. 1-Edge Contraction(γ ) is coNP-hard when restricted to subcubic planar graphs.

Finally, we consider the class of subcubic claw-free graphs and show that when restricted to this graph class, 1-Edge
Contraction(γ ) is coNP-hard. To this end, we first prove that All Efficient MD is NP-hard when restricted to subcubic
graphs and then use this result to show that All Independent MD is NP-hard when restricted to subcubic claw-free
graphs.

Lemma 3.10. All Efficient MD is NP-hard when restricted to subcubic graphs.

Proof. We reduce from Positive Exactly 3-Bounded 1-In-3 3-Sat, where each variable appears in exactly three clauses
and only positively, each clause contains three positive literals, and we want a truth assignment such that each clause
contains exactly one true literal. This problem is shown to be NP-complete in [22]. Given an instance Φ of this problem,
with variable set X and clause set C , we construct an equivalent instance of All Efficient MD as follows. For any variable
x ∈ X , we introduce a copy of C9, which we denote by Gx, with three distinguished true vertices T 1

x , T
2
x and T 3

x , and three
distinguished false vertices F 1

x , F
2
x and F 3

x (see Fig. 5(a)). For any clause c ∈ C containing variables x1, x2 and x3, we introduce
the gadget Gc depicted in Fig. 5(b) which has one distinguished clause vertex c and three distinguished variable vertices
x1, x2 and x3 (note that Gc is not connected). For every j ∈ {1, 2, 3}, we then add an edge between xj and F i

xj and between
c and T i

xj for some i ∈ {1, 2, 3} so that F i
xj (resp. T

i
xj ) is adjacent to exactly one variable vertex (resp. clause vertex). We

denote by GΦ the resulting graph. Note that ∆(GΦ ) = 3.

Observation 7. For any dominating set D of GΦ , |D ∩ V (Gx)| ≥ 3 for any x ∈ X and |D ∩ V (Gc)| ≥ 1 for any c ∈ C. In
articular, γ (GΦ ) ≥ 3|X | + |C |.

Indeed, for any x ∈ X , since u1
x , u

2
x and u3

x must be dominated and their neighborhoods are pairwise disjoint and
contained in Gx, it follows that |D ∩ V (Gx)| ≥ 3. For any c ∈ C , since the vertices of Kc must be dominated and their
eighborhoods are contained in Gc , |D ∩ V (Gc)| ≥ 1. ⋄
10
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bservation 8. For any x ∈ X, if D is a minimum dominating set of Gx then either D = {u1
x , u

2
x , u

3
x}, D = {T 1

x , T 2
x , T 3

x } or
= {F 1

x , F 2
x , F 3

x }.

laim 7. Φ is satisfiable if and only if γ (GΦ ) = 3|X | + |C |.

roof. Assume that Φ is satisfiable and consider a truth assignment satisfying Φ . We construct a dominating set D of
Φ as follows. For any variable x ∈ X , if x is true, add T 1

x , T
2
x and T 3

x to D; otherwise, add F 1
x , F

2
x and F 3

x to D. For any
lause c ∈ C containing variables x1, x2 and x3, exactly one variable is true, say x1 without loss of generality; we then add
{x1} to D. Clearly, D is dominating and we conclude by Observation 7 that γ (GΦ ) = 3|X | + |C |.

Conversely, assume that γ (GΦ ) = 3|X | + |C | and consider a minimum dominating set D of GΦ . Then by Observation 7,
D ∩ V (Gx)| = 3 for any x ∈ X and |D ∩ V (Gc)| = 1 for any c ∈ C . Now, for a clause c ∈ C containing variables x1,
2 and x3, if D ∩ {c, x1, x2, x3} ̸= ∅ then D ∩ V (Kc) = ∅ and so, at least two vertices from Kc are not dominated; thus,
∩ {c, x1, x2, x3} = ∅. It follows that for any x ∈ X , D∩ V (Gx) is a minimum dominating set of Gx which by Observation 8

mplies either {T 1
x , T 2

x , T 3
x } ⊂ D or D ∩ {T 1

x , T 2
x , T 3

x } = ∅; and we conclude similarly that either {F 1
x , F 2

x , F 3
x } ⊂ D or

∩ {F 1
x , F 2

x , F 3
x } = ∅. Now given a clause c ∈ C containing variables x1, x2 and x3, since D ∩ {c, x1, x2, x3} = ∅, at least

ne true vertex adjacent to the clause vertex c must belong to D, say T i
x1 for some i ∈ {1, 2, 3} without loss of generality.

It then follows that {T 1
x1 , T

2
x1 , T

3
x1} ⊂ D and D ∩ {F 1

x1 , F
2
x1 , F

3
x1} = ∅ which implies that l{x1} ∈ D (either x1 or a vertex from

Kc would otherwise not be dominated). But then, since xj for j ̸= 1, must be dominated, it follows that {F 1
xj , F

2
xj , F

3
xj} ⊂ D.

We thus construct a truth assignment satisfying Φ as follows: for any variable x ∈ X , if {T 1
x , T 2

x , T 3
x } ⊂ D, set x to true,

otherwise set x to false. ▲

Claim 8. γ (GΦ ) = 3|X | + |C | if and only if every minimum dominating set of GΦ is efficient.

Proof. Assume that γ (GΦ ) = 3|X | + |C | and consider a minimum dominating set D of GΦ . Then by Observation 7,
|D ∩ V (Gx)| = 3 for any x ∈ X and |D ∩ V (Gc)| = 1 for any c ∈ C . As shown previously, it follows that for any clause c ∈ C
containing variables x1, x2 and x3, D∩{c, x1, x2, x3} = ∅; and for any x ∈ X , either {T 1

x , T 2
x , T 3

x } ⊂ D or D∩{T 1
x , T 2

x , T 3
x } = ∅

(we conclude similarly with {F 1
x , F 2

x , F 3
x } and {u1

x , u
2
x , u

3
x}). Thus, for any x ∈ X , every vertex in Gx is dominated by exactly

one vertex. Now given a clause c ∈ C containing variables x1, x2 and x3, since the clause vertex c does not belong to D,
there exists at least one true vertex adjacent to c which belongs to D. Suppose to the contrary that c has strictly more
than one neighbor in D, say T i

x1 and T j
x2 without loss of generality. Then, {T 1

xk , T
2
xk , T

3
xk} ⊂ D for k = 1, 2 which implies that

D ∩ {F 1
x1 , F

2
x1 , F

3
x1 , F

1
x2 , F

2
x2 , F

3
x2} = ∅ as |D ∩ V (Gxk )| = 3 for k = 1, 2. It follows that the variable vertices x1 and x2 must be

dominated by some vertices in Gc ; but |D ∩ V (Gc)| = 1 and N[x1] ∩ N[x2] = ∅ and so, either x1 or x2 is not dominated.
Thus, c has exactly one neighbor in D, say T i

x1 without loss of generality. Then, necessarily D∩V (Gc) = {l{x1}} for otherwise
either x1 or some vertex in Kc would not be dominated. But then, it is clear that every vertex in Gc is dominated by exactly
one vertex; thus, D is efficient.

Conversely, assume that every minimum dominating set of GΦ is efficient and consider a minimum dominating set
D of GΦ . If for some x ∈ X , |D ∩ V (Gx)| ≥ 4, then clearly at least one vertex in Gx is dominated by two vertices in D∩V (Gx).
Thus, |D ∩ V (Gx)| ≤ 3 for any x ∈ X and we conclude by Observation 7 that in fact, equality holds. The next observation
immediately follows from the fact that D is efficient.

Observation 9. For any x ∈ X, if |D ∩ V (Gx)| = 3 then either {u1
x , u

2
x , u

3
x} ⊂ D, {T 1

x , T 2
x , T 3

x } ⊂ D or {F 1
x , F 2

x , F 3
x } ⊂ D.

Now, consider a clause c ∈ C containing variables x1, x2 and x3 and suppose without loss of generality that T 1
x1 is

adjacent to c (note that then the variable vertex x1 is adjacent to F 1
x1 ). If the clause vertex c belongs to D then, since

D is efficient, T 1
x1 /∈ D and u1

x1 , F
1
x1 /∈ D (T 1

x1 would otherwise be dominated by at least two vertices) which contradicts
Observation 9. Thus, no clause vertex belongs to D. Similarly, suppose that there exists i ∈ {1, 2, 3} such that xi ∈ D, say
x1 ∈ D without loss of generality. Then, since D is efficient, F 1

x1 /∈ D and T 1
x1 , u

2
x1 /∈ D (F 1

x1 would otherwise be dominated
by at least two vertices) which again contradicts Observation 9. Thus, no variable vertex belongs to D. Finally, since D is
efficient, |D ∩ V (Kc)| ≤ 1 and so, |D ∩ V (Gc)| = 1 by Observation 7. ▲

Now by combining Claims 7 and 8, we obtain that Φ is satisfiable if and only if every minimum dominating set of
GΦ is efficient, that is, GΦ is a Yes-instance for All Efficient MD. □

Theorem 3.11. All Independent MD is NP-hard when restricted to subcubic claw-free graphs.

Proof. As in the proof of Lemma 3.10, we use a reduction from Positive Exactly 3-Bounded 1-In-3 3-Sat. Given
an instance Φ of this problem, with variable set X and clause set C , we construct an equivalent instance of All
Independent MD as follows. Consider the graph GΦ = (V , E) constructed in the proof of Lemma 3.10 and let Vi =

{v ∈ V : dGΦ
(v) = i} for i = 2, 3 (note that no vertex in GΦ has degree one). Then, for any v ∈ V3, we replace

the vertex v by the gadget Gv depicted in Fig. 6(a); and for any v ∈ V2, we replace the vertex v by the gadget
G depicted in Fig. 6(b). We denote by G′ the resulting graph. Note that G′ is claw-free and ∆(G′ ) = 3 (also note
v Φ Φ Φ
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t
Y

Fig. 6. The gadget Gv .

hat no vertex in G′

Φ has degree one). It is shown in the proof of Lemma 3.10 that Φ is satisfiable if and only if GΦ is a
es-instance for All Efficient MD; we here show that GΦ is a Yes-instance for All Efficient MD if and only if G′

Φ is a
Yes-instance for All Independent MD. To this end, we first prove the following:

Claim 9. γ (G′

Φ ) = γ (GΦ ) + 5|V3| + 2|V2|.

Proof. Let D be a minimum dominating set of GΦ . We construct a dominating set D′ of G′

Φ as follows. For any v ∈ D, if
v ∈ V3, add v1, v2, v3, b1, b2, and b3 to D′; otherwise, add v1, v2 and b1 to D′. For any v ∈ V \ D, let u ∈ D be a neighbor
of v, say e1 = uv without loss of generality. Then, if v ∈ V3, add a1, c3, w2, u3 and b2 to D′; otherwise, add a1 and u2 to
D′. Clearly, D′ is dominating and |D′

| = γ (GΦ ) + 5|V3| + 2|V2| ≥ γ (G′

Φ ).

Observation 10. For any dominating set D′ of G′

Φ , the following hold:

(i) For any v ∈ V2, |D′
∩ V (Gv)| ≥ 2. Moreover, if equality holds then D′

∩ {v1, v2} = ∅ and there exists j ∈ {1, 2} such that
uj /∈ D′.

(ii) For any v ∈ V3, |D′
∩ V (Gv)| ≥ 5. Moreover, if equality holds then D′

∩ {v1, v2, v3} = ∅ and there exists j ∈ {1, 2, 3}
such that D′

∩ {uj, vj, wj} = ∅.

(i) Clearly, D′
∩ {v1, u1, a1} ̸= ∅ and D′

∩ {c1, u2, v2} ̸= ∅ as u1 and u2 must be dominated. Thus, |D′
∩ V (Gv)| ≥ 2.

Now, suppose that D′
∩ {v1, v2} ̸= ∅ say v1 ∈ D′ without loss of generality. Then D′

∩ {u1, a1, b1} ̸= ∅ as a1 must be
dominated which implies that |D′

∩ V (Gv)| ≥ 3 (recall that D′
∩ {c1, u2, v2} ̸= ∅). Similarly, if both u1 and u2 belong to D′,

then |D′
∩ V (Gv)| ≥ 3 as D′

∩ {a1, b1, c1} ̸= ∅ (b1 would otherwise not be dominated).
(ii) Clearly, for any i ∈ {1, 2, 3}, D′

∩ {ai, bi, ci} ̸= ∅ as bi must be dominated. Now, if there exists j ∈ {1, 2, 3} such
that D′

∩ {uj, vj, wj} = ∅, say j = 1 without loss of generality, then a1, c3 ∈ D′ (one of u1 and w1 would otherwise not be
dominated). But then, D′

∩ {b1, c1, w2} ̸= ∅ as c1 must be dominated, and D′
∩ {a3, b3, u3} ̸= ∅ as a3 must be dominated;

and so, |D′
∩ V (Gv)| ≥ 5 (recall that D′

∩ {a2, b2, c2} ̸= ∅). Otherwise, for any j ∈ {1, 2, 3}, D′
∩ {uj, vj, wj} ̸= ∅ which

implies that |D′
∩ V (Gv)| ≥ 6.

Now suppose that D′
∩ {v1, v2, v3} ̸= ∅, say v1 ∈ D′ without loss of generality. If there exists j ̸= 1 such that

D′
∩ {uj, vj, wj} = ∅, say j = 2 without loss of generality, then c1, a2 ∈ D′ (one of u2 and w2 would otherwise not be

dominated). But then, D′
∩{a1, b1, u1} ̸= ∅ as a1 should be dominated, and D′

∩{b2, c2, w3} ̸= ∅ as c2 must be dominated.
Since D′

∩ {a3, b3, c3} ̸= ∅, it then follows that |D′
∩ V (Gv)| ≥ 6. Otherwise, D′

∩ {uj, vj, wj} ̸= ∅ for any j ∈ {1, 2, 3} and
so, |D′

∩ V (Gv)| ≥ 6 (recall that D′
∩ {ai, bi, ci} ̸= ∅ for any i ∈ {1, 2, 3}). ⋄

Observation 11. If D′ is a minimum dominating set of G′

Φ , then |D′
∩ V (Gv)| ≤ 3 for any v ∈ V2 and |D′

∩ V (Gv)| ≤ 6 for
any v ∈ V3.

Indeed, if v ∈ V2 then {v1, b1, v2} is a dominating set of V (Gv); and if v ∈ V3, then {v1, v2, v3, b1, b2, b3} is a dominating
set of V (Gv). ⋄

Now, consider a minimum dominating set D′ of G′

Φ and let D3 = {v ∈ V3 : |D′
∩ V (Gv)| = 6} and D2 = {v ∈ V2 :

|D′
∩ V (Gv)| = 3}. We claim that D = D3 ∪ D2 is a dominating set of GΦ . Indeed, consider a vertex v ∈ V \ D. We

distinguish two cases depending on whether v ∈ V2 of v ∈ V3.

Case 1. v ∈ V2. Then |D′
∩ V (Gv)| = 2 by construction, which by Observation 10(i) implies that there exists j ∈ {1, 2} such

that D′
∩ {vj, uj} = ∅, say j = 1 without loss of generality. Since v1 must be dominated, v1 must then have a neighbor xi

belonging to D′, for some vertex x adjacent to v in GΦ . But then, it follows from Observation 10 that |D′
∩ V (Gx)| > 2 if

x ∈ V2, and |D′
∩ V (Gx)| > 5 if x ∈ V3 (indeed, xi ∈ D′); thus, x ∈ D.

Case 2. v ∈ V3. Then |D′
∩ V (Gv)| = 5 by construction, which by Observation 10(ii) implies that there exists j ∈ {1, 2, 3}

such that D′
∩ {u , v , w } = ∅, say j = 1 without loss of generality. Since v must be dominated, v must then have
j j j 1 1

12
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a
 neighbor xi belonging to D′, for some vertex x adjacent to v in GΦ . But then, it follows from Observation 10 that
|D′

∩ V (Gx)| > 2 if x ∈ V2, and |D′
∩ V (Gx)| > 5 if x ∈ V3 (indeed, xi ∈ D′); thus, x ∈ D.

Hence, D is a dominating set of GΦ . Moreover, it follows from Observations 10 and 11 that |D′
| = 6|D3| + 5|V3 \ D3| +

3|D2|+2|V2 \ D2| = |D|+5|V3|+2|V2|. Thus, γ (G′

Φ ) = |D′
| ≥ γ (GΦ )+5|V3|+2|V2| and so, γ (G′

Φ ) = γ (GΦ )+5|V3|+2|V2|.
Finally note that this implies that the constructed dominated set D is in fact minimum. ▲

We next show that GΦ is a Yes-instance for All Efficient MD if and only if G′

Φ is a Yes-instance for All Independent
MD. Since Φ is satisfiable if and only if GΦ is a Yes-instance for All Efficient MD, as shown in the proof of Lemma 3.10,
this would conclude the proof.

Assume first that GΦ is a Yes-instance for All Efficient MD and suppose to the contrary that G′

Φ is a No-instance for
All Independent MD that is, G′

Φ has a minimum dominating set D′ which is not independent. Denote by D the minimum
dominating set of GΦ constructed from D′ according to the proof of Claim 9. Let us show that D is not efficient. Consider
two adjacent vertices a, b ∈ D′. If a and b belong to gadgets Gx and Gv respectively, for two adjacent vertices x and v in
GΦ , that is, a is of the form xi and b is of the form vj, then by Observation 10 x, v ∈ D and so, D is not efficient. Thus, it
must be that a and b both belong the same gadget Gv , for some v ∈ V2 ∪ V3. We distinguish cases depending on whether
v ∈ V2 or v ∈ V3.

Case 1. v ∈ V2. Suppose that |D′
∩ V (Gv)| = 2. Then by Observation 10(i), D′

∩ {v1, v2} = ∅ and there exists j ∈ {1, 2}
such that uj /∈ D′, say u1 /∈ D′ without loss of generality. Then, necessarily a1 ∈ D′ (u1 would otherwise not be dominated)
and so, b1 ∈ D′ as D′

∩ V (Gv) contains an edge and |D′
∩ V (Gv)| = 2 by assumption; but then, u2 is not dominated. Thus,

|D′
∩ V (Gv)| ≥ 3 and we conclude by Observation 11 that in fact, equality holds. Note that consequently, v ∈ D. We

claim that then, |D′
∩ {v1, v2}| ≤ 1. Indeed, if both v1 and v2 belong to D′, then b1 ∈ D′ (since |D′

∩ V (Gv)| = 3, D′ would
otherwise not be dominating) which contradicts that fact that D′

∩ V (Gv) contains an edge. Thus, |D′
∩ {v1, v2}| ≤ 1 and

we may assume without loss of generality that v2 /∈ D′. Let xi ̸= u2 be the other neighbor of v2 in G′

Φ , where x is a
neighbor of v in GΦ .

Suppose first that x ∈ V2. Then, |D′
∩ V (Gx)| = 2 for otherwise x would belong to D and so, D would contain the edge

vx. It then follows from Observation 10(i) that there exists j ∈ {1, 2} such that D′
∩ {xj, yj} = ∅, where yj is the neighbor

of xj in V (Gx). We claim that j ̸= i; indeed, if j = i, since v2, xi, yi /∈ D′, xi would not be dominated. But then, xj must have
a neighbor tk ̸= yj, for some vertex t adjacent to x in GΦ , which belongs to D′; it then follows from Observation 10 and
the construction of D that t ∈ D and so, x has two neighbors in D, namely v and t , a contradiction.

Second, suppose that x ∈ V3. Then, |D′
∩ V (Gx)| = 5 for otherwise x would belong to D and so, D would contain

the edge vx. It then follows from Observation 10(ii) that there exists j ∈ {1, 2, 3} such that D′
∩ {xj, yj, zj} = ∅, where

yj and zj are the two neighbors of xj in V (Gx). We claim that j ̸= i; indeed, if j = i, since v2, xi, yi, zi /∈ D′, xi would not be
dominated. But then, xj must have a neighbor tk ̸= yj, zj, for some vertex t adjacent to x in GΦ , which belongs to D′; it
then follows from Observation 10 and the construction of D that t ∈ D and so, x has two neighbors in D, namely v and t ,
a contradiction.

Case 2. v ∈ V3. Suppose that |D′
∩ V (Gv)| = 5. Then, by Observation 10(ii), D′

∩ {v1, v2, v3} = ∅ and there exists
j ∈ {1, 2, 3} such that D′

∩ {uj, vj, wj} = ∅, say j = 1 without loss of generality. Then, a1, c3 ∈ D′ (one of u1 and w1
would otherwise not be dominated), D′

∩ {c1, w2, u2} ̸= ∅ (w2 would otherwise not be dominated), D′
∩ {a3, u3, w3} ̸= ∅

(u3 would otherwise not be dominated) and D′
∩ {a2, b2, c2} ̸= ∅ (b2 would otherwise not be dominated); in particular,

b1, b3 /∈ D′ as |D′
∩ V (Gv)| = 5 by assumption. Since D′

∩ V (Gv) contains an edge, it follows that either u2, a2 ∈ D′

or c2, w3 ∈ D′; but then, either c1 or a3 is not dominated, a contradiction. Thus, |D′
∩ V (Gv)| ≥ 6 and we conclude by

Observation 11 that in fact, equality holds. Note that consequently, v ∈ D. It follows that {v1, v2, v3} ̸⊂ D′ for otherwise
D′

∩ V (Gv) = {v1, v2, v3, b1, b2, b3} and so, D′
∩ V (Gv) contains no edge. Thus, we may assume without loss of generality

that v1 /∈ D′. Denoting by xi ̸= u1, w1 the third neighbor of v1, where x is a neighbor of v in GΦ , we then proceed as in
the previous case to conclude that x has two neighbors in D.

Thus, D is not efficient, which contradicts the fact that GΦ is a Yes-instance for All Efficient MD. Hence, every
minimum dominating set of G′

Φ is independent i.e., G′

Φ is a Yes-instance for All Independent MD.
Conversely, assume that G′

Φ is a Yes-instance for All Independent MD and suppose to the contrary that GΦ is a No-
instance for All Efficient MD that is, GΦ has a minimum dominating set D which is not efficient. Let us show that D either
contains an edge or can be transformed into a minimum dominating set of GΦ containing an edge. Since any minimum
dominating of G′

Φ constructed according to the proof of Claim 9 from a minimum dominating set of GΦ containing an
edge, also contains an edge, this would lead to a contradiction and thus conclude the proof.

Suppose that D contains no edge. Since D is not efficient, there must then exist a vertex v ∈ V \D such that v has two
neighbors in D. We distinguish cases depending on which type of vertex v is.

Case 1. v is a variable vertex. Suppose that v = x1 in some clause gadget Gc , where c ∈ C contains variables x1, x2
and x3, and assume without loss of generality that x1 is adjacent to F 1

x1 . By assumption, F 1
x1 , l{x1} ∈ D which implies

that D ∩ {l{x2}, l{x3}, T 1
x1 , u

2
x1} = ∅ (D would otherwise contain an edge). We may then assume that F i

x2 and F j
x3 , where

F i
x2x2, F

j
x3x3 ∈ E(GΦ ), belong to D; indeed, since x2 (resp. x3) must be dominated, D∩ {F i

x2 , x2} ̸= ∅ (resp. D∩ {F j
x3 , x3} ̸= ∅)

and since l ∈ D, (D \ {x }) ∪ {F i
} (resp. (D \ {x }) ∪ {F j

}) remains dominating. We may then assume that T i , T j
/∈ D
{x1} 2 x2 3 x3 x2 x3

13
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f

a
D

C
l

or otherwise D would contain an edge. It follows that c ∈ D (c would otherwise not be dominated); but then, it suffices
to consider (D \ {c}) ∪ {T 1

x1} to obtain a minimum dominating set of GΦ containing an edge.

Case 2. v = ui
x for some variable x ∈ X and i ∈ {1, 2, 3}. Assume without loss of generality that i = 1. Then T 1

x , F 3
x ∈ D

by assumption, which implies that F 1
x , T 3

x /∈ D (D would otherwise contain an edge). But then, |D ∩ {u2
x , F

2
x , T 2

x , u3
x}| ≥ 2

s u2
x and u3

x must be dominated; and so, (D \ {u3
x , F

2
x , T 2

x , u2
x}) ∪ {F 2

x , T 2
x } is a dominating set of GΦ of size at most that of

which contains an edge.

ase 3. v is a clause vertex. Suppose that v = c for some clause c ∈ C containing variables x1, x2 and x3, and assume without
oss of generality that c is adjacent to T 1

xi for any i ∈ {1, 2, 3}. By assumption c has two neighbors in D, say T 1
x1 and T 1

x2
without loss of generality. Since D contains no edge, it follows that F 1

x1 , F
1
x2 /∈ D; but then, |D ∩ {x1, x2, l{x1}, l{x2}}| ≥ 2 (one

of x1 and x2 would otherwise not be dominated) and so, (D \ {x1, x2, l{x1}, l{x2}}) ∪ {l{x1}, l{x2}} is a dominating set of GΦ of
size at most that of D which contains an edge.

Case 4. v ∈ V (Kc) for some clause c ∈ C. Denote by x1, x2 and x3 the variables contained in c and assume without loss
of generality that v = l{x1}. Since l{x1} has two neighbors in D and D contains no edge, necessarily x1 ∈ D. Now assume
without loss of generality that x1 is adjacent to F 1

x1 (note that by construction, c is then adjacent to T 1
x1 ). Then, F

1
x1 /∈ D

(D would otherwise contain an edge) and T 1
x1 , u

2
x1 /∈ D for otherwise (D \ {x1}) ∪ {F 1

x1} would be a minimum dominating
set of GΦ containing an edge (recall that by assumption, D∩ V (Kc) ̸= ∅). It follows that T 2

x1 ∈ D (u2
x1 would otherwise not

be dominated) and so, F 2
x1 /∈ D as D contains no edge. It follows that |D ∩ {u1

x1 , F
3
x1 , T

3
x1 , u

3
x1}| ≥ 2 as u1

x1 and u3
x1 must be

dominated. Now if c belongs to D, then (D \ {u1
x1 , F

3
x1 , T

3
x1 , u

3
x1}) ∪ {F 3

x1 , T
3
x1} is a dominating set of GΦ of size at most that

of D which contains an edge. Thus, we may assume that c /∈ D which implies that u1
x1 ∈ D (T 1

x1 would otherwise not be
dominated) and that there exists j ∈ {2, 3} such that T i

xj ∈ D with cT i
xj ∈ E(GΦ ) (c would otherwise not be dominated).

Now, since u3
x1 must be dominated and F 2

x1 /∈ D, it follows that D∩ {u3
x1 , T

3
x1} ̸= ∅ and we may assume that in fact T 3

x1 ∈ D
(recall that T 2

x1 ∈ D and so, F 2
x1 is dominated). But then, by considering the minimum dominating set (D \ {u1

x1}) ∪ {T 1
x1},

we fall back into Case 3 as c is then dominated by both T 1
x1 and T i

xj .

Case 5. v is a true vertex. Assume without loss of generality that v = T 1
x for some variable x ∈ X . Suppose first that u1

x ∈ D.
Then since D contains no edge, F 3

x /∈ D; furthermore, denoting by t ̸= u1
x , T

3
x the variable vertex adjacent to F 3

x , we also
have t /∈ D for otherwise (D \ {u1

x}) ∪ {F 3
x } would be a minimum dominating set containing an edge (recall that T 1

x has
two neighbors in D by assumption). But then, since t must be dominated, it follows that the second neighbor of t must
belong to D; and so, by considering the minimum dominating set (D \ {u1

x})∪{F 3
x }, we fall back into Case 1 as the variable

vertex t is then dominated by two vertices. Thus, we may assume that u1
x /∈ D which implies that F 1

x , c ∈ D, where c is
the clause vertex adjacent to T 1

x . Now, denote by x1 = x, x2 and x3 the variables contained in c (note that by construction,
x1 is then adjacent to F 1

x1 ). Then, x1 /∈ D (D would otherwise contain the edge F 1
x1x1) and we may assume that l{x1} /∈ D

(we otherwise fall back into Case 1 as x1 would then have two neighbors in D). It follows that D ∩ V (Kc) ̸= ∅ (l{x1} would
otherwise not be dominated) and since D contains no edge, in fact |D ∩ V (Kc)| = 1, say l{x2} ∈ D without loss of generality.
Then, x2 /∈ D as D contains no edge and we may assume that F j

x2 /∈ D, where F j
x2 is the false vertex adjacent to x2, for

otherwise we fall back into Case 1. In the following, we assume without loss of generality that j = 1, that is, x2 is adjacent
to F 1

x2 (note that by construction, c is then adjacent to T 1
x2 ). Now, since the clause vertex c belongs to D by assumption, it

follows that T 1
x2 /∈ D (D would otherwise contain the edge cT 1

x2 ); and as shown previously, we may assume that u1
x2 /∈ D

(indeed, T 1
x2 would otherwise have two neighbors in D, namely c and u1

x2 , but this case has already been dealt with). Then,
since u1

x2 and F 1
x2 must be dominated, necessarily F 3

x2 and u2
x2 belong to D (recall that D ∩ {x2, F 1

x2 , T
1
x2 , u

1
x2} = ∅) which

implies that T 3
x2 , T

2
x2 /∈ D (D would otherwise contain an edge). Now since u3

x2 must be dominated, D ∩ {u3
x2 , F

2
x2} ̸= ∅ and

we may assume without loss of generality that in fact, F 2
x2 ∈ D. But then, by considering the minimum dominating set

(D \ {u2
x2}) ∪ {F 1

x2}, we fall back into Case 1 as x2 is then dominated by two vertices.

Case 6. v is a false vertex. Assume without loss of generality that v = F 1
x1 for some variable x1 ∈ X and let c ∈ C be the

clause whose corresponding clause vertex is adjacent to T 1
x1 . Denote by x2 and x3 the two other variables contained in c .

Suppose first that x1 ∈ D. Then, we may assume that D ∩ V (Kc) = ∅ for otherwise either D contains an edge (if l{x1} ∈ D)
or we fall back into Case 4 (l{x1} would indeed have two neighbors in D). Since every vertex of Kc must be dominated,
it then follows that x2, x3 ∈ D; but then, by considering the minimum dominating set (D \ {x1}) ∪ {l{x1}} (recall that F 1

x1
has two neighbors in D by assumption), we fall back into Case 4 as l{x2} is then dominated by two vertices. Thus, we may
assume that x1 /∈ D which implies that T 1

x1 , u
2
x1 ∈ D and T 2

x1 , u
1
x1 /∈ D as D contains no edge. Now, denote by c ′ the clause

vertex adjacent to T 2
x1 . Then, we may assume that c ′ /∈ D for otherwise we fall back into Case 5 (T 2

x1 would indeed have
two neighbors in D); but then, there must exist a true vertex, different from T 2

x1 , adjacent to c ′ and belonging to D (c ′

would otherwise not be dominated) and by considering the minimum dominating set (D\ {u2
x1})∪{T 2

x1}, we then fall back
into Case 3 (c ′ would indeed be dominated by two vertices).

Consequently, GΦ has a minimum dominating set which is not independent which implies that G′

Φ also has a minimum
dominating set which is not independent, a contradiction which concludes the proof. □
14
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The following is now a straightforward consequence of Theorem 3.11 and Fact 3.5.

orollary 3.12. 1-Edge Contraction(γ ) is coNP-hard on subcubic claw-free graphs.

To conclude this section, we observe that even if an edge is given, deciding whether contracting this particular edge
ecreases the domination number is unlikely to be polynomial-time solvable, as shown in the following result.

heorem 3.13. There exists no polynomial-time algorithm deciding whether contracting a given edge decreases the domination
umber, unless P = NP.

roof. We denote by Edge Contraction(γ ) the problem that takes as an input a graph G = (V , E) and an edge e ∈ E,
nd asks whether γ (G\e) ≤ γ (G) − 1. We show that if Edge Contraction(γ ) can be solved in polynomial time, then
ominating Set can also be solved in polynomial time. Since Dominating Set is a well-known NP-complete problem, the
esult follows:

Let (G, ℓ) be an instance for Dominating Set and let e be an edge of G. We run the polynomial time algorithm for Edge
ontraction(γ ) to determine if γ (G \ e) = γ (G) − 1; we then have two possible scenarios.

ase 1. (G, e) is a Yes-instance for Edge Contraction(γ ). Since γ (G \ e) = γ (G) − 1, we know that G has a dominating
set of size ℓ if and only if G \ e has a dominating set of size ℓ − 1. Hence, we obtain that (G \ e, ℓ − 1) is an equivalent
instance for Dominating Set.

Case 2. (G, e) is a No-instance for Edge Contraction(γ ). Since γ (G \ e) = γ (G), we know that G has a dominating set of
size ℓ if and only if G \ e has a dominating set of size ℓ. In this case, we obtain that (G \ e, ℓ) is an equivalent instance for
Dominating Set.

In both cases, the ensuing equivalent instance has one less vertex. Thus, by applying the polynomial-time algorithm
for Edge Contraction(γ ) at most n times, we obtain a trivial instance for Dominating Set and can therefore correctly
determine its answer. □

3.2. Hardness of 2-Edge Contraction(γ )

In this subsection we consider the complexity of k-Edge Contraction(γ ) when k = 2. To this end, we introduce the
following problem.

Contraction Number(γ ,k)
Instance: A connected graph G = (V , E).
Question: Is ctγ (G) = k?

Theorem 3.14. Contraction Number(γ , 3) is NP-hard.

Proof. We reduce from 1-in-3 Positive 3-Sat, where each variable occurs only positively, each clause contains exactly
three positive literals, and we want a truth assignment such that each clause contains exactly one true variable. This
problem is known to be NP-complete [18]. Given an instance Φ of this problem, with variable set X and clause set C ,
e construct an equivalent instance GΦ of Contraction Number(γ , 3) as follows. For any variable x ∈ X , we introduce a
opy of C3, which we denote by Gx, with two distinguished truth vertices Tx and Fx (see Fig. 7); in the following, the third
ertex of Gx is denoted by ux. For any clause c ∈ C containing variables x1, x2 and x3, we introduce the gadget Gc depicted

in Fig. 7 (where it is connected to the corresponding variable gadgets). The vertex set of the clique Kc corresponds to the
et of subsets of size 1 of {x1, x2, x3} (hence the notation); for any i ∈ {1, 2, 3}, the vertex xi (resp. x′

i) is connected to
every vertex vS ∈ Kc such that xi ̸∈ S (resp. xi ∈ S). Finally, for i = 1, 2, 3, we add an edge between ti (resp. x′

i) and the
truth vertex Txi (resp. Fxi ). Our goal now is to show that Φ is satisfiable if and only if ctγ (GΦ ) = 3. In the remainder of
the proof, given a clause c ∈ C , we denote by x1, x2 and x3 the variables occurring in c and thus assume that ti (resp. x′

i)
is adjacent to Txi (resp. Fxi ) for i ∈ {1, 2, 3}. Let us first start with some easy observations.

Observation 12. Let D be a dominating set of GΦ . Then for any x ∈ X, |D ∩ V (Gx)| ≥ 1 and for any c ∈ C, |D ∩ V (Gc)| ≥ 4.
In particular, |D| ≥ |X | + 4|C |.

Clearly, for any x ∈ X , |D ∩ V (Gx)| ≥ 1 since ux must be dominated. Also, in order to dominate vertices a1, a2, a3
and v{x1} in some gadget Gc , we need at least 4 distinct vertices, since their neighborhoods are pairwise disjoint and so,
|D ∩ V (Gc)| ≥ 4, for any c ∈ C . ⋄

Observation 13. Let D be a dominating set of GΦ . For any clause gadget Gc and i ∈ {1, 2, 3}, D ∩ {ai, bi, xi} ̸= ∅.

This immediately follows from the fact that every vertex bi needs to be dominated and its neighbors are ai and xi for
i ∈ {1, 2, 3}. ⋄
15
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Fig. 7. The gadget Gc together with Gxi , i = 1, 2, 3, for a clause c ∈ C containing variables x1 , x2 and x3 (the rectangle indicates that the corresponding
set of vertices induces a clique).

Observation 14. Let D be a dominating set of GΦ . For any clause gadget Gc , if |D ∩ V (Gc)| = 4, then D ∩ {ti, x′

i} = ∅ and
|D ∩ {ai, bi, xi}| = 1, for any i ∈ {1, 2, 3}.

If ti ∈ D for some i ∈ {1, 2, 3}, then it follows from Observation 13 that |D ∩ {aj, bj, xj}| = 1 for any j ∈ {1, 2, 3}. This
implies that at least two vertices among x1, x2 and x3 belong to D for otherwise there would exist j ∈ {1, 2, 3} such that
v{xj} is not dominated. In particular, there must exist j ̸= i such that xj ∈ D; but then, aj is not dominated. Similarly, if
x′

i ∈ D for some i ∈ {1, 2, 3}, it follows from Observation 13 that |D ∩ {aj, bj, xj}| = 1 for any j ∈ {1, 2, 3}. But then, in
order to dominate the vertices of Kc , either xi ∈ D in which case ai is not dominated; or {xj, j ̸= i} ⊂ D and aj with j ̸= i,
is not dominated.

Now suppose that |D ∩ {ai, bi, xi}| ≥ 2 for some i ∈ {1, 2, 3}. Then by Observation 13, we conclude that |D ∩ {ak, bk, xk}|
= 1 for k ̸= i and |D ∩ {ai, bi, xi}| = 2. This implies that D ∩ V (Kc) = ∅ for otherwise we would have |D ∩ V (Gc)| ≥ 5. But
then, since x′

i ̸∈ D, D must contain at least two vertices among x1, x2 and x3 in order to dominate the vertices of Kc ; in
particular, there exists j ̸= i such that xj ∈ D and so, aj is not dominated. ⋄

Observation 15. Let D be a minimum dominating set of GΦ and suppose that ctγ (GΦ ) = 3. Then for any vertices u, v ∈ D,
we have d(u, v) ≥ 3.

Indeed, if u, v are adjacent, we conclude by Theorem 2.1(i) that ctγ (GΦ ) = 1; and if u, v are at distance 2 then D∪{w},
where w is the vertex on a shortest path from u to v, contains two edges and we conclude by Theorem 2.1(ii) that
ctγ (GΦ ) = 2. ⋄

Observation 16. Let D be a minimum dominating set of GΦ and suppose that ctγ (GΦ ) = 3. Then for any clause gadget Gc
and i ∈ {1, 2, 3}, ai ∈ D if and only if Txi ̸∈ D.

This readily follows from Observation 15. Further note that we may assume that for any i ∈ {1, 2, 3}, ai ∈ D if and
only if Fxi ∈ D; Txi ̸∈ D is equivalent to {Fxi , uxi} ∩ D ̸= ∅ and if Txi ̸∈ D, we may always replace D by (D\{uxi}) ∪ {Fxi}. ⋄

Observation 17. Let D be a minimum dominating set of GΦ and suppose that ctγ (GΦ ) = 3. Then for any clause gadget Gc ,
|D ∩ {a1, a2, a3}| ≤ 2.

If it were not the case then, by Observation 15, no xi or bi (i = 1, 2, 3) would belong to D. But since x1, x2 and x3 must
be dominated, it follows that D∩ V (Kc) ̸= ∅ and by Observation 16, we conclude that D contains two vertices at distance
two (namely, v{xi} ∈ D ∩ V (Kc) and Fxi for some i ∈ {1, 2, 3}), which contradicts Observation 15. ⋄

Observation 18. Let D be a minimum dominating set of GΦ and suppose that ctγ (GΦ ) = 3. Then for any clause gadget Gc ,
|D ∩ {b1, b2, b3}| ≤ 1.

Indeed, if we assume, without loss of generality, that b1, b2 ∈ D, then by Observation 15, D∩V (Kc) = ∅. It then follows
from Observation 15 that x′

3 ∈ D for otherwise V{x3} would not be dominated. But then D∩V (Gx3 ) = ∅ by Observation 15,
which contradicts Observation 12. ⋄

Claim 10. γ (GΦ ) = |X | + 4|C | if and only if ctγ (GΦ ) = 3.

Proof. Assume that γ (GΦ ) = |X | + 4|C | and consider a minimum dominating set D of GΦ . We first show that D is an
independent set which would imply that ctγ (GΦ ) > 1 (see Theorem 2.1(i)). First note that Observation 12 implies that
|D ∩ V (Gx)| = 1 and |D ∩ V (Gc)| = 4, for any variable x ∈ X and any clause c ∈ C . It then follows from Observation 14
that no truth vertex is dominated by some vertex ti or x′

i in some clause gadget Gc with i ∈ {1, 2, 3}; in particular, this
implies that there can exist no edge in D having one endvertex in some gadget Gx (x ∈ X) and the other in some gadget
G (c ∈ C). Hence, it is enough to show that for any c ∈ C , D ∩ V (G ) is an independent set.
c c
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Now consider a clause gadget Gc . It follows from Observation 14 that if there exists i ∈ {1, 2, 3} such that ai ̸∈ D then
i ∈ D since ai must be dominated (also note that by Observation 14, if ai ∈ D then bi ̸∈ D). Hence, for any i ∈ {1, 2, 3},
xactly one of ai and bi belongs to D. But then, by Observation 14 and since |D ∩ V (Gc)| = 4, we immediately conclude
hat D ∩ V (Gc) is an independent set and so, D is an independent set.

Now, suppose to the contrary that ctγ (GΦ ) = 2 i.e., there exists a dominating set D′ of GΦ of size γ (GΦ )+1 containing
wo edges e and e′ (see Theorem 2.1(ii)). First assume that there exists x ∈ X such that |D′

∩ V (Gx)| = 2. Then, for any
′
̸= x, |D′

∩ V (Gx′ )| = 1; and for any c ∈ C , |D′
∩ V (Gc)| = 4 which by Observation 14 implies that {ti, x′

i} ∩ D′
= ∅ for

ny i ∈ {1, 2, 3}. Since as shown previously, D′
∩ V (Gc) is then an independent set, it follows that D′ contains at most one

dge, a contradiction.
Thus, there must exist some c ∈ C such that |D′

∩ V (Gc)| = 5. We then claim that {a1, a2, a3} ̸⊂ D′. Indeed, since
1, x2, x3, v{x1}, v{x2} and v{x3} must be dominated, D′

∩V (Kc) ̸= ∅ (otherwise, at least three additional vertices of Gc would
be required to dominate x1, x2 and x3), say v{x1} ∈ D′ without loss of generality. But then, |N[x1] ∩ D′

| = 1 as x1 must be
dominated and |D′

∩ V (Gc)| = 5 and so, D′ contains at most one edge. Therefore, there must exist i ∈ {1, 2, 3} such that
ai ̸∈ D′, say a1 ̸∈ D′ without loss of generality. Then, since a1 must be dominated, either t1 ∈ D′ or b1 ∈ D′.

Assume first that t1 belongs to D′ (note that {b1, x1}∩D′
̸= ∅ by Observation 13). We then claim that either e or e′ has

an endvertex in {aj, bj, xj} for some j ̸= 1. Indeed, if it were not the case, then t1 would be an endvertex of neither e nor e′

for otherwise Tx1 ∈ D′ which implies that D′
∩ {v{x1}, x′

1} ̸= ∅ as |D′
∩ V (Gx1 )| = 1 and x′

1 should be dominated. But then,
D′ contains at most one edge as 5 = |D′

∩ V (Gc)| ≥ |{t1}| + |D′
∩ {b1, x1}| + |D′

∩ {v{x1}, x′

1}| + |D′
∩ {aj, bj, xj, j ̸= 1}| ≥

1+1+1+2 and neither e nor e′ has an endvertex in {aj, bj, xj} for some j ̸= 1 by assumption, a contradiction. Since e and
e′ have at most one common endvertex, it then follows that |D′

∩ V (Gc)| ≥ |{t1}|+ |D′
∩ {aj, bj, xj, j ̸= 1}|+3 ≥ 1+2+3,

a contradiction. Thus, either e or e′ has an endvertex in {aj, bj, xj} for some j ̸= 1, say j = 2 without loss of generality.
Suppose that x2 is an endvertex of e. Then the other endvertex of e should be b2 for otherwise it belongs to Kc and thus,
a2 would not be dominated. But then, we conclude by Observation 13 and the fact that |D′

∩ V (Gc)| = 5, that D′ contains
only one edge. Thus, e = a2b2 or e = a2t2 and since v{x1} must be dominated, necessarily x3 ∈ D′; but then, a3 is not
dominated. Therefore, it must be that b1 belongs to D′; and we conclude similarly that if a2 (resp. a3) is not in D′ then b2
(resp. b3) belongs to D′.

Now, since t1, a1 ̸∈ D′, it follows that Tx1 ∈ D′ for otherwise t1 would not be dominated. But |D′
∩ V (Gx)| = 1 and so,

Fx1 ̸∈ D′; thus, D′
∩ {x′

1, v{x1}} ̸= ∅ as x′

1 must be dominated and we may assume, without loss of generality, that in fact,
v{x1} ∈ D′. Then, if D′

∩{v{x2}, v{x3}} = ∅, necessarily Fx2 , Fx3 ∈ D′; indeed, since |D′
∩ V (Gc)| = 5, at least one among x′

2 and
x′

3 does not belong to D′, say x′

2 without loss of generality. But if x′

3 ∈ D′, then exactly one of aj and bj, for j ̸= 1 belongs
to D′ (recall that if aj ̸∈ D′ then bj ∈ D′) and therefore, D′ contains at most one edge. Thus, Fx2 , Fx3 ∈ D′ which implies
that D′

∩ {tj, aj} ̸= ∅ for j ̸= 1 as tj must be dominated. But by Observation 13 and the fact that |D′
∩ V (Gc)| = 5, we

have that |D′
∩ {t2, t3}| ≤ 1 and so, D′ contains at most one edge. Thus, D′

∩ {v{x2}, v{x3}} ̸= ∅ and since by Observation 13
|D′

∩ V (Kc)| ≤ 2, we conclude that in fact |D′
∩ V (Kc)| = 2. But then, exactly one among aj and bj belongs to D′ for j ̸= 1

and so, D′ contains only one edge. Consequently, no such dominating set D′ exists and thus, ctγ (GΦ ) = 3.
Conversely, assume that ctγ (GΦ ) = 3 and consider a minimum dominating set D of GΦ . It readily follows from

Observations 12 and 15 that for any variable x ∈ X , |D ∩ V (Gx)| = 1. Now consider a clause gadget Gc . Then, by
Observation 15, we obtain that ti ̸∈ D (resp. x′

i ̸∈ D) for i ∈ {1, 2, 3}, as otherwise it would be within distance at most 2
from the vertex in D belonging to the gadget Gxi .

Now since for any i ∈ {1, 2, 3}, ti ̸∈ D, if ai ̸∈ D then bi ∈ D as ai must be dominated (also note that by Observation 15,
if ai ∈ D then bi ̸∈ D). Thus, by Observations 17 and 18, we conclude that for any clause gadget Gc , |D ∩ {a1, a2, a3}| = 2
and |D ∩ {b1, b2, b3}| = 1, say a1, a2, b3 ∈ D without loss of generality. But then, v{x3} must belong to D; indeed, since
b3 ∈ D, it follows that Tx3 ∈ D for otherwise t3 is not dominated. Observation 15 then implies that x′

3 ̸∈ D and thus, it can
only be dominated by v{x3}. But then, it follows from Observation 16 that every vertex in Gc is dominated and we conclude
that |D ∩ V (Gc)| = 4 by minimality of D. Consequently, |D| = |X | + 4|C | which concludes the proof of Claim 10. ▲

Claim 11. γ (GΦ ) = |X | + 4|C | if and only if Φ is satisfiable.

Proof. Assume first that γ (GΦ ) = |X | + 4|C | and consider a minimum dominating set D of GΦ . We construct a truth
assignment from D satisfying Φ as follows. For any x ∈ X , if Tx ∈ D, set x to true; otherwise, set x to false. We claim
that each clause c ∈ C has exactly one true variable. Indeed, it follows from Observation 12 that |D ∩ V (Gc)| = 4 for
any c ∈ C , and from Claim 10 that ctγ (GΦ ) = 3. But then, by Observation 14, for any i ∈ {1, 2, 3}, ai ̸∈ D if and only if
bi ∈ D (ai would otherwise not be dominated). It then follows from Observations 17 and 18 that |D ∩ {a1, a2, a3}| = 2 and
|D ∩ {b1, b2, b3}| = 1 for any c ∈ C; but by Observation 16 we conclude that bi ∈ D if and only if Txi ∈ D, which proves
our claim.

Conversely, assume that Φ is satisfiable and consider a truth assignment satisfying Φ . We construct a dominating set
D of GΦ as follows. If variable x is set to true, we add Tx to D; otherwise, we add Fx to D. For any clause c ∈ C and
i ∈ {1, 2, 3}, if Txi ∈ D, then add bi to D; otherwise, add ai to D. Since every clause has exactly one true variable, it follows
that |D ∩ {b1, b2, b3}| = 1 and |D ∩ {a1, a2, a3}| = 2; finally add v{xi} to D where bi ∈ D. Now clearly |D ∩ V (Gc)| = 4 and
every vertex in Gc is dominated. Thus, |D| = |X | + 4|C | and so by Observation 12, γ (GΦ ) = |X | + 4|C |, which concludes

this proof. ▲

17
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Fig. 8. Construction of the graph GΦ .

Now combining Claims 10 and 11, we have that Φ is satisfiable if and only if ctγ (GΦ ) = 3 which completes the proof
of Theorem 3.14. □

By observing that for any graph G, G is a Yes-instance for Contraction Number(γ , 3) if and only if G is a No-instance
for 2-Edge Contraction(γ ), we deduce the following corollary from Theorem 3.14.

Corollary 3.15. 2-Edge Contraction(γ ) is coNP-hard.

It is thus coNP-hard to decide whether ctγ (G) ≤ 2 for a graph G; and in fact, it is NP-hard to decide whether equality
holds, as stated in the following.

Theorem 3.16. Contraction Number(γ , 2) is NP-hard.

Proof. We give a reduction from Exactly 3-Bounded 3-Sat, where we want to determine if a formula Φ is satisfiable,
given that each variable occurs exactly three times in Φ , with both positive and negative occurrences, and each clause of
Φ contains two or three literals. This problem was shown to be NP-complete by Dahlhaus et al. [11].

Given an instance Φ of Exactly 3-Bounded 3-Sat, with variable set X and clause set C , we construct an equivalent
instance GΦ of Contraction Number(γ , 2) as follows: First note that we may assume that |X | ≥ 4 as Exactly 3-Bounded
3-Sat is otherwise polynomial-time solvable. The graph GΦ then contains a copy of the graph H depicted in Fig. 8(a). For
any variable x ∈ X , we introduce the gadget Gx which has two distinguished literal vertices x and x, as depicted in Fig. 8(b).
or any clause c ∈ C , we introduce a copy of K2 with a distinguished clause vertex c and a distinguished transmitter vertex

tc . Finally, for each clause c ∈ C , we add an edge between the clause vertex c and the literal vertices whose corresponding
literals belong to c; furthermore, we add an edge between the transmitter vertex tc and vertices 1 and 3 of the graph H .

e first prove the following:

laim 12. γ (H) = γ (H − {1, 3}) = 3 and ctγ (H) = 2.

roof. Since {3, 4, 11} (resp. {4, 5, 11}) is a dominating set of H (resp. H − {1, 3}), it follows that γ (H) ≤ 3 and
(H − {1, 3}) ≤ 3. On the other hand, any dominating set of H must contain at least three vertices as {3, 4, 11} is an
ndependent set with N(3) ∩ N(4) = N(3) ∩ N(11) = N(4) ∩ N(11) = ∅. Similarly, any dominating set of H − {1, 3} must
contain at least three vertices as {4, 5, 7} is an independent set with N(4) ∩ N(5) = N(4) ∩ N(11) = N(5) ∩ N(11) = ∅.
Thus, γ (H) = γ (H − {1, 3}) = 3.

We now claim that H has a unique minimum dominating set, namely {3, 4, 11}. First observe that any minimum
dominating D set of H contains vertex 11 as otherwise D would have to contain at least two vertices from {7, 8, 9, 10} in
order to dominate vertices 7 and 10, and at least two other vertices to dominate vertices 3 and 4; but then, |D| ≥ 4 > γ (H).
Now if there exists a minimum dominating set D not containing vertex 4, then {2, 6} ∩ D ̸= ∅ as vertex 4 is dominated.
But if 2 ∈ D then {6, 8} ∩ D ̸= ∅ as 6 must be dominated; and so, |D| ≥ 4 as 11 ∈ D and {1, 3, 5} ∩ D ̸= ∅ (3 must
be dominated). Otherwise, 6 ∈ S and similarly {2, 12} ∩ D ̸= ∅ as 2 must be dominated; and we conclude similarly that
|D| ≥ 4. Thus, every minimum dominating set contains vertex 4; we conclude similarly that every minimum dominating
set contains vertex 3. It follows that {3, 4, 11} is the only minimum dominating set of H and since it is independent, we
obtain that ctγ (H) > 1. Now, {1, 2, 8, 9} is clearly dominating and since it contains two edges, it follows that ctγ (H) = 2
(see Theorem 2.1(ii)). ▲

We next prove two claims which together show that Φ is satisfiable if and only if ctγ (GΦ ) = 2.

Claim 13. γ (GΦ ) = 2|X | + 3 if and only if ctγ (GΦ ) = 2.

Proof. Suppose that γ (GΦ ) = 2|X |+3 and let D be a minimum dominating set of GΦ . Since for any x ∈ X , vertices v1
x and

v4
x can only be dominated by (distinct) vertices in V (Gx), it follows that |D ∩ V (Gx)| ≥ 2. Furthermore, |D ∩ V (H)| ≥ 3

as γ (H) = 3 by Claim 12 and even if vertices 1 and 3 are dominated by some transmitter vertex, we still have
γ (H − {1, 3}) = 3 by Claim 12. Now, since |D| = 2|X | + 3 we have that:
18
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· ∀x ∈ X , |D ∩ V (Gx)| = 2;
· |D ∩ V (H)| = 3;
· ∀c ∈ C , D ∩ V (Gc) = ∅.

But then, for any x ∈ X , the set D∩V (Gx) is a minimum dominating set of Gx and therefore independent as we trivially
ave ctγ (Gx) = 2. Similarly, D ∩ V (H) is a dominating set of H (recall that for any c ∈ C , D ∩ V (Gc) = ∅) and therefore

independent as ctγ (H) = 2 by Claim 12. Thus, D is independent and since (D ∩
⋃

x∈x V (Gx)) ∪ {1, 2, 8, 9} is a dominating
set of GΦ of size γ (GΦ ) + 1 containing two edges, it follows that ctγ (GΦ ) = 2.

Conversely, assume that ctγ (GΦ ) = 2 and let D be a minimum dominating set of GΦ (note that D is independent).
Suppose that there exists c ∈ C such that D ∩ V (Gc) ̸= ∅. Then, we may assume that tc ∈ D; indeed, if c ∈ D then no
literal vertex adjacent to c is in the dominating set as D is independent. We then claim that any literal vertex adjacent to
c must dominated by one of its neighbor in the gadget; if x (or x) is adjacent to c and neither v1

x nor x belongs to D, then
e necessarily have |D ∩ {v2

x , v
3
x , v

4
x }| = 2 and so, GΦ would have a minimum dominating set which is not independent,

amely (D\{v1
x , v

2
x , v

3
x , v

4
x })∪{v2

x , v
3
x }, a contradiction. But then, (D\{c})∪{tc} is a minimum dominating set of GΦ . Now since

c ∈ D, it follows that D∩ {1, 3} = ∅ as D is independent, which implies that {c ′, tc′} ∩D ̸= ∅ for any c ′
∈ C . In particular,

he set D′
= (D\{tc′ , c ′

̸= c})∪{c ′, c ′
̸= c} is a minimum dominating set of GΦ and thus, independent. But |X | ≥ 4 so there

ust exist x ∈ X such that both x and x are dominated in D′ by some clause vertices (take any variable x not occurring
n c). In particular, {x, x} ∩D′

= ∅ which implies that |D′
∩ {v1

x , v
2
x , v

3
x , v

4
x }| = 2; but then (D′

\{v1
x , v

2
x , v

3
x , v

4
x })∪ {v2

x , v
3
x } is

a minimum dominating set of GΦ which is not independent, a contradiction. It follows that for any c ∈ C , D∩ V (Gc) = ∅.
On the other hand, if there exists x ∈ X such that |D ∩ V (Gx)| > 2, it is not difficult to see that D could then be

transformed into a minimum dominating set which is not independent. But since for any x ∈ X , at least two vertices are
required to dominate {v1

x , v
2
x , v

3
x , v

4
x }, we have then that |D ∩ V (Gx)| = 2. Finally, as D∩V (H) is a minimum dominating set

of H (recall that D ∩ V (Gc) = ∅ and so, no vertex in (V (GΦ )\V (H)) ∩ D dominates a vertex in H), |D ∩ V (H)| = γ (H) = 3.
hus, γ (GΦ ) = 2|X | + 3, which concludes the proof of the claim. ▲

laim 14. γ (GΦ ) = 2|X | + 3 if and only if Φ is satisfiable.

roof. Assume first that γ (GΦ ) = 2|X | + 3 and consider a minimum dominating set D of G. As shown in the proof of
laim 13, D is then independent and contains no vertex from

⋃
c∈C V (Gc). Therefore, any clause vertex is dominated by a

iteral vertex and for any x ∈ X , |D ∩ {x, x}| ≤ 1. We may thus construct a truth assignment which satisfies Φ as follows:

· If x ∈ D, set variable x to true;
· if x ∈ D, set variable x to false;
· otherwise, we may set variable x to any truth value.

Conversely, assume that Φ is satisfiable and consider a truth assignment which satisfies Φ . We construct a dominating
et D of GΦ as follows. For any x ∈ X , if x is set to true, we add x and v3

x to D, otherwise we add x and v3
x to D. We further

dd vertices 3, 4 and 11 of H . Then, it is not difficult to see that D is dominating (every transmitter vertex is dominated
y vertex 3 and every clause vertex has an adjacent literal vertex belonging to D) and so, γ (GΦ ) ≤ 2|X | + 3. But since for
ny x ∈ X , |D ∩ V (Gx)| ≥ 2 and for any c ∈ C , |D ∩ V (GC )| ≥ 4, it follows that γ (GΦ ) = 2|X | + 3. This completes the proof
f the claim. ▲

Now combining Claims 13 and 14, we have that Φ is satisfiable if and only if ctγ (GΦ ) = 2 which concludes the proof
f Theorem 3.16. □

.3. Algorithms for k-Edge Contraction(γ )

We now deal with cases in which k-Edge Contraction(γ ) is tractable, for k = 1, 2. A first simple approach to the
roblem, from which we obtain Proposition 3.17, is based on brute force.

roposition 3.17. For k = 1, 2, k-Edge Contraction(γ ) can be solved in polynomial time for a graph class C, if either

(a) C is closed under edge contractions and Dominating Set can be solved in polynomial time on C; or
(b) for every G ∈ C, γ (G) ≤ q, where q is some fixed constant; or
(c) C is the class of (H +K1)-free graphs, where |VH | = q is a fixed constant and k-Edge Contraction(γ ) is polynomial-time

solvable on H-free graphs.

roof. In order to prove item (a), it suffices to note that if we can compute γ (G) and γ (G \ e), for any edge e of G, in
olynomial time, then we can determine whether a graph G is a Yes-instance for 1-Edge Contraction(γ ) in polynomial

time (we may proceed in a similar fashion for 2-Edge Contraction(γ )).
For item (b), we proceed as follows. Given a graph G of C, we first check whether G has a dominating vertex. If it is

the case, then G is a No-instance for k-Edge Contraction(γ ) for both k = 1, 2. Otherwise, we may consider any subset
S ⊂ V (G) with |S| ≤ q and check whether it is a dominating set of G. Since there are at most O(nq) possible such subsets,
19
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e can determine the domination number of G and check whether the conditions given in Theorem 2.1(i) or (ii) are
atisfied in polynomial time.
Finally, so as to prove item (c), we provide the following algorithm that works similarly for k = 1 and k = 2. Let
and q be as stated and let G be an instance of k-Edge Contraction(γ ) on (H + K1)-free graphs. We first test whether
is H-free (note that this can be done in time O(nq)). If this is the case, we use the polynomial-time algorithm for k-Edge
ontraction(γ ) on H-free graphs. Otherwise, G has an induced subgraph isomorphic to H; but since G is a (H + K1)-free
raph, V (H) must then be a dominating set of G and so, γ (G) ≤ q. We then conclude by Proposition 3.17(b) that k-Edge
ontraction(γ ) is also polynomial-time solvable in this case. □

Proposition 3.17(b) provides an algorithm for 1-Edge Contraction(γ ) parameterized by the size of a minimum
ominating set of the input graph running in XP-time. Note that this result is optimal as 1-Edge Contraction(γ ) is
[1]-hard with such parameterization from Theorem 3.1.
We further show that even though simple, this brute force method provides polynomial-time algorithms for a number

f relevant classes of graphs, such as graphs of bounded tree-width and graphs of bounded mim-width. We first state the
ollowing result and observation.

heorem 3.18 ([27]). Given a graph G and a decomposition of width t, Dominating Set can be solved in time O∗(3t ) when
arameterized by tree-width, and in time O∗(n3t ) when parameterized by mim-width.

bservation 19. mimw(G \ e) ≤ mimw(G) + 1.

Indeed, note that the graph G \ e can be obtained from G by the removal of the vertices u and v where e = uv, and
he addition of a new vertex whose neighborhood is NG(u) ∪ NG(v). The result then follows from Observation 3 and the
act that vertex deletion does not increase the mim-width of a graph.

roposition 3.19. Given a decomposition of width t, k-Edge Contraction(γ ) can be solved in time O∗(3t ) in graphs of
ree-width at most t and in time O∗(n3t ) in graphs of mim-width at most t, for k = 1, 2.

roof. We use the above-mentioned brute force approach and Theorem 3.18. That is, for k = 1, the algorithm first
omputes γ (G) and then computes γ (G \ e) for every e ∈ E(G). For k = 2, the algorithm proceeds similarly for every pair
f edges. We next show that the width parameters increase by a constant when contracting at most two edges. It is a
ell-known fact that tw(G \ e) ≤ tw(G) and so, tw(G \ {e, f }) ≤ tw(G). By Observation 19, mimw(G \ e) ≤ mimw(G) + 1
hich implies that mimw(G \ {e, f }) ≤ mimw(G) + 2. Also note that, given a tree (resp. mim) decomposition of width
for G, we can construct in polynomial time decompositions of width t (resp. at most t + 2) for G \ e and G \ {e, f }. This
mplies that γ (G \ e) and γ (G \ {e, f }) can also be computed in time O∗(3t ) if G is a graph of tree-width at most t , and in
ime O∗(n3t ) if G is a graph of mim-width at most t . □

Proposition 3.19 provides an algorithm for 1-Edge Contraction(γ ) parameterized by mim-width running in XP-time;
this result is optimal as 1-Edge Contraction(γ ) is W[1]-hard parameterized by mim-width from Theorem 3.1.

Since Dominating Set is polynomial-time solvable in P4-free graphs (see [19]), it follows from Proposition 3.17(a) that
k-Edge Contraction(γ ) can also be solved efficiently in this graph class. However, Dominating Set is NP-complete for
P5-free graphs (see [5]) and thus, it is natural to examine the complexity of k-Edge Contraction(γ ) for this graph class.
As we next show, k-Edge Contraction(γ ) is in fact polynomial-time solvable on P5-free graphs, for k = 1, 2.

Lemma 3.20. Let G be a graph that is at distance at most d from a connected P5-free graph. If γ (G) ≥ 2d+1
+ d + 1, then

ctγ (G) = 1.

Proof. Let G = (V , E) be a graph as stated above and let X ⊆ V be such that G′
= G[V \ X] is a connected P5-free graph

and |X | ≤ d. Consider the partition (A1, . . . , Aℓ) of the vertices of V \ X defined by their neighborhoods in X , that is, two
vertices u, v ∈ V \ X belong to the same set of the partition if NG(u) ∩ X = NG(v) ∩ X . Note that ℓ ≤ 2d since |X | ≤ d.
Now let D be a minimum dominating set of G of size at least 2d+1

+ d+1 and suppose that D is independent. It is easy to
see that there must exist 1 ≤ i ≤ ℓ such that |Ai ∩ D| ≥ 3. Let u, v ∈ Ai ∩ D be such that dG′ (u, v) = maxx,y∈Ai∩D dG′ (x, y).
Since G′ is a connected P5-free graph, dG′ (u, v) ≤ 3 and, since D is independent, dG′ (u, v) ≥ 2. We thus distinguish two
cases depending on this distance.

Case 1. dG′ (u, v) = 3. Let x (resp. y) be the neighbor of u (resp. v) in G′ on a shortest path from u to v. Then,
NG′ (u)∪NG′ (v) ⊆ NG′ (x)∪NG′ (y); indeed, if a is a neighbor of u in G′, then a is nonadjacent to v (recall that dG′ (u, v) = 3) and
thus, a is adjacent to either x or y for otherwise a, u, x, y and v would induce a P5 in G′. The same holds for any neighbor
of v. Furthermore, since |Ai ∩ D| ≥ 3, the vertices of NG(u) ∩ X have at least one neighbor in D\{u, v}. Consequently,
D\{u, v})∪{x, y} is a minimum dominating set of Gwhich is not independent; the result then follows from Theorem 2.1(i).

ase 2. dG′ (u, v) = 2. Since D is independent and dG′ (u, v) = maxx,y∈D∩Ai dG′ (x, y) = 2, it follows that every w ∈ D∩Ai\{u, v}

s at distance two from both u and v. Let x (resp. y) be the vertex on a shortest path from u (resp. v) to some vertex

∈ D ∩ Ai\{u, v} (recall that |Ai ∩ D| ≥ 3).
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Suppose first that x = y. If every private neighbor of w with respect to D is adjacent to x then (D\{w}) ∪ {x} is a
inimum dominating set of G which is not independent (note that, again, the vertices of NG(w) ∩ X are also dominated
y u and v); the result then follows from Theorem 2.1(i). We conclude similarly if every private neighbor of u or v with
espect to D is adjacent to x. Thus, we may assume that w (resp. u; v) has a private neighbor t (resp. r; s) with respect
o D which is nonadjacent to x. Since G′ is P5-free, it then follows that r , s and t are pairwise adjacent. But then, t, r, u, x
nd v induce a P5, a contradiction.
Finally, suppose that x ̸= y (we may also assume that uy, vx ̸∈ E as we otherwise fall back in the previous case).

hen, xy ∈ E for u, x, w, y and v would otherwise induce a P5. Now, if a is a private neighbor of u with respect to D then
is adjacent to either x or y (a, u, x, y and v otherwise induce a P5); we conclude similarly that any private neighbor of
with respect to D is adjacent to either x or y. If b is a vertex that is adjacent to both u and v but not w, then it is adjacent

to x (and y) as v, b, u, x and w (u, b, v, y and w) would otherwise induce a P5. But then, (D\{u, v}) ∪ {x, y} is a minimum
dominating set of G which is not independent (note that w dominates every vertex in NG(u) ∩ X = NG(v) ∩ X); thus, by
Theorem 2.1(i), ctγ (G) = 1 which concludes the proof. □

In particular, when d = 0, we obtain the following corollary.

Corollary 3.21. If G is a P5-free graph with γ (G) ≥ 3, then ctγ (G) = 1.

Theorem 3.22. k-Edge Contraction(γ ) is polynomial-time solvable on graphs that are at distance at most d from a connected
P5-free graph, for any fixed d ≥ 0 and k = 1, 2.

Proof. We may proceed in a similar fashion than in the proof of Proposition 3.17(b). Specifically, if G has a dominating
vertex, then G is clearly a No-instance for both k = 1, 2. Otherwise, we may consider every subset S ⊂ V (G) with
|S| ≤ 2d+1

+ d + 1 (by increasing size) and check whether it is dominating. By doing so, we can determine whether
γ (G) ≤ 2d+1

+ d + 1 and, if so, check whether G has a minimum dominating set containing an edge. If it is the case,
then by Theorem 2.1(i), G is a Yes-instance for k-Edge Contraction(γ ) for k = 1, 2. If γ (G) ≤ 2d+1

+ d + 1 but G is a
No-instance to 1-Edge Contraction(γ ), we can determine whether G is a Yes-instance for 2-Edge Contraction(γ ) by
checking all sets of size γ (G) + 1 and see whether there exists one which is dominating and contains at least two edges
(see Theorem 2.1(ii)). Finally, both for k = 1 and k = 2, if G has no dominating set of size at most 2d+1

+ d + 1, then by
Lemma 3.20, G is a Yes-instance for k-Edge Contraction(γ ). □

Recall that 1-Edge Contraction(γ ) is NP-hard for P6-free graphs. We show that for k = 2, the problem is
polynomial-time solvable for this graph class. The following is a more general result.

Lemma 3.23. Let G be a graph that is at distance at most d from a connected P6-free graph. If γ (G) ≥ 2d+1
+ d + 1, then

ctγ (G) ≤ 2.

Proof. Let G = (V , E) be a graph as stated above and let X ⊆ V be such that G′
= G[V \X] is a connected P6-free graph and

|X | ≤ d. Consider the partition (A1, . . . , Aℓ) of the vertices of V \X defined by their neighborhoods in X , that is, two vertices
u, v ∈ V \X belong to the same set of the partition if NG(u)∩X = NG(v)∩X . Note that ℓ ≤ 2d since |X | ≤ d. Now let D be a
minimum dominating set of G of size at least 2d+1

+ d+ 1 and suppose that for any u, v ∈ D, dG(u, v) ≥ 3, that is, no two
vertices in D have a common neighbor (note that if there exist u, v ∈ D such that NG(u)∩ NG(v) ̸= ∅, then D∪ {x}, where
x ∈ NG(u)∩NG(v), is a dominating set for G of size γ (G)+1 containing two edges and so, ctγ (G) ≤ 2 by Theorem 2.1). Since
|D| ≥ 2d+1

+ d+ 1, there must exist 1 ≤ i ≤ ℓ such that |Ai ∩ D| ≥ 3; observe first that NG(Ai)∩ X = ∅, since dG(x, y) ≥ 3
for any x, y ∈ Ai∩D, by assumption. For the same reason, dG′ (NG′ (x),NG′ (y)) ≥ 1. Furthermore, dG′ (NG′ (x),NG′ (y)) ≤ 2 since
G′ is P6-free. Now suppose that there exists x, y ∈ Ai ∩D such that dG′ (NG′ (x),NG′ (y)) = 2 and let a ∈ NG′ (x) and b ∈ NG′ (y)
be such that dG′ (NG′ (x),NG′ (y)) = dG′ (a, b). Let c ∈ V (G′) be the internal vertex in a shortest path from a to b in G′. Then,
D′

= (D \ {x, y}) ∪ {a, b, c} is a dominating set of G. Indeed, since NG(Ai) ∩ X = ∅, vertices in X remain dominated in D′;
and if there exists t ∈ NG′ (x) ∪ NG′ (y) which is not dominated by a vertex in D′, say t ∈ NG′ (x) without loss of generality,
then t, x, a, c, b, y induce a P6, a contradiction. Thus, D′ is a dominating set of size γ (G)+ 1 containing two edges and so,
ctγ (G) ≤ 2 by Theorem 2.1. Assume henceforth that dG′ (NG′ (x),NG′ (y)) = 1 for any x, y ∈ Ai ∩ D. In the following, we let
u, v, w ∈ Ai ∩ D.

Suppose that for any a ∈ {u, v, w}, no vertex in NG′ (a) is adjacent to both a vertex in NG′ (b) and a vertex in NG′ (c) for
b, c ∈ {u, v, w} \ {a}. By assumption, there must then exist x ∈ NG′ (a), y, r ∈ NG′ (b) and s ∈ NG′ (c), with a, b, c ∈ {u, v, w},
such that xy, rs ∈ E(G′). By assumption, x is nonadjacent to s, y is nonadjacent to s and r is nonadjacent to x (see Fig. 9).
ut then, if yr ̸∈ E(G′), a, x, y, b, r, s induce a P6; and if yr ∈ E(G′), a, x, y, r, s, c induce a P6, a contradiction in both cases.

It follows that there must exist x ∈ NG′ (l), for some l ∈ {u, v, w}, such that x is adjacent to both a vertex y ∈ NG′ (p) and a
vertex z ∈ NG′ (q), with p, q ∈ {u, v, w} \ {l}.

Suppose first that y and z are nonadjacent. Then, D′
= (D \ {p, q}) ∪ {x, y, z} is a dominating set for G; indeed, if there

xists h ∈ NG′ (p) such that h is not dominated by a vertex in D′ (the case where h ∈ NG′ (q) is symmetric) then, h, p, y, x, z, q
induce a P (see Fig. 10(a)), a contradiction. Furthermore, since N (A ) ∩ X = ∅, vertices in X remain dominated in D′.
6 G i
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Fig. 9. No neighbor of l is adjacent to both a neighbor of p and a neighbor of q in G′ , for any l, p, q ∈ {u, v, w} (dashed lines correspond to nonedges
and the serpentine line indicates that the two vertices may or may not be adjacent).

Fig. 10. There exist x ∈ NG′ (l) such that x is adjacent to both a vertex y ∈ NG′ (p) and a vertex z ∈ NG′ (q) with p, q, l ∈ {u, v, w} (dashed lines
orrespond to nonedges).

hus, D′ is a dominating set for G and since D′ is of size γ (G) + 1 and contains two edges, we conclude by Theorem 2.1
hat ctγ (G) ≤ 2.

Second, suppose that y and z are adjacent. We claim that there exists t ∈ {u, v, w} such that D′
= (D \ {u, v, w}) ∪

t, x, y, z} is a dominating set for G; since D′ is of size γ (G)+1 and contains two edges, this would conclude the proof (see
heorem 2.1). First recall that since NG(Ai)∩X = ∅, vertices in X remain dominated in D′. Now, if Dl = (D\{p, q})∪{x, y, z} is
ot dominating, then there exists h ∈ NG′ (p)∪NG′ (q) such that h is not dominated by a vertex in Dl, say h ∈ NG′ (p) without
oss of generality. But then, Dp = (D\{l, q})∪{x, y, z} must be dominating; indeed, if there exists f ∈ NG′ (l)∪NG′ (q) such that
is not dominated by a vertex in Dp, say f ∈ NG′ (q) without loss of generality, then f and h must be adjacent (h, p, y, z, q, f
ould otherwise induce a P6) and so, q, f , h, p, y, x induce a P6 (see Fig. 10(b)), a contradiction which concludes the
roof. □

In particular, when d = 0, we obtain the following corollary.

orollary 3.24. If G be a P6-free graph with γ (G) ≥ 3, then ctγ (G) ≤ 2.

With a similar proof to that of Theorem 3.22, we obtain the following result from Corollary 3.24.

Theorem 3.25. 2-Edge Contraction(γ ) is polynomial-time solvable on P6-free graphs.

.4. H-free graphs

The results obtained in Sections 3.1 and 3.3 lead to a complexity dichotomy for H-free graphs when H is connected.
ndeed, since 1-Edge Contraction(γ ) is NP-hard when restricted to {C3, . . . , Cℓ}-free graphs, for any ℓ ≥ 3 (see
orollary 3.12), it follows that 1-Edge Contraction(γ ) is NP-hard for H-free graphs when H contains a cycle. If H is
tree with a vertex of degree at least three, we conclude by Corollary 3.12 that 1-Edge Contraction(γ ) is coNP-hard

or H-free graphs. We are now left with the case in which H is a path. Theorem 3.1 shows that if H is a path of length
t least 6, then 1-Edge Contraction(γ ) is NP-hard for H-free graphs; and by Theorem 3.22, 1-Edge Contraction(γ ) is
olynomial-time solvable on H-free graphs if H ⊆i P5. We therefore obtain the following result.

orollary 3.26. Let H be a connected graph. If H ⊆i P5 then 1-Edge Contraction(γ ) is polynomial-time solvable on H-free
raphs, otherwise it is NP-hard or coNP-hard.

If the graph H is not required to be connected, we know the following. As previously mentioned, 1-Edge Contrac-
ion(γ ) is NP-hard (resp. coNP-hard) on H-free graphs when H contains a cycle (resp. an induced claw). Thus, there
emains to consider the case where H is a linear forest. Theorem 3.1 and Corollary 3.7 show that if H contains either a P6,
P + P or a 2P as an induced subgraph, then 1-Edge Contraction(γ ) is NP-hard or coNP-hard on H-free graphs. On
4 2 3
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he other hand, by Theorem 3.22 and Proposition 3.17(c), 1-Edge Contraction(γ ) is polynomial-time solvable on H-free
raphs if H ⊆i P5+pK1. Therefore, in order to obtain a complexity dichotomy for H-free graphs, there remains to determine
he complexity status of the problem restricted to H-free graphs when H is an induced subgraph of P3 + qK2 + pK1 with
t least one edge.

. Complexity of Vertex Deletion(γ)

In this section, we investigate the complexity of Vertex Deletion(γ ). Recall that by Proposition 2.4, Vertex Deletion(γ )
s equivalent to Edge Addition(γ ). Thus, the results presented in this section also hold for the Edge Addition(γ ) problem.
We first show that even for k = 1, Vertex Deletion(γ ) is already a hard problem both in the classical and in the
parameterized complexity setting.

Theorem 4.1. Vertex Deletion(γ ) with k = 1 is NP-hard and W[1]-hard parameterized by γ on split graphs.

roof. We give a reduction from Dominating Set. Given an instance (G, ℓ) for Dominating Set, we construct an instance
G′, 1) for Vertex Deletion(γ ) as follows. We denote by {v1, . . . , vn} the vertex set of G. The vertex set of the graph G′ is
given by V (G′) = V0 ∪ · · · ∪ Vℓ ∪ {x0, . . . , xℓ, y}, where each Vi is a copy of the vertex set of G. We denote the vertices of
i by vi

1, v
i
2, . . . , v

i
n. The adjacencies in G′ are then defined as follows:

· V0 ∪ {x0, . . . , xℓ} is a clique;
· yx0, x0v1

1 ∈ E(G′);
· x1 is adjacent to all the vertices in V1 \ {v1

1};

nd for 1 ≤ i ≤ ℓ,

· Vi is an independent set;
· vi

j is adjacent to {v0
a | va ∈ NG[vj]} for any 1 ≤ j ≤ n;

· if i ̸= 1, xi is adjacent to all the vertices of Vi.

laim 15. γ (G′) = min{γ (G) + 1, ℓ + 1}.

roof. It is clear that {x0, x1, . . . , xℓ} is a dominating set of G′; thus, γ (G′) ≤ ℓ + 1. If γ (G) ≤ ℓ and {vi1 , . . . , vik} is a
minimum dominating set of G, it is easily seen that {v0

i1
, . . . , v0

ik
, x0} is a dominating set of G′. Thus, γ (G′) ≤ γ (G) + 1

and so, γ (G′) ≤ min{γ (G) + 1, ℓ + 1}. Now, suppose to the contrary that γ (G′) < min{γ (G) + 1, ℓ + 1} and consider a
minimum dominating set D′ of G′. We first make the following simple observation.

Observation 20. For any dominating set D of G′, D ∩ {y, x0} ̸= ∅.

Now, since γ (G′) < ℓ + 1, there exists 1 ≤ i ≤ ℓ such that xi ̸∈ D′ (otherwise, {x1, . . . , xℓ} ⊂ D′ and combined
with Observation 20, D′ would be of size at least ℓ + 1). If x1 is the only vertex of {x1, . . . , xℓ} not belonging to D′, then
|D′

∩ {x1, . . . , xℓ}| = ℓ−1; and since D′ must dominate the vertices of V1 \{v1
1}, combined with Observation 20, we obtain

that |D′
| ≥ ℓ + 1, a contradiction. Therefore, there exists i ≥ 2 such that xi /∈ D′; but then, D′′

= D′
∩ V0 must dominate

every vertex in Vi, and so |D′′
| ≥ γ (G). Since |D′′

| ≤ |D′
| − 1 (recall that D′

∩ {y, x0} ̸= ∅), we then have γ (G) ≤ |D′
| − 1, a

contradiction. Thus, γ (G′) = min{γ (G) + 1, ℓ + 1}. ▲

We now show that (G, ℓ) is a Yes-instance for Dominating Set if and only if (G′, 1) is a Yes-instance for Vertex
Deletion(γ ).

First assume that γ (G) ≤ ℓ. Then, γ (G′) = γ (G)+1 by the previous claim, and if {vi1 , . . . , vik} is a minimum dominating
set of G, then {v0

i1
, . . . , v0

ik
, y} is a minimum dominating set in which y is a selfish vertex. Thus by Lemma 2.3, (G′, 1) is a

Yes-instance for Vertex Deletion(γ ).
Conversely, assume that (G′, 1) is a Yes-instance for Vertex Deletion(γ ) i.e., there exists a minimum dominating set

D′ of G′ which contains a selfish vertex (see Lemma 2.3). Note that it cannot be the case that {x1, . . . , xℓ} ⊂ D′; indeed, if
it were the case, since v1

1 and y are not dominated by {x1, . . . , xℓ}, we would have by Observation 20 and Claim 15, that
x0 ∈ D′. But then, D′

= {x0, . . . , xℓ} contains no selfish vertex, a contradiction. Therefore, there exists 1 ≤ i ≤ ℓ such that
xi ̸∈ D′. If i ̸= 1, it follows that D′′

= D′
∩ V0 must dominate every vertex in Vi and thus, |D′′

| ≥ γ (G). But |D′′
| ≤ |D′

| − 1
(recall that D′

∩{y, x0} ̸= ∅) and so by Claim 15, γ (G) ≤ |D′
|−1 ≤ (ℓ+1)−1 that is, (G, ℓ) is a Yes-instance for Dominating

Set. Otherwise, x1 is the only vertex of {x1, . . . , xℓ} not belonging to D′ and so, |D′
∩ {x1, . . . , xℓ}| = ℓ − 1. But since D′

must dominate the vertices of V1, we have |D′
∩ (V0 ∪ {x0})| ≥ γ (G); thus, |D′

| ≥ γ (G)+ℓ−1. Since ℓ ≥ 2, it then follows
that |D′

| ≥ γ (G) + 1 and so by Claim 15, γ (G) ≤ ℓ that is, (G, ℓ) is a Yes-instance for Dominating Set. □

In view of Theorem 4.1, we further investigate, in the remainder of this section, the complexity of the Vertex
Deletion(γ ) problem restricted to the case k = 1, that is, the 1-Vertex Deletion(γ ) problem.
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Fig. 11. Constructing a dominating set D′ of G′ from a dominating set D of G (vertices in red belong to the corresponding dominating set).

roposition 4.2. Let G be a graph and let G′ be the graph obtained by 3-subdividing every edge of G. Then G is a Yes-instance
o 1-Edge Contraction(γ ) if and only if G′ is a Yes-instance to 1-Vertex Deletion(γ ).

Proof. Let G′ be the graph obtained by the 3-subdivision of every edge of G. Given an edge e = uv of G, we denote
by ue1e2e3v the path in G′ resulting from the 3-subdivision of the edge uv. Suppose G is a Yes-instance to 1-Edge
Contraction(γ ). By Theorem 2.1(i), G has a dominating set D that is not independent. We construct from D a minimum
dominating set D′ for G′ containing a selfish vertex, as follows. For any edge e = uv of G, if D ∩ {u, v} = ∅, then

′
∩ {u, e1, e2, e3, v} = {e2}. If |D ∩ {u, v}| = 1, then we may assume without loss of generality that u ∈ D and we

et D′
∩ {u, e1, e2, e3, v} = {u, e3}. Finally, if {u, v} ⊂ D, then D′

∩ {u, e1, e2, e3, v} = {u, e2, v} (see Fig. 11).
It is easy to see that D′ is indeed dominating; and by Claim 2, we have that γ (G′) = γ (G) + |E(G)|, which shows

that D′ is also of minimum size. Furthermore, by construction, if D contains an edge e = uv, then the vertex e2 in the
corresponding path is selfish in D′. Thus, by Lemma 2.3, G′ is a Yes-instance for 1-Vertex Deletion(γ ).

Conversely, if G′ is a Yes-instance for 1-Vertex Deletion(γ ) then by Lemma 2.2, G′ is a Yes-instance for 1-Edge
Contraction(γ ) and we conclude by Lemma 3.3 that G is a Yes-instance for 1-Edge Contraction(γ ). □

We deduce the following from Corollary 3.4 together with Proposition 4.2.

Corollary 4.3. 1-Vertex Deletion(γ ) is NP-hard on bipartite graphs and {C3, . . . , Cℓ}-free graphs, for every fixed ℓ ≥ 3.

We now consider the class of claw-free graphs. We first prove the following:

Lemma 4.4. Let G be a graph and let G′ be the graph obtained by 3-subdividing every edge of G not belonging to a triangle.
Then G is a Yes-instance for 1-Edge Contraction(γ ) if and only if G′ is a Yes-instance for 1-Edge Contraction(γ ).

Proof. Let G = (V , E) be a graph and let E2 ⊆ E be the set of edges not belonging to any triangle. In the following, given
an edge e ∈ E2, we denote by e1, e2 and e3 the three new vertices resulting from the 3-subdivision of the edge e. Note
that by Claim 2, we have that γ (G′) = γ (G) + |E2|.

Assume first that G is a Yes-instance for 1-Edge Contraction(γ ) and let D be a minimum dominating set of G containing
an edge f = xy (see Theorem 2.1(i)). Let D′ be the minimum dominating set of G′ constructed as follows. We first add to
D′ every vertex in D. Then for any edge e = uv ∈ E2, we proceed as described in the proof of Claim 2 (see Fig. 3). Now,
either f ∈ E2 in which case D′ contains the edge xf1, or f ∈ E \ E2 in which case D′ contains the edge f . In both cases, we
conclude by Theorem 2.1(i) that G′ is a Yes-instance for 1-Edge Contraction(γ ).

Conversely, assume that G′ is a Yes-instance for 1-Edge Contraction(γ ), that is, there exists a minimum dominating
set D′ of G′ containing an edge f (see Theorem 2.1(i)). First note that we may assume that for any edge e = uv ∈ E2,
{e1, e3} ̸⊂ D′; indeed, if {e1, e3} ⊂ D′ then, by minimality of D′, we have that v /∈ D′ (with v adjacent to e3) for otherwise
D′

\{e3} is a dominating set of G′ of size strictly smaller than that of D′, a contradiction (also note that by minimality of D′,
e2 /∈ D′). But then, (D′

\ {e3}) ∪ {v} is also a minimum dominating set of G′ also containing the edge f ; indeed, since both
e2 and v are not contained in D′, e3 is not an endvertex of f . Now let D be the minimum dominating set of G constructed
as follows. We first add to D every vertex of D′

∩ V . Now for any edge uv ∈ E2, if e1 ∈ D′ (with e1 adjacent to u), we add
v to D; and if e3 ∈ D′, we add u to D. Note that by Observation 4, D has size |D′

|−|E2|, that is, D is a minimum dominating
set of G. We now claim that D contains an edge. Indeed, if f ∈ E \ E2, then D contains f . Otherwise, we distinguish cases
depending on whether f = ue1 or f = e1e2 for some edge e = uv ∈ E2 (note that the cases where f = e3v or f = e2e3
are symmetric to those considered).

Suppose first that f = ue1. Then by construction, u, v ∈ D and thus, D contains the edge uv. Now if f = e1e2 then
again, v ∈ D by construction. But then, by minimality of D′, both e3 and v do not belong to D′ for otherwise D′

\{e2} would
be a dominating set of G′ of size strictly smaller than that of D′, a contradiction. It follows that v is dominated in G′ by
some vertex x ∈ D′ different from e3 and v. Then, either x ∈ V in which case x ∈ D by construction; or x = e′

1 for some
edge e′

= vw and so, w ∈ D by construction. In both cases, D contains an edge, namely vx and vw respectively, which
concludes the proof. □

Theorem 4.5. 1-Vertex Deletion(γ ) is coNP-hard on subcubic claw-free graphs.
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roof. We reduce from 1-Edge Contraction(γ ) restricted to subcubic claw-free graphs which is coNP-hard by
orollary 3.12. Consider an instance G = (V , E) of this problem and let G′ be the graph obtained by 3-subdividing every
dge of G not belonging to a triangle. It is easy to see that G′ is a subcubic claw-free graph. We next show that G′ is a
es-instance for 1-Vertex Deletion(γ ) if and only if G is a Yes-instance for 1-Edge Contraction(γ ).
Assume first that G′ is a Yes-instance for 1-Vertex Deletion(γ ). Then by Lemma 2.2, G′ is a Yes-instance for 1-Edge

Contraction(γ ) and we conclude by Lemma 4.4 that G is a Yes-instance for 1-Edge Contraction(γ ).
Conversely, assume that G is a Yes-instance for 1-Edge Contraction(γ ) and let D be a minimum dominating set of

G containing an edge f = xy (see Theorem 2.1(i)). In the following, E2 ⊂ E denotes the set of edges in G not belonging
to any triangle. Now let D′ be the minimum dominating set of G′ constructed as follows. We first add to D′ every vertex
in D. Then for any edge e = uv ∈ E2, we proceed as described in the proof of Proposition 4.2 (see Fig. 11). Observe that
|D′

| = |D| + |E2| and so by Claim 2, D′ is a minimum dominating set of G′. Now if xy ∈ E2, then f2 ∈ D′ is a selfish vertex
and so, we conclude by Lemma 2.3 that G′ is a Yes-instance for 1-Vertex Deletion(γ ). Now suppose that f ∈ E \ E2. We
claim that either x or y is incident in G to an edge not contained in any triangle. Indeed, if every edge incident to x and
y belongs to a triangle, then since G is subcubic, either x and y have degree 2 and thus belong to only one triangle, or
x and y are the two vertices of degree 3 in a diamond. But then, D \ {x} is a dominating set of G of size strictly smaller
than that of D, a contradiction. Thus, one edge e incident to either x or y is not contained in a triangle, say e is incident
to x without loss of generality. Then by construction, e1 does not belong to D′ (with e1 adjacent to x) and e3 ∈ D′ and so,
(D′

\ {x}) ∪ {e1} is a minimum dominating set of G′ containing a selfish vertex, namely e1, which concludes the proof. □

We now deal with cases in which 1-Vertex Deletion(γ ) is tractable. The following statement is similar to
Proposition 3.17; it is also based on brute force and relies on the fact that G is a Yes-instance for 1-Vertex Deletion(γ )
if and only if G has a dominating set that contains a selfish vertex (see Lemma 2.3). Since the proof of Proposition 4.6 is
similar to that of Proposition 3.17, it is omitted here.

Proposition 4.6. 1-Vertex Deletion(γ ) can be solved in polynomial time for a graph class C, if either

(a) C is closed under vertex deletions and Dominating Set can be solved in polynomial time on C; or
(b) for every G ∈ C, γ (G) ≤ q, where q is some fixed constant; or
(c) C is the class of {H+K1}-free graphs, where |V (H)| = q is a fixed constant and 1-Vertex Deletion(γ ) is polynomial-time

solvable on H-free graphs.

Note that if G is a connected P4-free graph, then G has a dominating set of size at most 2. Thus, from Propositions 4.6(b)
and 4.6(c), we obtain the following corollary.

Corollary 4.7. If H ⊆i (P4 + kP1), then 1-Vertex Deletion(γ ) is polynomial time solvable on H-free graphs.

We finally note that the results in this section lead to a complexity dichotomy for 1-Vertex Deletion(γ ) restricted to
H-free graphs. Indeed, it follows from Theorem 4.5 (resp. Corollary 4.3) that 1-Vertex Deletion(γ ) is coNP-hard (resp.
NP-hard) restricted to claw-free graphs (resp. {C3, . . . , Cℓ}-free graphs). Thus, if H contains a cycle (resp. an induced claw),
1-Vertex Deletion(γ ) is NP-hard (resp. coNP-hard) on H-free graphs. Since any split graph is 2K2-free, Theorem 4.1 shows
that 1-Vertex Deletion(γ ) is NP-hard on H-free graphs if H contains an induced 2K2; and by Corollary 4.7, 1-Vertex
Deletion(γ )is polynomial time solvable on H-free graphs if H ⊆i (P4 + kP1). We thus obtain the following dichotomy.

Corollary 4.8. 1-Vertex Deletion(γ ) is polynomial time solvable on H-free graphs if and only if H ⊆i (P4 + kP1).

. Conclusion

In this paper, we investigate the complexity of the k-Edge Contraction(γ ) problem, for k = 1, 2. In particular, we
establish a complexity dichotomy for 1-Edge Contraction(γ ) on H-free graphs when H is connected. If we do not require
H to be connected, there only remains to settle the complexity status of 1-Edge Contraction(γ ) restricted to H-free graphs
when H is an induced subgraph of P3 + qK2 + pK1 with at least one edge.

Furthermore, we study the Vertex Deletion(γ ) and Edge Addition(γ ) problems and show that surprisingly, they
are equivalent. As opposed to the case of edge contractions, there is no constant upper bound on the number of vertex
deletions or edge contractions necessary to decrease the domination number of a graph. We show that even for k = 1,
Vertex Deletion(γ ) is NP-hard and W[1]-hard parameterized by γ , thus ruling out the possibility of algorithms running
in FPT- or even XP-time parameterized by k for this problem, unless P=NP. For this reason, we focus on the 1-Vertex
Deletion(γ ) problem and obtain a complexity dichotomy for this problem restricted to H-free graphs. It would however
be interesting to obtain such a dichotomy for higher values of k.
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