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a b s t r a c t

We tackle the problem of a combinatorial classification of finite
metric spaces via their fundamental polytopes, as suggested by
Vershik (2010).

In this paper we consider a hyperplane arrangement associ-
ated to every split pseudometric and, for tree-like metrics, we
study the combinatorics of its underlying matroid.

• We give explicit formulas for the face numbers of funda-
mental polytopes and Lipschitz polytopes of all tree-like
metrics.

• We characterize the metric trees for which the funda-
mental polytope is simplicial.

1. Introduction

1.1. Polytopes associated to metric spaces

The study of fundamental polytopes of finite metric spaces was proposed by Vershik [24] as
an approach to a combinatorial classification of metric spaces, motivated by its connections to
the transportation problem. Indeed, the Kantorovich–Rubinstein norm associated to the finite case
of the transportation problem is an extension (uniquely determined by some conditions) of the
Minkowski–Banach norm associated to the fundamental polytope (see [17, Theorem 1] for details).
The polar dual of the fundamental polytope affords a more direct description: it consists of all
real-valued functions with Lipschitz constant 1, and it is called Lipschitz polytope. As polar duality
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preserves all combinatorial data, the combinatorial classification of Lipschitz polytopes is equivalent
to that of fundamental polytopes.

Very little is known to date about the combinatorics of these polytopes, aside from the afore-
mentioned work of Vershik. For instance, their f -vectors1 are unknown in general. Gordon and
Petrov [8] obtained bounds for the number of possible different f -vectors given the size of the metric
space. The same authors also examined ‘‘generic metric spaces’’ (see Definition 5.4), computing their
f -vectors (which, in this class, only depend on the number of elements in the space). Further study
of fundamental polytopes of generic metrics appeared in [12,13] especially around a connection
with duals of cyclohedra and Bier spheres. The special case of fundamental polytopes of full trees
(Definition 2.8) fits into the framework of symmetric edge polytopes, which are themselves in the
focus of active research, see e.g. [10,19].

In this paper we compute the f -vectors of Lipschitz polytopes for all tree-like pseudometric
spaces, hence also of fundamental polytopes of tree-like metric spaces. Moreover, we characterize
exactly which metric trees give rise to fundamental polytopes that are simplicial. In particular, this
characterization shows that our computations do not fall under the case considered in [8].

1.2. Arrangements of hyperplanes and matroids

We call ‘‘arrangement of hyperplanes’’ a finite set of hyperplanes (i.e., linear codimension 1
subspaces) of a real vector space and refer to Section 2.2 for some basics about these well-studied
objects. Here we only point out that the enumerative combinatorics of an arrangement is governed
by the associated matroid, an abstract combinatorial object encoding the intersection pattern of the
hyperplanes (see Section 2.6).

In particular, such an arrangement subdivides the unit sphere into a polyhedral complex KA

which is ‘‘combinatorially dual’’ (see Remark 2.15) to the zonotopes arising as Minkowski sum of
any choice of normal vectors for the hyperplanes. The enumeration of the faces of these polyhedral
complexes in terms of the arrangement’s matroid, due to Zaslavsky [26], has been one of the earliest
successful applications of matroid theory. More recently, Cuntz and Gies [5] have given a necessary
and sufficient condition for KA to be a simplicial complex, again in terms of enumerative invariants
of the associated matroid.

In this paper we notice that fundamental polytopes and Lipschitz polytopes of finite metric trees
are related to the complex KA of an arrangement that is canonically associated to the metric space,
and then to exploit the fact that the arrangement’s matroid has a nice decomposition as a parallel
connection of simple sub-matroids.

1.3. Structure of the paper and main results

We start Section 2 by recalling the main definitions and some results about polytopes associated
to metric spaces, tree-like metrics, systems of splits, arrangements of hyperplanes and matroids. In
particular, we focus on an arrangement of hyperplanes A (S) that can be associated to any system
of splits S . This arrangement and the associated matroid M (S) (which were already considered in
a different context [16]), provide the combinatorial underpinning of our considerations.

(1) We notice that the fundamental polytope of any tree-like finite metric space is combinatorially
isomorphic to the complex KA (S), where S is the unique system of splits in the Bandelt–Dress
decomposition of the given space. In fact, the Lipschitz polytope of such spaces is the zonotope
defined as the Minkowski sum of a certain choice of normal vectors for the hyperplanes of
A (S): this is the content of Theorem 3.1, see also Remark 3.2.

(2) We compute the intersection poset of A (S) (and the closure operator of the associated
matroid) from the combinatorics of the split system (Theorem 4.4).

1 The f -vector of a polytope (or of any polyhedral complex) is the list of integers encoding the number of faces of
each dimension.
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(3) We prove that the matroid of A (S) decomposes as a ‘‘parallel connection’’ of elementary
building blocks that can be read off the (unique) metric tree representing the metric at hand.
This allows us to give explicit formulas for the face numbers of fundamental and Lipschitz
polytopes in terms of the combinatorial structure of the tree (Theorem 4.21), building on
Zaslavsky’s theorems and on results of Bonin and De Mier on characteristic polynomials of
parallel connections.

(4) Our formulas allow us to use Cuntz and Gies’ criterion for simpliciality of arrangements in
order to prove that the fundamental polytope of a tree-like metric is simplicial if and only if
to every vertex of the metric tree is associated an element of the metric space (Theorem 5.3).
Our characterization shows in particular that no tree-like metric is generic in the sense of
Gordon and Petrov [8] (Corollary 5.5).

1.4. Related work

The study of metric spaces by means of associated polyhedral complexes is a classical topic, going
back at least to work of Buneman [3] and Bandelt-Dress [1], and driven in part by application to the
study of phylogenetic trees. After a first version of this paper circulated, we learned about further
recent literature that helped us to contextualize our work. Koichi [16] recently gave a uniform
description of the approaches by Buneman and Bandelt–Dress, building on Hirai’s [11] polyhedral
split decomposition method, where a metric is viewed as a polyhedral ‘‘height function’’ defined
on a point configuration. In [16] we also find the defining forms of the arrangement A (S). (On the
other hand, the hyperplanes associated to splits in [11, p. 350] do not coincide with ours.) Motivated
by the connections to tropical convexity [6,23], Herrmann and Joswig [9] studied split complexes of
general polytopes and, in the process, consider an arrangement of ‘‘split hyperplanes’’ associated to
every split metric. In this respect we notice that, even if each of our hyperplanes can be expressed in
the form [9, Equation (9)], the arrangement A (S) is not one of the arrangements considered in [9]
(see Remark 2.16). Moreover, the matroid we consider is different from the matroid whose basis
polytope is cut from the hypersimplex by a set of compatible split hyperplanes, which is studied
by Joswig and Schröter in [15].

Lipschitz polytopes of finite metric spaces are weighted digraph polyhedra in the sense of Joswig
and Loho [14], who give some general results about dimension, face structure and projections
[14, §2.1, 2.2, 2.6] but mostly focus on the case of ‘‘braid cones’’ which does not apply to our
context. We close by mentioning that the polyhedra considered, e.g., in the above-mentioned work
of Hirai [11, Formula (4.1)] are different from the Lipschitz polytopes we consider here: in fact, such
polyhedra are (translated) zonotopes for all split-decomposable metrics [11, Remark 4.10], while –
for instance – the Lipschitz polytope of any split-decomposable metric on 4 points is only a zonotope
if the associated split system is compatible.

2. The main characters

2.1. Metric spaces and their polytopes

Definition 2.1. Let X be a set. A metric on X is a symmetric function d : X × X → R≥0 with the
following properties.

(1) For all x, y ∈ X , d(x, y) = 0 implies x = y.
(2) For all x, y, z ∈ X , d(x, y) + d(y, z) ≥ d(x, z) (‘‘triangle inequality’’).

If requirement (1) is dropped, then d is called a pseudometric. The pair (X, d) is then called a metric
space (resp. pseudometric space).

In this paper we will focus on finite metric spaces, i.e., metric spaces (X, d) where |X | < ∞. We
will tacitly assume so throughout.
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Definition 2.2. Let (X, d) be a (finite) metric space with |X | > 1. Consider the vector space RX

with its standard basis {1k}k∈X , i.e.,

(1k)i :=
{
1 if i = k

0 otherwise.

Following Vershik [24] we define the fundamental polytope of (X, d) as

Pd(X) := conv{ei,j | i, j ∈ X, i �= j},
where

ei,j := 1i − 1j

d(i, j)
.

This polytope is contained (and full-dimensional) in the subspace

V0(X) = {x ∈ R
X | ∑

ixi = 0}.

Definition 2.3. Let (X, d) be a (finite) pseudometric space with |X | > 1.
The Lipschitz polytope of (X, d) is given as an intersection of halfspaces by

LIP(X, d) := {
x ∈ R

X | ∑
ixi = 0, xi − xj ≤ d(i, j) ∀i, j ∈ X

}
. (1)

This polytope is contained (and full-dimensional) in the subspace

V (X, d) := {x ∈ R
X | ∑

ixi = 0, xi = xj whenever d(i, j) = 0}.

Remark 2.4 (On Lipschitz Polytopes). For metric spaces our definition specializes to the standard
definition of the Lipschitz polytope, e.g., as given in [24]. We remark that, although related, this
is not the set of Lipschitz functions considered in the work of Wu, Xu and Zhu on graph indexed
random walks [25].

Remark 2.5 (On Polytopes). We point the reader to the book by Ziegler [27] for terminology and
basic facts about polytopes and fans. Here let us only mention that the combinatorics of a given
polytope P is encoded in its poset of faces F (P) which, here, we take to be the set of all faces of P
including the empty face ordered by inclusion. A rougher, but very important enumerative invariant
of a polytope is its face numbers f P0 , . . . , f Pdim(P), where

f Pi = |{i − dimensional faces of P}|.
It is customary to consider the empty face as a face of ‘‘dimension −1’’, thus to write f P−1 = 1 and
to fit these numbers into the f -polynomial of P , defined as

f P (t) := f P−1t
m+1 + f P0 t

m + · · · + f Pm

where we write m := dim(P).

The problem posed by Vershik [24] is to study the face numbers and face structure of the
fundamental polytope of a metric space. We will do so by focussing on the associated Lipschitz
polytope, whose combinatorics is ‘‘dual’’ to that of the fundamental polytope in the following sense.

Remark 2.6. A look at Theorem 2.11.(vi) of [27] shows that indeed, for every metric space (X, d) the
polytopes Pd(X) and LIP(X, d) are polar dual to each other (with respect to the ambient space V0(X),
cf. [27, Definition 2.10]). Polar duality induces an isomorphism of posets F (Pd(X)) ∼= F (LIP(X, d))op

and, in particular, the equality f
Pd(X)
i = f

LIP(X,d)
dim(Pd(X))−1−i.

Example 2.7 (Metric Spaces from Weighted Graphs). Let G be a finite, connected and simple graph.
Write V (G) and E(G) for the set of vertices, resp. edges of G.
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A weighting of G is any function w : E(G) → R>0, and the pair (G, w) is called a weighted graph.
Then, setting

dw(v, v′) := min
{
w(e1) + · · · + w(ek) | e1, . . . , ek an edge-path joining v with v′}

the pair (V (G), dw) is a metric space.

Recall that the neighborhood N(v) of a vertex v in a (simple) graph is the set of edges incident
to v. The degree of v is then the number deg(v) := |N(v)| of such edges. A tree is a graph in which
every pair of vertices is connected by a unique path. A leaf in a tree is any vertex of degree 1.

Definition 2.8 (Tree-Like Metrics and X-Trees). Let X be a finite set. An X-tree is a pair (T , φ), where
T is a tree and φ : X → V (T ) is a map whose image contains every vertex of V that is incident to
at most two edges, i.e., {v ∈ V (T ) | deg(v) ≤ 2} ⊆ φ(X).

A (pseudo)metric d on a set X is called a tree-like (pseudo)metric if there exists an X-tree (T , φ)
and a weighting w of T such that for all x, y ∈ X

d(x, y) = dw(φ(x), φ(y)).

(‘‘d is induced by a weighted X-tree’’). The pseudometric d is a metric if and only if φ is injective.
When φ is bijective, we call (X, d) a full tree.

2.2. Arrangements of hyperplanes

Let V denote a finite-dimensional real vector space, say of dimension m. An arrangement of
hyperplanes (or, for short, arrangement) in V , is a finite set A of hyperplanes (i.e., linear subspaces
of codimension 1). Such an arrangement defines a polyhedral fan in V , and we let F (A ) denote the
poset of all faces of this fan, partially ordered by inclusion. We write f A

i for the number of faces of
this fan of dimension i, for all i = 0, . . . ,m, and we arrange these numbers into the f -polynomial
of A ,

f A (t) := f A
0 tm + f A

1 tm−1 + · · · + f A
m .

The poset of intersections of A is the set

L (A ) := {∩B|B ⊆ A }, x ≤ y ⇔ x ⊇ y

of all subspaces that arise as intersections of hyperplanes in A , partially ordered by reverse
inclusion. The poset L (A ) is ranked by the function rk(x) := m− dim(x). and we define the rank of
A to be r := rk(∩A ). The Möbius polynomial of A is

MA (u, v) :=
∑

x,y∈L (A )

μ(x, y)urk(x)vr−rk(y) (2)

where μ denotes the Möbius function of L (A ) (see e.g. [22, (3.17)]).

Theorem 2.9 (Zaslavsky [26, Theorem A]).

f A (x) = (−1)r MA (−x, −1).

2.3. Zonotopes

Associated to every set of nonzero real vectors v1, . . . , vk ∈ Rm \{0} there is a polytope obtained
as the Minkowski (i.e., pointwise) sum

Z(v1, . . . , vk) :=
k∑

i=1

[−1, 1]vi

where [−1, 1] ⊆ R denotes the 1-dimensional unit cube (see [27, §1.1]). Polytopes of this form are
called zonotopes. Strongly related to Z(v1, . . . , vk) is the arrangement of normal hyperplanes to the
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vi, i.e., A := {v⊥
i | i = 1, . . . , k}. In particular, there is an isomorphism of posets (see, e.g., [27,

Corollary 7.18])

F (A )op ∼= F (Z(v1, . . . , vk)) \ {∅}
which implies the following relationship among the f -polynomials.

f Z(v1,...,vk)(t) − tr+1 = tr f A (
1

t
) (3)

2.4. Split systems

We introduce a special class of pseudometric spaces, keeping the terminology that is in use in
the literature (e.g., [1,3]).

Definition 2.10. Let X be a finite set. A split of X is a bipartition of X , i.e., a pair of nonempty
and disjoint subsets A, B ⊆ X (the sides of the split) such that A ∪ B = X . Such a pair will be
written A|B. Clearly, A|B and B|A describe the same split. In fact, every split σ = A|B corresponds to
a nontrivial equivalence relation ∼σ on X , whose equivalence classes are A and B. Given a split σ
and any element i ∈ X we write [i]σ for the equivalence class of i with respect to the equivalence
relation ∼σ . Thus, to any split σ we can associate the function

δσ (i, j) =
{
0 i ∼σ j

1 otherwise.
(4)

A split σ is called trivial if one of its sides is a singleton. We will use the shorthand σ = k|kc in
order to denote a trivial split whose singleton side is {k}.

Two splits A|B and C |D are compatible if at least one of the sets A∩C , A∩D, B∩C , B∩D is empty.
A system of splits on X is just a set of splits of X ; the system is called compatible if its elements

are pairwise compatible.

Definition 2.11. A weighted split system is a pair (S, α) where S is a system of splits on X and
α ∈ (R≥0)

S is any weighting. Any such weighted split system defines a symmetric nonnegative
function dα : X × X → R via

dα(x, y) =
∑
σ∈S

ασ δσ (x, y)

where δσ is as in Eq. (4). The functions of the form dα are called split-decomposable pseudometrics
associated to S . In fact, the pair (X, dα) is a pseudometric space. A positively weighted split system
is one where ασ > 0 for all σ ∈ S . In this case, we will write

V (S) := V (X, dα).

as this subspace clearly does not depend on α.

Such metric spaces are also known as cut (pseudo)metrics [7].

Theorem 2.12 (See [21, Theorems 3.1.4, 7.1.8, 7.2.6, 7.3.2]). Let (X, d) be a pseudometric space. The
following are equivalent:

(i) d satisfies the ‘‘four point condition’’: for all x, y, z, w ∈ X,

d(x, y) + d(z, w) ≤ max |{d(x, z) + d(y, w), d(x, w) + d(z, y)} |
(ii) d is a tree-like pseudo-metric on X (in the sense of Definition 2.8).
(iii) d is a split-decomposable pseudometric associated to a positively weighted system of compatible

splits. Moreover, this system is unique.

Remark 2.13. Under the equivalence of (ii) with (iii), splits in the decomposition of the metric
correspond bijectively to edges in the tree.
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2.5. Arrangements associated to split systems

We now define an arrangement of hyperplanes associated to any split system. This set of
hyperplanes appeared already in [16, p. 10], see Remark 4.7.

Definition 2.14. Let X be a finite set and consider a split σ = A|B of X , where |X | = n. To σ we
associate the line segment (one-dimensional polytope)

Sσ := conv

{ |B|
n

· 1A − |A|
n

· 1B,
|A|
n

· 1B − |B|
n

· 1A

}
⊆ V (S) ⊆ R

X

where 1A := ∑
x∈A 1x, as well as a hyperplane Hσ := (Sσ )

⊥.
Accordingly, the hyperplane arrangement and the zonotope associated to S are

A (S) := {Hσ | σ ∈ S}; Z(S) :=
∑
σ∈S

Sσ .

Remark 2.15. Both the arrangement A (S) and the zonotope Z(S) are full-rank, resp. full-
dimensional, inside the natural ‘‘ambient space’’ V (S).

Remark 2.16. Each of our hyperplanes Hσ has the form of an (A, B, μ)-hyperplane as described
in [9, Equation 8], for μ = p|B| and k = pn where p is any positive integer. However, such values
of μ, k are excluded in [9].

2.6. Matroids

The abstract combinatorial objects on which our enumerative considerations rest are matroids.
Technicalities about matroids will only be needed in few proofs, therefore we only give a partial
review of the definitions and the terminology and simply refer to Oxley’s textbook [20].

Let E be a finite set. A matroid M on E can be given by a collection of subsets of E that contains
the full set E and which has the structure of a geometric lattice when partially ordered by inclusion.
The elements of this collection are the flats of the matroid, and the poset of all flats ordered by
inclusion is called L (M ). Since geometric lattices are ranked posets, for every A ⊆ E we can define
a rank ρM (A) as the poset rank of the smallest element of L (M ) that contains A.

The characteristic polynomial of a matroid M on the ground set E is

χM (t) :=
∑
A⊆E

(−1)|A|tρ(E)−ρ(A).

The matroid is called simple if the minimal flat is the empty set and every minimal nonempty
flat is a singleton set. In this case, the structure of L (M ) determines the matroid fully.

Example 2.17. Let k be a positive integer and E any k-element set. The set of all subsets of E is the
set of flats of a matroid on E that we denote by F (k) and call the free matroid on k elements. The
set of all subsets of E of cardinality other than k− 1 is also the set of flats of a matroid: we denote
this by C (k) and call it the k-cycle matroid. (The reader familiar with matroid theory will recognize
C (k) as the uniform matroid Uk,k−1, and notice that F (k) � Uk,k.) The characteristic polynomials of
those matroids have the following form.

χF (k)(t) = (t − 1)k, χC (k)(t) = (−1)k−1

k−1∑
i=1

(1 − t)i (5)

Example 2.18. To every arrangement A of hyperplanes in the sense of Section 2.2 is associated a
matroid on the ground set A by declaring any K ⊆ A to be a flat if and only if there is a linear
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subspace X of V such that K is the set of all hyperplanes containing X . In particular, there is a poset
isomorphism

L (A ) → L (M ); X �→ {H ∈ A | X ⊆ H}
and, for every K ⊆ A , ρM (K) = codim∩K.

From Zaslavsky’s Theorem 2.9 and elementary computations we see that

f A
i = (−1)i

∑
K∈L (M)

ρ(A )−ρ(K)=i

χM/K(−1) (6)

where M/K denotes the contraction of the flat K (see [20, Section 3.1]).

We conclude this brief overview with two matroid operations.

Definition 2.19. Let E1, E2 be two disjoint finite sets, and for i = 1, 2 let Mi, be a matroid on the
ground set Ei with lattice of flats Li. The direct sum M1 ⊕ M2 is the matroid on E1 ∪ E2 whose
flats are precisely the unions of flats of M1 and M2. In particular, there is an isomorphism of posets
L (M1 ⊕ M2) � L1 × L2.

The characteristic polynomial of a direct sum decomposes as a product.

χM1⊕M2
(t) = χM1

(t)χM2
(t) (7)

Definition 2.20. Let E1, E2 be two finite sets such that E1 ∩ E2 = {e} for some e. For i = 1, 2 let Mi,
be a matroid on the ground set Ei with lattice of flats Li and rank function ρi. If ρ1(e) = ρ2(e), the
parallel connection of M1 and M2 along e is the matroid M1 ⊕e M2 on the ground set E1 ∪ E2 whose
flats are precisely the subsets of the form F1 ∪ F2 for (F1, F2) ∈ L1 × L2 and either e ∈ F1 ∩ F2 or
e �∈ F1 ∪ F2.

Characteristic polynomials of parallel connections behave naturally, e.g., as in the following
sample result which we state for later reference.

Remark 2.21 ([2, Theorem 5]). In the setting of Definition 2.20, if ρM1
({e}) = ρM2

({e}) �= 0 and F
is any flat of M1 ⊕e M2, then

χ(M1⊕eM2)/F (t) = χM1/(F∩E1)(t)χM2/(F∩E2)(t)

(t − 1)|{e}\F | .

Again we refer to [20, Section 3.1] for the definition of the contraction of a matroid.

3. Lipschitz polytopes of compatible systems of splits

Theorem 3.1. Let (X, d) be a tree-like pseudometric space. Then,

LIP(X, d) =
∑
σ∈S

ασ Sσ

where (S, α) is the unique weighted system of compatible splits of X such that d = dα (cf. Theorem 2.12).

Remark 3.2. We thank an anonymous referee for pointing out to us that this theorem can be
deduced from work of Koichi [16] and Murota’s book on convex discrete analysis [18], as we explain
in Proof A. For the benefit of the reader who might not be familiar with this apparatus, we also offer
an elementary direct argument (Proof below).

Proof. Following, e.g., Murota [18], we identify any C ⊂ RX via its ‘‘indicator function’’ δC : RX →
{0, +∞}, defined as

δC (x) =
{
0 x ∈ C

∞ otherwise.
(8)
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When C is convex, [18, Theorem 3.2 and (3.31)] says that the ‘‘conjugate’’ (or Legendre–Fenchel
transform) δ•

C of δC satisfies

δ•
C (x) = sup

y∈C
xT y.

This expression allows for an explicit verification of the fact that for every Minkowski-sum decom-
position C = A + B of C into convex sets A and B and for every α > 0 we have

δ•
C (x) = δ•

A(x) + δ•
B(x), α · δ•

C (x) = δ•
αC (x) (9)

Moreover, following [16], to any finite (pseudo)metric space (X, d) one can associate the finite
vector configuration K := {1u − 1v}u,v∈X ⊆ RX and consider the function d : RX → R defined as
the homogeneous convex closure [16, §2.3] of the discrete function K → R, (1u − 1v) �→ d(u, v).
An explicit expression for d is given in [16, (3.1)], and a direct check shows that in this case

d = δ•
LIP(X,d). (10)

In particular, since for every split σ of X the function δσ from Eq. (8) is a pseudometric on X , we
have

δσ = δ•
LIP(X,δσ ). (11)

When (X, d) is a tree-like metric space with associated split system (S, α), [16, Proposition 3.6]
shows that

d =
∑
σ∈S

ασ δσ , (12)

where δσ is as in Eq. (11). Summing up, we can write

δ•
LIP(X,d)

(10)= d
(12)=

∑
σ∈S

ασ δσ
(11)=

∑
σ∈S

ασ δ•
LIP(X,δσ )

(9)= δ•
(
∑

σ∈S LIP(X,ασ δσ ))
.

From the equality of the Legendre–Fenchel transforms of the indicator functions one then
deduces equality of the polytopes, proving the claim. �

Proof. The proof is by induction on the cardinality of S . If |S| = 0 there is nothing to prove.
Let then |S| > 0 and suppose that the theorem holds for all weighted systems of compatible

splits of smaller cardinality. By Theorem 2.12, to the space (X, d) is associated a weighted X-
tree (T , φ) in the sense of Definition 2.8, and the corresponding tree metric can be expressed
as a split metric with a split for every edge in the tree. The uniqueness part of Bandelt and
Dress’ decomposition theorem ([1, Theorem 2]) says that the associated split system must be S . In
particular, the tree T has at least one edge, and thus at least one leaf vertex (i.e., a vertex incident
to exactly one edge). Choose then such a leaf vertex, say v, and let σ ∈ S be the split corresponding
to the unique edge incident to v. Then,

σ = A | Ac with A := φ−1(v).

Let S ′ := S \ {σ } and let (X, d′) be the pseudometric space defined by S ′ and the appropriate
restriction of α. Now notice that d = d′ + ασ δσ and that, for all i, j ∈ A, we have d′(i, j) = 0. The
claim then follows by induction hypothesis applied to S ′ via the following identity.

LIP(X, d′ + ασ δσ ) = LIP(X, d′) + ασ Sσ .

The right-to-left containment is verified directly. In order to check the left-to-right containment
we consider a point x ∈ LIP(X, d′ + ασ δσ ) and prove that it is contained in the right-hand side. The
definition of the Lipschitz polytope implies immediately that, for all i, j ∈ X , xi − xj ≤ d′(i, j) + ασ .

Define

α := maxi∈A,j∈Ac {0, xi − xj − d′(i, j), xj − xi − d′(i, j)}.
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If α = 0, then x ∈ LIP(X, d′). Otherwise, choose i0, j0 such that α = xi0 − xj0 − d′(i0, j0). Assume
w.l.o.g. i0 ∈ A and j0 ∈ Ac (otherwise switch A and Ac in the following). Since now 0 ≤ α ≤ ασ , it is
enough to show that

y := x − αvσ ∈ LIP(X, d′)

where vσ := |Ac |
n

· 1A − |A|
n

· 1Ac . This is proved by verifying, with a direct computation, that y
satisfies Eq. (1). �

Theorem 3.3. Let (X, d) be a tree-like pseudometric space with associated system of compatible splits
S . Then the f -vector of the associated Lipschitz polytope is as follows.

f LIP(X,d)(x) = (−x)rk(∩A (S))MA (S)

(
−1

x
, −1

)
+ xrk(∩A (S))+1

If additionally (X, d) is a metric space, then the f -vector of the associated fundamental polytope is

f Pd(X)(x) = (−1)rk(∩A (S))MA (S)(−x, −1)x + 1.

Proof. Theorem 3.1 implies that F (LIP(X, d)) � F (Z(S)), and thus with Remark 2.15, Theorem 2.9
and Eq. (3) we can compute

f LIP(X,d)(x) = (−x)rk(∩A (S))MA (S)(−1

x
, −1) + xrk(∩A (S))+1

This proves the first of the claimed equalities. The second follows by duality (Remark 2.6). �

Corollary 3.4. For any tree-like metric space (X, d)

f
Pd(X)
i = f

A (S)
i+1 = f

LIP(X,d)
|X |−2−i

where S denotes the associated system of (compatible) splits and the index i runs from −1 to
dim(Pd(X)) = |X | − 1.

4. Computation of face numbers

We turn to the problem of an effective computation of the f -vectors of fundamental polytopes.
The main result of this section are explicit formulas for the face numbers of fundamental polytopes
of tree-like metric spaces.

We will start with two easy cases and then offer a general tool allowing to compute the
intersection lattice of the associated hyperplane arrangement. From there, we will study the
structure of the matroid M (S) in order to set up our formulas.

Example 4.1 (Points in R1). We can represent the metric space defined by any set of n points in R1

by just taking its metric graph in a line, considering the associated set of splits and choosing the
coefficients in the split-metric accordingly. The arrangement corresponds to (n − 1) independent
vectors in n − 1-dimensional space, i.e., it is isomorphic to the coordinate arrangement. The
corresponding matroid is the uniform matroid Un−1

n−1 and, in particular, f A
i = 2i

(
n−1
i

)
.

Example 4.2 (The Root Polytope of Type An−1). Let us consider a star graph, i.e., a tree with n > 2
leaves and a unique internal vertex. If we assign each edge the length 1

2
, we define the structure of

a metric space on the set X of leaves of our star graph.
The corresponding split system consists exactly of all the trivial splits, and any two points are

at distance 1. Then, by definition, the fundamental polytope of this space is the convex hull of the
vectors ei,j = 1i −1j, where i �= j ∈ [n]. This is also called the root polytope of type An−1, and its face
numbers have been computed via algebraic-combinatorial considerations by Cellini and Marietti [4,
Proposition 4.3]. Of course, one could compute these numbers by computing the Möbius function
of the corresponding matroid, i.e., the uniform matroid Un−1

n .
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Fig. 1. The neighborhood of the vertex v′ in the X-tree T ′ (left-hand side) and T (right-hand side).

4.1. The intersection lattice of A (S)

We will start by describing the intersection poset of A (S) by means of partitions. Work in this
direction can be implicitly found in [16], but for our purposes it will be convenient to give explicit
statements and direct proofs (see Remark 4.7 for details).

Definition 4.3. Let (X, d) be a pseudometric space. The function d induces a partition π (d) of the set
X given as the set of equivalence classes of the equivalence relation in which i and j are equivalent
if and only if d(i, j) = 0. If the space (X, d) arises from a positively weighted system of splits (S, α),
the partition π (d) does not depend on α and we only write π (S).

We have an order-reversing map of posets

π : 2S → ΠX ; S ′ �→ π (S ′)

where 2S denotes the poset of all subsets of S ordered by inclusion, and ΠX is the poset of all
partitions of X ordered by refinement.

Theorem 4.4. Let (S, α) be an arbitrary positively weighted system of compatible splits of a finite set
X and write π := π (S). Then,

∩σ∈SHσ = 〈
ei,j : i and j in the same block of π (S)

〉
,

where ei,j = (1i − 1j)/d(i, j), see Definition 2.2.

Proof. The right-to-left inclusion holds by definition. We will prove the left-to-right inclusion by
induction on the cardinality of the system of splits.

If |S| = 1 the claim is evident. Let then m > 0, assume that the statement holds for any weighted
system of up tom compatible splits and consider a weighted system of splits (S, α) with |S| = m+1.

By Theorem 2.12, (S, α) can be represented by an X-tree (T , φ) with at least one edge, hence
with at least one leaf vertex v. In particular, with A := φ−1(v), we know that σ := A|Ac ∈ S and we
can consider

S ′ := S \ {σ }, α′ := α|S′ , d′ := dα′ , π ′ := π (S ′).

The X-tree (T ′, φ′) associated to (S ′, α′) must have a vertex v′ with φ′(A) = v′ (otherwise there
would be i, j ∈ A with dα(i, j) ≥ d′

α(i, j) > 0).
In a neighborhood of v′, the X-trees associated to (S ′, α′), resp. (S, α), differ as in Fig. 1. In

particular, the partitions associated to v and v′ are of the form

π = {A, C, π1, . . . , πk}; π ′ = {A � C, π1, . . . , πk} (∗)
where, as in the following, we think of a partition as a set of blocks and we denote by C the unique
block of π that is merged in order to form π ′. Moreover, given a partition π of a set let ∼π denote
the equivalence relation on the same set whose equivalence classes are the blocks of π .
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Let vσ := |A|
n

· 1Ac − |Ac |
n

· 1A, so that (vσ )
⊥ = Hσ . By induction hypothesis,⋂

τ∈S
Hτ =

⋂
τ∈S′

Hτ ∩ Hσ = 〈ei,j : i ∼π ′ j〉 ∩ (vσ )
⊥. (13)

In view of (∗), the subspace 〈ei,j : i ∼π ′ j〉 decomposes as⊕
b∈π ′

〈
ei,j | i, j ∈ b

〉 = 〈
ei,j | i, j ∈ A � C

〉 ⊕ ⊕
b∈π ′\{A�C}

〈
ei,j | i, j ∈ b

〉
︸ ︷︷ ︸

=:W

.

Since σ does not split any block of π ′ \ {A � C}, we have W ⊆ (vσ )
⊥. Therefore, the right-hand

side of Eq. (13) equals
(〈
ei,j | i, j ∈ A � C

〉 ∩ (vσ )
⊥) ⊕ W .

On the other hand,〈
ei,j | i, j ∈ A � C

〉 ∩ (vσ )
⊥ = 〈

ei,j | i, j ∈ A
〉 ⊕ 〈

ei,j | i, j ∈ C
〉

Thus, we can rewrite the right-hand side of Eq. (13) as〈
ei,j | i, j ∈ A

〉 ⊕ 〈
ei,j | i, j ∈ C

〉 ⊕ W

and in particular, recalling the block structure of π from (∗),
〈ei,j | i ∼π ′ j〉 ∩ (vσ )

⊥ = 〈ei,j | i ∼π j〉
which, together with Eq. (13), concludes the proof. �

Recall that the posets of intersections of A (S) is the lattice of flats of the matroid M (S).

Corollary 4.5. There is a poset isomorphism

L (A (S)) � imπ

where the right-hand side is considered as an induced sub-poset of Π
op
X .

More precisely, if we identify the ground set of the matroid M (S) with S itself, we can write the
closure operator of the matroid as

cl(S ′) = max⊆ {S ′′ ⊆ S|π (S ′′) = π (S ′)}
with ρ(S ′) = |π (S ′)| − 1.

Example 4.6 (Full Trees). If (X, d) is a ‘‘full tree’’ (in the sense of Definition 2.8), then it can be
represented by an X-tree where each vertex is labeled by exactly one point of X . Therefore it is
apparent that π is injective, and thus the poset L(A (S)) is boolean. With Eq. (6) and Corollary 3.4
we immediately obtain

f
Pd(X)
i = 2i

(
n − 1

i

)
,

generalizing, as expected, Example 4.1.

Remark 4.7. Koichi [16] considers lattices of flats L of matroids of linear dependencies of centrally
symmetric vector configurations and characterizes the families C ⊆ L \ (maxL ) such that the
subposet {∧C | C ⊆ C} of L (i.e., generated by meets of subfamilies of C) is anti-isomorphic to
a geometric lattice [16, Theorem 4.1]. Our case corresponds to point configurations of ‘‘type Ω ’’
in [16], for which [16, Theorem 4.6] establishes that the set of all flats consisting of the vectors
contained in one of the hyperplanes from Definition 2.14 satisfies indeed this condition. Moreover,
in [16, §4.3.1] it is hinted at a description of L (A (S)) in terms of partitions of X . We thought it
helpful to give explicit statements and a direct proof in this paper.
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4.2. A graph-theoretic description of M (S)

In order to give explicit formulas for the face numbers of the fundamental polytope of a tree-like
metric space (X, d) we study the structure of the matroid M (S) in terms of the associated X-tree.
First, note that since the ground set of M (S) is the set of splits, via Theorem 2.12 we can naturally
think of M (S) as having the set of edges of the X-tree as a ground set.

In this section let then X be a finite set, and let T denote any X-tree (Definition 2.8). For simplicity
we identify a labeled vertex with its label, thus regarding X as a subset of V (T ). Given any F ⊆ E(T ),
the associated edge-induced subgraph is T [F ] = (V (T ), F ), i.e., the graph consisting of all vertices of
T but only the edges in F .

Every edge e ∈ E(T ) defines a split Se of X by partitioning X into two parts according to which
connected component of T [E \ {e}] they are in. Let S(F ) := {Se | e ∈ F} denote the system of splits
associated to an edge set F .

Definition 4.8. Call a subset F ⊆ E(T ) of edges of an X-tree flat if the induced subgraph T [E \ F ]
has no connected component with a labeled vertex and an unlabeled leaf.

Proposition 4.9. Let T be an X-tree and let S denote the associated system of splits of X. Then, a set
F ⊆ E is flat if and only if S(F ) is closed in M (S). Moreover, the rank of S(F ) in M(T ) is one less than
the number of connected components of T [E \ F ] that contain at least an X-labeled vertex.

Proof. The partition π (S(F )) is the set of equivalence classes of the relation defined on X by x �F y
if x, y in the same connected component of T [E \ F ]. Thus, S(F ) is not closed if and only if there is a
split σ in S \S(F ) with π (S(F )∪{σ }) = π (S(F )). Equivalently, there is an edge e �∈ F whose removal
from T [E \ F ] does not increase the number of connected components containing X-vertices: this
can only happen if T [E \ F ] contains a non-X-labeled leaf. �

Definition 4.10. For any given X-tree T , let M (T ) denote the unique simple matroid on the ground
set E(T ) where a set is closed if and only if it is flat in T .

Corollary 4.11. For every tree-like metric space with associated split-system S and tree T , the matroids
M (S) and M (T ) are isomorphic.

In the following we will study how the structure of the tree T leads to a decomposition of the
matroid M (T ). The decomposition is in terms of parallel connections. Recall that

Definition 4.12. Given any tree T let T̂ be the tree obtained by removing all leaves from T . We
call T̂ the ‘‘core’’ of T .

For every leaf c of T̂ let �(c) be the set of leaves of T adjacent to c. Let c ′ be the vertex of T̂
adjacent to c . Then set T[c] to be the (�(c)∪ {c ′})-tree obtained from the neighborhood of c in T by,
if necessary, labeling c ′. Moreover, let T [c] denote the ((X \�(c))∪{c})-tree obtained by pruning �(c)
from T and, if necessary, labeling c.

Lemma 4.13. Let T be an X-tree, let c be a leaf of T̂ , e(c) the edge connecting c to T̂ . Then,

M (T ) = M (T [c]) ⊕e(c) M (T[c]).

Proof. We check the definition via the set of flats. Fix F ⊆ E and let F ′ := F ∩ E(T [c]), F ′′ := F ∩ T[c].
Then, F is flat in T if and only if F ′ and F ′′ are both flat in the respective graphs (where unlabeled
vertices have the same neighborhood as in T ). �

In the following, given any vertex v of a tree T and any A ⊆ E(T ) we will write degA(v) for the
degree of v in the graph T [A]. More generally, for any given set W ⊆ V (T ) of vertices, we write
degA(W ) := ∑

v∈W degA(v). If no precision is necessary, we will write deg for degE , the degree in
the full graph T .
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Remark 4.14. If c ∈ X , then M (T[c]) � F (deg(c)). Otherwise, M (T[c]) � C (deg(c)).

Theorem 4.15. Let T be an X-tree. Fix an enumeration c1, . . . , cm of the vertices of T̂ such that T̂i, the
graph induced on the vertices c1, . . . , ci, is connected for all i = 1, . . . ,m. In particular, for every i let
ei denote the unique edge {cj, ci+1} with j ≤ i ≤ m. Then,

M (T ) = R(deg(c1)) ⊕e1 · · · ⊕em−1
R(deg(cm))

where R(deg(c)) is a matroid on the ground set N(c) and equals F (deg(c)) if c ∈ X and equals
C (deg(c)) otherwise.

Proof. We apply Lemma 4.13 to the leaf cm of T̂ , then to the leaf cm−1 of T̂ [cm] and, recursively, to
the leaf cm−j of the core of T [cm]···[cm−j−1]. We obtain

M (T ) = M (T [cm]···[c2]) ⊕e1 M (T
[cm]···[c3]
[c2] ) . . . ⊕em−1

M (T[cm]).

From this expansion the claim follows by Remark 4.14, noticing that T
[cm]···[ci]
[ci−1] = T[ci−1] for all

i = 2, . . . ,m, and that T [cm]···[c2] = T[c1]. �

Definition 4.16. Let T be an X-tree as above. We denote by L, resp. U , the set of labeled, resp.
unlabeled vertices of the core T̂ (hence L = V (̂T )∩X and V (̂T ) = L�U). Moreover, given any A ⊆ E,
let ε(A) := |A ∩ E (̂T )| be the number of edges of T̂ contained in A, and write ϕ(A) for the number of
unlabeled vertices that are isolated in T [Ac] (hence ϕ(A) = |{c ∈ U | degA(c) = deg(c)}|.
Lemma 4.17. The rank in M (T ) of any flat F ⊆ E is

degF (V (̂T )) − ϕ(F ) − ε(F ) (14)

Moreover, the characteristic polynomial of the contraction M (T )/F can be expressed as follows (where
we write G := E \ F).

(−1)degG(V (̂T ))−ε(G)(1 − t)degG(L)−ε(G)
∏
c∈U

degG(c)>0

(1 − t)degG(c) − (1 − t)

t
(15)

Proof. The rank of F is the sum of the ranks of F ∩ N(c) in R(c) to which one has to subtract the
number of ei contained in F . The rank of F ∩ N(c) is its cardinality (degF (c)), except in the case
where N(c) ⊆ F (degF (c) = degT (c)) and c is unlabeled, where one has to subtract one. The first
claim follows.

For the second claim, repeated application of Remark 2.21 yields

χM(T )/F (t) =
∏m

i=1 χR(ci)/(F∩N(ci))(t)

(t − 1)|E (̂T )\F |

For any I ⊆ [k] with i = |I| we have F (k)/I = F (k − i) and C (k)/I = C (k − i). Moreover, notice
that χC (0)(t) = 1. With this, a direct computation proves the second claim. �

Corollary 4.18. Let T be an X-tree. Then the characteristic polynomial of M (T ) is as follows.

χM(T )(t) = (−1)|V (T )|−1(1 − t)deg(L)−|E (̂T )| ∏
c∈U

(1 − t)deg(c) − (1 − t)

t

The number of facets of the fundamental polytope Pd (i.e., vertices of the Lipschitz polytope) is thus the
following.

2deg(L)−|E (̂T )| ∏
c∈U

(2deg(c) − 2)
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Fig. 2. The n-caterpillar graph.

Proof. The first claim is immediate from Lemma 4.17, noticing that in an X-tree there are no
unlabeled vertices of degree less than 3. The second claim follows using Corollary 3.4 with i =
|X | − 1. �

Definition 4.19. For a given X-tree T and fixed k ∈ NV (̂T ), i, ε ∈ N, let ΓT (k, ε, i) denote the number
of subgraphs T [G] of T with no unlabeled leaves and such that

• exactly i + 1 connected components of T [G] contain labeled vertices
• degG(c) = kc for all c ∈ V (̂T ).
• G contains ε ’’core edges’’ (ε(G) = ε).

Remark 4.20. Notice that only G = E(T ) satisfies the conditions when i = 0; i.e., ΓT (k, ε, 0) = 1 if
kc = degT (c) for all c and ε = |E (̂T )|, and 0 otherwise.

Theorem 4.21. Let (X, d) be a tree-like metric space with associated X-tree T . Then, for all i ≥ 0,

f
LIP(X,d)
i = f

Pd
|X |−1−i =

∑
(k,ε)∈NV (̂T )+1

ΓT (k, ε, i)2
∑

c∈L kc−ε
∏
c∈U
kc>0

(2kc − 2)

Proof. This formula is a direct consequence of Corollary 3.4, via Formula (6) and the explicit
expression of Lemma 4.17. �

Example 4.22. Let n ∈ N, n ≥ 3, and let us consider any tree metric (X, γ ) whose underlying
X-tree is an n-caterpillar graph (see Fig. 2) with every leaf labeled by exactly one of the n points of
X , and no internal vertices labeled.

Then, T̂ is an (n − 2)-point path and our formula immediately computes the number of vertices
of the associated Lipschitz-polytope as

f
LIP(X,γ )
0 = 2 · 3n−2.

We can also compute the number of edges: notice that for i = 1, the only subgraphs that are
counted by ΓT (k, ε, i) are of the form T [E \ {e}] for some e ∈ E.

If e �∈ E (̂T ) then ε = |E (̂T )| = n − 3 and the subgraph has exactly one unlabeled vertex of
degree 2, while all others have degree 3. This results in a contribution to the number of edges in
the amount of 23−n ·2·6n−3 for each of these n cases. If e ∈ E (̂T ), then ε = n−4 and there are exactly
two unlabeled vertices of degree two, while all others have degree 3. This gives a contribution of
24−n · 22 · 6n−4 in each of these n − 3 cases.

In total, the number of edges of the Lipschitz-polytope of the n-caterpillar graph then equals

f
LIP(X,γ )
1 = n2 · 3n−3 + (n − 3)22 · 3n−4 for all n ≥ 3.

These formulas do in fact correctly predict some of the numbers in Table 1, which shows the
f -polynomials of the fundamental polytopes of these metric spaces for the first few values of n
as computed with SAGE via Corollary 4.5. It took around 10 s to compute the f -polynomial of the
biggest example, the 6-caterpillar graph, on the sage cloud (run on a free server).
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Table 1
The f -polynomials of the fundamental polytope of some caterpillar trees
(compare Fig. 2).

Metric space f –polynomial of Pd(X)

3-caterpillar t3 + 6t2 + 6t + 1
4-caterpillar t4 + 12t3 + 28t2 + 18t + 1
5-caterpillar t5 + 20t4 + 80t3 + 114t2 + 54t + 1
6-caterpillar t6 + 30t5 + 180t4 + 422t3 + 432t2 + 162t + 1

5. A characterization of simpliciality

We turn to characterizing the tree-like metric spaces whose fundamental polytope is simplicial.

Recall that a polytope is called simplicial if each of its faces is (combinatorially equivalent to) a

simplex [27, Section 2.5]. Equivalently, a polytope P is simplicial if, for every face F ∈ F (P), the

lower interval F (P)≤F is a boolean poset. Analogously, an arrangement A of hyperplanes in a real

vector space is called simplicial if each of the cones of the fan determined by A (see Section 2.2) is

a cone over a simplex or, equivalently, if F (A )≤F is a boolean poset for each F ∈ F (A ).

Consider a tree-like metric space (X, d) with associated split system A (S). We know that the

posets of faces of the fundamental polytope and of the associated hyperplane arrangement are

isomorphic: F (Pd(X)) � F (A (S)). Therefore, our characterization of simpliciality for fundamen-

tal polytopes of metric trees will build upon the following characterization of simpliciality of

arrangements of hyperplanes.

Theorem 5.1 (Cuntz–Geis [5, Corollary 2.4]). Let A be an arrangement of hyperplanes in Rr . Suppose

that ∩A is a single point, so that the matroid M (A ) has rank r.

The arrangement A is simplicial if and only if the characteristic polynomial satisfies

r χM(A )(−1) + 2
∑
H∈A

χM(A )/H (−1) = 0. (16)

Lemma 5.2. Let T be an X-tree and M (T ) the associated matroid. Let e be an edge of T and let L(e),

resp. U(e), be the set of labeled, resp. unlabeled vertices of the edge e. Then

χM(T )/e(−1)

χM(T )(−1)
= −2|U(e)|−1

∏
v∈U(e)

2deg(v)−1 − 2

2deg(v) − 2

Proof. The negative sign appears because the sign of the characteristic polynomial evaluated at

−1 is the parity of the rank of the matroid, and contracting by a non-loop element decreases the

matroid’s rank by one. The formula for the absolute value follows from a case-by-case inspection

according to the cardinality of U(e) and L(e), using Lemma 4.17 and the fact that here {e} is a flat

of M (T ). �

Theorem 5.3. Let (X, d) be a tree-like metric space. The fundamental polytope Pd(X) is simplicial if

and only if the space is a full tree. (In this case the face numbers are computed in Example 4.6.)

Proof. With Lemma 5.2, and using the fact that M (A (S)) has rank |X |−1, Cuntz and Geis’ condition

(Eq. (16)) is equivalent to⎛
⎝|X | − 1 − 2

∑
e∈E(T )

q(e)

⎞
⎠ = 0. (17)
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where we write q(e) for the absolute value of the quantity at the right-hand side of the claim in
Lemma 5.2. Now notice that

q(e) = 1

2
if U(e) = ∅, q(e) >

1

2
otherwise,

since the degree of an unlabeled vertex in an X-tree is always at least 3. Thus the left-hand side of
Eq. (17) is⎛

⎝|X | − 1 − 2
∑
e∈E(T )

q(e)

⎞
⎠ ≤ |X | − 1 − |E(T )| ≤ 0

where the first inequality is an equality if and only if U(e) = ∅ for all e ∈ E(T ). This means that
no unlabeled vertices exist, hence |X | = V (T ) and the second inequality is also an equality because
every finite tree has one more vertex than it has edges. The claim follows. �

Definition 5.4 (Gordon and Petrov [8]). A metric space (X, d) is called generic if the triangle inequality
is always strict (i.e., d(x, z) < d(x, y)+d(y, z) for all pairwise distinct x, y, z ∈ X) and the fundamental
polytope Pd(X) is simplicial.

Corollary 5.5. No tree-like metric on more than 2 points is generic in the sense of Definition 5.4.

Proof. We know by Theorem 5.3 that a tree metric for which the polytope is simplicial must be
a full tree (i.e., without unlabeled vertices). But every full tree on 3 or more vertices contains two
adjacent edges, and the triangle inequality applied to the tree vertices incident to those two edges
is in fact an equality. �
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