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The high-harmonic spectrum of the Mott insulating Hubbard model has recently been shown to exhibit plateau
structures with cutoff energies determined by nth-nearest-neighbor doublon-holon recombination processes. The
spectrum thus allows one to extract the on-site repulsion U. Here, we consider generalizations of the single-band
Hubbard model and discuss the signatures of bosonic excitations in high-harmonic spectra. Specifically, we
study an electron-plasmon model which captures the essential aspects of the dynamically screened Coulomb
interaction in solids and a multiorbital Hubbard model with Hund coupling which allows one to analyze the
effect of local spin excitations. For the electron-plasmon model, we show that the high-harmonic spectrum can
reveal information about the screened and bare on-site interaction, the boson frequency, as well as the relation
between boson coupling strength and boson frequency. In the multiorbital case, string states formed by local
spin excitations result in an increase of the radiation intensity and cutoff energy associated with higher-order

recombination processes.
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I. INTRODUCTION

High-harmonic generation (HHG) is a highly nonlinear
process in which a laser field with a given fundamental
frequency 2 generates “overtones” in the emitted radiation, at
multiples of the fundamental frequency [1-5]. HHG in atomic
and molecular gases has been studied for decades [1-3], but
the topic has gained renewed interest in recent years due to
applications in condensed matter [4—15]. There are different
motivations to study HHG in solids. On the one hand, a
proper understanding of the physics underlying HHG may
lead to tabletop sources of high-frequency radiation [16]. On
the other hand, HHG is also useful as a spectroscopic tool.
The latter fact is exemplified by the recently demonstrated
reconstruction of a material’s band structure from its high-
harmonic spectrum [7,17] and the measurement of the Berry
curvature of a material [18].

Both in atomic physics and in the condensed-matter con-
text, the phenomenon of HHG has mostly been described in
terms of single-particle pictures [4,8,19-33]. These studies
revealed that the HHG in semiconductors originates from the
intraband and interband dynamics of the excited electrons,
where the latter is described by extensions of the successful
three-step model used in atomic systems [22,27]. Although
these analyses provide an intuitive understanding of the basic
mechanisms of HHG in semiconductors, we currently lack
a detailed understanding of the effect of correlations, which
may be essential for justifying the ultrafast dephasing that
is conventionally used [34,35]. Furthermore, HHG spectra
from different types of condensed-matter systems, such as
amorphous systems or liquids, have recently been reported
[18,36-38]. These observations also raise questions about the
role of correlations and the possibility of HHG from materials
which are not band insulators, and motivate studies of strongly
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correlated systems. Several numerical simulations of HHG in
Mott insulators as well and other strongly correlated systems
have been conducted [39-43] and it has been shown that
in the strong-field regime, the characteristic features of the
high-harmonic spectrum can be understood by considering
quasilocal processes [40,41].

Theoretical investigations in this field pose technical chal-
lenges since they require numerical techniques that are capa-
ble of treating strongly correlated systems and, at the same
time, nonperturbative driving fields. Dynamical mean-field
theory (DMFT) [44] has become a standard tool for the study
of strongly correlated electron systems in equilibrium, thanks
to the development of powerful methods (impurity solvers) for
the solution of the DMFT equations [45—-47]. Recently, several
methods for solving the time-dependent impurity problem in
nonequilibrium DMFT [48] have been developed [49-52].
Some of these methods allow one to simulate strong field
physics in strongly correlated materials and allow one to
access long enough times that the high-harmonic spectrum
produced by a few-cycle electric-field pulse can be computed.

The aim of this work is to extend the previous Hubbard-
model-based analysis of HHG in Mott insulators [39,40] to
more complicated but realistic systems and to reveal various
ways in which HHG can act as a spectroscopic tool. In
particular, we will focus on models which admit bosonic
excitations and discuss the resulting signatures in the high-
harmonic spectrum. Specifically, we will consider a model
with a dynamically screened interaction which changes from
a large bare value at frequencies much above some plasmon
frequency to a reduced screened interaction in the static limit,
and we will show that HHG allows one to reveal several
characteristic energy scales of these systems. We will also
discuss a multiorbital Hubbard model in which the motion
of charge carriers produces string states by creating local
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Hund excitations. The annihilation of these strings will be
shown to enhance the high-energy radiation compared to the
single-band Hubbard model.

The paper is organized as follows. In Sec. II, we describe
the DMFT method used and the models considered in our
study. The results for the electron-plasmon model are pre-
sented in Sec. III A and those for the two-orbital model in
Sec. III B. The conclusions of our study are summarized in
Sec. IV.

II. METHOD
A. DMFT for a Bethe lattice with electric field

We consider lattice models with a Hamiltonian of the
general form Hyy = ) ; Hioc,i + Z(m Hpop,i,j» Where Higc
describes the interaction and chemical potential terms on site
i and Hyep,i; the hopping between sites i and j, which is
diagonal in the spin and orbital indices o and «. This lattice
model is solved within the DMFT approximation [44], which
maps the lattice problem onto a self-consistently determined
quantum impurity model of the form Hinp = Hioc + Hparn +
Hyyy. Here, Hio is the same local Hamiltonian as in the
lattice model, Hp, describes a bath of noninteracting elec-
trons whose parameters are optimized to mimic the lattice
environment, and Hyy, describes the hybridization between
the impurity and the bath. In an action formulation, the bath
is integrated out and replaced by a hybridization function
Ay (t, ") which controls how electrons hop in and out of the
impurity orbital. Assuming that the lattice self-energy is local,
this hybridization function is optimized in such a way that the
Green function of the impurity, Gimp,q¢,0 (, t'), is the same as
the local lattice Green function, Gy i« (¢, ). Since we use
the nonequilibrium formalism, the time indices are defined on
the L-shaped contour [48], which runs from time O to some
time fn,x along the real-time axis, back to time zero, and
then to time —if (with B the inverse temperature) along the
imaginary-time axis. The basic classes and routines for han-
dling the nonequilibrium Green functions, on which our sim-
ulations are built, have recently been published in Ref. [53].

We will consider a lattice with a semicircular density of
states (the infinitely connected Bethe lattice). For this lattice,
the self-consistency relation can be expressed in a simple form
[44]. In equilibrium, it reads

Aa,a(tvt/) = UaGimp,a,a(t’t/)vaa (nH

with v, corresponding to one-quarter of the noninteracting
bandwidth for band «.

Since we are interested in effects induced by strong electric
fields E(t), let us briefly explain how the electric field enters
into DMFT calculations with Bethe-type self-consistency (de-
tails can be found in Ref. [54]). The idea is to distinguish
hopping processes “parallel to the field” and “antiparallel to
the field” and to add the corresponding Peierls phases to
the hopping terms in the Bethe-lattice-type self-consistency
equation,

Ao (t,1) = 30V Gipnp a0 (1,1 Jge ™)
+ Ua€7i¢(t)Gimp,a’a (t, [/)Uae@(l’)]
= AL,ot,a + AR,a,aa 2)

where, in terms of the vector potential A(t) = — fot E(s)ds,
the Peierls phase is given by ¢(t) = (ea/hc)A(t). The factor
1/2 is a convention used to recover the usual Bethe-lattice
self-consistency in the model without a field. In this setup,
the kinetic energy and current can be measured as follows:

Ekin(t) = RC[FL,Q,U (t) + FR,ot,o (t)]: (3)

J@®) =Im[l, 46(1) = Trao ()], “

with I'z/r(t) = —i[Gimp * Ar/r]1=(¢,1). Here, we set e, a, h
and c to unity. While a Bethe lattice with a field may at first
sight look suspicious, the above procedure is consistent with
the spirit of DMFT and, as we will show below, it repro-
duces all the electric-field-induced features which have been
previously discussed for a hypercubic lattice implementation
[40]. As in the latter work, the HHG intensity is calculated as
the square of the Fourier transform of the dipole acceleration
(d/dt)j(t),i.e., as |wj(w)|*.

The impurity problem will be solved by the non-
crossing approximation (NCA), which is the lowest-order
self-consistent expansion in the hybridization function A
[50,51,55]. This method is numerically cheap and is expected
to give qualitatively correct results in the Mott insulating
regime where the local interaction term dominates the hy-
bridization term.

In the following sections, we will describe in more detail
the two models which will be studied in this paper, namely,
a Holstein-Hubbard model representing electrons coupling
to plasmons, and a two-orbital Hubbard model with Hund
coupling. From now on, we will set v, = 1 (bare bandwidth
4h), i.e., we measure energies in units of v, and time in units of

Ve ©

B. Holstein-Hubbard model

In order to investigate the effects of an electron-plasmon
coupling, we consider a Hubbard-Holstein model with a sin-
gle orbital per site and a local Hamiltonian of the form

Hioe = Upareniyny, — pu(ny +ny)
+g(ny +ny — 1)(b+b") + wob'b, 5)

with n, the density for spin o, u the chemical potential, and
Ubare the bare on-site repulsion. The electrons are coupled via
local density fluctuations to bosons with frequency wy. The
electron-boson coupling is g and the boson creation operator
is denoted by b'.

In an action formulation, the bosons can be integrated out,
which results in a retarded, or frequency-dependent, effective
interaction between the electron [52,56,57]. On the Matsubara
axis, this frequency-dependent interaction has the form

282 wo

. 6)

Uliw,) = Upare + —
(iwy) bare (zwn)z R

Upon analytical continuation (iw, — w + i0"), the real and
imaginary parts become

2g2w0

RGU((,()) = Upare +

ImU(0) = —g*n[8(w — wp) — 8(w + wp)]. @)
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FIG. 1. Real and imaginary parts of the frequency-dependent
interaction, U (w), for wy = 17, Uy; = 5, and A = 20. The horizontal
dashed lines are the asymptotic values for ReU in the limit of
w — 00 and w — 0. Besides the single-boson case (o = 0), we
also show the results for a distribution of bosons with a width defined
by o [see Eq. (8)].

Hence, electrons oscillating with a frequency @ much
higher than w, experience an effective interaction U ~ Upyre,
whereas for w < wy, the electrons experience U ~ Upyre —
% = Uy In the following, we denote the difference between
the bare and screened U by A (=%). The real and imaginary
parts of U(w) for a set of parameters corresponding to a
large plasmon energy wg are shown by the black lines in
Fig. 1 [58]. One notices a transition between the bare and
screened regime with a polelike structure around £wg. In
the spectral function of the Mott insulating Holstein-Hubbard
model, these structures lead to plasmon satellite peaks which
are split off from the Hubbard bands at +U,/2 by energies of
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FIG. 2. Spectral functions for different boson distributions with
o =0, 1, 2. The parameters are wy = 17, Uy, = 5, A = 20, and the
inverse temperature is § = 5. For o = 1 (2), we use 31 (61) bosonic
modes. The vertical lines show Ug,/2 (solid black) and Upye/2
(dashed black) and the line U /2 + w, (gray). For the main Hubbard
band, all the curves overlap.

+nwy; see black spectrum in Fig. 2. In the equilibrium system
at low temperature, only the high-energy sidebands are visible
because they correspond (in the case of the upper band) to
the insertion of an electron with simultaneous emission of a
boson. (The analogous process with absorption of a boson is
suppressed because the bosonic system is in the ground state.)

Sharp singularities as in the effective U(w) for the
Holstein-Hubbard model are not present in the downfolded
effective interactions of realistic materials, obtained for ex-
ample by the constrained random phase approximation [59].
In realistic systems, the plasmon couples to single-particle
excitations and the delta-function-like structure of the plas-
mon in ImU (w) becomes broadened [the polelike structure
in ReU (w) becomes a smooth crossover from Upye t0 U]
[60-62].

In order to model such a more realistic situation, we can
extend the single-boson model to a model with a distribution
of bosons, where the coupling constant for the boson with
frequency w; obeys

(wi — wo)2j|

(&) z(i) 2 1 @
i @o (@i — o) }

This choice of coupling constants ensures that the renor-
malized hopping (width of the main Hubbard bands near
+Usr/2) is the same in the single-boson and multiboson case

. 2 . . .
SINCE feff = 1 €XP (—57), where ¢ is the hopping parameter in

the absence of electron-boson coupling [57]. Furthermore,
A stays the same, which can be straightforwardly verified
by computing ), zw;,f with Eq. (8). The spectral functions
for 0 =0, 1,2, wy =17, Usgr =5, and A = 20 are shown
in Fig. 2 and the corresponding U (w) are plotted in Fig. 1.
Here, we adjusted the number of bosonic modes w; such that
the energy separation between neighboring modes is constant
with spacing 0.2, while the modes extend to a fixed ro of the
Gaussian distribution, with r some fixed real number. Note
that in the multiboson case, the sidebands of the main Hubbard
band get broadened, but the main Hubbard bands are left
unaltered.

For the treatment of bosonic couplings in NCA, we use the
procedure detailed in Ref. [51], which has previously been
used in nonequilibrium studies of electron-phonon problems
[51,63,64]. This method involves an approximation in the
treatment of the boson couplings which is well justified in the
limit of high boson frequency. It is thus particularly suited
for the study of plasmon excitations, which have energies
comparable to or larger than the bandwidth.

We note in Fig. 2 that in contrast to the energy scale Uk,
which fixes the position of the first (main) band, and wy,
which determines the energy splitting between sidebands, the
energy scale Uy, 1S not directly evident in the single-particle
spectrum. Furthermore, the weight of the boson side peaks
monotonically decreases with increasing energy. Numerical
evidence suggests that these are generic properties for systems
with large wy > g.

A qualitatively different situation is encountered for wy <
g, as illustrated in Fig. 3, which shows the spectral function
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FIG. 3. Spectral functions for wy =2, Uy =5, A =10, 8 =
5, and different boson distributions parametrized by o. The verti-
cal lines indicate Us./2 (solid black), Upae/2 (dashed black), and
Uscr/2 + wo (gray)

for wg = 2, Usey = 5, and A = 10. This parameter regime may
be relevant for the description of subplasmons, which are
collective excitations within a subset of orbitals. Here, the
lowest peak in the upper Hubbard band is still at an energy
close to U/2, but an envelope drawn over the relatively
tightly spaced subbands exhibits a peak around Upye/2, SO
that the energy scale Uy, manifests itself clearly in the single-
particle spectrum.

Based on the qualitative features of the spectral functions
illustrated in Figs. 2 and 3, we can speculate how the HHG
spectrum will look when plotted in the space of field strength
Ey and frequency w. An earlier analysis of the HHG response
of the single-band Hubbard model in the Mott regime has
found that the harmonic intensity is strong in a triangular
region defined by U — Ey S w S U + Ey, where U is the
on-site interaction of the Hubbard model and E; is the am-
plitude of the AC electric field [40]. This suggests that the
dominant contribution to the high-harmonic emission can be
attributed to the recombination of doublons and holons from
nearest-neighbor sites. Moreover, higher-order processes with
associated cutoff energies U + nEy (n > 1, with n counting
the number of sites between recombining electron-hole pairs)
could also be identified. The linear scaling of the cutoff as
a function of field strength has become a hallmark of high-
harmonic generation in solids [5,65].

In the large-wy case (wy > g), we expect to find a similar
behavior with cutoff laws determined by Ug,. In addition, we
may expect to see features in the HHG spectrum associated
with transitions from plasmon sidebands, i.e., the absorption
of plasmons, once the field strength exceeds wy and a large
number of plasmons is excited. In models with wy < g, where
the screened and bare interaction determine the edge and the
peak of the Hubbard band, respectively, we instead expect
that the cutoff energies of the HHG plateaus will depend
on the value of Ej relative to the interaction strength. For
Ey < User, excitations between the lower and upper gap edge
should govern the dynamics, and hence the first energy cutoff
is expected to scale as U + Ey. For Ey 2 Upye, transitions

J=0 —— J=0 ——
J=1 —— J=1 ——
0.2 J=2 —— 027 J=2 ——
J=3 ——
—_ half- — quarter-
:,:s’ filled :,:s’ filled
0.1 0.1
0 . 0 .
0 2 4 6 8 10 12 14 -10 -5 0 5 10
® ®

FIG. 4. Equilibrium spectral functions of the two-orbital model
for U = 10, inverse temperature 8 = 5, and indicated values of J.
The left panel is for the half-filled system and the right panel for the
quarter-filled system.

between the dominant peaks in the single-particle spectrum,
located near FUpye/2, will play a dominant role, so that
the dominant cutoff may exhibit a scaling which is closer to
Ubare + Ep in the strong-field regime.

C. Two-orbital model

For the two-orbital Hubbard model, we consider a local
Hamiltonian with density-density interactions of the form

Hie =U Z Ngp Ny, + (U - 2-]) anan2fr

a=1,2 o

+ (U =30))_ nigna. ©)

with U the intraorbital repulsion and J the Hund coupling.

Low-temperature states of the half-filled system withJ > 0
are dominated by doubly occupied sites (N = 2) in a high-
spin configuration. If we denote the lowest-energy state of
H,,. with occupation N by Ey, then the Mott gap can be
estimated as Ay (N) = Eyy1 + Ey—1 — 2Ey [49]. Thus, the
Hubbard bands in the half-filled Mott state are expected near
o= :t%. The NCA spectral functions of half-filled systems
are shown for U = 10 and different J in the left panel of
Fig. 4. While the above argument explains the position of
the main Hubbard bands, we also recognize a strong nar-
rowing of these bands and the appearance of sidebands with
increasing J.

The satellites are associated with local spin excitations
(Hund excitations) and the reduction of the kinetic energy
is a consequence of strings of Hund excitations formed by
charge carriers (“singlons” or “triplons”) moving in the half-
filled Mott background. Looking at the equilibrium spectral
functions shown in Fig. 4, we anticipate that these Hund
excitation processes can be clearly identified at large J, where
the spectral function shows a well-defined satellite with an
energy separation J.

More specifically, the process contributing to this satellite
is triplon creation plus hopping: (1, 1);({, {)j+1 = (14, 1);
(4, Djs1 = (1, 1)1, Dj1. The hopping in the last step
costs an extra energy (U —2J)— (U —3J)=J, and in a
background of high-spin states leads to a short stringlike
distortion. It is natural to assume that in the HHG spectrum,
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FIG. 5. HHG spectrum of the electron-plasmon model with wy =
17, Uy = 5,2 = 20, and o = 0. The black solid line indicates U, +
Ey, the black dashed line Upye + Ey, while the gray line indicates
User + wo + Ey. The gray vertical line is at Uy, + wy. Inset: Shape
of the 10-cycle excitation pulse with central frequency 2 = 1 and a
cos>-type envelope.

such processes affect, in particular, the cutoff energies of the
second and higher plateaus since these are associated with
singlon-triplon recombination plus additional hoppings.

The quarter-filled two-orbital model represents a different
case from the half-filled model, which is evident by comparing
the spectral functions in the right panel of Fig. 4 with those in
the left panel. Adding an electron to a singly occupied site
creates doublon states with energies U —3J, U — 2J, or U,
so that the upper Hubbard band for large J splits into three
subbands. While triplons moving in a half-filled background
can leave behind a string of excited doublon states, there is
no such mechanism in the quarter-filled case, where all the
singlons have the same energy. We thus expect different J-
related effects in the high-harmonic spectrum of the half-filled
and quarter-filled model.

III. RESULTS
A. Electron-plasmon model

This section presents the results for the single-band
electron-plasmon model. In the present study, we excite the
system with a few-cycle electric-field pulse. The form of the
vector potential with a central frequency of 2 = 1 is given by

Ey .
A(I) = 5 sin[Q(r — tavg)]

Q(f —
X cos’ [—(I fave)

M i|{9(t)—9(t —MT)}, (10)

witht,,, = % and M = 10, for which E () is shown in the in-
set of Fig. 5. This setup is different from Ref. [40], which em-
ployed a Floquet DMFT formalism for time-periodic steady
states. While the pulse protocol may lead to somewhat blurred
high-harmonic features, it is more realistic from an experi-

mental point of view.

g0 lo j(0)I2

0 20 40 60 80 100 120 140 160

80 100 120 140 160
®

FIG. 6. Top panel: Harmonic spectra for the Hubbard-Holstein
model with wy = 2, Uy, = 5, and A = 10. Solid black lines indicate
U + nEy and dashed black lines Upye = nEy (n = 1, 2, 3). Black
dots mark the cutoff energies of the first plateau and gray dots those
of the second plateau. Bottom panel: HHG spectra at Ey = 6 and 40.
Here, the solid (dashed) vertical lines indicate Uy, + Ey (Upare + Ep)
as well as Uge; + 3Ey (Upare + 3Ep). The arrows mark the edges of the
plateaus in the E, = 40 case.

1. Cutoff behavior for wy > g

The main panel of Fig. 5 shows the HHG spectra obtained
for fixed Us.; = 5, A = 20, and plasmon energy wy = 17 (cor-
responding to g & 13). The solid black line shows the cutoff
User + Ey, the dashed black line shows Upye + Ep, while the
gray line indicates U, + wo + Ep.

For strong fields, the high-intensity region of the HHG
spectrum exhibits a Uy; + wg + Ey scaling. There is an almost
abrupt change in the cutoff scaling from Uy + Ey to U, +
wo + Ep near Ey &~ wy = 17 and one observes a high radiation
intensity near Ey ~ Us; + wo = 22. Recalling from the earlier
discussion that the Uy, + nEy cutoff is associated with nth-
nearest-neighbor recombination processes and the fact that
the energy scale wy corresponds to plasmon absorption, this
indicates that the observed crossover to the higher-energy
cutoff is triggered by doublon-holon recombinations from
nearest-neighbor sites, with simultaneous absorption of one
plasmon. Expressed in terms of the spectral function (Fig. 3),
this corresponds to transitions from the first plasmon sideband
of the upper Hubbard band to the lower Hubbard band. At field
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FIG. 7. Left panel: Ratio between the HHG spectra of the Holstein-Hubbard model with wy = 17, Uy, = 5, A = 20, and the Hubbard
model with U = Uy, and renormalized bandwidth. Right panel: Analogous comparison between the Holstein-Hubbard model with wy = 2,
User =5, A = 10, with the Hubbard model with U = U, and renormalized bandwidth. Black solid lines indicate w = U, + nE; and black
dashed lines @ = Uypye + nEy. The vertical gray lines indicate wy + U, in both figures.

strengths Ey 2 wy, and especially around Ey ~ Uy, + wy, the
laser field excites plasmons and thus enables these types of
recombinations.

For the present parameters, one cannot easily distinguish
a User + wo + Ep cutoff from a Upge + Eo cutoff (see black
dashed line). However, a systematic check of different param-
eter sets confirms that the shift in the cutoff to higher energies
is primarily controlled by @y, and thus related to plasmon
absorption.

2. Cutoff behavior for vy < g

In this section, we consider the set of parameters corre-
sponding to the single-particle spectral function in Fig. 3,
which exhibits a relatively dense family of subbands with
a dominant peak near +Upye/2 (0o = 2, User = 5, 1 = 10,
g = 3.16). The corresponding HHG spectrum is shown in the
top panel of Fig. 6. The solid black lines indicate Uy + Eo,
as well as the higher-order cutoff energies Uy, + nEy (n > 1).
The dashed black lines are the cutoffs associated with Upype
(Upare + Eo, Upare + 2Ep, and Upge + 3Ep). The qualitative
features of the HHG spectrum are consistent with the naive
expectations based on the properties of the single-particle
spectral function shown in Fig. 3. At low field strength, the
cutoff is seen to follow essentially Uy + Ey. However, at a
sufficiently high field strength, the edge of the dominant HHG
plateau crosses over to the Upye + Eo cutoff. Note that the Ey
range in this figure is extended compared to the previous one
to establish that this crossover is also seen in the third-order
cutoff, which switches from Us.; + 3E( t0 Upare + 3Ey.

Since the identification of the cutoff energies in an intensity
plot such as Fig. 6 can be difficult, we also analyzed cuts
at fixed Ej to determine the harmonic orders corresponding
to the edges of a plateau, or, in the weak-field regime, to
prominent peaks in the HHG spectrum. Examples of such
cuts are shown in the lower panel of the figure. Even though
the harmonics are not very well defined in the strong-field
regime, one can identify two plateaulike structures in the HHG
signal. The actual cutoffs associated with the first plateau
are indicated in the top panel by black dots, and the actual

cutoffs associated with the second plateau are indicated by
gray dots. The black dots confirm that the dominant plateau
indeed exhibits a Uy + Ey scaling for Ey < 8. As one further
increases Ey, the cutoff energy increases faster than Uy, + Eo,
and eventually even exceeds Upye + Ep, Which we interpret
as resulting from the proximity in energy of the Uy, + 2Ej
line and the Upae 4+ Ep line for these field strengths. In other
words, for Ey < 30, there is a constructive interference be-
tween second-neighbor recombination processes in a screened
environment and nearest-neighbor processes in an unscreened
environment. For Ey 2 30, the cutoff energy of the dominant
HHG plateau clearly follows the Upye + E line.

Interestingly, in the strong-field regime, the second plateau
is associated with next-next-nearest-neighbor recombination
processes, as the corresponding cutoff energy crosses over
from Uge; 4+ 3E( to Upyre + 3Ep. No clear plateaulike structure
can be associated with the next-nearest-neighbor processes
(for Ey 2 30).

Another noteworthy observation is that in the strong-field
regime, the plateaus themselves do not exhibit well-defined
harmonics, while the regions in between the plateaus, where
the intensity decays exponentially as a function of harmonic
order, exhibits well-defined peaks at odd multiples of €2. The
rather messy HHG signal in the plateau regions may be due
to the large number of interfering inter-(side)band transitions
in this system with a relatively small splitting between the
multiple boson sidebands.

3. Comparison to the Hubbard model

As is evident from the pronounced plasmon sidebands in
the spectral function (see Fig. 2), the electron-boson coupling
in the Holstein-Hubbard model introduces additional exci-
tations. It is thus interesting to study the difference in the
high-harmonic spectra of the Hubbard and Hubbard-Holstein
models. For a meaningful comparison between the two mod-
els, we choose Upypbara = User and renormalize the hopping
parameter of the Hubbard model to f.4 = f exp (—%). This

ensures that any difference observed between the two models
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FIG. 8. Upper panels: Electron-plasmon model with wy = 17, Uyr = 5, and A = 20. Upper left: @ = 1 with o = 0.25. Upper right: @ =1
with o = 1. Lower panels: wy = 2, Uy, = 5, and A = 10. Lower left: 2 = 1 with o = 0.06. Lower right: Q2 = 1 with ¢ = 0.24. The arrows

point out some features not seen in the left panel.

is not an effect of a modified gap or bandwidth, but the result
of the electron-boson interaction.

Figure 7 shows the difference
of the high-harmonic intensities, i.e., a logarithmic-
scale plot of the ratio of the radiation powers
10g[|® jHolstein-Hubbard (@)? /1@ jiubbard (@) 1?1, In the model
with g < wy, it is found that the electron-plasmon model
produces additional harmonics only above w = U + @y
(gray line) and above the Uy, + E; cutoff. This confirms
that the additional intensity in the high-energy radiation
is associated with transitions between the first plasmon
sideband of the upper Hubbard band and the lower
Hubbard band, i.e., the absorption of plasmons from
the highly excited nonequilibrium system. Note that the
complicated structure in the region of high harmonics is
at least partially explained by the fact that we divide by
the spectrum of the Us, Hubbard model, which exhibits
plateaus in the HHG spectrum with cutoff energies
User + nEy.

The right-hand panel shows the results of an analogous
comparison for the model with wy < g. Here, we notice that
additional intensity (compared to the Hubbard model with
U = Uy and renormalized bandwidth) is observed to the right
of the Uy, + Ey line, with a large increase for @ 2 Upae + Eo.
This indicates an important role played by the boson side-

in the logarithms

bands near +Up,e/2 in the single-particle spectrum, which
are also the peaks with the dominant weight. The activation
of these sidebands in the strong-field regime leads to a shift of
the leading HHG cutoff from Uy.; + Ep to Upare + Eo.

4. Effects of multiple bosonic modes

One may note from Fig. 2 that in our electron-plasmon
models, the effective hopping parameter of the doublons is
about 0.5 (the width of the Hubbard band is about half
the bare bandwidth). Accounting also for the field-induced
renormalization of the bandwidth, we may easily realize a
situation in which the driving frequency €2 exceeds the width
of the Hubbard bands.

In the same figure, it is also apparent that in the case
of a boson distribution with width o > 0, the plasmon side-
bands get broadened by a factor proportional to o, and this
broadening persists even in the presence of strong fields. A
similar broadening effect and even merging of the sidebands
is observed in Fig. 3. Hence, depending on the value of o
and €2, intraband excitations within these plasmon sidebands
will or will not be possible, and this should manifest itself
in the HHG spectra. In particular, we expect that the low-
energy harmonics (associated with intraband currents) will
be enhanced for o > 0, while the high-frequency part of the
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FIG. 9. Left panel: Shape of the few-cycle excitation pulse with
frequency 2 = 0.5 and amplitude Ey, = 1 used in the two-orbital
simulations. Right panel: Current for indicated values of Ey (U =
10,/ =1).

spectrum may exhibit interference effects due to the broad
energy distribution of the plasmon-dressed doublons or holes.

In Fig. 8, we illustrate the drastic effect of these intraband
transitions on the leading energy cutoff. The top panels show
HHG spectra for 2 = 1 and large boson frequency (wy > g).
The left panel is for a boson distribution width o = 0.25,
which is small compared to 2 and hence we find a crossover
from the Uy, + Ey to Usr + wg + Ey cutoff which looks sim-
ilar to the result found for the single-boson model (Fig. 5).
In the right panel, we show the result for 0 = 1 = Q. Here,
the crossover disappears and we only observe the U + Ey
cutoff up to the highest field amplitudes considered. It appears
that the intraband excitations enabled by the broader boson
distribution wipe out the additional radiation intensity, which
in the single-boson case was associated with the activation
of interband transitions (plasmon absorption). This may be a
manifestation of destructive interference between recombina-
tion processes with slightly different energies.

The numerical results for wy > g suggest an approximate
condition for the crossover to take place, namely,

o <Q. (11)

Viewing HHG as a spectroscopic method and assuming a
simple form of the dynamically screened interaction as well

0G40 lo j(w)I?

il

0 10 20 30 40 50
®

as a large plasmon energy, this inequality tells us that by
varying the driving frequency 2 and monitoring the crossover
behavior, one can deduce the width of the “plasmon peak” in
ImU (w).

In the case of small boson frequency (wy < g), where
one observes a crossover from Uy, + Ey to Upye + Ep in
the single-boson case, a similar effect of the broadening
is observed in the strong-field regime. Here, the crossover
is not associated with the activation of transitions between
neighboring subbands (single-plasmon absorption), but with a
field-dependent change in the relative importance of different
subbands for the HHG process. As indicated by the left arrow,
in the case wy < g, a prominent effect of a broadened boson
spectrum is an increase in the intensity of the low-energy har-
monics, which is consistent with the merging of the sidebands
evident in Fig. 3 and a correspondingly enhanced intraband
contribution to the HHG signal.

While the crossover to the Upye + Eo cutoff at strong
fields Ey disappears for larger o (see right arrow), the strong
intensity up to approximately U + 2Ej persists at interme-
diate values of Ej. This indicates that these harmonics indeed
originate mainly from second-nearest-neighbor recombina-
tion processes in a screened environment.

B. Two-orbital model
1. Half-filled model

In this section, we study HHG in the Mott insulating two-
orbital model, with the focus on signatures of the Hund cou-
pling. We start with the half-filled system and consider a Mott
insulator with a large gap (U = 10, 8 = 5), which is driven
by a few-cycle electric-field pulse with a frequency Q =
0.5 « gap. The form of the pulse is E(r) = Eysin[Q(t —
favg)] eXp{—[(t — tayg)/ 201%} with tag = 127, It is plotted for
a peak field amplitude Ey = 1 in the left panel of Fig. 9. The
current measured for different values of Ej in a system with
J = 11is shown in the right-hand panel. By Fourier transform-
ing these curves, we obtain the HHG spectra |wj(w)|*> shown
forJ = 0 and J = 3 and arange of field amplitudes in Fig. 10.

We are now going to analyze the structures apparent in
these HHG spectra, focusing on the strong-field regime. As

10910 lo j(w)I?

0 10 20 30 40 50

FIG. 10. High-harmonic spectra | j(w)|? as a function of E, for J = 0 (left) and J = 3 (right). The gray dashed lines represent the cutoffs

U+J+nEy(n=1,2,3,4).
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FIG. 11. High-harmonic spectra for £, = 8 and J = 3. The ver-
tical lines show U +J + nE, (gray dashed), U +J + nEy + (n —
1)J (solid black), and 2(U +J)+ (n — 1)Ey (dark-red dashed),
withn > 1.

we mentioned before, in the Mott phase of the single-band
Hubbard model, the plateau structures and energy cutoffs
can be explained by quasilocal processes: recombination of
doublons and holons on nth-nearest-neighbor sites [40]. In a
half-filled two-orbital Hubbard model with J > 0, the half-
filled Mott insulator will have predominantly two electrons
per site, in a high-spin configuration. An excitation across the
Mott gap creates a singlon-triplon pair at an energy cost of
U + J. If this pair is created on nth-nearest-neighbor sites,
the energy released in the recombination process will, in the
presence of the oscillating field with strength Ej, be in the
range U + J £ nEy (assuming that no spin flips occur). The
corresponding cutoff values are indicated in Fig. 10 by gray
dashed lines. They explain some, but not all of the structures.
For example, in Fig. 11, where we plot a cut for J =3 at
Ey =8, it is apparent that these gray dashed lines do not
coincide with the edges in the HHG plateaus.

In the half-filled two-orbital case, the singlon-triplon
creation/annihilation may involve local spin (de)excitations.

Alogyg lo j(w)?

In particular the singlon-triplon creation on nth-nearest-
neighbor sites with n > 1 typically involves string states
associated with Hund excitations. An example for n = 2 is
(s D=1 D) D jar = (0, L)1 (P 1)L D)j =
O, V)i, DL, d)j+1; see, also, the discussion in
Sec. IIC. The corresponding recombination processes yield
cutoff values shifted by multiples of J, with the maximum
cutoff energy shifted by (n — 1)J in the case where n — 1
sites are flipped back to the high-spin configuration. In
Fig. 11, we indicate the corresponding maximum cutoffs
U +J+nEy+ (n—1)J by solid black lines. They show a
much better agreement with the measured spectrum, which
strongly suggests that the annihilation of string states plays
a role in the HHG process in multiorbital Hubbard systems
with Hund coupling.

To further analyze this issue, we plot in Fig. 12 the ratio
of the HHG spectra for / =3 and J = 0 on a logarithmic
scale. In the left panel, we keep the bandwidths of both
models the same (= 4) and compare U = 10,J =3 to U =
13,J = 0, so that U + J is identical in both cases. In the right
panel, we compare U = 10,J = 3, bandwidth =4 to U =
12.6,J = 0, bandwidth = 0.53 x 4. Here the parameters of
the J = 0 system have been chosen such that the Hubbard
bands match the positions and widths of the main Hubbard
bands at w ~ Y in the U = 10, J = 3 spectrum (see pink
line in Fig. 4). Both figures confirm a shift of the edges
of the HHG plateaus to higher energies in the model with
Hund coupling. In particular, the cutoff line associated with
next-nearest-neighbor recombination processes is shifted by
J, while for next-next-nearest-neighbor recombinations, we
find both evidence for shifts by J and 2J (see white dashed
lines which indicate the shifts by J and 2/, respectively). We
also notice that even the n = 1 line appears to be shifted, at
least for large Ey; see right panel of Figs. 10 and 12. This
indicates that nearest-neighbor (in the direction of the field)
recombination processes with simultaneous Hund deexcita-
tion via hopping perpendicular to the field play a role in the
HHG.

The complex structures evident in Fig. 10 suggest
interference effects from other types of processes. At

Alogyg lo j(@)1?

FIG. 12. The left panel shows a logarithmic plot of the ratio of the HHG spectra for the half-filled two-orbital models with U = 13,J =0
and U = 10, J = 3 (original bandwidth), while the right panel shows the ratio between the HHG spectra for U = 13,/ =0and U = 12.6,J =
0 with a bandwidth multiplied by 0.53. The gray dashed lines represent the cutoffs U + J =+ nE, and the white lines the maximum cutoffs
including spin-flip processes, U + J + nEj + (n — 1)J. The black dashed lines are the cutoffs associated with second order in U processes.
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FIG. 13. HHG spectra of the quarter-filled two-orbital model. The left panel shows the result for U = 14, J = 2 and the right panel
the difference of this spectrum to the result for U = 9, J = 0. Light gray dashed lines show the cutoffs U — 3J + nEy, white dashed lines
U — 2J + nE,, and dark-gray dashed lines U + nEy (for U = 14, J = 2).

energies 22U + 2J, one can expect to see higher-order
processes such as (1, 1), );(1, P, ) — (0, 1)
ML D), 0)(d, 1) If the production of the two singlon-
triplon pairs occurs in the direction of the field, the maximum
cutoff value associated with the recombination is 2(U + J) +
2E,. However, the second singlon-triplon pair could also be
excited in a direction perpendicular to the field, in which
case the cutoff becomes 2(U + J) + Ey. If it occurs against
the field, we expect a cutoff 2(U 4 J). The corresponding
cutoff energies are indicated in Fig. 12 by the dashed black
lines and explain some of the intensity modulations seen
at high w. In Fig. 11, which shows a cut at Ey = 8§, the
corresponding cutoff energies are indicated by the dark-red
dashed lines. These confirm a (possibly negative) interference
effect between first-order and second-order processes. It thus
appears that in strongly interacting Mott systems, in contrast
to semiconductors, higher-order interaction processes also
play a role in the high-energy region of the HHG spectrum
and the associated currents interfere with those of the leading-
order processes.

2. Quarter-filled model

As illustrated in Fig. 4, adding an electron to a singly
occupied site creates doublon states with energies U — 3J,
U —2J, or U, so that the upper Hubbard band for large J
splits into three subbands. In the quarter-filled model, a charge
excitation across the gap corresponds to the creation of an
empty site and a doubly occupied site. Doublons moving
in the background of singly occupied states do not leave
behind a string of Hund excitations because the flipping of
the spin does not cost any energy. We thus do not expect to
see signatures of string annihilation in the cutoff energies of
the high-harmonic spectra. On the other hand, the presence of
three Hubbard subbands will lead to a rich cutoff structure,
which reveals the Hund energy J.

In the left panel of Fig. 13, we plot the HHG spec-
trum for U = 14, J = 2. The light gray dashed lines in-
dicate the cutoff energies U — 3J + nE,, the white dashed
lines the cutoffs U — 2J + nEy, and the dark-gray dashed
lines the cutoffs U + nEy. While the cutoffs associated with

U —3J and U — 2J are hard to distinguish since the cor-
responding Hubbard subbands are not clearly separated for
J = 2 (see Fig. 4), the cutoffs associated with U can be clearly
identified.

In the right panel, we show a logarithmic plot of the ratio
between the U = 14, J = 2 HHG spectrum and the result for
amodel with U = 9,J = 0. The U value in the latter case has
been chosen in between 14 — 3 x 2 and 14 — 2 x 2, so that
the upper Hubbard band of the J = 0 model covers approxi-
mately the same energy range as the two lower subbands in
the J/ = 2 model. Near the U — 3J + nEy and U — 2J + nkEj
cutoff lines, we expect a reduced intensity in the J = 2 case
because of the reduced spectral weight compared to the J = 0
case (see black and blue curves in the right panel of Fig. 4),
while in the energy region between the U — 2J + nEj and
U + nE, cutoff lines, we expect an enhancement. This is
indeed what is found in the right-hand panel of Fig. 13, where
an increase in intensity is mainly observed between the white
dashed and dark-gray dashed lines.

IV. DISCUSSION AND CONCLUSIONS

We have analyzed the high-harmonic spectra of two types
of Mott insulating Hubbard-type systems whose dynamics is
influenced by bosonic excitations. The results for the electron-
plasmon system, described by a Hubbard-Holstein model with
large boson frequency, revealed a crossover between two
different cutoff laws. In the weak-field regime, the cutoff
scales as Uy, + Ey, while in the strong-field regime, the
high-harmonics plateau extends up to U, + wo + Ep (for
wo > &) of Upare + Ey (for wy < g). Similar crossovers can
also be observed in the cutoff energies of the higher-order
plateaus associated with nth- (n > 1) nearest-neighbor recom-
bination processes. The two different crossover behaviors for
wo < g and wy > g were further supported by comparing the
Holstein-Hubbard model results to those for a Hubbard model
with effectively renormalized bandwidth and U = Uy,. In the
case of wy > g, the additional intensity in the high-energy
radiation contribution can be associated with the absorption of
plasmons which are excited at field strengths Ey = . In the
wy < g case, a different picture emerged. Here, the additional
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radiation power was observed for energies 2Upae + Eo. In
this coupling regime, it is not the transitions between the
relatively tightly spaced sidebands which drive the crossover,
but the gradual shift in the relative importance of different
sidebands for the HHG process. At low field strength, the
peaks in the single-particle spectrum near +Ug,/2, which
define the Mott gap, play a prominent role, while for larger
Ey, the peaks near +Uyp,/2, which have the largest weight,
become more relevant.

If the width of the plasmon peak in ImU (w) is larger
than the driving frequency, intraband excitations are activated
within the plasmon sidebands. This affects the population
within these sidebands and the energies which can be released
by interband transitions, resulting in a destructive interfer-
ence between the plasmon-assisted processes. In systems with
wo > g, where interband transitions underpin the crossover
behavior, one thus observes the disappearance of the crossover
and a leading cutoff which scales as Uy, + E up to large field
strengths. In this regime, the sensitivity of the HHG spectrum
on the width of the plasmon peak allows one, in principle,
to extract this quantity by tracking the crossover behavior as
a function of driving frequency 2. Hence, by studying HHG
spectra for a broad range of Ey, it is, in principle, possible
to determine whether ¢ < wy or g > wy, and in the former
case, the value of the screened interaction and of wy can be
extracted.

The second model which we considered was a two-orbital
model with Hund coupling. In the half-filled system, local
spin excitations have a strong effect on the dynamics of
charge carriers [66]. Singlons and triplons moving in the
background of predominantly high-spin doublon sites can
leave behind a string of low-spin states (Hund excitations),
thereby transferring kinetic energy into potential energy. In
the presence of a strong periodic driving field, the energy

stored in these strings (a large energy of order nJ, where n is
the length of the string) can be released upon recombination
of the singlon and triplon. This results in high-harmonic
plateaus which extend to higher energies than what would be
expected from the splitting of the Hubbard bands. We have
demonstrated this effect by comparing spectra for models with
and without Hund coupling and appropriately adjusted gap
size and bandwidth. In the quarter-filled model, the strings of
low spin states are absent, but the Hubbard bands split into
subbands, which for large enough J results in three separate
cutoffs, associated with the three different types of doublon
states that can be produced by photoexcitation. As in the
case of the electron-plasmon model, we found that all the
relevant energy scales of the atomic problem (here, U and
J) are reflected in the field dependence of the spectrum so
that a careful analysis of high-harmonic spectra of correlated
multiband materials may give access to these parameters,
which are of crucial importance for the theoretical modeling
and hard to obtain from ab initio calculations.
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