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Abstract— Proprioceptive feedback is a critical
component of voluntary movement planning and execution.
Neuroprosthetic technologies aiming at restoring move-
ment must interact with it to restore accurate motor control.
Optimization and design of such technologies depends
on the availability of quantitative insights into the neural
dynamics of proprioceptive afferents during functional
movements. However, recording proprioceptive neural
activity during unconstrained movements in clinically
relevant animal models presents formidable challenges.
In this work, we developed a computational framework
to estimate the spatiotemporal patterns of proprioceptive
inputs to the cervical spinal cord during three-dimensional
arm movements in monkeys. We extended a biomechanical
model of the monkey arm with ex-vivo measurements, and
combined it with models of mammalian group-Ia, Ib and
II afferent fibers. We then used experimental recordings
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of arm kinematics and muscle activity of two monkeys
performing a reaching and grasping task to estimate muscle
stretches and forces with computational biomechanics.
Finally, we projected the simulated proprioceptive firing
rates onto the cervical spinal roots, thus obtaining
spatiotemporal maps of spinal proprioceptive inputs during
voluntary movements. Estimated maps show complex and
markedly distinct patterns of neural activity for each of the
fiber populations spanning the spinal cord rostro-caudally.
Our results indicate that reproducing the proprioceptive
information flow to the cervical spinal cord requires
complex spatio-temporal modulation of each spinal root.
Our model can support the design of neuroprosthetic
technologies as well as in-silico investigations of the
primate sensorimotor system.

Index Terms— Proprioceptive feedback, biomechanical
model, upper limb movement, non-human primates, motor
control, neuroprosthetics.

I. INTRODUCTION

TRAUMATIC injuries of the central and peripheral ner-
vous system interrupt the bi-directional communication

between the brain and the periphery. Neuroprosthetic systems
aiming at the recovery of motor function have been mainly
focused on the restoration of motor control via direct muscle
stimulation [1]–[3], peripheral nerve stimulation [4]–[6] and
spinal cord stimulation [7]–[12]. For example, epidural electri-
cal stimulation (EES) [13] of the lumbar spinal cord has shown
promising results for the recovery of multi-joint movements
in animals [11], [14] and humans [10], [15] with spinal cord
injury (SCI). EES engages motoneurons pre-synaptically by
directly recruiting large myelinated afferents in the posterior
roots [16], [17]. In fact, the stimulation-induced information
is processed by spinal circuitry and integrated with residual
descending drive and sensory signals to produce coordinated
movement [18] [19].

These encouraging clinical results have produced a surge
of interest in the application of spinal cord stimulation to
the cervical spinal cord to restore also arm and hand move-
ments [12], [20], [21]. However, restoration of voluntary
control of arm and hand movements likely requires even
finer integration between stimulation signals, descending drive
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and natural sensory feedback [22]. Unfortunately, electrical
stimulation patterns interfere with natural afferent activity [23]
leading to impairment of movement execution and conscious
perception of proprioception [24]. Therefore, application of
EES protocols to the complex control of the upper limb
should rely on precise knowledge of cervical sensorimotor
circuit dynamics. More generally, any application that aims
at restoring limb function [2], [3], or even at the control of
external devices [25], [26], might benefit from the restoration
of proprioceptive feedback to enhance movement quality and
control [23], [27]. In this view, experimental recordings of
proprioceptive afferent dynamics are pivotal to future develop-
ments in neurotechnologies. Recordings of afferent activity in
humans can be performed using microneurography [28], [29],
but this technique only allows the recording of single fibers in
constrained experimental settings. Alternatively, extracellular
recordings of dorsal root ganglion sensory neurons can be
obtained in non-primate animal models during functional
movements [30], [31]. However, although the latter allows
recording multiple fibers simultaneously, it does not readily
permit discrimination between the different fiber types, which
requires a-priori knowledge of the firing dynamics of each
cell type during movement. Moreover, studies addressing the
human upper limb sensory dynamics require more pertinent
animal models such as non-human primates, in which similar
invasive recordings during unconstrained functional move-
ments still present formidable challenges. Here we sought to
combine experimental recordings of kinematics and muscle
activity in monkeys with a biomechanical model of the primate
arm to produce in-silico estimates and characterize the firing
rates of proprioceptive fiber ensembles during arm movements.

Using OpenSim [32], we extended and scaled the biome-
chanical model of the Macaca Mulatta upper limb developed
by Chan and Moran [33], with dedicated ex-vivo measure-
ments, to the size and functional parameters of Macaca
Fascicularis. We then trained two monkeys to reach and
grasp a spherical object while recording arm joint kinematics
and electromyograms (EMGs) of the principal arm and hand
muscles. We validated this biomechanical model by comparing
simulated kinematics and muscle activity with experimental
recordings, and used the model to extract muscle stretches
and tendon elongation parameters.

Next, we fed simulated muscle and tendon states to empir-
ical models of group Ia, Ib and II proprioceptive affer-
ents [34], [35]. Finally, we projected the simulated activity of
each of the fiber ensembles onto the spinal segments hosting
their homonymous motor pools, thus obtaining spatiotemporal
maps of the proprioceptive input to the cervical spinal cord
during movement.

II. METHODS

The computational framework to estimate the firing dynam-
ics of proprioceptive sensory afferents of the upper limb in
non-human primates is presented in Fig. 1. It consists of a
biomechanical model of the primate’s right arm, fine-tuned
to the muscle mechanical properties and anatomy of Macaca
Fascicularis, and in a mathematical model linking muscle and

tendon stretches to firing rates of group Ia, Ib and II afferent
fibers. It is complemented with an experimental dataset of the
three-dimensional arm joint kinematics and muscle activity
of Macaca Fascicularis during reaching and grasping move-
ments, and a method to project the afferent activity onto the
cervical spinal segments.

A. Biomechanical Model

The right arm model includes 39 musculo-tendon units
(MTU), 8 bone structures, and 8 joints. We adapted a SIMM
(Motion Analysis Corporation, USA) model of the right
arm of the Macaca mulatta [33] to OpenSim (National
Center for Simulation in Rehabilitation Research, USA)
and scaled each bone separately to the dimensions of the
Macaca Fascicularis arm. The parametrization of each arm
segment was complemented with mass [36], and resulting
inertia matrix coefficients calculated for each segment taken
as a homogeneous cylinder. We obtained further anatomical
measurements by dissecting an arm specimen of a female
Macaca Fascicularis. During the dissection, approximate
muscle fiber and tendon lengths were also measured.
From a dissected muscle, and after removing the tendons,
we measured the fiber volume by submerging it in a graduated
beaker. We estimated the fiber principal cross-sectional
area (PCSA) as the fiber volume divided by the fiber length.
Subsequently, the maximal isometric force was estimated as
F M

max = σ ∗ PCSA, with σ = 0.3[Nm−2] [37]. We repeated
such measurements for a total of 36 muscles of the arm,
hand and shoulder. By combining this dataset with reported
morphological measurements of macaques [36], [38], [39],
we complemented the model with novel data and adapted
it to the Fascicularis anatomy. However given the difficulty
to measure it, we kept the pennation angle parameter at
null [36]. Measurements from a subset of representative
muscles is reported in Table I. Moreover, following the
observations made during the dissection, we adapted several
MTU lines of action, and added wrapping surfaces when
necessary to prevent MTUs from crossing bones. These
adjustments preserved the operating ranges of normalized
MTU length and moment arm. Finally, we added a joint to
improve representation of the hand. The hand bone structure
was split into two pieces around the first knuckles, in order
to obtain the “fingers” and the “palm” (with the thumb).
For finger actuators such as the flexor digitorum superficialis
muscle (FDS), the model already included a single MTU
whose distal attachment point was located on the palm.
However since we wanted to allow for the simulation of
power grasps, we made adaptations to the FDS and its
antagonist MTU, the extensor digitorum (EDC), so that
together they could actuate the new finger joint. Both MTUs
were stretched and the tendon lengths increased accordingly,
in order to reach opposite sides of the middle finger’s distal
phalanx. A degree of freedom was created to allow fingers
flexion in the range (-10, 90) degrees, where the flat hand
was taken to be the neutral fingers flexion. Reserve actuators
(a mechanism of OpenSim) were de-activated for 4 out
of 8 joints in the model, including the elbow and shoulder
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Fig. 1. Modelling approach. A: the Macaca Fascicularis right arm model of 8 bone structures, articulated around 8 degrees of freedom (SA: shoulder
adduction, SR: shoulder rotation, SF: shoulder flexion, EF: elbow flexion, RP: radial pronation, WF: wrist flexion, WA: wrist abduction, FF: fingers
flexion) B: 39 musculo-tendon units (MTU) allow dynamic activation of the joints. 6 virtual markers are added to the model, conform to the placement
of real markers on the recorded animal. C: in the Hill muscle model, a MTU consists of a Contractile Element (CE) mounted in parallel with a passive
element together representing the fiber, mounted in series with a passive element representing the tendon. D: Computational flowchart: the joint
angles q are produced by OpenSim’s inverse kinematics, and are fed to OpenSim’s CMC. The latter yields fiber properties such as the activity a,
the fiber length lM and its first derivative vM, as well as the fiber force FM. With linear models developed by Prochazka and Gorassini [34], [35], these
properties are used to compute 3 types of sensory feedback f for each of the 39 MTUs, sensory feedbacks which are then separately mapped to
spinal segments to obtain spinal maps.

TABLE I
MORPHOMETRIC MEASUREMENTS OF A SUBSET OF REPRESENTATIVE

ARM AND FOREARM MUSCULO-TENDON UNITS (MTU): OPTIMAL

FIBER LENGTH (lMopt ), TENDON SLACK LENGTH (lTS),
AND FIBER VOLUME (V)

flexions, and heavily constrained on the remaining 4, such as
the fingers flexion. The complete model is available online
(https://c4science.ch/diffusion/NHPOPENSIM/repository/
master/).

B. Afferent Fiber Model

The average firing rate of group Ia, Ib and II afferent fibers
can be estimated from the state of a single MTU at time t

using equations developed to fit experimental recordings of
afferent firing rates in cats by Prochazka and colleagues [18],
[34], [35]. MTU sizes are comparable between the cat hind
limb and the Macaca Fascicularis upper limb, therefore we
expect such models to offer a reasonable approximation of
sensory fiber dynamics in the Fascicularis arm. Specifically,
for a given MTU, we approximated the firing rate f I a of Ia
afferents as:

f I a = max{0, kv ∗ sign
(
vM)|vM |pv + kd I

(
l M − l M

opt

)
+knI a + cI }, (1)

which is the sum of terms that depend on fiber contraction
velocity vM [mm/s], fiber stretch (obtained as the difference
between fiber length l M [mm] and optimal fiber length l M

opt
[mm], parsed from the model), the normalized muscle activity
a, and a baseline firing rate cI . Please note that the optimal
fiber length, which is the length at which the force production
can be maximal, is equivalent to the rest sarcomere length. All
constants k∗ and c∗, as well as pv, are numerical coefficients
that have been previously determined [40]. The numerical
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equations are given in Appendix. We finally enforced a lower
bound firing rate of 0 [Hz] or [impulses/s] to each fiber
population, to prevent negative firing rates. The firing rate of
Ib afferents was estimated to be proportional to the ratio of the
force exerted by the muscle fiber F M [N] over the maximal
isometric force F M

max [N]:

fI b = max{0, k f
F M

F M
max

}. (2)

Finally, the firing of group-II spindle afferents was estimated
as the sum of terms depending on fiber stretch, muscle activity,
and a baseline firing:

f I I = max{0, kd I I
(
l M − l M

opt

) + knI I a + cI I }. (3)

C. Experimental Dataset: Kinematics

Two females Macaca Fascicularis (Mk-Sa, age 7 years,
weight 4 kg and Mk-Br, age 4 years, weight 3.5 kg) were
trained to reach with the left arm for a spherical object,
grasp it, and pull it towards a return position to receive a
food reward [41]. Animals were housed within a group of
five animals at the University of Fribourg, Switzerland. All
experimental procedures were performed at the Platform for
Translational Neuroscience at the University of Fribourg in
agreement with the veterinary cantonal office of the Canton
of Fribourg according to the license n◦2017_04_FR.

We recorded three-dimensional arm-joint kinematics using
the VICON Vero system (VICON, Oxford, U.K.) with
12 infrared cameras, 6 reflective markers attached to the arm
joints, and 2 high definition video cameras. Two sets of
n=9 (Mk-Sa), and n=19 (Mk-Br) reaching and grasping
successful trials, each cut between the cue command and the
return to start position, were extracted and used for the results
of this study. Kinematic and video recordings were synchro-
nized and sampled at 100Hz. The recordings of the reflective
markers’ positions in 3D were then resampled over 1000 time
points. Given the constancy of the trial durations (1.62 ±
0.26 s for Mk-Sa, 2.24 ± 0.20 s for Mk-Br), we proceeded to
average in normalized time the marker positions across trials.
The duration of this time-normalized average trial was finally
scaled back to the real average trial duration in order to be fed
to the chain of computations. The time point corresponding
to the grasping event was manually identified in each video
recording separately. The location of the markers on the arm
is shown in Fig. 1. Markers were placed at the middle of the
upper arm, at the distal end of the humerus, at the elbow joint
and at the proximal end of the ulna, and at the distal ends of the
ulna and radius at the wrist. Finally, we artificially triggered a
whole hand flexion of the model’s “fingers” upon initiation of
grasping by the animal. We simulated the fingers’ flexions by
making the fingers’ joint angle follow a logistic function of
time fitted to match the start and end angle values, with its step
centered on the time point identified as the grasping onset. The
key criterion in choosing the logistic function for this artificial
joint evolution is that its first derivative is bell-shaped, which
is the natural temporal profile of joint velocities [42].

D. Experimental Dataset: Electromyography

The monkeys were implanted with chronic bipolar teflon
coated stainless steel wire electrodes in the deltoid (DEL),
biceps (BIC), triceps (TRI), FDS and EDC muscles of the
left arm (Cooner wires). The surgical procedures have been
described elsewhere [13]. We recorded differential EMG
signals at 12 kHz using a TDT RZ2 system with a PZ5
pre-amplifier (Tucker Davis Technology, USA) and synchro-
nized them with the 3D kinematic recordings using analog
triggers. Raw EMG recordings were band-passed filtered
between 100 and 800 Hz (Butterworth order 3), and Notch
filtered (Butterworth order 3, between 49 and 51 Hz). Then,
to obtain signal envelopes for model validation purposes,
the EMGs were high-pass filtered at 0.1Hz, rectified, and
low-pass filtered at 10Hz (Butterworth order 3). EMG signal
envelopes were normalized in amplitude (divided by their
maximal value over the trial) independently for each muscle,
and their time course was scaled similarly to that of the
kinematic recordings.

E. Estimation of Spatiotemporal Maps

Proprioceptive sensory afferents, innervating muscles and
tendons, converge towards the spinal cord in peripheral nerves
bundled with their homonymous muscle motor axons. There-
fore, we assumed that their organization within the dorsal
roots matches that of their homonymous motor axons in
the corresponding ventral roots. Following this assumption,
the afferent activity stemming from each MTU was mapped
to the dorsal roots and thus to the spinal segments using
the rostro-caudal distribution of motor pools in the primate
spinal cord [43]. As data were missing for the deltoid in the
mentioned publication, we approximated its motor pool local-
ization using data available in humans [44]. Table II shows
the resulting proportions of motoneurons of each muscle in
each cervical spinal segment, which we assumed to represent
the proportions of afferent fibers of each muscle projecting to
each segment as well. We estimated the input sensory activity
ai,x of type x , received by the i -th spinal segment, as:

ai,x =
∑Nmtu

j=0 ωi
j f j,x∑Nmtu

j=0 ωi
j

(4)

where f j,x is the firing rate of the proprioceptive fibers of type
x of the j -th MTU, and ωi

j the proportion of its afferent fibers
projecting to the i -th spinal segment. The considerations that
led to the expression of ai,x are addressed in the discussion.

The set of ai,x ’s can thus be represented as a color image
summarizing the amount of input sensory activity of type x
received by the cervical spinal cord over time, similarly to
spatiotemporal maps of motoneuronal activity [12], [45].

III. RESULTS

A. Model Validation

We recorded simultaneous 3D kinematics of the upper
limb and EMGs of the principal upper limb muscles during
an unconstrained three-dimensional reaching, grasping and
pulling movement. To validate our biomechanical model,
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Fig. 2. Evolution of the principal joint angles during the three-dimensional
reaching and grasping task for Mk-Sa, recorded and simulated (resulting
from the estimated muscle activities). The time of grasping was manu-
ally identified for each recording separately. Joint angles computed by
forward dynamics, using estimated muscle activities, are in excellent
agreement with experimental recordings as can be quantified with the
cross-correlation between the two curves, presented in bars.

we fed averaged 3D trajectories of the joint markers to
OpenSim, and computed joint angles with inverse kinematics.
We then used the compute muscle control (CMC) tool to
estimate a set of muscle activities, that represented a plausible
solution to the inverse biomechanical problem, i.e.: what is
the set of muscle activities, from which the recorded motion
of the arm has originated?

Next we fed the simulated muscle activities to OpenSim’s
forward dynamics, thereby obtaining simulated kinematics
solution to the forward biomechanical problem. Comparing
the kinematics produced with this approach against the experi-
mental joint angles (Fig. 2) shows excellent similarity between
simulated and recorded data. In particular, simulated joint
angle trajectories are well within the experimental variability
range of recorded data (R=0.90 for Mk-Sa and R=0.81 for
Mk-Br). We then compared the computed muscle activities
and the envelopes of recorded EMG signals from upper limb
muscles. Qualitative analysis of activity patterns shows that
the simulated muscle activities match the recorded EMGs
(Fig. 3). In particular, upper arm muscles are activated in the
first part of the reaching phase to lift the arm and initiate
the whole limb movement. Successively, forearm and hand
muscles are activated to shape the grasp, and grab the object.
Finally, biceps and deltoid muscles are strongly activated dur-
ing the pulling phase of the movement. Quantitative compari-
son between simulated muscle activities and EMG envelopes
shows good correlation levels for almost all muscles in both
animals (Fig. 3). Results corresponding to cross-correlation
values of about 0.50 correspond to model predictions that
seem reasonably accurate. While the predictions realized for
the finger actuators of Mk-Sa fall short of this accuracy,

Fig. 3. Averaged and normalized EMG envelopes, compared to com-
puted muscle activity for Mk-Br. DEL: deltoid, BIC: biceps, TRI: triceps,
FDS: flexor digitorum superficialis, EDC: extensor digitorum. Correlation
between the two curves, for each monkey, are shown in bars.

Fig. 4. A: Decomposition of Ia sensory activity into the non-constant
terms of equation (1), for two principal arm muscles in Mk-Sa. B: Profiles
of normalized moto- and sensory-neurons activations, for two principal
arm muscles in Mk-Sa.

we observe outstanding accuracy for the elbow actuators of
Mk-Sa, and for finger actuators of Mk-Br.

B. Sensory Afferent Firing Rates

We estimated the firing rates of group Ia, Ib and group II
afferent fibers by feeding the simulated muscle stretches and
forces to the mathematical model of afferents firing rates (1),
(2), (3). Given the uncertainties in the estimation of muscle
activities, it is important to evaluate the impact these can have
on the outcomes of these mathematical models. Therefore,
we decomposed the resulting afferent firing rates into single
components. In Fig. 4A we reported this decomposition for
the agonist/antagonist of the elbow (i.e. biceps and triceps).
As expected in NHPs, the muscular activity has a second-order
impact on the total firing rates. Instead, it is the contraction
velocity that dominates the Ia profile, which is coherent with
the findings and predictions of Prochazka [40]. We then used
our framework to compare the firing rate of each simulated
sensory fiber ensemble with its homonymous muscle activity,
during a whole limb three-dimensional movement (Fig. 4B).
As expected from intuition, antagonist’s Ia afferents are anti-
correlated. Instead, Group II and Ib afferents are not entirely
anti-correlated between antagonists. Moreover, in the case of
the triceps, afferents show almost complete anti-correlation
with active muscle contraction. This is surprising, considered
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Fig. 5. Spinal map of the three different sensory feedbacks during a standardized reaching and grasping task, for both animals. Here as well,
the three identified phases present noticeably different patterns of afferent activity.

TABLE II
PROPORTIONAL DISTRIBUTION OF THE MOTOR POOLS OF

DELTOID (DEL), BICEPS (BIC), TRICEPS (TRI), FLEXOR

DIGITORIUM SUPERFICIALIS (FDS) AND EXTENSOR

DIGITORIUM COMMUNIS (EDC)

that group II and Ib afferents should respond more to active
muscle force. However, this is likely resulting from the simul-
taneous occurrence of both passive and active tendon elonga-
tions, as well as muscle stretches, in multi-joint movements
such as natural reaching.

C. Spatiotemporal Maps of Proprioceptive Inputs

Using equation (4), we projected the activity of proprio-
ceptive sensory afferents over the spatial distribution of each
fiber population along the cervical dorsal roots, thus obtain-
ing spatiotemporal maps of each sensory ensemble (Table II,
Fig. 5). These maps show very distinct patterns in both space
and time for each of the fiber populations, across movement in
both subjects. While Ia activity precedes the grasping phase,
Ib, and group II activity are maximal during the pulling phase,
when the animal applies maximal force. However, Ib activity
shows sharp activations along the whole cervical enlargement,
while group II has long bursts of activity that span the entire
duration of the pulling phase. Furthermore, we performed
a sensitivity analysis on the impact of muscle activation
predictions, by computing spinal maps with and without the
term in muscle activation terms (knI = 0, knI I = 0, in
equations (1) and (3), respectively). Fig. 6 displays maps that
are remarkably similar, confirming that the most important
parameters in NHPs Ia and II sensory firing rates are related
to muscle stretch and stretch velocity. However, although such
an analysis is not possible for the Ib afferents, we know that
their firing rates uniquely depend on forces applied at the
muscle, and thus they are more likely to be affected by a poor

Fig. 6. Comparison of spatiotemporal maps of sensory inputs in the
cervical spinal cord for Ia- and II-type sensory activities computed by
considering (top) and not considering (bottom) the muscle activation
component estimated using OpenSim.

estimation of the muscle activity. Finally, we computed the
total normalized proprioceptive sensory activity received by
the cervical spinal cord, by summing the normalized activities
of each fiber type. The resulting spatiotemporal map (Fig. 7)
shows how total proprioceptive inputs are conveyed in space
and time to the cervical spinal cord during three-dimensional
reaching movements. Proprioceptive activity first arises in the
rostral segments, moves towards the caudal segments during
grasp pre-shaping and finally peaks in both rostral and caudal
segments during the pulling phase. In particular, it is sustained
for the entire duration of the motor bursts responsible for the
movement execution.

IV. DISCUSSION

We extended and validated a biomechanical model of
the arm of Macaca Fascicularis to predict the firing
rates of ensembles of proprioceptive afferents during three-
dimensional reaching and grasping.

A. A Realistic Primate Arm Model

We reworked a model of the rhesus monkey upper limb to
fit the geometrical and mechanical properties of the Macaca
Fascicularis arm. We dissected most of the muscles of the
arm, forearm and shoulder from a Fascicularis arm specimen
and extracted parameters such as fiber and tendon lengths,
as well as fiber volume for each of the analyzed muscles,



1674 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 28, NO. 7, JULY 2020

Fig. 7. Spinal map of combined estimated proprioceptive feedbacks
of Mk-Sa, during a standardized reaching and grasping task. The three
identified phases present noticeably different patterns of general afferent
activity.

in order to refine and complement the initial model parame-
trization. As was the case in the original model, the joint angle
space was constrained to physiological values. With forward
dynamics, and with limited or de-activated (at the elbow and
shoulder flexions) reserve actuators, our model was able to
faithfully reproduce the recorded kinematics. This confirmed
the quality of the skeletal model and its muscular parametriza-
tion. However, when comparing the computed muscle activity
with the envelopes of the recorded EMG signals, we found
a weaker correspondence. However, quantitative discrepancies
between simulated and recorded muscle activities are common
in biomechanical models [46], [47]. Since we compute muscle
activities from joint kinematics, our model cannot simulate the
co-contraction of antagonist muscles (e.g. as occurs during
stiffening of the arm). Indeed, CMC follows an optimization
strategy that solves the inverse biomechanical problem by
minimizing the sum of squared MTU activities, i.e. minimizing
metabolic energy consumption [48]. This generates a solution
that might differ from the actual activation pattern, due to
redundancy in muscle space. To bypass this limitation, other
groups have resorted to EMG-driven modelling, i.e. directly
using EMG recordings as inputs, instead of the result of
an optimization algorithm [49], [50]. However, calibrating
such models requires long and specific protocols for each
of the joints involved, protocols that are non-practical when
working with NHPs. Indeed, due to the necessity of replicating
diverse tasks, such studies have only been performed on
human models, to the best of our knowledge. Despite these
limitations, our sensitivity analysis showed that the estimation
of Ia and II afferent firing rates remain unaffected by a poor
estimation of muscle activation patterns, while Ib afferents
could be more affected by a poor quantitative match. How-
ever, we believe that the qualitative results presented in this
work remain pertinent. Indeed, the simulated muscle activity

dynamics and kinematics are overall similar to those yielded
by other investigations involving non-human primate upper
limb models [33], strengthening our confidence in the validity
of our approach [47], [51]. Furthermore, the biomechanical
model presented here constitutes a first step, and could later
be embedded in a broader closed-loop simulation environment.
The estimated sensory activity could be used to compute
motoneuronal activity, itself could be driving the evolution
of arm kinematics, and in turn allow to estimate an updated
distribution of sensory activity. Such an approach may enable
testing for different hypotheses regarding the sensorimotor
control of the upper limb.

B. Sensory Afferent Firing Dynamics

The firing dynamics of primary sensory afferents during
active functional movements is a key information to study
sensorimotor integration during voluntary movement execu-
tion. Additionally, modern neuroprosthetic applications aiming
at the recovery of both motor [24] and sensory [23], [52]
functions in patients affected by neurological disorders often
seek to design biomimetic stimulation protocols, with the
underlying assumption that the most effective therapy depends
on reproducing the natural activity in primary sensory afferents
as closely as possible. For both these basic and translational
applications, knowledge about the firing dynamics of various
types of afferent fibers during functional voluntary move-
ments is required. A sufficiently accurate computational model
can be used to estimate these firing rates during multi-joint
movements in dynamic tasks. Such estimates can support
the interpretation of experimental data, as well as assist the
design of neuroprosthetic systems that aim at reproducing
these firing rates. Towards this goal, we describe a method
to study sensory fiber ensembles from multiple muscles
simultaneously during voluntary movements. The results that
we reported show the importance of studying these signals
during functional tasks. Indeed, when looking at the II and
Ib afferent firing rates, we notice that in the triceps, the II,
Ib afferents are not directly correlated with muscle activation
(Fig. 4B). Ib afferents encode force information via tendon
elongation and are thus commonly expected to be active
during muscle contraction and consequent tendon elongation.
However, during a multi-joint movement, active and passive
tendon elongation can also occur due to the contraction of
antagonist muscles, or gravity compensation. Therefore, large
discrepancies from the expected firing patterns of this fiber
populations may emerge as a result of complex bio-mechanical
interactions, as it was likely the case in our simulations.

C. Spatiotemporal Patterns of Proprioceptive Input to the
Cervical Spinal Cord

We assumed that the proprioceptive afferents are distrib-
uted along the rostrocaudal extent of the cervical spinal
cord similarly to their homonymous motoneurons. Given the
well-known strong monosynaptic connectivity between mus-
cle spindle Ia afferents and motoneurons, this approximation
seems reasonable [53]. Using this assumption, we estimated
the spatiotemporal distribution of the proprioceptive input to



KIBLEUR et al.: SPATIOTEMPORAL MAPS OF PROPRIOCEPTIVE INPUTS TO THE CERVICAL SPINAL CORD 1675

the spinal cord during arm movement. The total propriocep-
tive activity reaching the spinal cord during movement is a
combination of both spindle and Golgi tendon fibers activity.
This activity (Fig. 7) arises in the form of clear bursts that
span the spinal segments and are sustained across the entire
duration of movement whilst being strongly modulated. This
is in agreement with the well-known fact that the spinal cord
receives large amounts of neural inputs during movement,
and that spinal circuits are continuously fed with information.
Moreover, the neural input supplied by the different sen-
sory fiber ensembles present markedly distinct spatiotemporal
patterns, suggesting that a stimulation-based restoration of
“proprioceptive” information and perception must target these
three fiber populations independently.

D. Insights for the Design of Neuroprosthetic Systems

Our results offer important insights for at least two appli-
cations in neuroprosthetics. The first important observation
regards the distinct spatiotemporal patterns of each specific
fiber population. Modern biomimetic strategies that aim at
restoring sensation [52] employ electrical stimulation of the
peripheral nerve to convey information to the central nervous
system of amputees. However, this technology does not allow
selectivity on fiber types [52], This is particularly true for Ia
and Ib fibers. Indeed, these afferents have similar diameters
and thus similar recruitment thresholds making it challenging
to independently control their firing rates. These fibers convey
complementary information about movement and force, and
our simulations show that they are active at markedly different
moments during movement execution. This poses important
questions on the theoretical limitations of electrical stimulation
technologies to achieve realistic proprioceptive feedback in
amputees. The second consideration concerns technologies
aiming at the stimulation of the spinal roots such as EES.
When active, electrical stimulation of a specific root will can-
cel the natural flow of information of each recruited afferent
and substitute it with the imposed stimulation frequency [24].
However spinal circuits require correct flow of sensory feed-
back to be able to produce functional movements. Therefore,
development of epidural stimulation strategies of the spinal
cord must take into account the spatiotemporal maps reported
in Fig. 7. For instance, the T1 spinal roots is supposed to have
no input activity both at the beginning of reaching and at the
end of the pulling phase. This means that stimulation targeting
that root in these periods should be avoided to prevent delivery
of aberrant proprioceptive information. Similar consideration
can be made for the other roots.

E. Model Limitations

Our model is limited by the data available for primates.
Morphometric measurements, as well as live recordings, are
scarce and scattered. The number of MTUs studied to obtain
the spatiotemporal maps should be extended when data regard-
ing motor pool distributions of additional muscles will be
made available. Hence the reported spatiotemporal maps of
proprioceptive input are built using a limited set of arm and
forearm muscles. Yet, the actual proprioceptive input received

by a spinal segment is the number of action potentials per unit
time entering that spinal segment via all the proprioceptive
fibers running in the corresponding dorsal root. However,
the exact distribution of proprioceptive fiber ensembles in the
dorsal roots remains to date surprisingly unknown. We thus
limited our analysis to the 5 MTUs shown in Fig. 3, for which
we could estimate the relative proportions of fibers in the
different spinal roots. We assigned identical weights to the
Ia-afferent pools of every represented MTU (see ai,x (4)). This
is equivalent to assuming that similar stretches and applied
forces in these MTUs induce equal amounts of proprioceptive
input to the spinal cord. This assumption may not hold if large
differences in the absolute number of proprioceptive fibers
exist between MTUs. The normalization introduced in (4)
eases the interpretation of the spatiotemporal maps. Without
this term, the input sensory activity estimated using (4) would
be biased towards those segments for which

∑Nmtu
j=0 ωi

j is larger
(e.g. C6 compared to C5) and the temporal variations in the
unfavored segments would have been obscured. In summary,
the spatiotemporal maps shown in Figs. 6 and 7 are best
interpreted in terms of normalized temporal variations of the
combined proprioceptive input emerging from the selected
MTUs and received by individual segments, rather than actual
amounts of neural input expressed in impulses/sec.

V. CONCLUSION

We presented a computational estimation of the spatiotem-
poral patterns of proprioceptive sensory afferent activity during
three-dimensional arm movements in a clinically relevant
animal model. We showed that the patterns of proprioceptive
inputs during functional movements are surprisingly com-
plex and do not necessarily match intuition. Additionally,
we showed that different fiber populations have markedly
distinct spatiotemporal patterns of activity, highlighting the
need of recruiting these populations independently to restore
the natural flow sensory information. Finally, our model can
be integrated in a broader in-silico platform to simulate the
effect of electrical stimulation of the sensory afferents on arm
biomechanics, as well as support basic studies on sensory
systems. These advancements can thus reduce the number of
animals involved in invasive experiments.

APPENDIX

The equations (1), (2), and (3), in numerical form, were:

f I a = max

{
0, 4.3 ∗ sign

(
vM

) ∣∣∣vM
∣∣∣0.6

+2
(

l M − l M
opt

)
+ 50a + 20

}
(A1)

f I b = max{0, 333
F M

F M
max

(A2)

f I I = max{0, 13.5
(
l M − l M

opt

)
+ 20a + 10 (A3)
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