Published in "Computer Physics Communications 257(): 107484, 2020"
which should be cited to refer to this work.

NESSi: The Non-Equilibrium Systems Simulation package™ ™"

Michael Schiiler *°, Denis GoleZ *¢, Yuta Murakami *¢, Nikolaj Bittner ?,
Andreas Herrmann ¢, Hugo U.R. Strand “¢, Philipp Werner ¢, Martin Eckstein "*

@ Department of Physics, University of Fribourg, 1700 Fribourg, Switzerland

b Stanford Institute for Materials and Energy Sciences, SLAC & Stanford University, Stanford, CA 94025, USA
¢ Center for Computational Quantum Physics, Flatiron Institute, 162 Fifth avenue, New York, NY 10010, USA
d Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 152-8551, Japan

€ Department of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden

f Department of Physics, University of Erlangen-Niirnberg, 91058 Erlangen, Germany

ABSTRACT

The nonequilibrium dynamics of correlated many-particle systems is of interest in connection with
pump-probe experiments on molecular systems and solids, as well as theoretical investigations of
transport properties and relaxation processes. Nonequilibrium Green’s functions are a powerful tool
to study interaction effects in quantum many-particle systems out of equilibrium, and to extract phys-
ically relevant information for the interpretation of experiments. We present the open-source software

Keywords: package NESSi (The Non-Equilibrium Systems Simulation package) which allows to perform many-
Numerical simulations body dynamics simulations based on Green’s functions on the L-shaped Kadanoff-Baym contour. NESSi
Nonequilibrium dynamics of quantum contains the library 1ibcntr which implements tools for basic operations on these nonequilibrium
many-body problems Green's functions, for constructing Feynman diagrams, and for the solution of integral and integro-
Keldysh formalism differential equations involving contour Green’s functions. The library employs a discretization of the

Kadanoff-Baym equations Kadanoff-Baym contour into time N points and a high-order implementation of integration routines.

The total integrated error scales up to ©(N~7), which is important since the numerical effort increases
at least cubically with the simulation time. A distributed-memory parallelization over reciprocal space
allows large-scale simulations of lattice systems. We provide a collection of example programs ranging
from dynamics in simple two-level systems to problems relevant in contemporary condensed matter
physics, including Hubbard clusters and Hubbard or Holstein lattice models. The 1ibcntr library is
the basis of a follow-up software package for nonequilibrium dynamical mean-field theory calculations
based on strong-coupling perturbative impurity solvers.

Program summary

Program Title: NESSi

CPC Library link to program files: http://dx.doi.org/10.17632/973crf9hgd.1

Licensing provisions: MPL v2.0

Programming language: C++, python

External routines/libraries: cmake, eigen3, hdf5 (optional), mpi (optional), omp (optional)

Nature of problem: Solves equations of motion of time-dependent Green’s functions on the Kadanoff-
Baym contour.

Solution method: Higher-order solution methods of integral and integro-differential equations on the
Kadanoff-Baym contour.

//doc.rero.ch

http

Part I. Core functionalities and usage of the library

In this part, we discuss Core functionalities and usage of the library.

™ The review of this paper was arranged by Prof. N.S. Scott.
WX This paper and its associated computer program are available via the Computer Physics Communication homepage on ScienceDirect (http://www.sciencedirect.
com/science/journal/00104655).
* Corresponding author.
E-mail address: martin.eckstein@fau.de (M. Eckstein).

List of abbreviations
Notation Description
1D one-dimensional
2B second-Born
BDF backward differentiation formula
BZ Brillouin zone
el-ph electron-phonon
DMFT dynamical mean-field theory
GF Green’s function
GFs Green'’s functions
HDF5 Hierarchical Data Format version 5
HF Hartree-Fock
KB Kadanoff-Baym
KMS Kubo-Martin-Schwinger
MPI Message passing interface
NCA Non-Crossing Approximation
NEGF nonequilibrium Green’s function
NEGFs nonequilibrium Green’s functions
OCA One-Crossing Approximation
: PPSC Pseudo-Particle Strong Coupling
uMig unrenormalized Migdal approximation
O VIDE Volterra integro-differential equation
s VIDEs Volterra integro-differential equations
o VIE Volterra integral equation
o VIEs Volterra integral equations
L_l. Introduction
O Calculating the time evolution of an interacting quantum many-body system poses significant computational challenges. For instance,

n wave-function based methods such as exact diagonalization or the density matrix renormalization group [1,2], one has to solve
the time-dependent Schrédinger equation. The main obstacles here are the exponential scaling of the Hilbert space with system size,
r the rapid entanglement growth. Variational methods avoid this problem [3], but their accuracy depends on the ansatz for the
wave function. The Green’s function formalism [4] provides a versatile framework to derive systematic approximations or to develop

humerical techniques (e.g. Quantum Monte Carlo [5]) that circumvent the exponential scaling of the Hilbert space. Moreover, the Green’s
ﬁunctions contain useful physical information that can be directly related to measurable quantities such as the photoemission spectrum.

The nonequilibrium Green’s function (NEGF) approach, as pioneered by Keldysh, Kadanoff and Baym [6,7], is an extension of the

Qquilibrium (Matsubara) Green’s function technique [8,9]. It not only defines the analytical foundation for important concepts in

onequilibrium theory, such as the quantum Boltzmann equation [10], but it also serves as a basis for numerical simulations. The direct

numerical solution of the equations of motion for the real-time nonequilibrium Green’s functions (NEGFs) [11,12] has been successfully

applied to the study of open and closed systems ranging from molecules to condensed matter, with various types of interactions

including electron-electron, electron-phonon, or electron-photon couplings [9]. At the heart of these simulations lies the solution

of integro-differential equations which constitute non-Markovian equations of motion for the NEGFs, the so-called Kadanoff-Baym
equations. Even in combination with simple perturbative approximations, their solution remains a formidable numerical task.

A general NEGF calculation is based on the L-shaped KB contour ¢ = C; U C; U C3 in the complex time plane, which is sketched in
Fig. 1. Here, the vertical (imaginary-time) branch C3 of the contour represents the initial equilibrium state of the system (8 = 1/kgT is
the inverse temperature), while the horizontal branches C; ; represent the time evolution of the system starting from this equilibrium
state. Correlation functions with time arguments on this contour, and a time ordering defined by the arrows on the contour, are a
direct generalization of the corresponding imaginary-time quantities. Hence, diagrammatic techniques and concepts which have been
established for equilibrium many-body problems can be directly extended to the nonequilibrium domain.

In this paper, we introduce the NonEquilibrium Systems Simulation package (NESSi) as a state-of-the art tool for solving
nonequilibrium many-body problems. NESSi provides an efficient framework for representing various types of Green’s functions (GFs)
on the discretized KB contour, implements the basic operations on these functions and allows to solve the corresponding equations of
motion. The library is aimed at the study of transient dynamics from an initial equilibrium state, induced by parameter modulations or
electric field excitations. It is not designed for the direct study of nonequilibrium steady states or time-periodic Floquet states, where
the memory of the initial state is lost and thus the branch Cs is not needed. While steady states can be reached in open systems in a
relatively short time, depending on parameters and driving conditions, such simulations may be more efficiently implemented with a
dedicated steady-state or Floquet code.

The two-fold purpose of this paper is to explain both the numerical details underlying the solution of the integro-differential
equations, and the usage and core functionalities of the library. The paper is therefore structured such that a reader who is mainly
interested in using the library may consider only the first part of the text (Sections 2-7), while (Sections 8-14) contains an explanation

do

L
&

O
bl
O

-

O
=

S~

e
e

14= 1P

Fig. 1. L-shaped Kadanoff-Baym contour ¢ in the complex time plane, containing the forward branch ¢, backward branch ¢,, and the imaginary (Matsubara) branch
C3. Gray dots indicate the discretization on the real-time branches, while orange dots represent the discretization of the Matsubara branch. The arrows indicate the
contour ordering. (color online).

(a)r— NESSI S (b) custom program
libentr \

C++ library, debugging tools python tools Ppsc,

demo programs libentr A (coming soon)
tutorial and example programs

python tools

. : . eigen3 hdf5
input file generator, post-processing 2igens _(Tptionan
(. J

Fig. 2. (a) Basic structure of the NESSi software package. The core ingredient is the shared library libcntr, which contains basic classes and routines for storing
and manipulating nonequilibrium Green functions. Furthermore, we provide a tutorial and demonstration programs which illustrate the usage and functionalities of
libentr. (b) Custom programs based on libentr should be linked against the libentr library and the dependencies eigen3 and hdf5 (optional). An extension
of the libentr library for dynamical mean field theory calculations is in preparation and will be published separately (PPSC library).

of the numerical methods. We remark that the usage of the library is also explained in a detailed and independent online manual on
the webpage www.nessi.tuxfamily.org.

This paper is organized as follows. In Section 2 we present an overview of the basic structure of the NESSi software package, its
core ingredients, and the main functionalities. This overview is kept brief to serve as a reference for readers who are familiar with
the formalism. A detailed description of the general formalism is provided in Section 3, while Section 4 introduces the fundamental
equations of motion on the KB contour and discusses their solution, as implemented within NESSi. Section 5 explains how to compile
the NESSi software and how to use its functionalities in custom projects. Several illustrative examples are presented and discussed
in Section 6, and Section 7 explains how to use the code package to solve a large number of coupled integral equations with a
distributed memory parallelization. Finally, the numerical details are presented in Sections 8-10: starting from highly accurate methods
for quadrature and integration (Section 8), we explain the numerical procedures underlying the solution of the equations on the KB
contour. In Sections 11-14 we discuss the implementation of the main functions.

2. Overview of the program package
2.1. Structure of the software

Fig. 2 summarizes the content of the NESSi package. The core constituent of NESSi is the shared library 1ibcntr. The libecntr
library is written in C++ and provides the essential functionalities to treat GFs on the KB contour. To solve a particular problem within
the NEGF formalism, the user can write a custom C++ program based on the extensive and easy-to-use libcntr library (see Fig. 2(b)).
The NESSi package also contains a number of simple example programs, which demonstrate the usage of libcntr. All important
callable routines perform various sanity checks in debugging mode, which enables an efficient debugging of 1ibcntr-based programs.
Furthermore, we provide a number of python tools for pre- and post-processing to assist the use of programs based on libcntr.
More details can be found in Section 6, where we present a number of example programs demonstrating the usage of 1libcntr and
the python tools. The 1ibcntr library and the example programs depend on the eigen3 library which implements efficient matrix
operations. Furthermore, the hdf5 library and file format can be used for creating binary, machine-independent output for GFs and
related objects. We further provide python tools for reading and post-processing GFs from hdf5 format via the h5py python package.
The usage of the hdf5 library in the NESSi package is, however, optional.

2.2. Core functionalities

The central task within the NEGF framework is calculating the single-particle Green’s function (GF), from which all single-particle
observables such as the density or the current can be evaluated. Let us consider the generic many-body Hamiltonian

H(t) =) ean(t)efes + V(1) , (1)
a,b

e ———————————————~ 4

Computes the contour convolution
C(t,t)=[A * Bl(t,t) = /diA(t,t)B(t’,)
c

of two contour functions A(z,¢') and B(z,1’).

_ dyson J h

Solves the contour Dyson (Kadanoff-Baym equation)

[i0, — e()] G(t.1) — [% GI(1, 1) = 6.1, 1)

for a given self-energy X(7, ') on the Kadanoff-Baym contour C.

. viez |

Solves the contour Volterra integral equation

G, 1)+ [F = Gl(t,t) = Q(t,1)

for a given kernel F(z,1") on the Kadanoff-Baym contour C.)

Constructs a "bubble" diagram of the the type

C@t, 1) =iA(t,t)B({',t) or C(t,t')=iA(t,1")B({,1)

Constructs the free Green’s function G(#, t’) for a general time-dependent
Hamiltonian e(z).
/

Fig. 3. Main routines for constructing and manipulating objects on the KB contour and solving the corresponding equations of motion.

ero.ch

$ o where 6; (Cq) denotes the fermionic or bosonic creation (annihilation) operator with respect to some basis labelled by a and €, (t)
®he corresponding single-particle Hamiltonian, while V(t) represents an arbitrary interaction term or the coupling to a bath. In typical
roblems, the GF is obtained by solving the Dyson equation

O - - / d S(t. D)G(E ') = 8e(t. t))
C

-O)r related integral equations. Here all objects are matrices in orbital indices. The symbols fc and §¢(t, t') denote an integral and the

S~Wirac delta function defined on the KB contour, respectively, while X(t, t') is the self-energy, which captures all interaction effects
riginating from V(t). Details are discussed in Section 3.

" The libcntr library provides accurate methods for solving the Dyson equation (2) and related problems. A brief overview of the

ore routines is presented in Fig. 3. It includes routines for computing the convolution [AxB](t, t') = fc dt A(t, £)B(t, t') (convolution),

ich is an essential part of solving Eq. (2). It furthermore provides a high-order solver for Eq. (2) (dyson) along the full KB contour.

n particular, the initial thermal equilibrium state and the time evolution are treated on equal footing. Moreover, contour integral

Equations of the type
(t, t)

G(t, t")+ [F * G|(t, ') = Q(t, t') (3)

can be solved efficiently via vie2. A typical example is the self-consistent GW approximation [13]: the screened interaction obeys the
Dyson equation W =V + V «x IT * W, where V denotes the bare Coulomb interaction, while I7 stands for the irreducible polarization,
see Section 6. Free GF with respect to a given single particle Hamiltonian €(t) are computed by green_from_H. Finally, in many-body
theories, the self-energy X(t, t') can be expressed in terms of Feynman diagrams using the GF themselves. The most common Feynman
diagrams consist of products of two propagators, implemented as bubble in libcntr. All routines work both for fermions and bosons.

2.3. Perspective: dynamical mean-field theory

While the NESSi package provides a general framework for the manipulation of real-time GFs and can be used in different
types of applications, one particularly fruitful application has been the nonequilibrium extension of DMFT [14]. In order to perform
DMEFT calculations the library needs to be supplemented with a solver for the DMFT effective impurity problem. Typical approximate
approaches are weak coupling expansions [15] (in particular Iterated Perturbation Theory, IPT) and strong coupling methods. The weak
coupling expansions can be directly implemented with the help of the routines provided by libcntr. The strong coupling based
methods [16] are based on pseudo-particle GFs, which are defined for each state in the local Hilbert space and have properties different
from the normal GFs introduced below. This formulation solves the atomic problem exactly and treats the hybridization with the
environment perturbatively. The first and second order dressed expansion of this method is commonly known as the Non-Crossing
Approximation (NCA) and the One-Crossing Approximation (OCA) [17,18]. Currently we are working on a library implementing these
methods called the Pseudo-Particle Strong Coupling (PPSC) library - based on 1libcntr - and plan to release it as a future extension
of NESSi.

3. Basic formalism: NEGFs on the contour

GFs are objects depending on position, orbital and spin arguments (or an equivalent basis representation), as well as on two time
arguments. The dependence on multiple time arguments does not only account for the explicit time dependence of observables, it also
allows to store information on the characteristic energy scales of the system and its thermal equilibrium state. All these ingredients
can be incorporated on equal footing by choosing the time arguments on the KB contour C illustrated in Fig. 1: t € C = C; UC, UC3. The
directions of the arrows in Fig. 1 define the induced ordering of time arguments tq, t; € C: we call t, later than t; (denoted by t; > t;)
if t; can be reached by progressing along C as indicated by the arrows. Thus, contour arguments on the backward branch t, € C, are
always later than t; € C;. A A) . A . A

Let us furthermore define the many-body Hamiltonian Hc(t) on the contour C by He(t) = H(t)—uN for t € C1, and He(t) = Heq—uN
for t € C3. Here, I:I(t) denotes the real-time Hamiltonian, while I:qu describes the system in thermal equilibrium, given by a grand-
canonical ensemble with chemical potential © and particle number operator N. The latter is described by the many-body density

matrix
b= Lo-pihea-uf) _ 1 opiict-ip))
Z Z
and the partition function by Z = Tr[e #(la—M)] — Tr[eBHc(~iP)]. The time evolution of any observable is governed by the
time-evolution operator
A [1 A
U(ﬁ, tz) =T exp |:—lf dtHc(t)] , 1 >10b, (Sa)
5}
A —_ tz A
U(t,t) =T exp |:l/ dt Hc(f):| , b >1t1, (5b)
t

where T (T) denotes the chronological (anti-chronological) time ordering symbol. Time-dependent ensemble averages of an operator

A(t) (here we refer to an explicit time dependence in the Schrédinger picture) are given by time evolving the density matrix according
to

(A(t)) = Tr [fm, 0)50(0, t)A(r)] , (6)

which we can formally rewrite as
~ 1 ~ ~ A A
o) = 5 Tr[Oc=ip, 0)0(0, DA, 0)] - ™

This is where the contour C comes into play: the time arguments (from right to left) in Eq. (7) follow the KB contour, passing through
C1, C3 and finally through Cs. If we now introduce the contour ordering symbol T, which orders the operators along the KB contour,
any expectation value can be written as

A Tr [Tc exp (—ifcdf Ae(f) A(t)]
(A(t)) = —
Tr [TC exp (—ifcdt Hc(t))]

Note that the integrals over C; and C; in the denominator cancel, such that it becomes equivalent to the partition function Z, while the
matrix exponential in the numerator is equivalent to the time evolution in Eq. (7).
General correlators with respect to operators A(t) and B(t’) are similarly defined on C as

Tr | Te exp (—i f.d He(®) AR |
Tr [TC exp (—l’fcdE I:IC(E))]

Fermionic and bosonic particles are characterized by different commutation relations. Throughout this paper, we associate fermions
(bosons) with the negative (positive) sign & = —1 (§ = 1). Assuming A, B to be pure fermionic or bosonic operators, the contour
ordering in the definition (9) is defined by

//doc.rero.ch

(8)

http

Cas(t, t') = = (TCA(DB(L)) . (9)

AR A(t)B(t2) 1ty > b
TelAttBe)} = {sfxtz)ﬁ(t]) T 1o
All two-time correlators like the GF (12) fulfill the Kubo-Martin-Schwinger (KMS) boundary conditions
G(0,t") = £G(—iB, t') , G(t,0) = EG(t, —iB) . (11)
One of the most important correlators on the KB contour is the single-particle GF, defined by
Gaplt, ') = =i{Tea(t)E)() (12)

where ¢} (¢q) denotes the fermionic or bosonic creation (annihilation) operator with respect to the single-particle state a. Higher-order
correlators with multiple contour arguments, like two-particle GFs, are defined in an analogous way.

Table 1
Keldysh components of a function C(ty, t;) with arguments on C.

t; € t, € Notation Name

Ci C1 C'(t1,) Causal (time-ordered)
Cq Cy C=(t1, tp) Lesser

Cq C3(t; = —ity) C“(t], 77) Left-mixing

C C1 C>(t1 ty) Greater

Cy C CT(ty, ty) Anti-causal

[C3(ty = —ity) cl(ty, rz) Left-mixing

C3(t; = —ity) Cq (T ty) Right-mixing

cs(t; = —ity) Cy Cr(rl, t) Right-mixing

Ccs3(ty = —ity) C3(t, = —iny) C(—ity, —it2) Imaginary time-ordered

Generalizing Eq. (9), contour correlators can also be defined with respect to any action S,

Tr [Tce§;\(t)l§(t/)] o
Cap(t, t') = ———=—=—= = (TCA()B(t'))s - (13)
Tr [Tces]
For instance, Eq. (9) corresponds to the action S=—i fcdt HC(), but all the properties and procedures discussed in this work remain

valid if the action S is extended to a more general form. A typical example is the action encountered in the framework of DMFT [14],

_C S = —i/dtlflc(t) - i/dt/dt/ oA, e, (14)
C C C

ONhere A(t, t') is the so-called hybridization function.
"3 1. Contour decomposition

While the real-time GFs is defined for any pair of arguments (t, t’) on the L-shaped KB contour C, it can be decomposed in a number
of components where each of the two time arguments is constrained to a specific branch C; of the KB contour. These, which will
q)generally be called Keldysh components in the following,! are summarized in Table 1. We note that time arguments ¢, t’ are used both
Q__to represent contour arguments as well as real times, and whenever a correlator C(t, t') occurs without a superscript specifying the
Keldysh components, the time arguments t, t’ are to be understood as contour arguments.
In addition to the Keldysh components defined in Table 1, one defines the retarded (advanced) component CR(t, t') (CA(t, t')) by

O R, t)y=0(t —t)[Co(t,t") = C(t, 1] , (15)

At t)y=0(t' —e)[C(t, t")—C(¢t,1)] . (16)
~JHere, 4(t) denotes the Heaviside step function.

For the component with imaginary time arguments only (last entry in Table 1), we employ the convention to represent it by the
® ®\atsubara component

M(1; —) = —iC(—ity, —it2) . (17)

- s the Matsubara function is defined by the thermal equilibrium state, it depends on the difference of the imaginary time arguments
nly. For the single-particle GF (12), the corresponding Matsubara GF G ,(T) corresponds to a hermitian matrix, G ,(T) = [GbMa(r)]*.
:O Extending the concept of the hermitian conjugate to the real-time and mixed components will prove very useful for the numerical
implementation as detailed below. Thus, we formally define the hermitian conjugate [C*](t, t') of a general correlator C(t, t') by

C3(t, ')y = — ([CHIF(t, r)) , (18a)
ke, t) = (I 1), (18b)
cl(t,)= ¢ (ICH(B —7.1)" . (18¢)
Cl(z.0)= € (It g —)" (18d)
M) = (ICM() . (18e)

Here the superscript 1 refers to the usual hermitian conjugate of a complex matrix. The definition is reciprocal, [C*]¥(t, t') = C(t, t').
A contour function C is called hermitian symmetric if C = C* (which does not mean that C(t, t’) is a hermitian matrix, see definition
above). In particular, the GF defined by Eq. (12) possesses hermitian symmetry. In contrast, more general objects, such as convolutions
(see Section 3.3), do not possess a hermitian symmetry, and hence C(t, t') and [C*](t, t’) are independent.

Note that CR(t,t’) = 0 if t > t, which expresses the causality of the retarded component. However, for the implementation
of numerical algorithms, it can be convenient to drop the Heaviside function in Eq. (15). Therefore, we define a modified retarded
component by

CR(t, t)y=C>(t, t')— C(t,). (19)

1 In the literature (Ref. [14], for instance), often only the combination GX(t, t') = G=(t, t') 4+ G*(t, t') is referred to as the Keldysh component or Keldysh GF.

//doc.rero.ch

tp

e

=3

t,=nh

> !
t,=nh N.h t t

Fig. 4. Storage scheme of the herm_matrix class: for 0 < n < N, time steps, the class saves GR(nh,jh) and G<(jh, nh) for 0 < j < n along with the left-
mixing component G'(nh, mh,) for m = 0,..., N;. The shaded background represents the storage scheme of the time slice 7[Gl,, represented by the class
herm_matrix_timestep.

The modified retarded component of the hermitian conjugate [C*](t,t’) then assumes a similar form as the greater and lesser
components:

CR(e t) = — ([Ei]R(r/, r))T . (20)

Assuming the hermitian symmetry C = C*, the number of independent Keldysh components is limited to four. From C>(t, t') —
C=(t,t') = CR(t, t') — CA(t, ') and Eq. (18b) one finds that the pair {C>, C<} or {CR, C<} determines the other real-time components.
Furthermore, the hermitian symmetry for the left-mixing component (Eq. (18c)) renders the C(z, t) redundant if C!(¢, T) is known.
Hence, we use in libcntr {C<, CR, €', CM} as the minimal set of independent Keldysh components.

The KMS boundary conditions (11) establish further relations between the Keldysh components. For the minimal set used here, the
corresponding relations are given by

Mz +p)=&C"(r). (21a)
Moreover, if the progagator is continuous on the contour, we have

c'(0,7) = icM(—1), (21b)

C=<(t,0)=Cl(t,07). (21c)

For the GFs G(t, t’), the anti-commutation (commutation) relations for fermions (bosons) determine the retarded component at equal
times by

GR(t,t) = —ibap - (22)

These conditions are used to numerically solve the Dyson equation, see below.
3.2. Numerical representation of NEGFs

In the solvers used for computing the GF numerically, the contour arguments are discretized according to the sketch in Fig. 1. The
contour C is divided into (N; + 1) equidistant points t, = nh, n = 0, ..., N; on the real axis (the points correspond to both real time
branches C;), while 7, = mh,, m =0, ..., N, with to = 0", 7y, = B~ samples the Matsubara branch. The corresponding discretized
contour is denoted by C[h, N¢, h;, N;].

As discussed in Section 3.1, the contour correlators C(t, t") with hermitian symmetry are represented in 1ibcntr by the minimal
set of Keldysh components {C<, CR, C1, CM} on C[h, N¢, h;, N;]. The hermitian symmetry (18a) allows to further reduce the number of
points to be stored. We gather this representation of C(t, t’) in the class herm_matrix, which stores

cM =cM(mh,), m=0,...,N;, (23a)
Gy =C=(h,nh), n=0,...,N;,j=0,....n, (23b)
Gy =C¥nh,jh), n=0,....N.,j=0,....n, (23¢)
Cl,=Cl(nh,mh;), n=0,...,N,m=0,...,N, . (23d)

Hence, the retarded component is only stored on the lower triangle in the two-time plane, while only the upper triangle is required
to represent the lesser component (see Fig. 4). For fixed time arguments, the contour function C represents a d x d square matrix.
Note that general two-time functions C (without hermitian symmetry) are also stored in the form of Eq. (23). Hence, to recover the
full two-time dependence C(t, t'), C*(t, t') is required.

For some of the algorithms described below, not the full two-time correlator but only a slice with one fixed contour argument
is required. To this end, we define a time step 7[C], represented by the class herm_matrix_timestep, which stores the Keldysh
components

(TIC1)M = CM(mh,), m=0,...,N, (iffn=-1), (24a)
(TICla)7 = C=(ih,nh) .j=0,....n, (24b)

Table 2

Constructor of the classes herm_matrix, herm_matrix_timestep and function. The arguments
in this table correspond to the number of points and the storage scheme discussed above: nt is
the number of real-time points N;, ntau stands for the number of points N; on the Matsubara
branch, tstp marks the current timestep t,, whereas sizel denotes the number of basis functions
(orbitals) d. The last argument sig for the herm_matrix and herm_matrix_timestep specifies
the fermionic (sig = -1) or bosonic (sig = +1) statistics.

Class Constructor
herm_matrix herm_matrix(int nt, int ntau, int sizel,
int sig)
herm_matrix_timestep herm_matrix_timestep(int tstp, int ntau,
int sizel, int sig)
function function(int nt, int sizel)
(TICln); = C%(nh,jh),j=0,...,n, (24c)
(TICIn)}, = Cl(nh, mh,) ,m=0,....N, . (24d)

For later convenience we define 7[C]_4, which refers to the Matsubara component only. The stored points in the two-time plane are
indicated by the shaded background in Fig. 4. Note that 7[C], is a d x d square matrix for fixed contour argument.

Finally, we introduce contour functions with a single contour argument f(t). While f(t) corresponds to the real times for t € C; UCy,
the function value on the imaginary branch is defined by f(—ir) = f(07). Single-time contour functions are represented by the
function class, storing

i - C[f(07) in=-1
O f"_{f(nh) ‘n=0,...,N

®For fixed n, f; can be matrix valued (d x d square matrix).
The initialization of the above contour functions as C++ classes in 1ibcntr is summarized in Table 2.

(25)

LS’.B’. Contour multiplication and convolution

The basic Feynman diagrams can be constructed from products and convolutions of GFs. In this subsection we summarize how such
prerations can be expressed in terms of Keldysh components.

|
Uroduct Cepop(t, ') = iAg, qp(t, t")Bp, p,(t', £). — This type of product is often encountered in diagrammatic calculations. Here,
ai, az, b1, by, c1, c; denote orbital indices, which are kept fixed while the product is computed for all times on a time-slice. For instance,
he polarization entering the GW approximation is of this form [19]. Its representation in terms of the Keldysh components follows

Uthe Langreth rules [9]:

~— Cc<1 Cz(t’ t)= lAEl ﬂz(t’ t/)Bb>2 bl(t/’ £, (26a)
~ QR () = zA‘;1 o (s)Bb b, (O +IAT L (E 0B, (E), (26b)

| | |
Q_ le ot T)= a1 o (L, r) by, bl(r t), (26¢)
H Cxl cz(T) = a1 az(T)Bbz bl() . (26d)

wh=d | 1ibentr, we refer to this contour product as Bubblel.

_CFroduct Cepop(t, ') = 1Aqy ap (£, t')Bp, b, (£, t"). — The direct product of this form also represents a bubble. It is used, for instance, in the
calculation of the GW self-energy diagram (for additional examples of usage see Section 6). The corresponding representation in terms
of the Keldysh components is analogous to the above:

Co ot t’)= (M) (NS (27a)
QR () =iAg o, (6, OBy (6, 6)+AY (€,)iBy (6,), (27b)
Cl (. T)=1A) , (t.T)B, , (t.7), (27¢)

M (1) =AY (DB, (7). (27d)

In 1ibentr, we refer to this contour product as Bubble2.

Convolution C = A *x B. — The convolution of the correlators
[AxB](t, t") = f dt A(t, DB(t, t) (28)
c
is one of the most basic operations on the contour. Using the Langreth rules for the convolution, one obtains
t t
C3(t, t) = / de AR(t, E)B2(E, t') + / dt A3(t, D)BMNE, t)
0 0

B
—i/ dz Al(t, T)BI(Z, t), (29)

0

cRie,)= / dt AR(t, DBR(E, '), (30)

t B
cl(t,7) = / dt AR(t, O)BI(E,) + / de’ Al(t,)BM(z' = 7) (31)
0 0

B
M) = / dz AM(z — 7)BM(7) . (32)
0
For the hermitian conjugate one finds [C](t, t') = [B* = A*](¢, t').
3.4. Free Green'’s functions

Free GFs Gy(t, t') are often required when solving the Dyson equation in integral form. A free Green’s function for a time-dependent
Hamiltonian €(t) [Eq. (1)] is obtained from the solution of the equation

[id; — €(£)] Go(t, ') = B¢ (t, ') (33)

with KMS boundary conditions. This defines a regular differential equation, which can be solved by various standard algorithms. In
libentr, free Green’s functions can be obtained by the call to a function green_from_H. There are several rather obvious interfaces
to this function, and we refer to the examples (and the online manual) for more details. The numerical implementation is described in
Section 14.

: 4. Integral equations on C: Overview

O 4.1. Equations with causal time-dependence
| |
In applications of the Keldysh formalism to problems involving real-time dynamics, one needs to solve various types of differential
O and integral equations on the contour C. libcntr provides algorithms to solve the three most common tasks (convolution of two
& GFs, solution of a Dyson equation in both integro-differential and integral form) on an equidistant contour mesh C[h, N¢, h., N;] with
q) a global error that scales like O(h*, h*) with k up to k = 5.
The precise equations are summarized in Sections 4.2-4.4. A common property of all equations is their causal structure, i.e., the
- solution for the time slice 7[G], of the unknown G does not depend on the time slices m > n. This causality allows to transform the
" kth order accurate solution of all integral equations on C into a time-stepping procedure with the following three steps, which are
O executed consecutively:

O (1) Matsubara: Solve the equation for the Matsubara time slice 7[G]_1, using the input at time slice m = —1.
(2) Start-up (bootstrapping): Solve the equation for 7[Gl;, j =0, ..., k, using 7[G]_; and the input at time slices j = —1, ..., k. The

-O start-up procedure is essential to keep the O(h*) accuracy of the algorithm, as explained in the numerical details (Section 9).
(3) Time-stepping: For time slices n > k, successively solve the equation for 7[Gl,, using T[G]; for j = —1,...,n — 1 and the input
~ at time slices j = —1,...,n.
| | |
The causality is preserved exactly in these algorithms for all time slices n = —1 and n > k. Only for the starting time slicesn =0, ..., k,
the numerical error O(h, h’;) can also depend on the input at later time slicesj=n+1,..., k.

A We note that for the time-stepping algorithm, a guess for the GF T[G], or the self-energy 7[X'], is usually required for starting the
b self-consistency cycle at time step n. In many cases it is useful to employ a polynomial extrapolation as a predictor 7[Gl,_1 — T (Gl
: (see Appendix A.1). The corrector step then involves several iterations of the equations at a given time step until convergence.
In Sections 4.2-4.4 we specify the integral equations implemented in 1ibcntr, and present an overview over their input and
dependencies on the Matsubara, start-up, and time-stepping parts. The details of the numerical implementation of the kth-order
accurate algorithm are explained in Sections 9-13.

4.2. dyson: Dyson equation in integro-differential form

The Dyson equation for the Green’s function G(t, t') can be written as

i0:G(t, t") — e(t)G(t, t') — / dt X(t, £)G(t, t') = Se(t, t). (34a)
C

This equation is to be solved for G(t, t’) for given input ¢(t) and X(t, t’), and the KMS boundary conditions (11). It is assumed that

¥ = X% is hermitian (according to Eq. (18)), and €(t) = €(t), which implies that also the solution G possesses hermitian symmetry.

All quantities X(t, t’), G(t, t’), and €(t) can be square matrices of dimension d > 1. Because of the hermitian symmetry, G can also be

determined from the equivalent conjugate equation

— 0y G(t, t') — G(t, t")e(t') — / dt G(t, O)X(t, t') = 8¢ (¢, t). (34b)
C

In libentr, Eq. (34) is referred to as dyson equation. The dependencies between the input and output for the Matsubara, start-up,
and time-stepping routines related to the solution of Eqs. (34) are summarized in Table 3.

Table 3
Dependencies between input and output for the Matsubara, start-up, and time-stepping routines
associated with the solution of Egs. (34).

Routine(s) Input Output
dyson_mat TIZ]-1, €1 TGl
dyson_start TIZ)j forj=—1,..., k, TIGl, j=0,..., k
g forj=—1,...,k
TIGl-1
dyson_timestep(n) T[Z)j forj=—1,..., n, TIGln
n>k g forj=—-1,...,n,

TIG]; forj=—1,..., n—1

Table 4
Dependencies between input and output for the Matsubara, start-up, and time-stepping routines associated with the solution
of Egs. (37).
Routine(s) Input Output
vie2_mat TIF1-1, TIFH-1, T1Q1- TIGl 4
vie2_start TIF);, TIF*); for j=—1,...,k, TIGl;, j=0,...,k
TlQ) forj=—-1,...,k
TIG]-1
vie2_timestep(n) TIF);, TIF*); for j=—1,...,n, TIGln
n>k TIQln
TIG]j forj=—-1,...,n—1

L

O A typical application of Egs. (34a) and (34b) is the solution of the Dyson series in diagrammatic perturbation theory, i. e., a differential
®formulation of the problem

GC=Gyp+Gy* X xGyg+Gog*x X *xGy*XxGyg+---
b =Go+ G * X *G, (35)
ewhere Gy satisfies the differential equation
u i0;Go(t, t') — e(t)Go(t, t') = Sc(t, t). (36)

n this case €(t) is a (possibly time-dependent) single-particle or mean-field Hamiltonian.

—04.3. vie2 : Dyson equation in integral form
\

~— The second important equation is an integral equation of the form

d G(t,t/)+/dfF(t,f)G(f, t)Y=Q(t,t') & (1+F)xG=Q, (37a)
C

H ’ - INEIE +/Y — ’ By —

— Gmt%ﬁlmcmﬂFﬁj)_QuJ) & Gx(1+FH=Q. (37b)

:This linear equation is to be solved for G(t, t') for a given input kernel F(t, t’), its hermitian conjugate F*(t, t'), and a source term Q(t, t'),
assuming the KMS boundary conditions (21). In the solution of this linear equation, we assume that both Q and G are hermitian. In
general, the hermitian symmetry would not hold for an arbitrary input F and Q. However, it does hold when F and Q satisfy the relation

F+Q=QxF', Q=qQ*, (38)

which is the case for the typical applications discussed below. In this case, Egs. (37a) and (37b) are equivalent.

Inlibentr, Eq. (37) is referred to as vie2. The nomenclature refers to the fact that the equation can be reduced to a Volterra Integral
Equation of 2nd kind (see below). The dependencies between the input and output for the Matsubara, start-up, and time-stepping
routines associated with the solution of the vie2 equation are summarized in Table 4.

A typical physical application of Eqs. (37) is given by the summation of a random phase approximation (RPA) series for a susceptibility

X=Xxo+txo*xVikyo+ xoxV*xoxVskyo+---
=Xo+ Xxo*xVxx. (39)
Here, xo is a bare susceptibility in a given channel (charge, spin, etc, ...), and V is a (possibly retarded) interaction in that channel.
Since xo and V are GFs with hermitian symmetry, Eq. (39) can be recast in the form (37a) with
F=—xoxV, Ff'==Vxx0, Q= xo. (40)

One can easily verify Eq. (38). Equivalently, one can also recast the Dyson series (35) into the form of a vie2 equation, with F = —Gg* X,
Fi = - *Go, and Q = G().

10

//doc.rero.ch

tp

e

L

Table 5
Dependencies between input and output for the Matsubara, start-up, and time-stepping routines
associated with the solution of Eq. (41).

Routine(s) Input Output
convolution_mat TIA]Z1, TIA*] 4, TIC]-1
TIBl-1, TIB*]-1,
fa
convolution_timestep(n) forj=—1,...,k: TICln
forO<n<k TIA);, TIA);
TIBY;, TIB];
fi
convolution_timestep(n) forj=—-1,...,m: TICln
for n > k TIAlj, TIA*); ,
TIBl;, TIB*);
f;
Table 6
Classes grouped in the name space cntr.
Class Purpose
function Class for representing single-time
functions f(t) on the KB contour.
herm_matrix Class for representing two-time functions C(t, t")
with hermitian symmetry on the KB contour.
herm_matrix_timestep Class for representing a time slice 7[G], of a
herm_matrix at time step n.
herm_matrix_timestep_view Provides a pointer to a herm_matrix_timestep
or herm_matrix at a particular time step
without copying the data.
distributed_array Generic data structure for distributing and
communicating a set of data blocks
by the Message passing interface (MPI).
distributed_timestep_array Specialization of the distributed_array in

which data blocks are associated with
the herm_matrix_timestep objects.

4.4. convolution

The most general convolution of two contour Green'’s functions A and B and a time-dependent function f is given by the integral
C(t,t")= / dt At, t)f (£)B(t, t'). (41)
c

In libcntr this integral is calculated by the convolution routines. The dependencies between the input and output for the Matsubara,
start-up, and time-stepping routines related to convolution are summarized in Table 5.

In the evaluation of this integral we make in general no assumption on the hermitian properties of A and B. Since the input of the
implemented routine is the class of the type herm_matrix, both A and B and their hermitian conjugate A* and B* must be provided,
so that A(t, t') and B(t, t’) can be restored for arbitrary t, t’ on C (see Section 3). Similarly, the implemented routines calculate the
convolution integral only for the components of C corresponding to the domain of the herm_matrix type, i.e., the upper/lower triangle
representation (23). The full two-time function C(t, t') can be restored by calculating both C and C* on the domain of the herm_matrix
type, where C* is obtained from a second call to convolution,

Ccit, t) = / de B¥(t, E)f F(D)A*(E,). (42)
C

5. Compiling and using NESSi
5.1. Main routines in 1libcntr

The main routines and classes in libcntr are grouped under the C++ name space cntr. The important classes in cntr are
summarized in Table 6. The main routines in the cntr name space are presented in Table 7 along with a brief description (For
information about auxiliary routines see www.nessi.tuxfamily.org). Most of the routines have been introduced above; the remaining
functions are explained in the discussion of the example programs in Section 6 and in Appendix A.

Furthermore, the name space integration contains the integrator class, which contains all the coefficients for numerical
differentiation, interpolation and quadrature as explained in Section 8.

11

Table 7
Main functions available in the name space cntr.

Class

Purpose

Reference section

Bubblel(tstp,C,cl,c2,
A,A%,a1,a2,B,B%,b1,b2)

Computes the particle-hole bubble diagram at a time step
tstp for given two-time objects A, B with indices al, a2 and
b1, b2, respectively: Cc, ,(t,t") = iAq, q,(t, t")Bp, b, (t', 1).
output: object C with indices c1, c2

3.3

Bubble2(tstp,C,cl,c2, Computes the particle-particle bubble diagram at a time step 33
A,AY,a1,a2,B,B%,b1,b2) tstp for given two-time objects A, B with indices a1, a2 and
b1, b2, respectively: Ce, c,(t,t") = iAq, a,(t, t')Bp, b, (t, t').
output: object C with indices c1, c2
convolution(C,A,A%,B,B?, Computes the convolution C = A * B for given two-time 11
beta,dt,SolveOrder) objects A, B in the full two-time plane. output: object C
convolution_timestep(n,C,A, Computes the time step 7[C], of the convolution C = A x B 11
A*,B,Bf,beta,dt,SolveOrder) with given two-time objects A, B. output: object C
convolution_density_matrix(Computes the convolution —i[A x B]=<(t, t) with given two-time 11
tstp,M,A,A%,B,B*,beta,dt, SolveOrder) objects A, B at a time step tstp. output: object M
dyson(G,mu,H,Signa,beta, Solves the Dyson equation with given Sigma, H, and mu in the 12
dt,SolveOrder) full two-time plane. output: object G
dyson_mat (G,Sigma,mu,H, Solves the Matsubara Dyson equation with given Sigma, mu, 12.2
beta,SolveOrder,method) H. The argument method is optional. output: object 7[G]_,
dyson_start(G,mu,H,Signma, Solves the starting problem of the Dyson equation for 7[G],, 12.3
beta,dt,SolveOrder) n=0,...,k with given Sigma, mu, H. output: object G
dyson_timestep(n,G,mu,H, Solves the Dyson equation for the time step 7[G], with given 12.4
Sigma,beta,dt,SolveOrder) Sigma, mu, H. output: object G
O green_from_H(G,mu,eps, beta,dt) Computes the free GF Gy(t, t’) for a given Hamiltonian e(t), 14
and mu. output: object G.
- response_convolution(tstp, Computes the convolution of object A with indices al, a2 and 11
O cc,A,al,a2,f,bl,b2, a fu_nctionf _Nith ingices b1, b2 at a time step tstp:
SolveOrder,beta,dt) JodtAa, 0, (t, D)y, b, (). output: object cc.
extrapolate_timestep(n, Computes 7[A]n.+1 by polynomial extrapolation with given Al
’ A,ExtrapolationOrder) ExtrapolationOrder. output: extrapolated object A
s correlation_energy(tstp,G, Evaluates the Galitskii-Migdal formula 11
Sigma,beta,h,SolveOrder) Ecorr = 3ImTr[X * G]=(t, t) at a given time step tstp.
. distance_norm2(tstp,A,B) Returns the distance between given objects A, B with respect A2
O to the absolute-value-norm on the KB contour at a time step
tstp.
O vie2(G,F,F¥,Q,beta,dt, SolveOrder) Solves the VIE for given F(t, t’) and Q(t, t’) in the full 13
two-time plane. output: object G
U vie2_mat (G, F, F¥,Q,beta, Solves the Matsubara VIE for 7[G]_; with given F, Q. The 13.2
\ method,SolveOrder) argument method is optional. output: object G
vie2_start(G,F,F¥,Q,beta, Solves the starting problem of the VIE for 7[G],, n=0, ...,k 13.3
® ® 4t,SolveOrder) with given F, Q. output: object G
Y
Solves the VIE for the time step n =tstp 7[Gl, with given F, 13.4

Q. output: object G

QgieQ_timestep(tstp ,G,F,Ft,
s p W,beta,dt,SolvelOrder)

.
E,Z. Compilation of 1ibcntr

For compiling and installing the libentr library, we use the cmake building environment? to generate system specific make files.
cmake can be called directly from the terminal; however, it is more convenient to create a configure script with all compile options.
We suggest the following structure:

CC=[C compiler] CXX=[C++ compiler] \

1
2 cmake \
3 -DCMAKE_INSTALL_PREFIX=[install directory] \
4 -DCMAKE_BUILD_TYPE=[Debug|Release] \
5 -Domp=[0N|OFF] \
6 -Dhdf5=[0N|OFF] \

-Dmpi=[0ON|OFF] \
8 -DBUILD_DOC=[ON|OFF] \
9 -DCMAKE_INCLUDE_PATH=[include directory] \
10 -DCMAKE_LIBRARY_PATH=[library directory] \
11 -DCMAKE_CXX_FLAGS="[compiling flags]" \

In the first line, the C and C++ compiler are set. The install directory (for instance /home/opt) is defined by the cmake variable
CMAKE_INSTALL_PREFIX. Debugging tools are switched on by setting CMAKE_BUILD_TYPE to Debug; otherwise, all assertions and
sanity checks are turned off. The code is significantly faster in Release mode, which is recommended for production runs. The Debug

2 Version 2.8 or higher is required.

12

.ch

O
bl
()

/ldoc.r

mode, on the other hand, turns on assertions (implemented as C++ standard assertions) of the consistency of the input for all major
routines.

The following three lines trigger optional (but recommended) functionalities: Setting omp to ON turns on the compilation of routines
parallelized with openMP, while setting mpi to ON is required for compiling distributed-memory routines based on MPI. In this case,
MPI compilers have to be specified in the first line. Finally, hdf5=0N activates the usage of the hdf5 library.

The path to the libraries that 1ibcntr depends upon (eigen3 and, optionally, hdf5) are provided by specifying the include directory
CMAKE_INCLUDE_PATH and the library path CMAKE_LIBRARY_PATH. Finally, the compilation flags are specified by CMAKE_CXX_FLAGS.
To compile 1ibcntr, the flags should include

I -std=c++11
As the next step, create a build directory (for instance cbuild). Navigate to this directory and run the configure script:
1 sh ../configure.sh
After successful configuration (which generates the make files), compile the library by typing
1 make
and install it to the install directory by
1 make install
After the compilation, the user can check the build by running
1 make test

which runs a set of tests based on the catch testing environment [20], checking every functionality of 1ibcntr. After completing all
tests, the message

1 All tests passed

indicates that the compiled version of 1ibcntr is fully functional.

The C++ code is documented using the automatic documentation tool doxygen. For generating the documentation, set the CMake
variable BUILD_DOC to ON in the configure script. Running make will then also generate an html description of many functions and
classes in the doc/ directory. A detailed and user-friendly manual is provided on the webpage www.nessi.tuxfamily.org.

5.3. Using libcntr in custom programs

In order to include the 1ibcntr routines in custom C++ programs, the user needs to:
1. Include the declaration header by
1 #include "cntr/cntr.hpp"

This makes available all main routines and classes in the C++ name space cntr, as summarized in Table 6. We also offer tools
for reading variables from an input file. The respective routines can be used in a program by including

1 #include "cntr/utils/read_inputfile.hpp"

2. Compile the programs linking the 1ibcntr library with the flag -1cntr.

QThe example programs presented below in Section 6 demonstrate how to integrate 1ibcntr in custom programs.

e
e

L

5.4. HDF5 injoutput

In addition to simple input and output from and to text files (which is described in the manual on www.nessi.tuxfamily.org),
libcentr allows to use the Hierarchical Data Format version 5 (HDF5) to store basic data types for contour functions to disk. HDF5
is an open source library and file format for numerical data which is widely used in the field of scientific computing. The format has
two building blocks: (i) datasets, that are general multi-dimensional arrays of a single type, and (ii) groups, that are containers which
can hold datasets and other groups. By nesting groups, it is possible to store arbitrarily complicated structured data, and to create a
file-system-like hierarchy where groups can be indexed using standard POSIX format, e.g. /path/to/data.

The 1libcntr library comes with helper functions to store the basic contour response function data types in HDF5 with a predefined
structure of groups and datasets, defined in the header cntr/hdf5/hdf5_interface.hpp. In particular, a herm_matrix response
function is stored as a group with a dataset for each contour component mat (gM(1)), ret (gR(t, t')), les (g=(t, t")), and tv (g!(t, 7)),
respectively, see Section 3.2. The retarded and lesser components are stored in upper and lower triangular contiguous time order
respectively. In the 1ibcntr HDF5 format each component is stored as a rank 3 array where the first index is time, imaginary time,
or triangular contiguous two-time, and the remaining two indices are orbital indices.

To store a contour GF of type cntr::herm_matrix, one writes its components into a group of a HDF5 file using the member
function write_to_hdf5. In C++ this takes the form,

#include <cntr/cntr.hpp>
// Create a contour Green’s function

1
2
3
4 int nt = 200, ntau = 400, norb = 1;
5 GREEN A(nt, ntau, norb, FERMION);
6
7
8
9

// Open HDF5 file and write components of the Green’s function A into a grou 5
P P g p g

std::string filename = "data.hb5";
A.write_to_hdf5(filename.c_str(), "g");

13

For another example of writing contour objects to file see the Holstein example program in Section 6.3. To understand the structure
of the resulting HDF5 file one can inspect it with the h51s command line program that can be used to list all groups and datasets in
a HDF5 file:

® N DU AW N =

One can see that apart from the contour components the Green’s function group g contains additional information about the dimensions
and the Fermi/Bose statistics (sig= 1), for details see the API documentation of herm_matrix and Section 3.2. To understand the
dimensions of the contour components we can look at the number of imaginary time steps ntau and number of real time steps nt
using the h5dump command line utility,

[y
A WD = O ®©oKNO U A WN =

r

N o= oo
S © ® N o

0]6;

hich shows that the dimensions are n, = 400 and n, = 200. The size of the /g/mat component reveals that this corresponds

to n, + 1 = 401 imaginary time points. The mixed /g/tv component has a slow time index and a fast imaginary time index

\and is of size (n; + 1)(n, + 1) = 80601 while the two time triangular storage of the /g/ret and /g/les components contains

hnt + 1)(n¢ 4 2)/2 = 20301 elements.

To simplify postprocessing of contour GFs, NESS1i also provides the python module ReadCNTRhdf5 . py for reading the HDF5 format

Qasing the python modules numpy and h5py) producing python objects with the contour components as members. The python module

whmd\inrolls the triangular storage of the ret and 1les components making it simple to plot time slices. For example, to plot the imaginary
whmmdhart of the retarded Green’s function Im[GR(t, t’ = 0)] as a function of t we may use the commands

L

® N DU A W N =

©

10
11
12
13
14
15

which produces the plot shown in Fig. 5. More advanced usage of the HDF5 interface is exemplified in the example programs, and in
the online manual.

6. Example programs
In this section, we present a number of examples of how the described routines can be used to solve typical nonequilibrium problems.

It is assumed that the 1libcntr library has been compiled and installed. Furthermore, we assume that the collection of demonstration
programs nessi_demo has been installed to some directory nessi_demo/ and compiled in, for instance, nessi_demo/build/.

14

//doc.rero.ch

http

0 25 50 75 100 125 150 175 200
time step

Fig. 5. Result of the python example for reading and plotting Im[G®(t, ¢’ = 0)] from a HDF5 file. Using the C++ example for generating the HDF5 file would give
only zero values. Here, the result from a nontrivial time-dependent calculation is shown instead.

Detailed building instructions can be found in Appendix B. Further examples can be found in the online manual, where one can also
find a more detailed description of all member functions and simple helper routines (such as, e.g., adding up Green’s functions, scalar
multiplication, etc.).

6.1. Test of accuracy and scaling analysis

Overview. — The first example both serves as a minimal application of the vie2 equation (without much physical significance), and
at the same time it demonstrates the convergence of the methods described in Section 9 with the time discretization. We consider a
2 x 2 matrix-valued time-independent Hamiltonian

(5) (43)

The corresponding numerically exact GF G(t, t’) (assuming fermions) is computed using the routine green_from_H mentioned in
Section 3.4. Alternatively, one can compute the (1,1) component of the GF by downfolding: To this end, we solve

(3, — e &i(t.) = de(t.t) + [d (e, DB) (44)
c
with the embedding self-energy X(t, t') = |A|?g2(t, t'). Here, g»(t, t') is the free GF with respect to e,

(id — €2) ga(t, t') = Se(t, 1) . (45)

The solution of the Dyson equation (44) then must be identical to the (1, 1) matrix element of G: Gy 1(t,t’) = g(t,t’). The test
programs test_equilibrium.x and test_nonequilibrium.x solve this problem in equilibrium and nonequilibrium, respectively,
and compare the error. In the equilibrium case, we define

B
err. = l/ dr |Gi(T) — g1(7)] (46)
B Jo

whereas
1 T t
err. = ﬁ/ dt/ dt'|GT(t', t) — g7 (t',)]
0 0
1 r ‘ /1R / R /
+ﬁ de [dt'|Gy (¢, t7) — g (¢,)]
0 0

1 (T rf
+—/ dt/ dr|G) ,(t,) — gl(t, 7)| (47)
T8 Jo 0 ’
for the nonequilibrium case.

Implementation: Equilibrium. — The implementation of the equilibrium solution of the example is found in programs/test_
equilibrium.cpp. In the following we summarize and explain the main parts:
In 1ibentr, we define the following short-hand types

1 #define GREEN cntr::herm_matrix<double>
2 #define GREEN_TSTP cntr::herm_matrix<double>
3 #define CFUNC cntr::function<double>

for double-precision objects. They are available to any program including cntr.hpp. In the main part of the C++ program, the
parameters of the Hamiltonian are defined as constants. In particular, we fix ¢, = —1, ¢ = 1, A = 0.5. The chemical potential
is set to u = 0 and the inverse temperature fixed to 8 = 20. The input variables read from file are Ntau (N;) and SolveOrder
(k=1,...,5). After reading these variables from file via

1 find_param(argv[1],"__Ntau=",Ntau);
2 find_param(argv[1],"__SolveOrder=",SolveOrder);

we can define all quantities. First we define the Hamiltonian (43) as an eigen3 complex matrix:

cdmatrix eps_2x2(2,2);

1

2 eps_2x2(0,0) = epsl;

3 eps_2x2(1,1) = eps2;

4 eps_2x2(0,1) = Ixlam;
5 eps_2x2(1,0) = -Ixlam;

15

0
ol By ~
SN Ry,
-3 \O\Q E‘E _ -
Q N 4 g g-ge_@ﬂ&@
e &&%\g -6 2 PN
Q
&5t Sa -8 Ha
——— @(hTZ.()()) E R NO(h:.(l(l) ﬂﬂ
Bl ——— ~O(2%) &S:@‘G -10F ___ ~OhS%) ELEL
7t O Fourier ELELG“O -12} © Fourier ELEL
O fix point Bg » o fix point B‘m
1.0 1.5 2.0 25 3.0 1.0 1.5 2.0 2.5 3.0
log(N;) log(N:)

Fig. 6. Average error according to Eq. (46) fore; = —1,e,, =1, A =0.5, 0 =0, =20 for k=1 and k = 5.

The 1 x 1 Hamiltonian representing €; is constructed as

1 CFUNC eps_11_func(-1,1);
2 eps_11_func.set_constant (epsl*MatrixXcd::Identity(1,1));

Here, eps_11_func is a contour function entering the solvers below. Note the first argument in the constructor of CFUNC: the number
f real-time points N; is set to —1. In this case, only the Matsubara part is addressed. Its value is fixed to the constant 1 x 1 matrix by
he last line. With the Hamiltonians defined, we can initialize and construct the free 2 x 2 exact GF by

O 1 GREEN G2x2(-1,Ntau,2,FERMION);
m2 cntr::green_from_H(G2x2,mu,eps_2x2,beta,h);

ncluding the 1ibentr header provides a number of constants for convenience; here, we have used FERMION= -1 (bosons would be
described by BOSON= +1). The time step h is a dummy argument here, as the real-time components are not addressed. From the exact
F, we extract the submatrix G;; by

1 GREEN G_exact(-1,Ntau,1,FERMION);
2 G_exact.set_matrixelement (-1,0,0,G2x2);

TFinally, we define the embedding self-energy by

1 GREEN Sigma(-1,Ntau,1,FERMION);

2 cdmatrix eps_22=eps2*MatrixXcd::Identity(1,1);
3 cntr::green_from_H(Sigma, mu, eps_22, beta, h);
4 Sigma.smul (-1,lam*lam) ;

doc.re

The last line performs the multiplication of 7[X]_; with the scalar A2. After initializing the approximate GF G_approx, we can solve
Qhe Matsubara Dyson equation and compute the average error:
| | |

1 cntr::dyson_mat (G_approx, Sigma, mu, eps_11_func, beta, SolveOrder, CNTR_MAT_FOURIER);

Q err_fourier = cntr::distance_norm2(-1,G_exact,G_approx) / Ntau;
H“ cntr::dyson_mat (G_approx, Sigma, mu, eps_11_func, beta, SolveOrder, CNTR_MAT_FIXPOINT);
H 5 err_fixpoint = cntr::distance_norm2(-1,G_exact,G_approx) / Ntau;

The error is then written to file. The function distance_norm2 measures the absolute-value-norm of two contour functions, as
explained in Appendix A.2.

Running and output: Equilibrium. — For convenience, we provide a driver python3 script for creating the input file, running the program
and plotting the results. For running the equilibrium test, go to nessi_demo/ and run

1 python3 utils/test_equilibrium.py k

where k=1, . . . ,5is the integration order. The test solves the Matsubara Dyson equation for N; = 10* for 20 values of x € [1, 3]. The
results are plotted using matplotlib. Fig. 6 shows the corresponding plots for k = 1 and k = 5. As Fig. 6 demonstrates, the Fourier
method described in Section 12.2 scales as O(h?), while solving the Dyson equation in integral form (fixed point integration) results
approximately in a O(h’j“) scaling of the average error for small enough h..

Implementation: Nonequilibrium. — Testing the accuracy of the dyson and vie2 solvers can be done analogous to the equilibrium case
above. The source code, which is described below, can be found in programs/test_nonequilibrium.cpp.

We adopt the same parameters as for the equilibrium case. To obtain the NEGFs, the Dyson equation (44) is propagated in time.
Equivalently, one can also solve the Dyson equation in integral form

gi(t,)+ [Fxgil(t, t') = g°Ae, £, (48a)
gilt,) + g+ FI(E) = ge.) (48b)
where F = — X % ggo) and F* = _g§0) x X, as explained in Section 4.3. The free GF ggo)(t, t') is known analytically and computed by

calling the routine green_from_H.

16

The structure of the test program is analogous to the equilibrium case. First, the input variables N¢, N;, Tax and k are read from the
input file:

The time step is fixed by h = Tpnax/N;. After initializing the Hamiltonian and the GFs, the embedding self-energy is constructed via

The generic procedure to solve a Dyson equation in the time domain in 1ibcntr is

1. Solve the equilibrium problem by solving the corresponding Matsubara Dyson equation,
2. Compute the NEGFs for time steps n = 0, ..., k by using the start-up algorithm (bootstrapping), and
3. Perform the time stepping forn=k+ 1, ..., N;.

For Eq. (44), this task is accomplished by

® N DU AW N =

The deviation of the nonequilibrium Keldysh components from the exact solution is then calculated by

The solution of the corresponding integral formulation (61) is performed by the following lines of source code:

L
Q
O
bl
)
bl
@)
O

O

<

u
u
® N O U AW N =

http

For convenience, we have defined the routine GenKernel, which calculates the convolution kernels F and F¥:

1

log(err)
&
i
|
(2]
i
e
&

-4r ___. ~O(h202) e ——— Oy
sl 7T ~ O30 l!EE —10} === ~O®m)
O dyson (k=1) Ebﬂﬂg O dyson (k=5)
sl O vie2(k=1) s | 12} O vie2(k=5)
1.00 125 150 175 200 225 250 1.00 125 150 175 200 225 250
log(Ny) log(N:)

Fig. 7. Average error according to Eq. (47) for e, = —1, e, =1, A =0.5, u =0, f =20 for k=1 and k = 5. We have fixed N, = 800 and Ty.x = 5.

Running and output: Nonequilibrium. — The python3 driver script test_nonequilibrium.py provides an easy-to-use interface for
running the accuracy test. In the nessi_demo/ directory, run

1 python3 utils/test_nonequilbrium.py k

where k is the solution order. The average error of the numerical solution of Eq. (61) is computed analogously to the Dyson equation

n integro-differential form. The output of test_nonequilibrium.py is shown in Fig. 7. As this figure confirms, the average error of
ssolving the Dyson equation in the integro-differential form scales as O(h**1), while the corresponding integral form yields a O(h**?)

Ocaling.

".2. Hubbard chain

LOverview. — The Hubbard model is one of the most basic models describing correlation effects. It allows to demonstrate the
erformance, strengths and also shortcomings of the NEGF treatment [21-23]. Here, we consider a one-dimensional (1D) configuration
quz’vith the Hamiltonian
-
|

®

where (i, j) constrains the lattice sites i,j to nearest neighbors, while 6 =%, | for 0 =], 1. We consider M lattice sites with open
oundary conditions. Furthermore, we restrict ourselves to the paramagnetic case with an equal number of spin-up (N4) and spin-down
N,) particles. The number of particles determines the filling factor n = N;/M. Note that the Hamiltonian (49) contains a chemical
-d)otential shift, such that x = 0 corresponds to filling n. In analogy to Ref. [22], the system is excited with an instantaneous quench of
“~the on-site potential of the first lattice site to wp:

= H(t) = Ho + 0(thwo Y _ &}, ¢10 - (50)

Ho=—] Y & &, +UY (A —a)hy —7), (49)
(ij).o i

o
‘Sﬂ this example, we treat the dynamics with respect to the Hamiltonian (50) within the second-Born (2B), GW, and T-matrix (particle-
article ladder) approximations. A detailed description of these approximations can be found, for instance, in Ref. [22]. The numerical
epresentation of the respective self-energy expressions is implemented in the C++ module hubbard_chain_selfen_impl.cpp.
_Gelow we explain the key routines.

Self-energy approximation: second-Born. — The 2B approximation corresponds to the second-order expansion in terms of the Hubbard
repulsion U(t), which we treat here as time dependent for generality. Defining the GF with respect to the lattice basis, Gj ,(t, t') =
—i(Te &, ()], (t')), the 2B is defined by

Zijo(t, t") = U(OU(t)Gy o (t, t')Gij s (t, t)Gjis(t', t) . (51)

The 2B self-energy (51) is implemented in two steps. (i) The (spin-dependent) polarization Pj,(t,t') = —iGjj.(t,t")Gji,(t',t)
is computed using the routine Bubblel and subsequently multiplied by —1. (ii) The self-energy is then given by Xj,(t,t') =
iU(t)U(t")Gij o (t, t')Py 5(t, t'), which corresponds to a bubble diagram computed by the routine Bubble2. Inspecting the Keldysh
components of the GFs, one notices that the polarization P; ,(t, t') is needed on one time slice only. As G;; 1(t, t') = Gj;, (£, t') = Gy(t, t')
(an analogous statement holds for other contour functions), the spin index can be dropped. The 2B self-energy is computed by the
routine Sigma_2B as follows:

void Sigma_2B(int tstp, GREEN &G, CFUNC &U, GREEN &Sigma){
int nsites=G.sizel();
int ntau=G.ntau();
GREEN_TSTP Pol(tstp,ntau,nsites,B0SON);

Polarization(tstp, G, Pol);

Pol.right_multiply(tstp, U);

1
2
3
4
5
6
7
8
9 Pol.left_multiply(tstp, U);

18

L
Q
O
bt
bt

O
O
©
~

V=
e
el
-

10
11
12
13
14
15
16
17

First, the polarization Pol, which represents P;(t, t'), is defined for the given time step. After computing Pj(t, t’) by the function

S VN U A WN =

—_

the lines

1
2

perform the operation P(t, t') — P;(t, t')U(t") and Py(t, t') — U(t)Py(t, t'), respectively. Finally, Bubble2 computes Xy(t, t').

Self-energy approximation: GW. — As the next approximation to the self-energy, we consider the GW approximation. We remark that
we formally treat the Hubbard interaction as spin-independent (as in Ref. [22]), while the spin-summation in the polarization P (which
is forbidden by the Pauli principle) is excluded by the corresponding prefactor. In terms of the Feynman diagrams, this corresponds
to the self-energy including the diagrams with any number of polarization insertins (bubbles). The analogous approximation for the
explicitly spin-dependent interaction (spin-GW) is also discussed in Ref. [22], whose self-energy includes the diagrams with odd number
of the bubbles only. We focus on the former type of GW in the following.

Within the same setup as above, the GW approximation is defined by

Zyi(t, t) = iGy(t, ")SWy(t, t') (52

where §Wj(t, t') denotes the dynamical part of the screened interaction Wj(t, t') = U(t)8;8c(t, t') + sW(t, t'). We compute SW(t, t')
from the charge susceptibility y;(t, t') by sWj(t, t') = U(t)x;(t, t')U(t’). This susceptibility obeys the Dyson equation

~

X=P+PxU=xy, (33)

where P stands for the irreducible polarization Py(t, t') = —iGy(t, t')Gj(t’, t). The strategy to compute the GW self-energy with 1ibcntr
thus consists of three steps:

1. Computing the polarization Py(t, t’) by Bubblel.

2. Solving the Dyson equation (53) as VIE. By defining the kernel Kj(t,t") = —P;(t, t")U(t") and its hermitian conjugate, Eq. (53)
amounts to [1+ K] * y = P, which is solved for x using vie2.

3. Computing the self-energy (52) by Bubble2.

The implementation of step 1 has been discussed above. For step 2, we distinguish between the equilibrium (timestep tstp=-1) and
time stepping on the one hand, and the starting phase on the other hand. For the former, we have defined the routine

® NV A W N =

©

10
11
12
13
14
15
16

Here, PxU and UxP correspond to the kernel Kj and its hermitian conjugate, respectively. Analogously, the starting routine is
implemented as

AW N =

® N o !

9
10
11
12
13
14
15

Finally, the self-energy is computed by

® NG A W N =

[—
W oo oo

ch

Self-energy approximation: T-matrix. — The particle-particle ladder Ty(t, t') represents an effective particle-particle interaction, which
defines the corresponding self-energy

Zy(t, ') = iU(E)Ty(t, tHU)Gu(t', t) . (54)

o

he T-matrix, in turn, is obtained by solving the Dyson equation T = & —® xU x T, where @ corresponds to the particle-particle bubble
D;i(t, t') = —iGy(t, t')Gy(t, t'). Hence, the procedure of numerically computing the X(t, t’) is analogous to the GW approximation:

= 1. Compute @j(t,t’) by Bubble2 and multiply by —1.
O 2. Calculate the kernel Kj(t, t') = @;i(t, t")U(t’) and its hermitian conjugate and solve the VIE [1+ K]+ T = & for T using vie2.
3. Perform the operation Tj(t, t') — U(t)T;(t, t")U(t") and compute the self-energy by Bubblel.

Q\/Iean -field Hamiltonian and onsite quench. — So far, we have described how to compute the dynamical contribution to the self-energy.
he total self-energy furthermore includes the Hartree-Fock (HF) contrlbutlon which we incorporate into the mean-field Hamiltonian
MF(t t) + U(n; — n) with the occupation (per spin) n; = (c ¢;). The shift of chemical potential —Un is a convention to fix the

\ctllemlcal potential at half filling at © = 0. Note that when we write the interaction term as in Eq. (49), the corresponding Fock term

N dS zero because of the spin symmetry in the paramagnetic phase. In the example program, the mean-field Hamiltonian is represented
y the contour function eps_mf. Updating eps_mf is accomplished by computing the density matrix using the herm_matrix class
utine density_matrix.

The general procedure to implement a quench of some parameter A at t = 0 is to represent A by a contour function A,: A_q
corresponds to the pre-quench value which determines the thermal equ111br1um while A, with n > 0 governs the time evolution. In
the example program, we simplify this procedure by redefining 6(0) (+ wod;16;,1 after the Matsubara Dyson equation has been
solved.

Generic structure of the example program. —

The source code for the 2B, GW and T-matrix approximation, is found in hubbard_chain_2b.cpp, hubbard_chain_gw.cpp,
hubbard_chain_tpp.cpp in folder programs/, respectively. The programs are structured similarly as the previous examples. After
reading variables from file and initializing the variables and classes, the Matsubara Dyson equation is solved in a self-consistent fashion.
The example below illustrates this procedure for the 2B approximation.

® N LA W N =

//[doc.rero.ch

http

® N DU A W N =

17
18
19
20
21
22

Updating the mean-field Hamiltonian (hubb: :Ham_MF), the self-energy (hubb::Sigma_2B) and solving the corresponding Dyson
equation (cntr: :dyson_mat) is repeated until self-consistency has been reached, which in practice means that the deviation between
the previous and updated GF is smaller than the given number MatsMaxErr. For other self-energy approximations, the steps described
above (updating auxiliary quantities) have to be performed before the self-energy can be updated.

Once the Matsubara Dyson equation has been solved up to the required convergence threshold, the start-up algorithm for time steps
n=0,...,k can be applied. To reach self-consistency for the first few time steps, we employ the bootstrapping loop:

NN N NN N NN S o e e e
N s WN = O © N UE WN =2 O ®KNO U WN =

28

Finally, after the bootstrapping iteration has converged, the time propagation for time steps n > k is launched. The self-consistency
at each time step is accomplished by iterating the update of the mean-field Hamiltonian, GF and self-energy over a fixed number of
CorrectorSteps. As an initial guess, we employ a polynomial extrapolation of the GF from time step n — 1 to n, as implemented in
the routine extrapolate_timestep (see Appendix A.1). Thus, the time propagation loop takes the form

©

10
11
12
13
14
15

After the GF has been computed for all required time steps, we compute the observables. In particular, the conservation of the total
energy provides a good criterion to assess the accuracy of the calculation. The total energy per spin for the Hubbard model (49) is given
in terms of the Galitskii-Migdal formula [9].

E= %Tr [p(t) (€@ + M (0)] + %ImTr[E *G]= (t,1).)

The last term, known as the correlation energy, is most conveniently computed by the routine

1

Running the example programs. — There are three programs for the 2B, GW and T-matrix approximation, respectively: hubbard_chain_
2b.x, hubbard_chain_gw.x, hubbard_chain_tpp.x. The driver script demo_hubbard_chain.py located in the utils/ directory
provides a simple interface to these programs. After defining the parameters and convergence parameters, the script creates the
corresponding input file and launches all three programs in a loop. The occupation of the first lattice site n;(t) and the kinetic and

21

— 2B GW —— T-matrix - exact

=4[(c) 1 =o04{(d)]
T3 o = i
~ o 0.03 v
<] 7~] w7
=) 7~ e fopse
z T2 s 0.02 ,l\‘l’
x| A x \ /M
N T 2 0011V
ER _ = h=0.012
o h=0.025 0.00 0.0125
00 25 50 75 100 00 25 50 75 100

Fig. 8. Dynamics in the Hubbard chain. (a) Occupation on the first site ny(t) for M =2, U = 1, n = 1/2 and wy = 5. (b) Corresponding kinetic (solid) and total
(dashed lines) energy. (c) and (d): deviation of the total energy from the initial value, corresponding to (b), for time steps h = 0.025 and h = 0.0125, respectively.
(e) Occupation on the first site for M =4, U = 1.5, n = 1/4 and wo = 5.

total energy are then read from the output files and plotted. The script demo_hubbard_chain.py also allows to pass reference data
as an optional argument, which can be used to compare, for instance, to exact results.

iscussion. — Following Ref. [22], we have selected two prominent examples illustrating the shortcomings of weak-coupling dia-
ﬁramma’ric treatments for finite systems and strong excitations. The regimes where the discussed approximations work well are
ystematically explored in Refs. [22,24].
g For the Hubbard dimer (M = 2) at half filling (x = 0, n = 1/2), a strong excitation (here wy = 5) leads to the phenomenon of
artificial damping: although the density n(t) exhibits an oscillatory behavior for all times in an exact treatment, the approximate NEGF
reatment - with either self-energy approximation considered here - shows damping to an unphysical steady state (see Fig. 8(a)-(b)). It
Q__s instructive to look at the total energy, shown as dashed lines in Fig. 8(b). The conservation of total energy is illustrated in Fig. 8(c)-(d).
or the relatively large time step h = 0.025, the energy is conserved up to 4 x 107> in the considered time interval, while using a half
GJSS small step h = 0.0125 improves the accuracy of the energy conservation by two orders of magnitude.
Fig. 8(e) shows the corresponding dynamics of the occupation for M = 4 and quarter filling. In the regime of small filling, the
"T-matrix approximation is known to provide a good description for any strength of the interaction. This is confirmed by Fig. 8(e),
here the 2B and GW approximation lead to artificial damping, while the n;(t) calculated by the T-matrix approximation agrees well
Owith the exact result.

US.B. DMFT for the Holstein model
\

S~Overview. — In this section, we study the dynamics of the Holstein model, which is a fundamental model for electron-phonon (el-ph)
" ®oupled systems. This example demonstrates a minimal application of 1ibcntr within the nonequilibrium dynamical mean-field theory
DMEFT) [14], as well as the usage of the phonon (bosonic) GFs.
fd The Hamiltonian of the single-band Holstein model is

_C"" H() = —J(60) Y &l 80— A+ ala+g(t)) (@l + a. (56)
(i.j),o i i i

Here J(t) is the hopping parameter of the electrons, is the chemical potential, wy is the phonon frequency, and g(t) is the el-ph

coupling. As excitation protocols, we consider modulations of the hopping parameter or the el-ph coupling as excitation protocols. For

simplicity, in the following we consider the Bethe lattice (with infinite coordination number). For this lattice, the free electrons have a

semi-circular density of states, pg(€) = 271}*2 V4]*2 — €2, with J* a properly renormalized hopping amplitude [25]. Here we take [* = 1.

Assuming spin symmetry, the lattice GFs are introduced as

Gt t') = —i(Tedio (0], (), (57a)
Dy(t, t') = —i(Te AXi(£)AXi(t")). (57b)

Here X; = G/ + &; and AXi(t) = Xi(t) — (Xi(t)).

We treat the dynamics of the Holstein model using the DMFT formalism [26]. In DMFT, the lattice model is mapped to an effective
impurity model with a properly adjusted free electron bath, which is characterized by the so-called hybridization function A(t, t), see
Eq. (60a). The hybridization function is self-consistently determined, so that the impurity GF (Gimp(t, t')) and the impurity self-energy
(Ximp) are identical to the local Green’s function (Gi,c = Gj;) and the local self-energy of the lattice problem (Xo), respectively. In
practice, the DMFT implementation consists of (i), solving the impurity model for a given A(t, t') to obtain Gimp(t, t’) and Xjmp, and
(i), the DMFT lattice self-consistency part, where we update Gi,c and A(t, t’) assuming X = Xiyp. In the case of a Bethe lattice, the
DMEFT lattice self-consistency part is simplified and the hybridization function can be determined directly from the GF,

A(t, ') = J(E)Gimp (L, (L. (38)

22

The action of the corresponding effective impurity model in the path integral formalism is>

Dyl\(t, t
Simp =iZ/dtdt’ci(t)gal(t,t/)c[,(t’)—i-i/dtdt’X(t)%X(t’)— igZ/th(t)cj(t)ca(t), (59)
o JC c o JC
where
Gy (e, t) = [18 + plde(t, t') — A(t, t), (60a)
—82 _ a)Z
Dy (e, t)) = —=—28.(t, t'). (60b)
2(4)0

The electron and phonon GFs of the impurity problem are determined by the Dyson equations

[iat Ellzlql;()]Gimp(ts t,) - [(A + Efrgg) * Glmp](ts t,) - 3c(f, t,)7 (6]8)

Dimp(t, t") = Do(t, t') + [Do * ITimp * Dimp (£, £'), (61b)
and the phonon displacement, Xiy(t) = ()A(imp(t)), which is described by

2g(0) £ N _
Xg(t) = =& Vr0) 4 [dEDt, DM@ () — 2O O} (62)
0 0

Here the mean-field contribution (Ei';"nf)(t)) corresponds to

EME(E) = g(tXimp(0). (63)

Efrgg(t, t) is the beyond-mean-field contribution to the self-energy, Do(t, t') = —i(A)?(t)A)?(ﬂ))o is for the free phonon system, ITimp
is the phonon self-energy and nimp(t) = (flimp(t)) is the particle number at the impurity site.
After the DMFT loop is converged, one can calculate some observables such as different energy contributions. The expressions for
the energies (per site) are given in the following expressions. The kinetic energy is
1 . . . -
Ban(®) = = 3 IO (061(0) = —2004 % Gicl (8, 1) (64)
(ij).o
The interaction energy can be expressed as
g(t A .
0 Z Xifti) = ZVF(En(t) — 20 ZL % Gioe) <(t,). (65)

loc loc

The phonon energy is

Epn(t) = S D (@d) = Z2D(6. 0)+ X(02] + S IDR(E. 0+ P(E)). (66)

/doc.rero.ch

-
\ Here Dpp(t, t’) = —i(T¢ AISi(t)AISi(t/)) with ISi = (a, —a) and AP,()= I3i(t) - (13,-(t)). We note that translational invariance is assumed
and X() (XI()) = Ximp(t)v P(t) = (Pi(t» = lep(t)v D=D; = Dimpv Dloc = Z;imp-

In this example, we solve the impurity problem using the simplest weak-coupling expansion as an impurity solver, i.e. the
wmd unrenormalized Migdal approximation (uMig) [27,28], where the phonons act as a glue for the electrons as well as a heat bath. On
wh==d the web page www.nessi.tuxfamily.org we discuss an alternative impurity solver based on the self-consistent Migdal approximation
: (sMig) [29-31]. Both solvers are implemented in the C++ module Holstein_impurity_impl.cpp.

Unrenormalized Migdal approximation as an impurity solver: uMig. — The impurity self-energy for the electron is approximated as

St (e, t') = ig(0)g(tIDo(t, £)Gimp(t, 1), (67)

imp

D:

while we do not consider the self-energy of the phonons. In NESS1i, %Do(t, t') is obtained by a cntr routine as
1 cntr::green_single_pole_XX(DO,Phfreq_wO,beta,h);

In the sample program, the unrenormalized Migdal approximation (uMig) self-energy is computed by the routine Sigma_uMig.
We provide two interfaces for 0 < tstp < SolveOrder (bootstrapping within the start-up algorithm) and tstp = —1, tstp >
SolveOrder (Matsubara part and the time-stepping part), respectively. Here, we show the latter as an example:

void Sigma_uMig(int tstp, GREEN &G, GREEN &DO, CFUNC &g_el_ph, GREEN &Sigma){

int Norb=G.sizel();
int Ntau=G.ntau();

GREEN_TSTP gGg(tstp,Ntau,Norb, FERMION) ;
G.get_timestep(tstp,gGg);//copy time step from G
gGg.right_multiply (tstp,g_el_ph);

1
2
3
4
5
6
7
8
9 gGg.left_multiply (tstp,g_el_ph);

6

3 Here we denote the Grassmann fields by ¢’ and ¢ and the scalar field as X.

23

11
12
13
14
15

In this routine, the electron self-energy Eq. (67) is evaluated using Bubble2, see Section 3.3.

Generic structure of the example program. — The program for DMFT + uMig is implemented in Holstein_bethe_uMig. cpp for normal
states. As in the case of the Hubbard chain, the program consists of three main steps: (i) solving the Matsubara Dyson equation,
(ii) bootstrapping within the start-up algorithm (tstp< SolveOrder) and (iii) time propagation for tstp > SolveOrder. Since the
generic structure of each step is similar to the respective step for the Hubbard chain, we only show here the time propagation part to
illustrate the differences.

® NG W N =

w
@

P

w
©

htt

S
)

At the beginning of each time step, we extrapolate the local GF and the hybridization function, which serves as a predictor. Next, we
iterate the DMFT self-consistency loop (corrector) until convergence is reached. In this loop, we first solve the impurity problem to
update the local self-energy and GF. Then we update the hybridization function by the lattice self-consistency condition, which in the
case of the Bethe lattice simplifies to Eq. (58).

Running the example programs. — The corresponding executable file is named Holstein_bethe_uMig.x. In these programs, we use
umr = 1 — gX(0) as an input parameter instead of w. (u is determined in a post-processing step.) Excitations via modulations of
the hopping and el-ph coupling are implemented, where we need to provide dg (= g(t) — g(0)) and dJ*(t) (= J(t) — J(0)) as inputs.
The driver script demo_Holstein.py located in the utils/ directory provides a simple interface to the program. After defining the
system parameters, numerical parameters (time step, convergence criterion, etc.) and excitation parameters, the script creates the
corresponding input file and starts the simulation. After the simulation, the number of particles for each site (n(t) =)" n,(t)), phonon
displacement (X(t)), phonon momentum (P(t)) and the energies are plotted. In addition, the spectral functions of electrons and phonons,
respectively,

1 .

AR(w; tay) = _; / dtrelelwtrengauss(tre])GR(trel; tav), (68a)
1 .

BR(w; tay) = _; / dtrelelwtrengauss(tre])DR(trel; tav), (68b)

are plotted using a python3 script in NESSi for t,, = N%h Here, Fgauss(trel) is @ Gaussian window function, which can also be specified
in demo_Holstein_impurity.py.

-0.5
-10f |

dg=0.0,dJ* =0.0 .
0N . _ _) —dg=0.1,d/" =1.0
dg=0.05,d]° =05 150 s s

0 10 20 30 0 10 20 30
t t

Ein(t)
[
Eo(t)

N4

20 30

Fig. 9. Time evolution of (a) the phonon displacement, (b) the kinetic energy and (c) the total energy after excitation via the simultaneous modulation of the el-ph
coupling and the hopping parameter within DMFT + uMig. We use g = 0.5, wp = 0.5 and 8 = 10.0 and consider the half-filled case. Here, we use a sin® envelope
for both modulations with excitation frequency §2 = 1.2 and pulse duration Tehq = 15.7. The strength of the excitation is indicated by dg and dJ*.

Discussion. — In Fig. 9(a)-(c), we show the time evolution of the phonon displacement X(t), the kinetic energy Ey,(t) and the total
energy E.(t) after excitation by the simultaneous modulation of the el-ph coupling and the hopping parameter. Since the energy
is gradually absorbed by the phonons after the excitation, both E,(t) and Ey.(t) gradually relax toward the initial value, i.e. the
equilibrium value at the phonon temperature. We note that we also provide an example program for the self-consistent Migdal
approximation as an impurity solver as well as programs for the Nambu formalism for the superconducting states. Explanations and
demonstrations of these sample programs are given on the webpage http://www.nessi.tuxfamily.org/.

7. MPI Parallelization
7.1. Parallelization

In 1libcntr, we provide tools for distributed-memory parallelization via the Message Passing Interface (MPI). In particular, the
parallel layout is tailored to treat vectors of GFs, which is relevant for the simulation of extended systems. In this case, all quantities
are additionally labelled by the reciprocal lattice vector k chosen from the first Brillouin zone (BZ). For instance, the Dyson equation
for the GF Gj(t, t') takes the form

(i — (1)) Gt t') = Se(t, t') + [T = G| (¢, ') . (69)

This equation can be solved independently for each Tc which can be performed in parallel without communication. Constructing the
self-energy X(t, t') then typically requires information from different points k' # k in the BZ. However, the computational effort to
solve the Dyson equation at a time step N scales like ©(N?), while the amount of data to be communicated scales only like O(N), so
that the problem can be parallelized using a distributed memory parallelization with moderate communication overhead.

To handle the all-to-all communication of Green's functions among MPI ranks, we have implemented the auxiliary class
distributed_timestep_array. (Simple point-to-point communication of time-steps can be done using member functions of the
herm_matrix_class, which is described in the online manual.) Below we provide an overview over the distributed_timestep_
array and its parent class distributed_array, and discuss a real-time GW simulation as an advanced example for a parallel
application (see Section 7.2).

//doc.rero.ch

Distributed_array. — The class distributed_array provides a generic structure for distributing and communicating sets of
data blocks. Let us assume the total number of points sampling the BZ is given by N, and label the points by k = 1, ..., N. The
distributed_array class is comprised of a vector of length Ny of any base class (provided by a template argument) on every
MPI rank, as illustrated in Fig. 10(a). This makes the communication particularly straightforward. For instance, after updating an
element of the distributed_array on rank 2 (see lower panel in Fig. 10(a)), this information is broadcasted to all other ranks
using the MPI collective communication function mpi_bcast. Further functionalities include sending and receiving blocks among
different ranks, as well as gathering all data on one rank (typically the master). The distributed_array thus provides a general
framework for MPI parallelization, which can be adjusted to a particular situation. The most common usage is distributing instances of
the herm_matrix_timestep class.

http

Distributed_timestep_array. — The classdistributed_timestep_array is a specialization of the class distributed_array,
for which the distributed base class is herm_matrix_timestep. Let us sketch the typical usage. Due to the high memory demands
for storing two-time GFs as herm_matrix, we divide the total number of points Ny into a smaller local (with respect to the MPI rank)
number of points Ny joc. Two-time functions such as the GF are stored as a vector of Ny joc: Gj withj =1, ..., N oc (see Fig. 10(b)). For
each rank to have access to the full momentum dependence Gy, k = 1, ..., N, the distributed_timestep_array class is used to
communicate the time slice 7[Gy], for k = 1, ..., Ni. Fig. 10(b) illustrates this layout for the example of Nt = 4 MPI ranks, Ny = 8
and, thus, Ny joc = 2. The precise calls to perform these communications will be best apparent from the example below, and are also
described in detail in the online manual.

7.2. Example: GW for the translationally invariant Hubbard model

Overview. — As in Section 6.2, we will consider the Hubbard Hamiltonian, but we assume a translationally invariant system with
periodic boundary conditions. The translational invariance implies that all observables and propagators are diagonal in momentum
space. Hence, all quantities can be labelled by the reciprocal lattice vector k within the first BZ. This reduces the computational and
storage complexity from O(N,f) for the real space formalism introduced in Section 6.2 to O(Ny). Moreover, the Dyson equation is diagonal
in momentum space and can be efficiently parallelized using the distributed-memory parallelization based on MPI.

25

. rank 0 | rank 1 . rank2 , , rank Nyl |
! ' ! 771 |
L[]
update
(b)
rank 0 rank 1 rank 2 rank 3

| | |
| | |

TG, k=1,..N, TG, k=1...N, TG, k=1,..N, TG, k=1,..N,

[

e A e

- - - > i e
32 P o R
~ - - - -

J ./=17 Nkl(m Gj j=1’“'7Nk,loc Gj jzl"“’Nk,loc Gj .1_1 Nkhx

Fig. 10. (a) Sketch of the parallelization in momentum space using the distributed_array class. A local update on one MPI rank is broadcasted to all other
corresponding elements across all ranks. (b) Example of the parallelization in momentum space using the distributed_timestep_array class for Ny = 8,
distributed over Ni,s = 4 MPI ranks. The full herm_matrix (represented by the dark green squares) is stored for local indices only, while the time slices for a
fixed time step are stored on each rank (light pink squares). The gray dashed lines indicate the connection between local and global indices. (color online).

: We will consider a 1D chain described by the Hubbard model, see Eq. (49). The single particle part of the Hamiltonian can be

C}iiagonalized as
O' Ay = Z (E)c G (70)

ko

where we have introduced the free-electron dispersion e(E) = -2 cos([E]x). We will use a vector notation since the generalization
cho higher dimensional systems is straightforward. For the 1D chain used in the demonstration program, the momentum has only one
__component [k]y = k.
= The system is excited via an electromagnetic field, which for a translationally invariant system is conveniently introduced using
he Peierls substitution. The latter involves the vector potential A(t) (treated within the dipole approximation) as a phase factor in the
Ohoppmg [32,33], or, equivalently a time-dependent shift in the single-particle dispersion

e(k, t) = e(k — gA(t)/h). (71)

~ he vector potential is obtained from the electric field as A(t) = — /0
In this example, we treat the dynamics within the GW approx1mat10n following an implementation similar to Ref. [34] (which
= sconsiders a four-band model). The numerical evaluation of the respective self-energy expressions is implemented in the C++ module
w_selfen_impl.cpp, and the main code is found in programs/gw.cpp. Below we explain the key routines.

whdbelf-energy approximation: GW. — In momentum space, the correlation part of the GW self-energy can be written as
_C Z(t, t) ch S0)SWe(t, 1), (72)

where we have introduced the Fourier transform of the propagator X;(t, t') = (1/Ny) Y_; exp(i(T; —7;)- 4)X;(t, t'), see also Section 6.2 for
the definition of the propagators. In line with Section 6.2, we have introduced the dynamical part of the effective interaction §Wj via
Wy(t, t') = Ude(t, ')+ Wjy(t, t'). Due to the translational invariance, the propagators and corresponding Dyson equations are diagonal
in momentum space. This leads to a significant speed-up of calculations since the most complex operation, the solutions of the Volterra
integral equation (VIE), can be performed in parallel. The retarded interaction is obtained as a solution of the Dyson-like equation

Wi(t, t') = Usc(t, ') + ULIT; * WiI(t, t). (73)

and the Fourier transform of the polarization is given by
(¢, t') Z Grya(t. £)G4(t', 1). (74)

In the case of a non-local interaction, the polarization is multiplied by a spin factor s = 2.

This structure allows for an easy adaptation of the code to arbitrary lattice geometries. In particular, we provide an implementation
of a 1D chain geometry in the class lattice_1d_1b within the C++ module gw_lattice_impl.cpp. The routine add_kpoints
evaluates the sum or difference of two vectors k & q, where slight care has to be taken to map the vector back to the first BZ. For the
modification to other lattices and interaction vertices, the user has to define the first BZ, the single-particle dispersion €(k), and the
interaction vertex U.

26

//doc.rero.ch

|]
u
N o v A W

http

The generalization to the long—range interaction
Hint = Uznmnu + 5 ZV R —)i (75)

is straightforward. For the purpose of demonstration, we have included the nearest-neighbor interaction V(7; — 7j) = §(|r; — 1;| = 1)V
into the example program (input parameter V). We should comment that the Fock term is zero for a purely local interaction in the
paramagnetic phase as far as the interaction is written in the form of Eq. (75), while it takes a finite value in cases with a finite non-local
interaction.

Distribution of momenta over MPI ranks. — As each momentum point is independent, we have introduced a class kpoint in the module
gw_kpoints_impl. cpp. This class includes all propagators at the given momentum point k, as well as corresponding methods, such
as the solution of the Dyson equations for the single-particle propagator G;(t, t'), see Eq. (69), and the 1etarded interaction Wi(t, t').
An arbitrary lattice can be represented as a set of kpoint objects. In the code each physical momentum k is indexed by an index
ke {0, ...Nk-1}, which we will refer to as the “global index” in the following. lattice is the variable which stores information on
the lattice (in particular the relation between the index k and the physical momentum k, and lattice.nk_ returns Nk.

Each kpoint objects needs to be accessed at only one mpi rank, because the Dyson and vie2 integral equations can be solved
independently for each rank. However, the evaluation of the self-energy and polarization diagrams at a given timeslice requires that
the timeslice 7[G;] and 7T[W;] at all k is made available at all mpi ranks, see Eq. (72). This is facilitated by introducing a setting with
the following variables at a rank which holds Nkloc kpoint objects:

e std::vector <kpoint > corrK_rank : A vector of length Nkloc, containing the kpoint objects stored locally at the rank.

e std::vector <int> kindex_rank: A vector of length Nkloc.
kindex_rank[j] returns the global index ke {0, ... Nk-1} of the kpoint j.

e distributed_timestep_array gk_all_timesteps, as described in Section 7.1. Can store 7;[G;] at a given timestep n for all
ke {0,...Nk-1}. gk_all_timesteps.G() [k] returns a reference to the data at 7[G;]. The class has a copy of kindex_rank
and of the inverse map, so that one can easily launch a communication in which the rank which owns a given kpoint would
send the corresponding timeslices to all other ranks.

e distributed_timestep_arraywk_all_timesteps: Can store 7,[W;] at a given timestep nforallk € {0, ... Nk-1}. Analogous
to gk_all_timesteps.

The strategy to compute the GW self-energy 7[X%], at time step n thus consists of two steps:

1. At time t,, communicate the latest time slice of the GFs T[G;], and retarded interactions 7[W;], for all momentum points among
all MPI ranks. .

2. Evaluate the self-energy diagram 7 [Eﬁmnk]” in Eq. (72) for a subset of momentum points k;nc present on a given rank using the
routine Bubble2.

Step 1 is implemented as

1 void gather_gk_timestep(int tstp,int Nk_rank,DIST_TIMESTEP &gk_all_timesteps,std::vector<kpoint> &corrK_rank
,std::vector<int> &kindex_rank){
gk_all_timesteps.reset_tstp(tstp);
for (int k=0;k<Nk_rank;k++){
gk_all_timesteps.G() [kindex_rank[k]].get_data(corrK_rank([k].G_);
}
gk_all_timesteps.mpi_bcast_all();
}

where the abbreviation DIST_TIMESTEP for distributed_timestep_array is used. An analogous routine is used for the bosonic
counterpart. We gather the information from all ranks into an object of type distributed_timestep_array named gk_all_
timesteps. mpi_bcast_all() is a wrapper around the MPI routine Allgather adjusted to the type distributed_timestep_
array.

Step 2 is implemented as

1 void sigma_GW(int tstp,int kk,GREEN &S,DIST_TIMESTEP &gk_all_timesteps,DIST_TIMESTEP &wk_all_timesteps,
lattice_1d_1b &lattice,int Ntau,int Norb){
assert (tstp==gk_all_timesteps.tstp());
assert (tstp==wk_all_timesteps.tstp());
GREEN_TSTP stmp(tstp,Ntau,Norb, FERMION) ;
S.set_timestep_zero(tstp);
for(int gq=0;q<lattice.nk_;q++){
double wk=lattice.kweight_[ql;
int kq=lattice.add_kpoints(kk,1,q,-1);
stmp.clear();
10 for(int i1=0;il1<Norb;il++){
for(int i2=0;i2<Norb;i2++){
12 cntr::Bubble2(tstp,stmp,il,i2,gk_all_timesteps.G() [kql,gk_all_timesteps.G() [kql,il,i2,
wk_all_timesteps.G() [q],wk_all_timesteps.G()[q],i1,i2);

© ® N U A W N

13 }

14 ¥

15 S.incr_timestep(tstp,stmp,wk);
16 }

17 }

27

As each rank includes only a subset of momentum points krank we only evaluate the self-energy diagrams D for this subset of
momentum points. After the call to gather_gk_timestep, all ranks carry information about the latest tlmestep for all momentum
points and the internal sum over momentum ¢ in Eq. (72) can be performed on each rank. The evaluation of the self-energy is done
using the bubble?2 routines introduced in Section 3.3.

Generic structure of the example program. — As the generic structure is similar to the two previous examples we will focus on the
peculiarities connected to the usage of MPI. First, we need to initialize the MPI session

MPI_Init (&argc,&argv);

MPI_Comm_size (MPI_COMM_WORLD, &ntasks);

1
2
3 MPI_Comm_rank (MPI_COMM_WORLD, &tid);
4 tid_root=0;

and the distributed_timestep_array for the electronic and bosonic propagators

1 DIST_TIMESTEP gk_all_timesteps (Nk,Nt,Ntau,Norb, FERMION, true) ;
2 DIST_TIMESTEP wk_all_timesteps (Nk,Nt,Ntau,Norb,BOSON, true);

The construction of the DIST_TIMESTEP variables generates the map kindex_rank between the subset of points stored on a given
rank and the full BZ.

The program consists of three main parts, namely Matsubara, bootstrapping within the start-up algorithm (tstp < SolverOrder)
and time propagation for tstp > SolverOrder. The self-consistency iterations include the communication of all fermionic and bosonic
propagators between different ranks using the routine gather_gk_timestep and the determination of the local propagators. For
instance, the Matsubara part (tstp = —1) looks as follows

for(int iter=0;iter<=MatsMaxIter;iter++){

1
2 // update propagators via MPI
c 3 diag::gather_gk_timestep(tstp,Nk_rank,gk_all_timesteps,corrK_rank,kindex_rank);
4 diag::gather_wk_timestep(tstp,Nk_rank,wk_all_timesteps,corrK_rank,kindex_rank);
5
(-:’s diag::set_density_k(tstp,Norb,Nk,gk_all_timesteps,lattice,density_k,kindex_rank,rho_loc);
n7 diag::get_loc(tstp,Ntau,Norb,Nk,lattice,Gloc,gk_all_timesteps);
O 8 diag::get_loc(tstp,Ntau,Norb,Nk,lattice,Wloc,wk_all_timesteps);

s on each MPI rank, the momentum-dependent single-particle density matrix p(ﬁ) is known for the whole BZ, the evaluation of the
LHF contribution is done as in Section 6.2. The self-energies X} __ for the momentum points kyanx = O, ..., Nanx — 1 on each rank are
btained by the routine sigma_GW.

rank

1 // update mean field and self-energy

2 for(int k=0;k<Nk_rank;k++){

3 diag::sigma_Hartree(tstp,Norb,corrK_rank[k].SHartree_,lattice,density_k,vertex,Ut);

4 diag::sigma_Fock(tstp,Norb,kindex_rank[k],corrK_rank[k].SFock_,lattice,density_k,vertex,Ut);

5 diag::sigma_GW(tstp,kindex_rank[k],corrK_rank[k].Sigma_,gk_all_timesteps,wk_all_timesteps,lattice,
Ntau,Norb) ;

}

and the variable vertex (type: cntr: :function) includes the (possibly time-dependent) values of the interaction U.

Similarly, the solution of the Dyson equation for the fermionic (bosonic) propagators for each momentum point is obtained by
tep_dyson_with_error (step_W_with_error) which is just a wrapper around the Dyson solver. It returns the error corresponding

"o the difference between the propagators at the previous and current iterations. The momentum-dependent error for the fermionic
ropagators is stored in err_ele and at the end we use MPI_Allreduce to communicate among the ranks.

/doc.rer

) | // solve Dyson equation

H 2 double err_ele=0.0,err_bos=0.0;
3 for (int k=0;k<Nk_rank;k++){

‘ 4 err_ele += corrK_rank[k].step_dyson_with_error (tstp,iter,SolverOrder,lattice);
5 diag::get_Polarization_Bubble (tstp,Norb,Ntau,kindex_rank[k],corrK_rank[k].P_,gk_all_timesteps,
lattice);

6 err_bos += corrK_rank[k].step_W_with_error (tstp,iter,tstp,SolverOrder,lattice);
7 }
8 MPI_Allreduce (MPI_IN_PLACE ,&err_ele,1,MPI_DOUBLE_PRECISION,MPI_SUM,MPI_COMM_WORLD) ;
9 MPI_Allreduce (MPI_IN_PLACE,&err_bos,1,MPI_DOUBLE_PRECISION,MPI_SUM,MPI_COMM_WORLD) ;

The structure of the start-up procedure and the real-time propagation are similar to the Matsubara solver. The main differ-
ence lies in the predictor-corrector scheme as explained in Section 4.1. At the beginning of each time step, we extrapolate the

momentum-dependent GF G; and the retarded interactions W;, which works as a predictor:

1 // Predictor: eztrapolation
2 diag::extrapolate_timestep_G(tstp-1,Nk_rank,SolverOrder ,Nt,corrK_rank);
3 diag::extrapolate_timestep_W(tstp-1,Nk_rank,SolverOrder ,Nt,corrK_rank);

Then we perform several iterations at a given time step until convergence, which acts as a corrector.
After the NEGFs are obtained, we evaluate the kinetic energy (per spin) Eyy(t) = Nik >+ Trlp(t)eg(t)]. The interaction energy (per
spin) is obtained from the Galitskii-Migdal formula

Eine(t) = ZLN,(Z (Tr [pﬁ(t) (h’L:"F _ Ek)] + ImTr [2@ * GE]< (t, t)) , (76)
k

using the routine diag: :CorrelationEnergy. The two operations include an MPI reduction as the momentum sum is performed
over the whole BZ.

28

0.5

- = Nk=256
(b) = Nk=128
0.4
0.3
S
<<
02
20 o,
15
00—=; = 0 i 3
w
1.0
- = Nk=256
0.3 (d) —— Nk=128
05
0.2
00 0.1
3
g o0
s =
-0.1
0.2
-0.3

o

-1 0

s -3 -2 1 2 3 2 4 6 8 10
k [0}

O Fig. 11. (a) Momentum-dependent spectral function Aj(w) of the 1D Hubbard model, obtained within the GW approximation. (b) Local spectral function Ajo(w) for
B two system sizes Ny = 128 and Ny = 256, respectively. The second row shows the equivalent pair of panels for the effective interaction: (c) the momentum-dependent
effective interaction Im[Wg(w)] and, (d) its local part Im[Wje.(w)]. The parameters for all the plots are U = 2, the inverse temperature is § = 20.0 and we consider
O the half-filled case n = 1. The momentum-dependent quantities have been obtained with N, = 256 momentum points.
-

q) Running the example program. — There is one program for the GW calculation, called gw.x. The driver script demo_gw . py located in

— the utils/ directory provides a simple interface to this program. Similar to the examples in Section 6, the script creates an input file
and launches the program. The user can specify the shape of the electric pulse, but by default, we use a single-frequency pulse with a
Gaussian envelope

O E(t) = Eo exp(—4.6(t — to)?/t2) sin(w(t — to)), (77)

where ty = 27 /wN, is determined by the number of cycles N,. After the simulation, the time evolution of the kinetic energy and

~— potential energy are plotted. The output is determined by two optional parameters. If SaveGreen is true the local fermionic (G) and

bosonic (W) propagators are stored to disk. If SaveMomentum is true also the momentum-dependent propagators are stored to disk.

s = As the full momentum and time-dependent propagators would require a large amount of memory, we only save selected time slices

Q_ and their frequency is determined by the parameter output. For example, if output=100, every 100th timeslice will be stored to disk.
Running the driver script demo_gw. py produces the following output files:

el 1. By default it produces a file data_gw.h5, which includes information about the time-evolution of observables like the kinetic

_C energy, density, etc.
2. Setting the parameter savegf to 1 will create two additional groups within the file data_gw.h5, namely Gloc and Wloc.
These groups include the total two-time information about the local single-particle propagator Gi(t, t') (Gloc) and the local
two-particle propagator Wi (t, t') (Wloc).
3. Setting the parameter savegk to 1 will create a set of files for each momentum point. These files include information
about the momentum-dependent single-particle propagators Gi(t, t’) (group G) and the corresponding two-particle propagators
Wi (t, t') (group W).

Discussion. — The equilibrium momentum-dependent spectral function Ai(w) = —+Im [Gy(w)] and its local part Ajpe(w) = Nik > i Av(w)
are presented in Fig. 11. The local spectral function Aj,c(w) shows the typical van Hove singularities present in 1D systems at w ~ £2.
The comparison between two system sizes, namely N, = 128 and N = 256, shows that the spectrum is converged. The momentum-
dependent spectral function A(w) closely follows the single-particle dispersion e;. The broadening due to many-body effects is small
close to the Fermi surface points (s /2), because of the restricted scattering, but it is increasing with increasing energies. Note that
the GW approximation cannot capture peculiarities of 1D systems, like the absence of the Fermi surface as described by the Tomanaga-
Luttinger liquid [35]. However, this is specific to low-dimensional systems and we consider the 1D case here mainly to avoid heavy
calculations in the example program. Another interesting observation is the presence of a shadow band, which is clearly visible for
energies away from the chemical potential. The origin of this shadow band is the feedback of the two-particle excitations on the
single-particle spectrum.

The information about the two-particle excitation spectrum is contained in the bosonic correlator W. As the latter is antisymmetric
in frequency, Im[W(w)] = —Im[W(—w)], we only present results for positive frequencies, see Fig. 11. The local bosonic correlator
Im[W)oc(w)] is presented in Fig. 11(d) for two system sizes N, = 128 and N, = 256, respectively. The local component Im[W),c(w)]

29

o
o

—E,=3.0
—E,=5.0

0.005

o
[

0.000

Exin-Exin(tin)

o
~

-0.005

:0)

-0.010

0015 5 70 75
\ t

©
w

o
N

Ekin'Ekin(t

e
-_—

o
o
o T
‘VL
=
¢

-

5 10 15 20

Fig. 12. Time evolution of the kinetic energy for the two excitation strengths Ey = 3.0, 5.0, respectively. The dashed lines show the shape of the electric field pulse
scaled down by 100 to fit on the scale. The inset presents a zoom into the relaxation dynamics by subtracting the long-time limit Eyi,(t) — Exin(tfin). Both simulations
have been performed with N = 256, time step h = 0.01 and for inverse temperature g = 20.

@ nk=128 .

120F = Ideal R

100}

Speed up
3

0 25 50 75 100 125

#processes

ig. 13. Speed-up of the total calculation time as a function of the MPI processes for systems with Ny = 128 momentum points, where we fixed one task per node.

. he maximum number of time steps used is N; = 2500. These calculations have been performed on the Popeye cluster at the Flatiron Institute.

-//doc.rero.ch

P

whmmdshows a strong peak around w & 4, which corresponds to particle-hole excitations between the two van-Hove singularities in the single-

whmdharticle spectrum. The effective interaction is predominately governed by the particledAS-hole continuum, which for small momenta

_Cscales linearly with momentum. The latter is confirmed by the momentum-dependent bosonic correlator Im[W;(w)], see Fig. 11(c).
At larger momenta, a deviation from the linear dependence is evident, and close to the edge of the BZ the intensity of the bosonic
propagator is maximal as it corresponds to the transition between the two van-Hove singularities in the single particle spectrum.

Now, we turn to the dynamics after the photo-excitation. The system is excited with a short oscillating electric pulse, see Eq. (77),
with a single cycle N, = 1. The amplitude of the excitation Ey determines the absorbed energy. In Fig. 12, we present the time evolution
of the kinetic energy for the two excitation strengths Ey = 3 and Ey = 5. As the energy is increased (during the pulse) and the system
heats up, the kinetic energy increases. The observed behavior is consistent with thermalization at a higher temperature, but the transient
evolution is complicated by the energy exchange between the electronic and bosonic subsystems (plasmon emission). For the strongest
excitations, there is a clear relaxation dynamics to the final state, see inset of Fig. 12, accompanied with strongly damped oscillations.

In practice, the main bottleneck to reach longer propagation times is the memory restriction imposed by the hardware. The usage
of the MPI parallelization scheme over momentum points reduces this issue due to the distribution of memory among different
nodes. This is beneficial as long as the number of momentum points is an integer multiple of the number of cores. The usage of the
distributed_timestep_array enables a minimal overlap of the stored information between different nodes, which in all practical
cases leads to a linear reduction of the memory requirements per MPI rank.

Moreover, the MPI parallelization also speeds up the execution of the program. We have performed a scaling analysis for a system
with fixed number of momentum points N, = 128, and parallelization up to 128 processors, see Fig. 13. Moreover, for all tests we have
fixed the number of tasks per node to one, since in the real-world scenario we want to maximally distribute the memory. We can see
that the scaling is almost perfect up to 128 processors, where a slight deviation from optimal scaling is observed. The main reason for
this behavior is the communication overhead, since a substantial amount of data, namely timesteps of propagators for all momentum
points, has to be communicated among all nodes. We have tested different communication schemes and the current versions of the
library includes the scheme with the best scaling. Of course, we cannot exclude that the scaling for a large number of processors can
be improved and this will be an important task for a future update of the library. While the current version can be directly applied

30

to higher dimensional systems (2D, 3D), future applications to the realistic modelling of solids will rely on an efficient parallelization
scheme.

Part II. Numerical implementation

In this part, we present the details of the numerical Implementation.
8. Basic integration and differentiation rules

In Sections 9-13 we describe the numerics underlying the at least kth-order accurate solution of the dyson, vie2, and convolution
equations in detail. In this section we define, as the first step, the basic notation for polynomial interpolation as well as approximate
relations for evaluating differentials (backward differentiation) and integrals (Gregory quadrature rules).

8.1. Polynomial interpolation

Consider a function y(t) which takes the values y; at the points t; = jh of an equidistant mesh j = 0, 1withtimesteph, ..., k. We
denote the kth-order polynomial y(t) passing through the points y(jh) = y;,

yih =y, j=0,....k (78)
by PM[yo, ..., y](t). The interpolation can be cast into the matrix form,
PYlyo. ... el Z ht"P oy, (79)
a,l=0
PY = (M~ ")y with My, = j°. (80)

With Egs. (79) and (80), Eq. (78) can be verified directly,

y(jh) = ZJ”P“‘) ZM,a Ny = ;. (81)

a,l=0 a,l=0

The precomputed weights P 1) can be obtained from the integrator class (see Section 5).
8.2. Polynomial differentiation

An approximation for the derivative dy/dt of a function can be obtained by taking the exact derivative of the polynomial approximant

//doc.rero.ch

(79),
= . v ~ 9w o, ..., yel(mh) = ZZP(k)h “q(mh)®~ (82)
Q_ dt le=mn dt i
- e -
e =h1Y "N PPam . (83)
: a=1 I=0

We thus arrive at an approximative relation for polynomial differentiation

d
1 ~h ZDml}’l: with (84)

t=mh
DY Zpgc)amaq' (85)

The precomputed weights Dgf?, are stored by the integrator class (see Section 5).
8.3. Polynomial integration

In some cases below, the polynomial interpolation formula is also used to get the approximation to an integral. For 0 <m <n <k,

nh k k
/ dty(t)%/ de P®Plyo, ..., yil(t =ZZ/ dtPPn— ey, (86)
mh mh —0 =0
k
_ hz [Z P(l)/

1=0 La=0 m

dt r“:| V. (87)

31

Table 8
Weights of the backward differentiation formula (90) up to k = 6.

k ag a; ar as ay as ag
1 1 -1
2 3 -2 1
11 3 1
3 % -3 2 —3
25 6 4 1
4 v —4 2 —3 i
137 10 10 5 1
5) -5 2 -3 i 3
49 15 20 15 6 1
6 20 -6 3 -3 N —s 5

We thus use the following approximate relation for polynomial integration

/ dtyr)~hZImnlyz, with (88)
mh
k a+1 a+1
(k) (" —m
Im(nl:ZPal a+1 . (89)
a=0

The precomputed weights Ir(f)n_, are implemented in the integrator class (see Section 5).

:8.4. Backward differentiation

O

. Consider a function y(t) which takes the values y; at the points t; = jh of an equidistant mesh j = 0,1,...,n, with n > k.
The backward differentiation formula (BDF) of order k approximates the derivative dy/dt at t = nh using the function values
O/n,yn,l, ..., Yn_k. It is defined via the linear relation
L dy k
=~y dYy, 90
Q oL T 0
! j=0

sHere the coefficients for the kth order formula are obtained by the derivative y'(t = 0) of the kth order polynomial interpolation y(t)
Olefined by the values y(jh) = yn—; (backward differentiation is thus a special case of the polynomial differentiation),

dy d .
=~ POy, yua, ., yakl(t = 0). 91
O 2|~ eyl =0) (91)
ote that the minus sign is due to the reversed order of the interpolated points. Therefore, the coefficients of the BDF are directly related
o coefficients for polynomial differentiation: a](") = —Dg? The coefficients for the first k are tabulated in Table 8. The precomputed

\Nelghts a;) can be obtained from the integrator class (see Section 5).

Q’S Gregory integration

‘l—‘ The solution of Volterra integral equations (VIEs) discussed below is based on a combination of backward-differentiation formulae
C/vith so-called Gregory quadrature rules for the integration. The kth Gregory quadrature rule on a linear mesh is defined by the equation

m(n,k)

n n>k
IHE/() dt y(t ~thn1yj, mnk):{k n<k. (92)

The weights w are explained below. In general, the approximation for the integral is obtained from function values {y; : 0 <j < n}
within the 1ntegrat10n interval [0, nh], i.e. m(n, k) = n. However, this is not possible for n < k, because a kth order accurate quadrature
rule cannot be constructed from less than k + 1 function values. In the Gregory quadrature for n < k, we assume that the function y(t)
exists outside the interval [0, nh], and construct an approximation for the integral from values {y; : 0 <j <k}, i.e,, m(n, k) = k.

The simplest example of a Gregory quadrature rule is the trapezoidal approximation,

nh
[o~ n(dvo v+). (93)
0

which corresponds to k = 0, m(n, k) = n, and the weights w j) for] € {0,n} and w = 1for 0 < j < n. The weights w for a

general kth order accurate rule are implicitly defined by the followmg procedure:

e n < k: 7, is approximated by the exact integral over the polynomial interpolation P®[yq, ..., y1(t),
nh
Tp ~ / de PPLyo, ..., yil(t) = thn]yJ (94)
0

32

//doc.rero.ch

http

Table 9
Weights of the first few Gregory integration rules, Eq. (92). In the table for each k, the numbers in
the left (right) (k+ 1) x (k+ 1) block define the weights SE? (E,(.';)), respectively, as shown in the last

table. The w weights can be read off from the last row of the X weights, a)}k) = 2,55), j=0,...,k
— 0 1
k=o0: 0 1
7
k=1 0 0 2 6
1 1 5 13
2 2 12 12
3 9 9
0 0 0 3 H 2
k=2: 5 2 _1 3 7 1
12 3 12 8 6 12
1 4 1 3 7 2
3 3 3 8 6 24
) () Q))
S0.0 e So.k 200 Eofk
)) w0 ®) ® _ @
Sk.0 e Sk.k o = @ Dk = O
. . . . k k
Hence the weights for n < k, which are denoted as starting weights wfu) = sffj)-, are equivalent to the polynomial integration
weights (89),
(k) _ (k) _ (k)
wy; =lppj =5, 0<n<k (95)

e n > k: To generate an approximation for the integral Z(t) = fot dty(t) at t = nh and n > k, we consider the differential equation
d Tl
dt

This equation is solved by taking the values Z; for 0 < j < k from the approximation (94), and solving for Z, at n > k by applying
the BDF . The resulting set of linear equations for Z,, with n > k,

() =y(t), 7(0) = 0. (96)

k
h_lzagk):[m—l:yms m=k+1,...,n, (97)
1=0

implicitly determines the values of the integral.

This procedure defines a weight matrix with the following structure:

(k) (k)
Soo Tt Sok 0 0
(k) 0)
i L
® oo ok @ 0
w¥=| : . . (98)
5k DS IR B
gq (k) 1 w;{k) a)g‘) 0
wgq ® 1 1 % L. wf)k) 0
wék) . wi{k) 1 e 1 w;{k) e wék) 0
Here the upper block contains the weights obtained from the polynomial approximation. For n > k we have m(n, k) = n. For n > 2k+1
the weights are symmetric w:j,j = w,’;.n_j = w}k) for j < k. For n > 2k + 1 the weights satisfy w,(f;_j_l = w;k) for j <k, and furthermore

wg‘j) = 1for k < j < n—k— 1. The latter property makes this quadrature rule different from, e. g., the Simpson rule, where the weights
alternate between % and % but never become one. Gregory quadrature rules for n > 2k+ 1 can thus be understood as a simple Riemann
sum Z, ~ h 2'7:0 yj with a boundary correction obtained from the function values {y;, y,—; : 0 < j < k}, thus generalizing the structure
of the trapezoidal rule (93). For completeness, the integration rules for some of the lowest k are presented in Table 9. The weights for
k=1,...,5 can be obtained from the integrator class (see Section 5).

The advantage of the Gregory integration is a uniform approximation of Z,: for any n, the error scales as O(h*+2) [36]. This is different
from Newton-Cotes rules of the same order k, which are only kth order accurate for a certain number of grid points. For instance, the
Simpson rule requires an odd number of grid points. The accuracy of the Gregory integration is illustrated in Fig. 14 for the integral
y(x) = exp(ix) with exact integral fox dx'y(x') = —i(exp(ix) — 1). In particular, the panel on the right-hand side of Fig. 14 confirms that
the average absolute error (1/N) Z’,LO |Z, — Z;¥| as a function of the number of points N scales as O(N~P) with p ~ k + 2.4 We also
compare to the Simpson’s rule, employing the trapezoidal rule for integrating over [nh, (n — 1)h] if n is odd (the total number of points
n+ 1 is even). As Fig. 14 shows, this primitive extension of Simpson’s rule induces oscillatory behavior of the error, as the accuracy is
hampered by the trapezoidal rule. Thus, the scaling of the averaged error is effectively reduced to first order (k = 1).

4 In the solution of the Volterra integral equations, discussed in Section 9, the overall error depends not only on the accuracy of this quadrature rule, but also on
the start-up procedure and the differential operator.

33

-4 —— k=2 —o— k=4 —— simps.

10 i
5 -25 g:t,
10 S
. "]']'I'l’l’l’l’l'lMllh. il Te
10 YT “5.0F Nljer-lel T8
s 407 —_ (:\\o ~..\\ "::::.
£ 5 75 ‘\’:\ o Te__
g o =2 e e ®
% 1079 © -10.0t ‘\\:\.\\ °
1 _ | ==+ p=298 —=- p=599 g =~
10 v 125 10N TTIrT e e
10_11 —150t p=4.96 — == simps. \\.
-12 . L " "
1060 05 10 15 20 25 1.5 2.0 25

xln

Fig. 14. Left panel: absolute error |Z, — Z;| of the Gregory integration for different orders k. Right panel: mean absolute error for integrating up to Xmax = 57/2,
discretizing the interval into N points with h = 0.0257x. The dashed lines are linear fits confirming the order of the Gregory quadrature.

Furthermore, the construction of the Gregory weights makes computing Z(t) by Gregory quadrature and solving the corresponding
differential equation by the BDF method numerically equivalent, ensuring consistency of the integral or differential formulation.

8.6. Boundary convolution

In this paragraph, we introduce a kth-order accurate approximation for a special kind of convolution integral, which appears in the
ontext of imaginary time convolutions. Consider the convolution integral

0.ch

t
c(t) = / dt'F(t — t')G(t") (99)
0

. __between two functions F and G which are only defined for t > 0, and cannot be continued into a differentiable function on the domain
< 0. On an equidistant mesh with t = mh and m < k, the integration range includes less than k points, and the functions must

qi)e continued outside the integration range in order to obtain an kth-order accurate approximation. Because of the structure of the

onvolution integral, F(t — t’) can only be continued to the domain t’ < 0, while G(t’) should be continued to the domain t’ > t.

We use the approximation

u
|
‘ ' mh
O c(mh) = / dt'PM[Fy, ..., FJ(mh — tYPW[Go, ..., GI(t). (100)
0
ﬁlsing Eq. (80), this can be transformed into
mh
Q c(mh) = Z f dt' PMh~(mh — t' Y F.Pynb(¢)G, (101)
P r,s,a,b=0
Q. = Z F.G, Z / dt' PO~ (mh — r’)apgf‘jh—”(t/)b]. (102)
H r,s=0 a,b=0
_C The terms in brackets are coefficients which can be precomputed, so that finally
mh k
/ drF(t —t)G(t) =h Y FGRY, .. (103)
0 r,s=0
R = Z PP f dx(m — x)%xP. (104)
a,b=0
The precomputed weights Rg;)r’s can be obtained from the integrator class.

9. Numerical details: Volterra integral equations

In this section, we present kth-order discrete approximations for various contour convolution integrals which appear in the solution
of the dyson, vie2, and convolution problems. The integrals constitute different contributions to the convolution (41), which
we separate into the Matsubara, retarded, mixed or lesser components of a contour function C. All equations are obtained in a
straightforward way from the Gregory integration (92) if the integration interval includes more than k + 1 function values, and from
the polynomial integration (89) or the boundary convolution (103) otherwise.

Below, we indicate by the label = < those equations which are exactly causal, i.e., the result C at real time arguments < nh does not
depend on the input functions A, f, B with (one or both) real time arguments larger than n. For the other equations, causality is satisfied
only up to the numerical accuracy. Furthermore, by adding a tilde A, B over the input functions in an equation we indicate that some
of the input values of A and B lie outside the domain of the herm_matrix type and must be obtained from the hermitian conjugates
A* and B, respectively (see Section 3).

34

Matsubara.

mhy
Cliaf. Bm) = [dr'a¥mh, — (0)8%r) = (105)
0
c (k) AM M
=h, A'f-1B) <k
- Zlo(;;:);lel m = (106)
=h. Y towp A f B! m >k
B
CHiAS.Bm) = [' A¥mh, — 70 B = (107)
mh,
/)
—h Z]l 0! Ry, mjzfAr“v”rf;flez“v’Lz m = Ne —k (108)
= h, Z g{) mi& 11\\7[,7J—1BM+1 m < Ny — k.
In the second equation AM(z) at the values t € [—8, 0] is obtained by using the periodicity property AM(t + 8) = £AM(z).
Retarded.
nh
CYUAS. Bin.m) = [dEA¥ (. EYOBCE,) = (109)
mh
=hYy L, nk)m]mn] n>kn—ms>k
éhzjo nm]nn—}fn—Janm n>kn—m<k (110)
_hZJOmM n}jj n<k.
: As mentioned above, the tilde Bij in the third equation in Eq. (110) indicates that Bj‘f is also evaluated outside the domain j > m of
the herm_matrix type, and thus needs to be reconstructed from B, i.e., B]Rm = B]‘fm = (Bi) . Analogous definitions hold for A
= the third equation, and Eﬁﬂ.ym in the second equation.
O Left-mixing components.
L nh
q) ClIA, f, B](n, m) :/ dtAR(nh, £)f (£)B!(f, mh,) (111)
0
L (k R
- —hZJ 0 SA’f n >k, (112)
O _th Own]n] nfk,
mhy
O dnfmmnm= [dealmh Y B~ mh) (113)
0
(k) 1
U _h ZJlO r’njl{‘ 1‘§BM —j m <k (114)
~ S Y wlal e | omsk,
\ =0 “'m,l""'m— T—
B
'O' CJA.f. BI(n. m) = / drA)(nh, T')f(07)BM(z' — mh,) (115)
mh¢
e Lh YK R(k) Al B m>N, —|
=h: 310 mle,Lflj mzNe =Kk (116)
== = h, Z;V:To Nr—m, m+Lf—1B}V[m < Ny — k.
-C Lesser components n < m.
nh
CFIAf. Bl(n. m) = / dEAR(nh, EY/(F)B=(E, mh) (117)
£ n (k) AR
_hzfz}ow%Aﬁfﬁ n>k, (118)
:hzj o W jAnifiBm n=k.
mh
G141, Bl m) = [dEA~ (o, EY R,) = (119)
=hY I w(k)A< m >k
o J=0 ff’ ’ (120)
_hZ]:meJ nf)j m<k.
G5IA, f,Bl(n,m) = —i/ dtAl(nh, t))f(07)B'(z, mh) = (121)
0
= —ih, Zw,(\f)JAl (122)

Because the advanced and right-mixing components are not stored by the herm_matrix type, these quantities must be reconstructed
from the hermitian conjugate. For example, B}m = —g[Bi]lnj in the third equation, and BJAm = [Bi],Rm in the second equation.

35

10. Numerical details: convolution integrals on C

The numerical solution of the vie2 and dyson integral equations is based on a mapping of these equations onto a set of coupled
VIEs or Volterra integro-differential equations (VIDEs). In this section, we first explain kth-order accurate algorithms for the solution
of Volterra equations. These algorithms are discussed in detail in the book by Brunner and van Houven [37].

10.1. Volterra Integro-differential equation

We consider a Volterra integro-differential equation (VIDE) of the form

dy t
i + p(e)y(t) + / dsk(t, s)y(s) = q(t). (123)

0
For given k(t, s), p(t), and q(t) and an initial condition specifying y(0), this equation must be solved to determine y(t) in the domain
t > 0. In the numerical solution all functions are known or determined on an equidistant mesh t; = jh,j =0, 1, 2, .. ., and we use the

notation k;; = k(jh, Ih), p; = p(lh), etc. Here and in the following, the values of the functions k, p, g, y can be complex matrices of size
d> 1.
The at least kth-order accurate solution of this equation is obtained by combining the kth-order Gregory quadrature in two steps:

(1) Start-up (bootstrapping): A procedure which is used to obtain a solution y; forj=1,..., k.
(2) Time-stepping: A procedure to obtain y, for n > k from {y; : j < n}.

In the algorithm explained below, the time-stepping is causal, i.e., the solution y, does not depend on the input k;;, p;, g; at [> n or
i > n. For the start-up, the numerical error at y, for n < k can depend on the input k;j, p;, gj at 0 < I,j < k. Furthermore, in the
numerical implementation we assume that the kernel k(t, t') can be defined as a differentiable function on the whole domain 0 < ¢, t’,
c)although only the values at 0 < t’ < t enter the exact integral.

®]0.1.1. Start-up procedure
For the start-up (bootstrapping) procedure we express the derivative in (123) in terms of the polynomial differentiation equa-
P tions (84) and (85), and use the Gregory integration (92) for the convolution

-

k k
q) h! ZD(n’f}yl + Pnyn + hz wg‘g knyi=qnforn=1,... k. (124)
1=0 1=0
"This defines a linear equation
Mix -+ M\ () q1 — Mi,0¥0
O |: =l) (125)
U Mgy -+ M) \Wk qn — Mk.0yo

. where the Matrix M is given by

~~

. Mg = h™'D} + 85.1pn + hw'] k. (126)

n,l

his k x k dimensional linear equation is solved directly. Note that when y, k, p, and q are d-dimensional matrices, the solution of the
Inear system amounts to inverting a matrix of size (kd) x (kd).

s , ,
10.1.2. Time-stepping
_C The time-stepping is done using a combination of backward differentiation (90) and Gregory integration (92)

k n
h™! Z a;k).anl +pnyn+h Z wgf])kn.l.)/l = ({n. (127)
1=0 1=0
If the y; are known for j < n we obtain a linear equation for y,,
k n—1
[h*laﬁ,") + Do + hwi,’f,lkn,n]yn = [qn —h' > " dya —h) wi’f}kn,zyz], (128)
=1 1=0
which is solved for y;.

10.1.3. Conjugate equation
For later convenience we also define the start-up and time-stepping relations to solve an equivalent conjugate equation

dy t
AP0+ [dsytss.) =) (129)
0
The start-up determines the values y1, ..., yx by solving the k x k linear equation
k
D yMip =0 —yoMon, 1<n<k (130)
I=1

36

http://doc.rero.ch

where the Matrix M is given by

My = h™'DY) + 8n.1pn + hwll ki . (131)
In the time-stepping, y, for n > k is determined by solving the linear equation
k n—1
Y [h*1ag<) T hw;’f;kn.n] = [qn Y -y wﬁff?ylk,,n]. (132)
I=1 1=0

10.2. Volterra Integral equation of the second kind

Small modifications of Eqs. (123) and (129) lead to the VIEs of the second kind
t
s+ [dsite.os) = ato, (133)
0

y(t) + / dsy(s)k(s, t) = q(t), (134)
0

with the same assumptions on the domain and the kernel. These equations are solved with the initial condition yy, = qj.
Start-up and time-stepping procedures are obtained from the integro-differential equation by setting p(t) = 1 and omitting the

differential: The start-up procedure for Eq. (133) determines the values y1, ..., yx by solving the k x k linear equation
k
> Muyi=qn—Muoyo. 1<n<k (135)
I=1

where the Matrix M is given by
My = 8n1 + hw k. (136)

n,

In the time-stepping, y, for n > k is determined by solving the linear equation

n—1
[1 +hw®), k,m] Yo = [qn —ny wﬁ,’fgkn,,y,]. (137)
1=0
The start-up procedure for the conjugate equation (134) determines the values y1, ..., yx by solving the k x k linear equation
k
ZYIMI,n =(qn —YoMon, 1=n<=<k, (138)

=1
where the Matrix M is given by

My = 81+ hw® ki n. (139)

n,l

In the time-stepping, y, for n > k is determined by solving the linear equation
n—1
yn[l + hw,(q'f,)qkn.n] = [qn —h Z w;’f;yllcl,n]. (140)
1=0

11. Implementation: convolution
11.1. Langreth rules

In this section, we present the implementation of the convolution routine which solves Eq. (41). Using the Langreth rules, the
convolution integral (41) is split into contributions from the Matsubara, retarded, left-mixing, and lesser components

ey = [" e A — 0B, (141)
R,) = /t iR YRR O, (142)
e, 1) = /0 AR, B (PR . 7)

+f0ﬁdm7(t,r’)f(o)BM(r/—r), (143)
C<(t,t)= /Ot deAR(e, D (E)B=(E, t') + /Ot/ dtA=(t, D (D)BA(E,)

B
- i/ dzAl(t,) (07)B (7, t). (144)
0

kth-order approximations to these individual components have been presented in Section 10.

37

It is also convenient to introduce the convolution of a two-time contour object with a function as
() = f GEA(E, B (F) .
c

Egs. (141)-(144) can be adapted to this case by replacing B(t, t’) by the identity function.
11.2. Matsubara

The evaluation of CM(), i.e., C at timeslice 7[C]_; is implemented as (cf. Egs. (105) and (107))
CM(mh,) = VA, f, BI(m) + C'[A, f, B)(m) for m =0, ..., N,.

11.3. Time steps

The evaluation of C at timeslice 7[C], for n > 0 is implemented as follows:
e Form=0,...,n|[cf Eq. (109)]:
CX(nh, mh) = CY[A, f, Bl(n, m).
e Form=0,...,N; [cf Eqgs. (111), (113), (115)]:
C'(nh, mh,) = Cl[A, f, B)(n, m) + C)[A, f, B](n, m)
+ CJIA, f, B](n, m).
e Form=0,...,n|[cf Eqgs. (117), (119), (121)]:
C=(mh, nh) =C{[A, f, Bl(m, n) + CS'[A, f, BI(m, n)
+ G5 [A, f, Bl(m, n).

ero.ch

(145)

(146)

(147)

(148)

(149)

omparison with the causal properties of Eqs. (105) to (121) shows that the causal time-dependence indicated in Table 5 is satisfied.

Response convolutions of the type of Eq. (145) are obtained by replacing B — 1 and simplifying the integration formulae in Section 10
Lacc
n

ordingly.

012. Implementation: dyson

In this section, we present the implementation of the dyson routine which solves Eq. (34a). To solve Eq. (34a), we again invoke the
angreth rules to split the equation of motion on the KB contour into the respective equations for the Matsubara, lesser, and left-mixing

UI:Z. 1. Langreth rules
\
\

" “components,

B
e — 3,GM(7) — €(07)GM(7) — f dt’ Mz —)Gz = 8(7),
A ’
s i0,GR(t, t') — e(t)GR(t, t/)—/ dt DR, O)GR(E,) =0
t./

t
i9,G'(t, T) — e(t)G'(t, T) — / dt =R(t, £)GI(t, 1)
0

B
=/ drx(t, T)GM(T' = 1),
0

i0,G=(t, t/)—e(t)G<(t,t/)—/ dt TR, O)G(t, t)
0

t/ B
:/ dt X <(t, £)GA(t, t’)—i/ dr X(t, t)Gl(z, t)).
0

0
Here Eq. (150) must be solved with the boundary condition

GM(—1) =GB - 1),
and the remaining equations are solved with the initial conditions
GR(t, t) = —i,
G0, 1) = iG¥(—7) = iEGM(B — 1),
G=(0,t") = —[G'(t', 0)]".

38

(150)

(151)

(152)

(153)

(154)

(155)
(156)
(157)

In the solution of the dyson problem, we will use in part the conjugate equation (34b) for the retarded and lesser components. These
equations translate into

t
— i GR(t, t') — GR(t, te(t) —/ deGR(t,) ZR(E, t') =0, (158)
t/

t
— i9pG=(t, t') — G=(t, t/)e(r’)—/ dt GR(t, £) T =(t, t')
0

t B
= / dt G=(t, H)TA(E, t') — i/ dr Gl(t, T)X(z, t). (159)
0 0
which are solved with the initial conditions (155) and
G<(t,0) = G(t, 0). (160)

12.2. Matsubara

The Matsubara GF is obtained by solving Eq. (150). Unlike the Dyson equations for the real-time and mixed components, Eq. (150)
constitutes a boundary-value integro-differential equation.

Fourier series representation. — The (anti-) periodicity GM(z 4+ B) = £GM(z) allows to express the Matsubara GF by the Fourier series

N,
1 z ;
Mo)=— D e Mion) (161)
ﬂ m=—N,
with N,, — o0, where
2mz : bosons
@m = 72(’3““)” : fermions (162)
5 :
denote the Matsubara frequencies. The Fourier coefficients GM(iw,,) are, in turn, determined by
B)
GM(iwm):/ dtr GM(z)elom® . (163)
0

Defining the imaginary frequency representation of the self-energy >M(iwy,) in an analogous fashion, the Dyson equation (150) is
transformed into the algebraic equation

(iwm — €(07)) GM(iwm) = CM(iwm) ZM (iwm) . (164)

which is readily solved for GM(iw,,). Evaluating the Fourier sum (161) then yields GM(t).
Due to the discontinuity of GM(r) at t = 0 and t = B, GFs show the asymptotic behavior G(iw,) ~ (iw,)~!. These tails must be
treated exactly in order to assure convergence of the Fourier sum (161). Modifying the Matsubara GF in 0 < 7 < 8 according to

//doc.rero.ch

_ GM(7) + 1 : fermions
M _ 2
. s co= {GM(t) 52 :bosons, .

and in an (anti-) periodic fashion outside this interval, removes the discontinuity at Tt = 0 and t = f, so that EM(‘L’) becomes a
continuous function. The Fourier coefficients are thus obtained by
GMiom) = ——— + GM(iom) (166)

iwn

http

where EM(ia)m) is analogous to Eq. (163). We numerically perform the back-transformation (161) on EM(iwm), and then obtain GM(1)
from (165).

For the Fourier transform, we use a piecewise cubic interpolation, yielding a cubically corrected discrete Fourier transformation as
described in chapter 13.9 of Ref. [38]. The convergence of this method is determined by the number of frequency points N,,. We chose
N, = pN; in the Fourier sum (161), where p is an oversampling factor (typically p = 10).

In practice, the convergence of this method is limited by the tail correction and thus the average error scales as O(h?) (see Section 6.1
for an illustrative example). The accuracy can be improved to O(h’;+2)5 by solving the integral equation (150). For convenience, we
reformulate the Dyson equation in terms of the integral equation

M) =g"(@) + K« GM(z), KM(r) =g Z]M(z), (167)
where gM(7) solves Eq. (150) with XM = 0. The exact solution reads
g¥(t) = —fe(e(07) — p)exp(—€(07)7) (168)

where fg(w) = 1+&f:(w) and fz(w) denote the Fermi (§ = —1) or Bose (§ = 1) distribution, respectively. Eq. (167) constitutes a linear
equation for GM(mh,).
We have implemented a variation of Newton’s method for solving this equation iteratively:

5 The accuracy of solution of an integral equation G + F %« G = Q is identical to the accuracy of the quadrature rule if the convolution integral is bounded such
that ||F % 8G|| < const.||8G]|.

39

Newton Iteration. — After solving for GM(mh,) via the Fourier method, the residual

R(mh,) = GM(mh.) — [K % G]"'(mh,) — gM(mh,) (169)
is generally not zero, as the accuracy of the Fourier method is different from the kth-order accurate convolution. We can regard R
defined in Eq. (169) as a functional R[G]. Finding the root R[G] = 0 of the functional is equivalent to solving the Dyson equation in
integral form. To find the root, we set up an iteration in the form

GMD(mh,) = MO(mh,) — AGMD(mh,), (170)
where the update to the ith iteration, AGM(mh,), obeys the equation

AGMD(mh,) — [K * AGYM(mh,) = RO(mh,) .

To estimate the update, the above equation is solved using the Fourier method. This procedure provides a rapidly converging® iteration
to minimize the magnitude of the resolvent (169). As an initial guess GM(®(mh,), we again employ the Fourier method. This procedure
can be considered as the Newton iteration for finding the root of the functional R[G] with an approximation for the derivative §R/§G.

The routine dyson_mat provides a general interface for both methods. The optional argument method can be set to CNTR_MAT_
FOURIER if the Fourier method is to be used, or to CNTR_MAT_FIXPOINT for the Newton iteration.

12.3. Start

The dyson_start routine evaluates G on the time-slices 7[G], for 0 < n < k (cf. Table 3).

e To determine GR(nh, mh) for 0 < n < k and n < m < k we consider Eq. (151) with initial condition (155). The solution is similar
to the start-up procedure for a Volterra equation (123): At each fixed m, we use a polynomial approximation for y(t) = GX(t, mh)
with GR | =y,

GR m<n<k
Yo =14 —i m=n (171)
—[GR)T 0<n<m.

Here the values y, for n < m amount to a continuous extrapolation of GR(t, t') to the domain t < t’. When Eq. (151) is solved

//doc.rero.ch

successively for m = 0, 1, ..., k, the values y, are already known for n < m. Inserting the polynomial ansatz for y(t) into (151)
yields
k k
ih™ > "Dy +enyn —h Y 10 SRy =0. (172)
1=0 1=0
This is transformed into a (k — m) x (k — m) linear problem,
k m
Z Mn,,y,:—ZMn,,y,an, n=m+1,...,k, (173)
I=m+1 =0
_ =1 (k) (k) R
n My =ih Dn’, ~+ On.1€n — hIm,n;IEn,l’ (174)

Because the input y<p, for Q, has been computed previously, this equation can be solved for ;..
e To determine G!(nh, mh,) for 0 < n < kand 0 < m < N, we consider Eq. (152) with initial condition (156). For each given m,
this equation provides a Volterra equation of standard type (123), with the replacement

y(t) = Gl(t, 7), p(t) =ie(t), k(t,s)=iZR(t,s), (175)

http

B
q(t) = —i/ dzx(t, 7)GM(T = 7). (176)
0

For 0 < n < k, the Volterra equation is solved using the start-up algorithm (125), where the convolution routines Egs. (113) and
(115) are used to evaluate g(nh),
q(t) = —iC)[2, 1, Gl(n, m) — iC}[£, 1, G](n, m). (177)

e To determine G<(mh, nh) for 0 < n < k and 0 < m < n we consider Eq. (153) with the initial condition (157). For each given n,
this equation corresponds to a Volterra equation of standard type (123), with the replacement

y(t) = G=(t,nh), p(t) =ie(t), k(t,s)=iZ"(t,s), (178)
and a source term q(t) which is obtained from the convolution routines Eqgs. (119) and (121),
q(t) = —iC;[¥, 1,Gl(m, n) — iC5 [X, 1, Gl(m, n). (179)

Note that G< must be calculated after G! and GR have been evaluated at time-slices 7 [Glo<n<k, so that the input for the latter
convolution is already known at this stage of the algorithm. For 0 < m < k, the Volterra equation is solved using the start-up
algorithm (125).

6 If the error of solving the auxiliary equation for AGM can be neglected, exactly one iteration is required to reach convergence.

40

//doc.rero.ch

http

000

©
00600000

00090000

00000900000

Q00000 0 0 0 XQ
O—0—0—00-00-0-0-0-XQ

00 0000 0 O

0—O0—0—0

900000 0 0 O
© 06 06 06 06 0 0O

"t "t "t

Fig. 15. Propagation scheme of dyson with k = 3. (a) Starting at the diagonal Gﬁyn with the initial condition (155), the start-up algorithm determines Gﬁ'm for

m=n-—1,...,n— k. (b) After the start-up procedure, the remaining values of Gﬁim, m=n—-k=1,..., 0 can be computed. (c) Parallel version of the dyson
solver for the retarded component: the values G‘}M can be computed in parallel for m=0, ..., n — k, while the boundary values are obtained as in (a). (d) Start-up
procedure for G , form=0,..., k and subsequent time stepping (e). (f) Parallel algorithm for calculating G, , form=1,..., n—k.

12.4. Time stepping

The dyson_timestep routines evaluate G from Eq. (34a) on time-slice 7[G], for n > k, provided that G is already known at
time-slices 7[G]; for j < n (cf. Table 3). T[Gl, is calculated successively for the retarded, left-mixing, and lesser components:

e To determine GX(nh, mh) for fixed n and 0 < m < n there are two alternatives:

(A) We can consider Eq. (158) with initial condition (155). The equation reduces to a standard Volterra equation (129), with the

replacement
y(t) = GR(nh, nh —t) , p(t) = ie(nh — t),
k(t,s) = ix®(nh —s,nh —t), y(0)= —i. (180)

The equation is solved using the start-up algorithm (130) for t = Ih, 0 < | < k (i.e., to compute Gﬁ,m forn—k <m < n),
while the time stepping algorithm (132) in t is applied for t = Ih, | > k (i.e., to compute Gﬁ,m for 0 < m < n — k). The
time-stepping scheme is sketched in Fig. 15(a) and (b).

(B) We can consider Eq. (151) with the initial condition (155). The equation reduces to a standard Volterra equation (123) with
the replacement

y(t) = GR(mh +t, mh) , p(t) = ie(mh +),
k(t,s) = iZ¥(mh +t, mh+s), y(0) = —i. (181)

For each 0 < m < n — k this equation is solved for the single time t = (n — m)h (i.e. t = nh), using the time-stepping
method (128). Implementation (B) seems to have, in some cases, a slightly larger numerical error than the alternative (A).
However, the Volterra time-steps for 0 < m < n—k can be carried out in parallel, while the implementation (A) is inherently
serial. Hence we use alternative (B) for the openMP parallel implementations dyson_timestep_omp, while (A) is used for
the serial implementation dyson_timestep. For simplicity and better stability, the values Gﬁ_m forn—k < m < n are always
determined from the implementation (A). Fig. 15(c) illustrates the parallel propagation scheme.

e To determine G!(nh, mh,) for fixed n > k, we consider Eq. (152) with initial condition (156). For each given m, this equation
provides a Volterra equation of standard type (129), with the replacement

y(t)=Gl(t, 1), p(t) =ie(t), k(t,s) =iZX(¢,s) (182)
with a source term q(t) that is evaluated using the convolution routines Eqgs. (113) and (115),
q(nh) = —iC)[£, 1, Gl(n, m) — iC)[%, 1, G](n, m). (183)

The Volterra equation is solved using the time stepping (128) at the single step n.
e To determine G=(mh, nh) for given n and 0 < m < n we again have two alternatives:

(A) We consider Eq. (153) with the initial condition (157). For each given n, this equation becomes a Volterra equation of standard
type (123), with the replacement

y(t) = G=(t,nh), p(t) =ie(t), k(t,s)=iZ®(t,s), (184)

41

and a source term q(t) which is obtained from the convolution routines Eqs. (119) and (121)
q(t) = —iC; [X, 1, Gl(m, n) — iC5 [X, 1, GI(m, n). (185)

The equation is solved using the start-up algorithm (125) for 0 < m < k (see Fig. 15(d)) and the successive time stepping
according to Eq. (128) for k < m < n (Fig. 15(e)).

(B) Alternatively, we consider Eq. (159) with the initial condition (160). For each given m, this equation provides a Volterra
equation of standard type (129), with the replacement

Y(E) =G (mh, t), p(t) = —ie(t) , k(s, 1) = —iZR(s, T), (186)
and a source term q(t) which is obtained from the convolution routines Eqs. (119) and (121),
q(nh) =iC;7[G, 1, X](m, n) + iC57[G, 1, ¥](m, n). (187)

The equation is solved using a single time step (132) t = nh for each 0 < m < n — k. Since all these steps are independent,
they can be performed in parallel. Hence, we have implemented a parallelized version dyson_timestep_omp based on
openMP threads. The boundary values m = n—k, ..., n are obtained using the serial implementation (A), after G;; , has been
obtained from implementation (B) at 0 < m < n — k. The scheme is sketched in Fig. 15(f). '

13. Implementation: vie2

:13.1. Langreth rules

In this section we present the implementation of the vie2 routine which solves Eq. (37a). The solution is largely equivalent to dyson,
shut it reduces to a VIE instead of a VIDE. To solve Eq. (37a), we again employ the Langreth rules to obtain the individual equations for
Othe Matsubara, lesser, and left-mixing components,

B
GM(7) +/ dt' FM(z — t)G(r') = QM(7), (188)
0
t
GR(t, t’)+/ de FR(t, ©)GR(E, t') = QR(t, t) (189)
t/

t
Gl(t,)+ / dt FR(t, £)GI(E, 7)
0

//doc.rer

B
=Ql(t, r)—f dtF'(t, T)GM(z' = 1), (190)
0
t
G<(t, t') + / deFR(t, 1)G=(E, t))
| I | 0 ¢ B
Q_ =Q<(t,t)— / dt F=(t, T)GA(TL, t') + if dr FI(t, 7)G/(z,). (191)
I) 0 0
wjmdtere Eq. (188) must be solved with the boundary condition
L cen=sc¥p-0). (192)
while the remaining equations are solved with initial conditions
Gh(t,) = QN(t, 1) (193)
G0, 7) = iGM(—7) = iEGM(B — 1), (194)
G=(0,t'") = —[G'(t', 0)]f (195)

13.2. Matsubara

The solution of the VIE for the Matsubara component (Eq. (188)) is analogous to dyson_mat. After transforming to the imaginary
frequency representation (cf. Eq. (166)), Eq. (188) is transformed to the algebraic equation

GM(iwm) + FM(iwn)GV (iom) = Q (i) . (196)

Solving this linear system and calculating the Fourier sum (161) then yields GM(1).

The accuracy of solving Eq. (188) can again be elevated to O(h’r‘”) order by the Newton iteration. The algorithm is analogous to the
one discussed in Section 12.2, upon replacing g™ — QM, KM — —FM,

The interface vie2_mat allows to choose either method by specifying the argument method = CNTR_MAT_FQURIER for the Fourier
method, and method = CNTR_MAT_FIXPOINT for the Newton iteration, respectively. By default, Newton's method is employed.

42

13.3. Start

The vie2_start routine evaluates G on the time-slices 7[G],, 0 < n < k (cf. Table 4).

e To determine GR(nh, mh) for 0 < n < k and n < m < k we consider Eq. (189) with initial condition (193). The solution is similar
to the start-up procedure for a Volterra equation (123): At each fixed m, we use a polynomial approximation for y(t) = GX(t, mh)
with G} | = yn

GR m<n<k

yn=10Q%, m=n (197)
—[GR T 0<n<m.

Here the values y, for n < m amount to a continuous extrapolation of GR(t, t') to the domain t < t’. When Eq. (189) is solved

successively for m = 0, 1, ..., k, the values y, are already known for n < m. Inserting the polynomial ansatz for y(t) into (189)
yields

Vn +h21§n{1 FRyi = (198)

This is transformed into an (k — m) x (k — m) linear problem,

m
D Myyi== Muy, n=m+1,....k (199)
[=m+1 =0
My = € + % R, (200)

Because the input y,<p, for the right-hand side has been computed previously, this equation can be solved for y.p.
e To determine G!(nh, mh;) for 0 < n < kand 0 < m < N, we consider Eq. (190) with the initial condition (194). For each given
m, this equation provides a Volterra equation of standard type (133), with the replacement

y(t) = Gl(t, 1), k(t,s)=FNt,s), (201)
where the source q(t) is evaluated using the convolution routines Egs. (113) and (115),
q(nh) = —Gy[F, 1, Gl(n, m) — C}[F, 1,G](n, m) + Q] . (202)

For 0 < n < k, the Volterra equation is solved using the start-up algorithm (135).
e To determine G=<(mh, nh) for 0 < n < kand 0 < m < n we consider Eq. (191) with the initial condition (195). For each given n,
this equation provides a Volterra equation of standard type (133), with the replacement

//doc.rero.ch

y(t) = G=(t,nh), k(t,s)=FN(t,s), (203)
and a source term q(t) which is obtained from the convolution routines Egs. (119) and (121),
q(t) = =G, [F, 1, G](m, n) — C5'[F, 1, GI(m, n) + Q.- (204)

Note that G< must be calculated after G' and G® have been evaluated at the time-slices T[Glo<n<, S0 that the input for the latter
convolution is already known at this stage of the algorithm. For 0 < m < k, the Volterra equation is solved using the start-up
algorithm (135).

13.4. Time stepping

http

Once the start-up problem has been solved and 7[G], is known for n = 0, ..., k, time-stepping can be employed (see Table 4).
Mapping the VIEs (189)-(191) to the standard VIE (133) allows to directly adopt the algorithm from Section 10.2. Suppose GR(jh, mh),
G'(jh, Ih;) and G<(mh, jh) are known forj =0,...,n—1,m=0,...,jand | = 0, ..., N;. Then the next time step 7[G], is obtained
as follows:

e In order to compute GR(nh, mh), form =0, ..., n—1 (since GX(nh, nh) = QR(nh, nh)), we approximate the convolution by Eq. (109).
Hence, setting y(t) = GR(t, mh) for fixed m maps Eq. (189) to the standard VIE (123) for n — m > k. One obtains

yﬂ_qn+h2wn —m,j—m .jyj’

j=m

where the continuous extension (197) is implied. The above equation is then solved for y,. For n —m < k, the procedure is similar:
via the approximation (109), the VIE translates to

yn—Qn+thn m.j]yn—jv
j=0

which is readily solved for y,. Note that only GR(nh, mh) needs to be extrapolated to the upper triangle, while the kernel
F,‘Em = FR(nh, mh) is strictly causal. Except for the case n — m < k, the time step n — 1 — n can be carried out independently
for every m = 0. Therefore, these time steps can be performed in parallel, as implemented in the openMP-based function
vie2_timestep_omp.

43

e The VIE (190) maps to the standard VIE (133) upon identifying y(t) = G!(t, mh,), k(t, s) = FX(t, s), while the source term q(t) is
obtained by the identification (202). The time-stepping algorithm (137) can be used directly. All steps depend only parametrically
on m, so parallel propagation is straightforward.

e Once GR(nh, mh) and G'(nh,lh;) (m = 0,...,n, | = 0,...,N;) have been obtained, the lesser component G=<(mh, nh) can be
computed. As for dyson_timestep, there are two options for proceeding:

(A) The substitutions (203) and (204) map the lesser VIE (191) to the standard VIE (133). Form = 0, ..., k, the resulting equation
is solved by the start-up method (135), using the initial condition (195). For m = k+ 1, ... n, the time propagation proceeds
by solving Eq. (137). This scheme of time stepping is sequential by construction.

(B) Instead of starting from Eq. (191), the conjugate equation

Gt)+ G+ FH=(t, ") = Q~(¢,)
can serve as a starting point. The substitution

y(t) = G=(mh, t), k(s, t) = [F*]*(s, 1)
q(mh) = —C{°[G, 1, F*](m, n) — C5'[G, 1, F*](m, n) + Q=(mh, nh)
leads the to the conjugate VIE (134), which can then be propagated by invoking Eq. (140). This time-stepping scheme can

be performed for all m = 0, ...,n — 1 in parallel, as implemented in vie2_timestep_omp. The last point G=(nh, nh) can
be computed once G<(nh, (n — 1)h) = —[G=<((n — 1)h, nh)]' is known.

£14. Implementation: Free Green'’s functions

O Free GFs Gy(t, t') are determined from the equation of motion [cf. Eq. (33)]
" [id; — €(t)] Go(t, t') = 8c(t, t') (205)

Oas follows. Let us denote the eigenvalues of the Hamiltonian matrix €(0~) by &, and the corresponding basis transformation matrix by
, such that €(0~) = Rdiag{e,}R! (diag{e,} stands for the diagonal matrix containing the energies s,). The Matsubara component is

then given by
| -

GY(7) = Rdiag{fi (11 — &,)e @ M)RT (206)

or T € (0, B).
U All other Keldysh components of Gy(t,t’) are governed by the unitary time evolution (defined in Eq. (5)) with respect to the
ingle-particle Hamiltonian €(t).

-014.1. Commutator-free matrix exponentials
\

~~

s = On the equidistant grid t, = nh, we approximate the propagator U,; = U(nh, jh) by the commutator-free matrix exponential
mproximation described in Ref. [39]. In particular, we have implemented the fourth-order approximation

= Unt1,n = exp[—i(aie((n + c1)h) + aze((n + c2)h))] (207)

=+ x exp [—i(aze((n + c1)h) + are((n + c2)h))] + O(h°) .

-C\Nhere a, = 3—2v3)/12,a, = 3+ 2/3)/12, ¢; = (1 —1/+/3)/2 and ¢; = (1 + 1/+/3)/2. Using the semi-group property
Unj = Upn-1Un—1,n—2 . .. Ujy1j, We can thus express the propagator up to O(h*). The Hamiltonian at the intermediate points (n + c;.3)
entering Eq. (207) is approximated by polynomial interpolation, using the points n—k+1, ..., n, n+1 (see Section 8). If €(t) represents
a mean-field Hamiltonian, which is self-consistently determined in the course of the time step n — n+ 1, €,1 is typically not known

before the GF at time step n + 1 has been computed. Hence, we employ polynomial extrapolation to provide a guess for €, before
interpolating.

14.2. Real-time and mixed components

Based on the commutator-free matrix exponential approximation, the remaining Keldysh components are determined by

Gl(nh, T) = —igU, o(nh, 0)R diag{fi (s, — p)e«)R (208a)
Go(nh, jh) = —iUyj = UnolUjol" . (208b)
Gg (jh, nh) = iU; oR diag{f (e, — w)}R'[Un,o]" . (208c¢)

Note that for a time-independent Hamiltonian, Eq. (208) is numerically exact up to round-off errors. Furthermore, the structure of
Eq. (208) allows to compute the time slice 7[Gg], directly.

44

tp://doc.rero.ch

e

L

15. Conclusions

We have presented the NESSi library, a Non-Equilibrium Systems Simulation package. This open-source computational physics
library provides a simple and efficient framework for simulations of quantum many-body systems out of equilibrium, based on the
Greens function formalism. The numerical routines employed in the solution of the Kadanoff-Baym equations and the evaluation of
Feynman diagrams have been described in detail. We have exemplified the usage of the library by several applications ranging from
simple two-level problems to the state-of-the-art simulations of interacting lattice systems. This information should enable users of
the library to implement and run custom applications.

NESSi is an open source library and we encourage contributions and feedback from the user community. We will continue to
work on extensions of the library. Planned near-term improvements include the publication of a software package for nonequilibrium
impurity and dynamical mean-field theory calculations based on strong-coupling perturbative solvers, non-equilibrium steady state
solvers, and truncation schemes for the memory integrals in the integral equations. The latest updates will posted on the web page
www.nessi.tuxfamily.org, which also contains a link to the repository, installation instructions, a detailed manual of all relevant classes
and routines, and additional example programs. Contributions to the future extensions are welcome, although we recommend to
coordinate with the main NESSi developers before embarking on any major coding effort. Any issues encountered in the use of the
library should be exclusively reported via the contact address specified on the web site www.nessi.tuxfamily.org.

CRediT authorship contribution statement

Michael Schiiler: Software, Validation, Writing - original draft, Writing - review & editing, Visualization, Supervision. Denis Golez:
Software, Validation, Writing - original draft, Writing - review & editing, Visualization, Supervision. Yuta Murakami: Software, Writing
- original draft, Writing - review & editing, Visualization. Nikolaj Bittner: Validation, Writing - review & editing, Visualization. Andreas
Herrmann: Software, Validation, Writing - review & editing. Hugo U.R. Strand: Validation, Writing - original draft, Writing - review &
editing, Visualization. Philipp Werner: Conceptualization, Resources, Writing - review & editing, Supervision, Project administration,
Funding acquisition. Martin Eckstein: Conceptualization, Methodology, Software, Writing - original draft, Writing - review & editing,
Supervision, Project administration, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

We thank Marcus Kollar, Naoto Tsuji, Jiajun Li, and Nagamalleswararao Dasari, for important feedback while using the library, and
for collaborations on early stages of the library. The development of this library has been supported by the Swiss National Science
Foundation through SNF Professorship PP0022-118866 (ME,PW), Grants 200021-140648 and 200021-165539 (DG), and NCCR MARVEL
(MS,YM), as well as the European Research Council through ERC Starting Grant Nos. 278023 (AH,HS,PW) and 716648 (ME), and ERC
Consolidator Grant No. 724103 (MS,NB,PW,YM). MS thanks the Alexander von Humboldt Foundation, Germany for its support with a
Feodor Lynen scholarship. The Flatiro Institute as a division of the Simons Foundation.

Appendix A. Contour function utilities

In this appendix, we describe how contour functions can be extrapolated by polynomial extrapolation. Furthermore, we define an
absolute-value-norm for contour functions.

A.1. Extrapolation of contour functions

Based on polynomial interpolation (see Section 8.1), we define the polynomial extrapolation by
k
Y1 = ch(k)Yn—l , (A1)
1=0

where y; = y(lh). The coefficients C,(k) are obtained by inserting t = (n+ 1)h into Eq. (79). For extrapolations in the two-time plane, we
have implemented the following algorithm:

e To approximate G!((n + 1)h, t) we set y(t) = G!(t,) for fixed T and apply Eq. (A.1).

e For extrapolating the retarded component, we set y(t) = GX(t, jh) for j = 0, ..., k and apply Eq. (A.1). For the remaining points,
we extrapolate along lines parallel to the time diagonal by identifying y(t) = GX(t, t —jh) forj = 0, ..., n— k. Using Eq. (A.1) then
yields the extrapolation to GR((n 4+ 1)h, (n + 1 — j)h) & y, 1.

e Similarly, the lesser component can be extrapolated by identifying

G=(jh, t it > jh
yoy=|CUmo ez
=[G=(t,jm)]" :t <jh
Polynomial extrapolation (A.1) then yields G=(jh, (n 4+ 1)h) for j = 0, ..., k. Analogous to the retarded component, the remaining

points in the two-time plain are obtained by applying Eq. (A.1) to y(t) = G~(j—n—1)h+t,t)forj=k+1,...,n+ 1. Note that
this includes the diagonal G=((n + 1)h, (n + 1)h).

Eq. (A.1) can also be applied to single-time contour functions f(t). The above algorithm is implemented in the function extrapolate_
timestep.

45

A.2. Absolute-value-norm

For assessing the convergence of self-consistent algorithms, we introduce a absolute-value-norm for contour functions. Consider
two time slices 7[A],, 7[Bl, at time step n. We define the distance for the individual components as

|A—BIM = Z > |AY,(mh) — BY,(mh,) (A.2a)
m=0 a,b

IA— B = ,(nh, mh,) — B} ,(nh, mh) (A2b)
m=0 a,b

IA — B[} Z > |A% p(nh, jh) — B y(nh, jh) (A2¢)
j=0 a,b

IA— Bl = Z > " |As(ih, nh) — B3 ,(h, nh))| . (A2d)
j=0 ab

The total distance at time step n is then defined by
_C A—BM n=-1
1A — Bll, = {” I) o (A3)
() lA—Bll, +IA—B|l, +|A—=B|; :n>0

®The absolute-value-norm Eq. (A.3) is implemented in the function distance_norm2.

ppendix B. Instructions for installation and running : nessi_demo example programs

ero

We assume that the 1ibentr library has been compiled successfully and installed under the prefix /home/opt. Hence, /home/opt/
L1ib contains the shared library 1ibcntr.so (or libentr.dylib under MacOSX), while /home/opt/include contains the directory

"cntr with all required headers. After downloading or cloning the repository nessi_demo, navigate into examples in nessi and
reate a build directory (for instance, cbuild). The installation procedure is similar to the compilation of 1ibcntr (see Section 5.2).
OWe recommend creating a configuration script similar to

C

CC=[C compiler] CXX=[C++ compiler] \

1
Uz cmake \
3 -DCMAKE_BUILD_TYPE=[Debug|Release] \
S~ -Domp=[ON|OFF] \
~ -Dhdf5=[0N|OFF] \
LI -Dmpi=[0N|OFF] \

-DCMAKE_INCLUDE_PATH=[include directory] \
-DCMAKE_LIBRARY_PATH=[library directory] \
9 -DCMAKE_CXX_FLAGS="[compiling flags]" \

10 ..

P

tt

:For compiling all examples including the translationally invariant Hubbard model (Section 7.2), MPI compilers need to be provided for
the C and the C++ compiler. Furthermore, set mpi=0N.
CMAKE_INCLUDE_PATH needs to include the path used to compile 1ibcntr (containing the eigen3 and hdf5 headers) and,
additionally, /home/opt/include. The paths provided to CMAKE_LIBRARY_PATH should include all the library paths used to compile
libentr, extended by /home/opt/1ib. We recommend using the same compiler flags as for the compilation of libentr, including

1 -std=c++11
After creating the above configure script (for instance, configure.sh), navigate to the build directory and run

1 sh ../configure.sh
2 make

to compile the example programs. The executables are placed under nessi_demo/exe.

The utils/ directory contains useful python driver scripts which simplify the execution of the example programs. In order to run
the python script, we need to make sure to set the python path to nessi/libcntr/python and/or nessi/libentr/python3. The
scripts should be ran from nessi/examples as follows:

1 python3 utils/*******.py k

Here, “k” is input only necessary for test_equilibrium.py and test_nonequilibrium.py. In the Table B.10, we summarize the
python scripts and the corresponding exe files and provide brief explanations of what is done in the python scripts.

46

Table B.10
Summary of the python scripts to run examples.

Python scripts in utils Explanation Sec.

test_equilibrium.py Runs the execute file test_equilibrium.x to show the 6.1
scaling of accuracy of the Matsubara Dyson solvers with the
specified order as an input. A figure for the scaling against N,
is created.

test_nonequilibrium.py Runs test_nonequilibrium.x to show the scaling of 6.1
accuracy of the integro-differential (Dyson) and integral (VIE2)
formulation with the specified order as an input. A figure for
the scaling against N; is created.

demo_hubbard_chain.py Runs hubbard_chain_x*.x to simulate quench dynamics of 6.2
the Hubbard chain. Here, ** (= 2b, gw, tpp) indicates
different many body approximations, which can be specified
in the python script. Figure for the time evolution of density
and energies are created.

demo_Holstein_impurity.py Runs Holstein_impurity_singlebath_x*.x to simulate 6.3
dynamics against modulation of system parameters in the
Holstein-type impurity with a single bath site. Here, ** (=
Migdal, uMig) indicates different approximate impurity
solvers, which can be specified in the python script. The
spectra of electrons and phonons and the time evolution of
phonon displacement and energies are plotted.

demo_Holstein.py Runs Holstein_bethe_x*.x to simulate dynamics of the 6.3
Holstein model against modulation of system parameters
within DMFT. The rest is the same as
demo_Holstein_impurity.py.

demo_Holstein_sc.py Runs Holstein_bethe_Nambu_x**.x, which is a generalized 6.3
version of Holstein_bethe_**.x to treat s-wave
superconductor (SC). In addition to figures for the spectra and
evolution of densities and energies, evolution of the SC order
parameter is plotted.

demo_gw.py Runs gw.x to simulate the 1dim chain of the extended 7.2
Hubbard model within the GW approximation using MPI
parallelization. The script create figures for the electric field
and the change in the kinetic energy.

demo_integration.py Runs integration.x to demonstrate the accuracy of the 8.5
Gregory integration implemented in nessi. The same figure
as Fig. 14(a) is created.

References

//doc.rero.ch

[1] AJ. Daley, C. Kollath, U. Schollwdck, G. Vidal,]. Stat. Mech. Theor. Exp. 2004 (04) (2004) P04005, http://dx.doi.org/10.1088/1742-5468/2004/04/p04005.
[2] S.R. White, A.E. Feiguin, Phys. Rev. Lett. 93 (2004) 076401, http://dx.doi.org/10.1103/PhysRevLett.93.076401.
[3] K. Ido, T. Ohgoe, M. Imada, Phys. Rev. B 92 (2015) 245106, http://dx.doi.org/10.1103/PhysRevB.92.245106.
[4] G.D. Mahan, Many-Particle Physics, Plenum Press, New York, 1990.
[5] J.E. Gubernatis, N. Kawashima, P. Werner, Quantum Monte Carlo methods, Cambridge University Press, Cambridge, 2016.
[6] L.P. Kadanoff, G. Baym, Quantum Statistical Mechanics, W. A. Benjamin, New York, 1962.
[7] L. Keldysh, JETP 20 (4) (1965) 1018.
[8] A.A. Abrikosov, L.P. Gorkov, LE. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics, Dover, New York, 1975.
[9] G. Stefanucci, R.v. Leeuwen, Nonequilibrium Many-Body Theory of Quantum Systems: A Modern Introduction, Cambridge University Press, 2013.
[10] A. Kamenev, Field Theory of Non-Equilibrium Systems, Cambridge University Press, 2011.
[11] K. Balzer, M. Bonitz, Nonequilibrium Green’S Functions Approach To Inhomogeneous Systems, Springer, 2012.
[12] A. Stan, N.E. Dahlen, R. van Leeuwen,]. Chem. Phys. 130 (22) (2009) 224101, http://dx.doi.org/10.1063/1.3127247.
[13] L. Hedin, J. Phys.: Condens. Matter 11 (42) (1999) R489-R528, http://dx.doi.org/10.1088/0953-8984/11/42/201.
[14] H. Aoki, N. Tsuji, M. Eckstein, M. Kollar, T. Oka, P. Werner, Rev. Modern Phys. 86 (2014) 779-837, http://dx.doi.org/10.1103/RevModPhys.86.779.
[15] N. Tsuji, P. Werner, Phys. Rev. B 88 (2013) 165115, http://dx.doi.org/10.1103/PhysRevB.88.165115.
[16] M. Eckstein, P. Werner, Phys. Rev. B 82 (2010) 115115, http://dx.doi.org/10.1103/PhysRevB.82.115115.
[17] H. Keiter, J.C. Kimball, J. Appl. Phys. 42 (4) (1971) 1460-1461, http://dx.doi.org/10.1063/1.1660293.
[18] T. Pruschke, N. Grewe, Z. Phys. B 74 (4) (1989) 439-449, http://dx.doi.org/10.1007/BF01311391.
[19] F. Aryasetiawan, O. Gunnarsson, Rep. Progr. Phys. 61 (3) (1998) 237-312, http://dx.doi.org/10.1088/0034-4885/61/3/002.
[20] [A modern, C]++-native, header-only, test framework for unit-tests, TDD and BDD: using C++11, C++14, C++17 and later (or C++03 on the Catch1l.x branch) -
catchorg/Catch2, 2010, original-date: 2010-11-08T18:22:56Z (Feb. 2019). URL https://github.com/catchorg/Catch2.
[21] M. Puig von Friesen, C. Verdozzi, C.-O. Almbladh, Phys. Rev. Lett. 103 (2009) 176404, http://dx.doi.org/10.1103/PhysRevLett.103.176404.
[22] M. Puig von Friesen, C. Verdozzi, C.-O. Almbladh, Phys. Rev. B 82 (2010) 155108, http://dx.doi.org/10.1103/PhysRevB.82.155108.
[23] N. Schliinzen, M. Bonitz, Contrib. Plasma Phys. 56 (1) (2016) 5-91, http://dx.doi.org/10.1002/ctpp.201610003.
[24] N. Schliinzen,].-P. Joost, F. Heidrich-Meisner, M. Bonitz, Phys. Rev. B 95 (2017) 165139, http://dx.doi.org/10.1103/PhysRevB.95.165139.
[25] W. Metzner, D. Vollhardt, Phys. Rev. Lett. 62 (1989) 324-327, http://dx.doi.org/10.1103/PhysRevLett.62.324.
[26] A. Georges, G. Kotliar, W. Krauth, M.]. Rozenberg, Rev. Modern Phys. 68 (1996) 13-125, http://dx.doi.org/10.1103/RevModPhys.68.13.
[27] AF. Kemper, M.A. Sentef, B. Moritz,].K. Freericks, T.P. Devereaux, Phys. Rev. B 90 (2014) 075126, http://dx.doi.org/10.1103/PhysRevB.90.075126.
[28] M.A. Sentef, AF. Kemper, A. Georges, C. Kollath, Phys. Rev. B 93 (2016) 144506, http://dx.doi.org/10.1103/PhysRevB.93.144506.
[29] Y. Murakami, P. Werner, N. Tsuji, H. Aoki, Phys. Rev. B 91 (2015) 045128, http://dx.doi.org/10.1103/PhysRevB.91.045128.
[30] Y. Murakami, P. Werner, N. Tsuji, H. Aoki, Phys. Rev. B 93 (2016) 094509, http://dx.doi.org/10.1103/PhysRevB.93.094509.
[31] M. Schiiler, J. Berakdar, Y. Pavlyukh, Phys. Rev. B 93 (2016) 054303, http://dx.doi.org/10.1103/PhysRevB.93.054303.
[32] R. Peierls, Z. Phys. 80 (11) (1933) 763-791, http://dx.doi.org/10.1007/BF01342591.

http

47

[33] J.M. Luttinger, Phys. Rev. 84 (1951) 814-817, http://dx.doi.org/10.1103/PhysRev.84.814.

[34] D. GoleZ, P. Werner, M. Eckstein, Phys. Rev. B 94 (2016) 035121, http://dx.doi.org/10.1103/PhysRevB.94.035121.

[35] T. Giamarchi, Quantum Physics in One Dimension, vol. 121, Clarendon press, 2003.

[36] J. Steinberg, Numer. Math. 19 (3) (1972) 212-217, http://dx.doi.org/10.1007/BF01404691.

[37] H. Brunner, P.J.v.d. Houwen, The Numerical Solution of Volterra Equations, North-Holland, 1986, Sole distributors for the U.S.A. and Canada, Elsevier Science
Pub. Co., Amsterdam; New York; New York, N.Y., US.A.,, 1986, oCLC: 13760699.

[38] W.H. Press, S.A. Teukolosky, W.T. Vetterling, B.P. Flannery, Numerical Recipes 3rd Edition: the Art of Scientific Computing, Cambridge University Press, 2007.

[39] A. Alvermann, H. Fehske,]J. Comput. Phys. 230 (2011) 5930, http://dx.doi.org/10.1016/j.jcp.2011.04.006.

//doc.rero.ch

http

48

