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Biological entities are involved in intricate and complex interactions, in which uncov-
ering the biological information from the network concepts are of great significance.
Benefiting from the advances of network science and high-throughput biomedical
technologies, studying the biological systems from network biology has attracted much
attention in recent years, and networks have long been central to our understanding
of biological systems, in the form of linkage maps among genotypes, phenotypes, and
the corresponding environmental factors. In this review, we summarize the recent
developments of computational network biology, first introducing various types of bio-
logical networks and network structural properties. We then review the network-based
approaches, ranging from some network metrics to the complicated machine-learning
methods, and emphasize how to use these algorithms to gain new biological insights.
Furthermore, we highlight the application in neuroscience, human disease, and drug
developments from the perspectives of network science, and we discuss some ma-
jor challenges and future directions. We hope that this review will draw increasing
interdisciplinary attention from physicists, computer scientists, and biologists.
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1. Introduction

The fast growth of biomedical data, especially data from individual cells, pose concrete questions that we can
undertake, such as how to interpret disease mutations, what their potential network consequences are, and implications
for, disease diagnosis and drug discovery, and how can these help in treatment decisions. To date, assessments of
human diseases are generally made based on statistics and correlations. Yet, statistics do not always permit mechanistic
understanding. Statistics reflect the normalized sum totals; it does not account for the distinct, personal environments.
Thus, often, it is not only the most frequently observed disease-correlated mutation (driver) that matters; other protein
residue substitutions can take place, as can differ cellular networks in cells, tissues, and individuals (see Fig. 1). These can
affect the molecular network landscape, and the consequences, such as disease emergence or progression. Can we forecast
which substitutions can collaborate to lead to certain network-level outcomes? This argues for a detailed approach, and
raises the question of not only which protocols to consider, but also which factors to scrutinize, and, broadly, how can
we then integrate the disciplines. Therefore, on the one hand, we are overwhelmed by the rapidly accumulating data
from next-generation sequencing technologies and thus statistics; on the other hand, their interpretation, in terms of
considerations of dynamic network perturbation, which translate genomics data into function, and dysfunction, lag behind.
Genetics, large data screenings, and pharmacology are insufficient; to be actionable, the data must merge with the network
basis of the protein (node) behavior, and latch onto the human cellular network.

It is widely accepted that bio-molecules do not perform their functions alone, but do so interactively with one another
to form so-called bio-molecular networks. For instance, a disease is rarely a consequence of an abnormality in a single
gene, but reflects the perturbations or malfunctions of the complex biological networks that link tissues and organ
systems [1]. Genes associated with similar diseases are likely to interact and have similar expression, forming the ‘‘disease
module’’ [2]. The terminology of ‘‘network biology’’ can be described from different standpoints, ranging from molecule–
molecule interaction to cell–cell interaction, from unipartite network to bipartite network (e.g., drug–target interaction),
or even tri-partite network (e.g., drug–disease–protein interaction). It is clear that networks are being generated in
ever increasing sizes by exploiting the success of experimental techniques. The availability of large network datasets
and the affordable computing capability have driven the development of bioinformatics algorithms and computational
biology approaches to analyze data to offer biological insights. Benefiting from the advances of network science and
high-throughput biomedical technologies, studying the biological systems from the network perspective has attracted
much attention recently [3–5] and networks have long been central to our understanding of biological systems, in the
form of linkage maps among proteins (genes or neurons), their associated phenotypes (diseases), and the corresponding
environmental factors (i.e., drugs) [6].

Network biology corresponds to a theoretical framework for representing the biological structure, termed a graphical
model, and the functional flow of information through this structure. Understanding and modeling the network structure
would lead to a better knowledge of its evolutionary mechanisms, and to a better acceptance of its dynamical and
functional behaviors. In this review, we will describe some common properties observed in the topology of biological
networks as well as their measures, with a special emphasis on how to model the network structure [7,8] and how
the topology structure affects the biological functional behaviors [9,10]. For instance, the biological networks are always
scale-free [11,12], and the network hubs tend to be the essential parts [13], which would be critically important in disease
progression, cellular dysfunction, and so on. The efficient and functional flow of information in the biological network
would be related to the small-world properties [14], and the network nodes cluster into the module to exert its biological
functions [15]. The biological networks are always heterogeneous, whereas the disease can be considered as the increase
of network heterogeneity [16]. In addition, the highly resilient nature of the network failures would help the life system
to retain biological functionality in the face of the physical damage or environmental variation.

As graphical models are essential representations that characterize many different domains of physics and engineering,
they can significantly promote the development of computational network biology approaches and their applications
across these domains. Therefore, we review a list of network-based computational algorithms, such as network central-
ity [17], network propagation [18], network controllability [19], and module detection [20]. Going beyond the simple
summarization of the computational methods, we emphasize how to use these approaches to mine biological information,
e.g., to identify the disease associated genes using the network propagation approaches. Importantly, machine learning,
especially the deep-learning-based methods, show a strong capacity in extracting hidden information and new insights
into network biology [21,22]. Based on these computational network-based approaches, we introduce how to use the
knowledge of the human interactome networks to interpret associations between genetic variants and diseases [23,24]
and discuss how to use computational network models for drug development [25–27]. We will highlight the possibilities
of network-based methodologies for accelerating novel therapeutic development and personalized treatment [28,29].
In summary, human cellular networks are governed by universal laws and offer a cutting-edge technology that would
revolutionize structural view of biology, disease, and therapeutics in the new genomic era [30].

The rest of this article is organized as follows. First, we introduce several important types of biological networks, in-
cluding the protein–protein interaction, isoform–isoform networks, genetic interactions, metabolic associations, neuron–
neuron interactions, and drug–target interactions, and we also provide some data resources in Section 2. In Section 3, we
review the network structure in biological systems, focusing on two points: biological network structural properties and
the mapping between the cell function and topological structure of biological networks. In Section 4, we introduce the
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Fig. 1. Illustration of human interactome network perturbation altered by disease mutations. A protein in a signaling pathway is typically modulated
by upstream activation (or inhibition), with effects (transmission of the signals or blocking them) propagating via interactors to pathways downstream,
thereby affecting the network.
Source: Figure from Ref. [28].

network-based methods in network biology, which can be roughly divided into network-structure-oriented methods [31]
and machine-learning-based methods. In Section 5, we introduce the application of the computational network biology,
concentrating on discuss how to use the computational network biology to interpret human disease, neuroscience, and
drug development. Finally, we conclude this review in Section 6 with several major challenges and future directions of
computational network biology.

2. Types of biological networks

Simplifying sophisticated macromolecules as ‘‘nodes’’, and the large number of interactions (physical, biochemical, or
functional) between them as ‘‘edges’’, offers a first-order understanding of sub-cellular systems at a global scale for nearly
the entire human interactome. In this review, we focus on several types of biological networks, including human protein–
protein interactions, isoform–isoform networks, genetic interactions, metabolic associations, neuron–neuron correlations,
and drug–target interactions.

2.1. Protein–protein interaction network

Protein–protein interactions (PPIs) are the physical links between two or more protein macromolecules characterized
by biochemical contacts in cells. There are several experimental strategies for mapping human PPIs, such as yeast two-
hybrid assay (Y2H), which measures direct physical interactions in cells, and affinity-purification-mass spectrometry,
which measures the composition of protein complexes. Specifically, we can group PPIs into six different experimental
evidentiary types by assembling various publicly available PPI data: (i) Binary, physical PPIs tested by high-throughput
Y2H systems from publicly available high-quality Y2H datasets [32,33]; (ii) three-dimensional structure-solved PPIs built
from the published protein structure databases, such as the Protein Data Bank [34], Interactome3D [35], Instruct [36], and
Interactome INSIDER [37]; (iii) kinase-substrate interactions by literature-derived low- and high-throughput experiments
from KinomeNetworkX [38], PhosphoNetworks [39], PhosphositePlus [40], DbPTM 3.0 [41], and Phospho. ELM [42]; (iv)
signaling networks by literature-derived low-throughput experiments as annotated in SignaLink2.0 [43]; (v) protein
complexes data identified by a robust affinity-purification-mass spectrometry methodology collected from BioPlex
V2.0 [24]; and (vi) carefully literature-curated PPIs identified by affinity purification followed by mass spectrometry
(AP-MS) and by literature-derived low-throughput experiments from Human Protein Resource Database (HPRD) [44],
BioGRID [45], PINA [46], MINT [47], IntAct [48], and InnateDB [49]. Fig. 2 shows the most comprehensive human protein–
protein interactome network which contains 351,444 PPIs connecting 17,706 proteins [50], and also provides the degree
distribution and several topological characteristics. The detailed bioinformatics resources for curating human PPIs are
provided in Table 1.
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Fig. 2. Network picture of human protein–protein interactome network. This interactome contains 17,706 human proteins and 351,444 interactions
that have been curated by assembling six types of experimental evidence. (A) Overall complex network of human interactome. (B) Degree
(connectivity) distribution of proteins by following a power-law tail. (C) Several selected network topological characteristics of the interactome.

Table 1
Summary of representative bioinformatics resources for curating human protein–protein interaction networks.

Databases Description Website Refs.

BioGRID Integrated protein–protein interaction
data.

http://thebiogrid.org [45]

HPRD Human protein–protein interaction data. http://www.hprd.org [51]

Interactome3D Manually curated PPIs with known
three-dimensional structure information.

http://interactome3d.irbbarcelona.org [35]

STRING Functional protein association networks
database.

http://string-db.org [52]

MINT Protein–protein interactions in refereed
journals.

http://mint.bio.uniroma2.it/mint [47]

KinomeNetworkX Integrative kinase-substrate database. [38]

PhosphoNetworks High-resolution phosphorylation
network connecting the specific
phosphorylation sites present in
substrates with their upstream kinases.

http://www.phosphonetworks.org/ [39,53]

PhosphositePlus Database and tools for the study of
protein post-translational modifications
(PTMs) including phosphorylation,
acetylation, and more.

https://www.phosphosite.org/
homeAction.action

[40]

2.2. Isoform–isoform network

The newest human GENCODE project has revealed ∼20,000 protein-coding genes in the human genome; however, full
protein coding capacity of the genome and the full extent to which different isoforms are differentially expressed remains
underexplored. Human genes can encode multiple protein ‘‘forms’’ via alternative transcription, splicing, 3’-end formation,
translation, and post-translational modification [54]. Previous study has suggested a central role for alternative splicing in
network organization, function, and cross-tissue dynamics, demonstrating the importance of an isoform-resolved global
view of interactome networks [55]. Compared to PPIs, isoform–isoform networks are significantly larger by possible post-
translational modification of products of all of the possible transcript informs. For example, it is estimated that as many as
∼100,000 distinct isoform transcripts could be produced from the ∼20,000 human protein-coding genes, which may lead
to perhaps over a million distinct isoform–isoform interactions [54,56]. Binary PPI mapping has allowed us to discriminate
isoform-specific interactions [55]. In a global analysis of interactome network maps, alternative isoforms are more likely
to have as distinct proteins rather than minor variants of each other. Interaction partners specific to alternative isoform
tend to be expressed in a highly tissue-specific manner and form distinct functional modules [55]. Mathematically, the
isoform–isoform interaction network could be formatted as a network-of-networks [57]. In this context, a protein, which
is a single node in the traditional protein interactome, becomes a sub-network of interaction between the different
isoforms encoded by the underlying gene (see Fig. 3). This network-of-networks framework may offer potential application
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Fig. 3. A diagram illustrating isoform-level network-of-networks framework to model the effect of specific disease (cancer) variants. In a traditional
view, proteins interact in the protein–protein interactions (PPIs) without discernment of the underlying gene alternative splicing. Different isoforms
from the same gene can have different interacting partners. When a mutation (e.g., cancer driver mutations) affects a particular isoform, it only
affects its interacting partners. The square nodes in the above layer denote different isoforms of protein a, while the cycle nodes in the below layer
denote different isoforms of protein b. Links (edges) denote isoform–isoform interactions among isoforms with the same protein and dash lines
denote isoform–isoform interactions among different protein isoforms.

in human disease, e.g., cancer. For example, blocking isoform-specific cancer mutations on the RAS family has shown
potential in treating cancer [29].

2.3. Genetic interaction network

In the context of genetic studies, a genetic interaction (i.e., synthetic lethal) involves two genes: the cell is viable upon
perturbation of either gene alone, but simultaneous perturbation of both genes by genetic or genomic alterations will
result in cell growth or death [58]. A genetic interaction occurring between a tumor-specific somatic mutation and a gene
that drives tumorigenesis and tumor progression offers an ideal therapeutic target in effective anticancer therapeutic
development [59]. Furthermore, discovery of genetic interactions through identification of a second-site synthetic lethal
druggable target facilitates indirect targeting of tumor alterations of undruggable proteins (e.g., KRAS or TP53) [58,60,61].
Recent advances in functional genomic technologies, such as RNA interference (RNAi) or CRISPR-Cas9 assays, have offered
innovative tools with which to comprehensively screen human cancer cells for genetic interactions [62,63]. By application
of CRISPR-based screens, Wang et al. uncovered PREX1, a key synthetic lethal interactor of oncogenic RAS in human
acute myeloid leukemia cell lines [61]. However, measurements of cell proliferation in genome-scale CRISPR-Cas9 loss-
of-function screens have a potentially high false-positive rate in copy-number-amplified regions [64,65]. Furthermore,
large-scale experimental assays are expensive and time-consuming. Fig. 4 provides a landscape of genetic interactions in
cells [66].

Computational approaches with low cost and high efficiency offer new tools for genome-wide identification of
cancer genetic interactions and for inferring tumor evolution through analyzing publicly available large-scale tumor
exome/genome sequencing data [67–69]. Recent efforts to map genetic interactions in tumor cells have suggested
that tumor vulnerabilities can be exploited for the development of novel targeted therapies. Tumor-specific genomic
alterations derived from multi-center cancer genome projects allow identification of genetic interactions that promote
tumor vulnerabilities, offering novel strategies for development of targeted cancer therapies. Cheng et al. [69] proposed a
mathematical model, termed the gene gravity model, derived from Newton’s law of gravitation to systematic assessment
of genetic interactions from cancer genomes. Specifically, the gene gravity model detects a gene-gene pair in which two
genes are co-mutated and highly co-expressed simultaneously in a specific cancer type. By applying the gene gravity
model to approximately 3000 cancer exomes across nine cancer types, Cheng et al. identified multiple potential cancer
genes by altering genetic interactions and cancer genome evolutions [69].

2.4. Metabolic networks

A metabolic network is a large system containing a series of chemical reactions in organisms that determines the
biochemical and physiological functions of the cell and maintains the balance and regularities of the entire system [70,71].
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Fig. 4. Landscape of genetic interactions in cells. Edges between genes denote Pearson correlation coefficients (PCC > 0.2) calculated from the
complete genetic interaction matrix. The network was laid out using an edge-weighted, spring-embedded, network layout algorithm. Colored regions
indicate sets of genes enriched for GO biological processes summarized by the indicated terms. Genes sharing similar patterns of genetic interactions
are proximal to each other; less similar genes are positioned farther apart.
Source: Figure from Ref. [66].

Table 2
List of recent published models in genome scale metabolic network reconstructions. The basic statistic of the corresponding networks are provided,
and # indicates the missing corresponding data in the work.

Organism Organism genes Model genes Metabolites Reactions Refs.

Akkermansia muciniphila # 588 540 744 [73]
Bordetella pertussis 3464 762 # 1675 [74]
Corynebacterium glutamicum # 773 950 1207 [75]
Geobacillus thermoglucosidasius # 736 1163 1159 [76]
Oenococcus oeni 1864 454 536 660 [77]
Piscirickettsia salmonis 3074 584 801 1323 [78]
Streptomyces clavuligerus 7281 1021 1360 1494 [79]

This system can convert food (or any other kind of energy source) into the energy forms that an organism can use directly,
convert fuel to building blocks for cell growth, and integrate small molecules, including proteins, lipids, nucleic acids, and
carbohydrates. Work on the structure, function, and evolution of metabolic networks has been developed for decades,
and metabolic networks are evolving from small-scale systems to the large-genome-scale metabolic networks in systems
biology.

To construct a sub-graph of a metabolic network, at the genomic scale [72], in which nodes are products and links are
the underlying biochemical reactions, we must answer the following questions: (i) what products does an enzyme act
on, (ii) what are the stoichiometric coefficients for each metabolite in the reaction, (iii) which reactions are reversible or
not, and (iv) what are the locations of the reactions? The construction processes are also complex, which contains four
steps: the draft reconstruction phase, curated reconstruction, genome-scale metabolic model, and platform for design
and discovery. With an increasing number of scientists around the world working on these reconstruction processes,
large-scale metabolic networks have become available in recent decades. We provide a list of validated reconstructions
that have been converted into predictive gene-scale models in recent years in Table 2.

Biochemically, a metabolic pathway is a linked chain of chemical reactions in the metabolic network that helps to
convert molecules and substrates into more usable materials. Enzymes play a crucial role in the reaction to accelerate,
slow, or stop the metabolic processes. In general, there are two types of metabolic pathways, catabolic and anabolic.
Catabolic pathways break down molecules by releasing energy, such as respiration, while anabolic pathways integrate
molecules with the help of energy. There is a large number of metabolic pathways, e.g., glycolysis is one of the important
pathways, which is the initial phase in the metabolic system in which sugar is partially oxidized to small molecules, and
generates some ATPs for the entire system. Other important metabolic pathways include the pentose phosphate pathway,
the Entner–Doudoroff pathway, the tricarboxylic acid cycle, and the glyoxylate cycle [80]. Additionally, all the common
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Fig. 5. Low- (A) and the high-resolution (B) cortical parcellations of cerebral cortex.

Source: Figure from Ref. [90].

used metabolic pathways can be collected through the KEGG pathway database,1 which can be used to construct the
metabolic network.

Questions involving metabolic network include the structures, the dynamics, and also the interaction between different
nodes in response to diseases such as obesity and diabetes. Jeong et al. [81] analyzed the entire structure of metabolic
networks in different organisms. Based on the WIT database [82], they constructed a metabolic network based on the
biochemical reactions between educts, and found that, similar to most of the non-biological systems in the world,
these metabolic networks showed scaling properties and a power-law degree distribution. Furthermore, the modular
structures of the metabolic networks also attracted a series of studies [83,84]. Lee et al. [85] proposed a cell-metabolism-
based human disease network by using the metabolic network structure and the mutated enzymes in the metabolic
reactions. They found that the disease pairs connected in the constructed disease network had a higher correlated reaction
flux rate and higher co-morbidity than the cases of disease pairs without metabolic links between them. This human
metabolic network-topology-based method highlighted the possibility using metabolic networks for disease diagnosis
and prevention.

2.5. Brain network

The brain network is a skeleton of brain regions with connections. In a brain network, nodes are functional regions
in brain, which can be regarded as unitary neural masses [86]. There are multiple techniques to identify the nodes in
a brain network, e.g., the anatomical parcellation of the Montreal Neurological Institute (MNI) using structural magnetic
resonance imaging (sMRI) data and also functional magnetic resonance imaging (fMRI) [86,87]. Edges are usually from two
different processes, which leads to two different configurations of brain networks. One type of link are those links made by
physical connections [88]. Using the MRI data, these links are the fiber tracts reconstructed from image processing [89,90],
e.g., Fig. 5 shows the network structures based on this imaging method. Another kind of link is made by functional
connectivity [91]. These links are based on the functional activities between pairs of nodes, and the link weights are
usually calculated from signal series analysis [92]. The connectivity (either structural or functional) can be represented
as a connectivity matrix, and the element in the matrix is the weight between two associated brain regions. Based on
the processes of identifying brain networks, series of brain networks were identified [93], e.g., the default mode network,
dorsal attention network, ventral attention network, salience network, and frontoparietal network.

2.6. Drug-target networks

The drug–target network (as illustrated in Fig. 6) can be described as a bipartite graph G(D, T , P), where the drug set
is D = (d1, d2, . . . , dn), the target (gene) set is T = (t1, t2, . . . , tm), and the interaction set is P = (pil, di ∈ D, tl ∈ T ).
An interaction is drawn between di and tl when drug di binds with target tl with binding affinity (such as IC50, Ki, or Kd)
less than a given threshold value. The types of binding affinities contain the half-maximal inhibitor concentration (IC50),
dissociation constant (Kd), and inhibitory constant (Ki). Mathematically, a drug–target bipartite network can be presented

1 KEGG: Kyoto Encyclopedia of Genes and Genomes, https://www.kegg.jp/.
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Fig. 6. The known drug–target (DT) bipartite network. In a DT network, a drug node (circle) and a target node (square) are connected to each other
by a gray edge if the target is annotated to have known experimental interactions with the drug in DrugBank. The DT network was generated using
known FDA-approved small-molecule DT interactions. The size of the drug node is the fraction of the number of targets that the drug linked in
DrugBank. The size of the target node is the fraction of the number of drugs that the target linked in DrugBank. Color codes are given in the legend.
Drug nodes (circles) are colored according to their Anatomical Therapeutic Chemical Classification.
Source: Figure from Ref. [27].

by an n × m adjacent matrix pij, where pij = 1 if the binding affinity between di and tj is less than 10 μM; otherwise,
pij = 0, as described in Eq. (1):

pij =
{
1 IC50(Ki) ≤ 10 μM

0 IC50(Ki) > 10 μM
, (1)

There are multiple publicly available databases containing high-quality data for building drug–target interactions,
including the DrugBank database (v4.3) [94], Therapeutic Target Database (TTD) [95], and PharmGKB database [96]. Specif-
ically, bioactivity data for drug–target pairs can be collected from ChEMBL (v20) [97], BindingDB [98], and IUPHAR/BPS
Guide to PHARMACOLOGY [99]. Detailed drug–target databases are provided in Table 3 (Section 1). To improve the quality
of data, we usually focus on physical drug–target interactions based on the following three criteria: (i) the human target is
represented by a unique UniProt accession number; (ii) the target is marked as ‘‘reviewed’’ in the UniProt database [100];
and (iii) binding affinities, including Ki, Kd, IC50, or EC50 each ≤ 10 μM. In addition, we can also build functional drug–gene
association networks from drug-induced transcriptomics data or proteomics data derived from human cells (Section 2 in
Table 3).

Drug targets are nodes within the human interactome, intrinsically coupled between therapeutic indication and
adverse effect. The systematic identification of drug targets across many proteins in the human genome is crucial
towards the understanding of therapeutic indication versus side effect. A recent study revealed that drug targets can
be viewed as special nodes and are not randomly distributed (drug module) in the human interactome (see Fig. 7).
Mathematically, we can formulate identifying drug targets from the human interactome as finding the most possible
configuration of a network [26]. The network-based location of each drug module characterizes its pharmacological and
biological relationships to other drugs. Drugs with overlapping modules show significantly chemical, biological, functional,
and therapeutic similarities, whereas drugs residing in the separated network neighborhoods are pharmacologically
distinct [26].

3. Biological network structure

Network structure is the fundamental percept of network science, where research on network dynamics, function, and
application are all based on the understanding of the network structure. In this section, we briefly review the recent
research on the structural properties of biological networks. For convenience, we denote G = (V , E) as a biological
network, where v ∈ V is the set of nodes (genes, proteins, or some other items) and e ∈ E the set of interactions
between these nodes. The number of nodes and edges are N and M , respectively. The network can also be represented
as the adjacent matrix A = ai,j, where ai,j = 1 when there is a link eij between node vi and vj, and ai,j = 0 otherwise.

3.1. Degree distribution and hubs

In network science, the degree of a node vi (denoted ki, mathematically, ki = ∑
j ai,j) is defined as the number

of links to vi. Many biological networks exhibit the scale-free [111] (or scale-free-like) characteristic, where the node
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Table 3
Summary of chemoinformatics and bioinformatics resources for re-construcing drug–target networks.

Databases Description Number of interactions, drugs,
and targets

Website Refs.

Section 1. Databases for collecting physical drug–target interactions

DrugBank Detailed drug data with
comprehensive target
information.

8250 drug entries, including
2,016 FDA-approved
small-molecule drugs and over
6000 experimental drugs.

http://www.drugbank.ca/ [94]

TTD Information on
therapeutic targets.

31,614 drugs and 2589 targets. http://bidd.nus.edu.sg/group/ttd [95]

ChEMBL Chemical properties and
biological activities of
drug-like molecules.

2,036,512 compounds against
11,224 targets and 14,371,197
bioactivity records.

https://www.ebi.ac.uk/chembldb [101]

BindingDB Binding affinities of
proteins with small
drug-like ligands.

565,136 compounds against
6612 proteins and 1,279,670
binding affinity data.

http://www.bindingdb.org [102]

PubChem Repository of
small-molecule biological
activities.

More than 230 million
bioactivities connecting 9.3
million compounds and 9851
targets.

http://puchem.ncbi.nlm.nih.gov [103]

DGIdb Drug–gene interaction
database.

26,298 unique drug–gene
interactions connecting 7569
drugs and 7524 unique genes.

http://dgidb.genome.wustl.edu/ [104]

STITCH Experimental and
predicted
compound-protein
interactions.

1.6 billion interactions
connecting 0.5 million
compounds and 9.6 million
proteins from 2031 organisms.

http://stitch.embl.de/ [105]

SuperPred Experimental and
predicted
compound-protein
interactions.

341,000 compounds, 1800
targets, and 665,000
compound-target interactions.

http://prediction.charite.de/index.php [106]

Section 2. Databases for collecting functional drug–gene interactions

CMap Gene-expression signatures to
connect 1309 small molecules
and 7000 genes in five cancer
cell lines.

https://www.broadinstitute.org/cmap [107]

LINCS Library of integrated
network-based cellular
signatures for 1 million gene
expression profiles.

http://www.lincscloud.org/ [108]

TG-GATEs Large-scale toxicogenomics
database.

http:
//toxico.nibio.go.jp/english/index.html

[109]

DrugMatrix Molecular toxicology reference
database and informatics
system.

http://ntp.niehs.nih.gov/drugmatrix/
index.html

[110]

degree follows a power-law distribution, and the degree distribution P(k) follows P(k) ∼ k−λ, where λ is called the
degree exponent. The degree distribution is highly heterogeneous, where many nodes have few links while a few nodes
are heavily connected. Jeong et al. [13] found that the degree of protein follows a power-law distribution with an
exponential cutoff in the saccharomyces cerevisiae protein–protein interaction network. A similar degree distribution
can also be found in the protein–protein interaction network of the human bacterium Helicobacter pylori [112], the
gene co-expression network [113,114], BioPlex (biophysical interactions of ORFEOME-derived complexes) [115], the
brain functional network [11], and so on. Network theory indicates that scale-free networks are very robust to random
attack [116], which is in agreement with systematic mutagenesis results in which the striking capacity of yeast to tolerate
the deletion of a substantial number of individual proteins from its proteome [13]. The hubs, the most highly connected
proteins in the cell, are always the most important for the cell’s survival [13,117]. Evidence from model organisms
indicates that hubs are older and have evolved more slowly [8,118,119]. The hubs in the brain networks play important
roles in information integration underpinning numerous aspects of complex cognitive function [120], leading to the
susceptibility of the hubs to disconnection and dysfunction in brain disorders. In addition, brain hubs are also significantly
related to the energy efficiency of the brain [121], where the brain hubs would be more vulnerable to deficits in energy
delivery or utilization.

According to the observation of the correlation between a protein’s age and its degree, Eisenberg and Levanon [8]
proposed the preferential attachment mechanism [111] in the protein network evolution by classifying the proteins into
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Fig. 7. Proof-of-concept of identifying drug modules in human interactome. (A) Distribution of the number of targets for 554 drugs with at least
five targets. (B) Distribution of the fraction of drug targets within the observable drug module. (C) Illustration of the identified largest connected
component (LCC, Y axis) for 554 drugs in human interactome compared to random expectation. Each dot denotes a drug. Drugs forming statistically
significant modules based on Si and Sri comparison (P < 0.05, permutation testing) are shown in red; otherwise, they are shown in purple.
Degree-preserving randomizations are shown in black. Gray shading denotes standard derivation during the degree-preserving randomization.

four age groups. Preferential attachment is more likely implemented by interacting with the high degree proteins, which
will grow to be the hubs in the network. Gene duplication and divergence would be the origin of the scale-free topology
of biological networks [122–124]. In the duplication-divergence processes [125–127], gene duplication is a mechanism
that generates genes producing identical proteins that interact with the same protein neighbors, and the degree of the
protein connected with a duplicated protein increases. Highly connected proteins have a natural advantage because
they are more likely to have a link to a duplicated protein than other proteins. Therefore, the preferential attachment
rule is achieved implicitly, with highly connected nodes having more chance to gain new links from the duplicated
proteins [4]. In addition, some other evolving models, including fitness-driven preferential attachment [128], the age-
dependent stochastic model [129], and preferential depletion [7], are also proposed to generate the heterogeneous degree
distribution in biological networks.

Compared to an undirected network, the degree distribution for a directed network would be more complicated,
because of the different patterns of in-degree and out-degree. The chemical reactions of metabolites in a cell generate
the metabolic networks, in which the direction of the edge represents the chemical reaction direction. Both the in-degree
and out-degree distribution are approximately of power-law type (at least broad-tailed), and they also share the similar
exponent [12,130]. Cross-regulatory interactions of transcription factors form the gene regulatory network [131], where
the edge direction represents the regulatory interactions. The degree distribution of the gene regulatory network for
the in-degree and out-degree are very different, where out-degree distribution has power-law characteristics, which is
very similar to other biological network [130], while in-degree distribution is an exponential distribution, which is much
narrower than that of a power-law distribution [132]. More specifically, for the gene regulatory networks, the broad
out-degree distribution would be driven by the mutations of the transcription factors [133]. In addition, such asymmetric
degree distribution, where the out-degree distribution is much broader than the in-degree distribution, is also widely
obtained in social networks [134], where the edge contains the information propagation direction from peer to peer.

3.2. Network path and distance

3.2.1. Shortest path
The shortest path between two nodes in the network plays a very important role in the network structure and

dynamics [135]. For example, in a social network, the shortest paths would be the most effective way to transfer
information [136]. As illustrated in Fig. 8, the shortest path is the network path with the shortest length among all the
paths between the node pairs (the triangle and circle). For the node pair (i, j) ∈ V , the shortest path length is defined
as the distance (di,j) for the node pair. In the context of biological networks, the connection of node pairs via shortest
paths is highly motivated. The shortest paths based method are widely used to assign directions to the edges in the
protein–protein interaction networks [137,138], to infer the regulatory pathways through the corresponding genes [139]
and to identify the cancer-related genes [140] or key components [141].

Based on the network distance, Guney et al. [142] proposed various distance measures, including the closest (dc),
shortest (ds), kernel (dk), center (dcc), and separation (dss) measures (as illustrated in Eq. (2)), to evaluate the proximity
between the drug and disease, where the drugs and diseases are represented as set of drug target proteins (e.g., Gliclazide
has two target proteins and Daunorubicin has two target proteins as illustrated) and the disease-related genes (e.g., Type
2 diabetes has four related genes and Acute myeloid leukemia has three related genes) in the biological network,
respectively. Fig. 8 shows the shortest paths between drug targets and disease proteins for two known drug–disease
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Fig. 8. Shortest paths between drug target proteins and disease proteins in protein–protein network. Triangles and circles represent drug target
proteins and disease proteins, respectively. Blue and red links illustrate shortest path from drug target proteins to nearest disease proteins.
Source: Figure from Ref. [142].

associations. The distances can be calculated as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dc(S, T ) = 1

‖ T ‖
∑
t∈T

min
s∈S

ds,t

ds(S, T ) = 1

‖ T ‖
∑
t∈T

1

‖ S ‖
∑
s∈S

ds,t

dk(S, T ) = −1

‖ T ‖
∑
t∈T

ln
∑
s∈S

e−(ds,t+1)

‖ S ‖

dcc(S, T ) = −1

‖ T ‖dcentreS ,t

dss(S, T ) =‖ T ‖ dc(S, T )+ ‖ S ‖ dc(S, T )

‖ T ‖ + ‖ S ‖ − d′
c(S, S) + d′

c(T , T )

2
,

(2)

where s ∈ S is the set of disease proteins, t ∈ T the set of drug proteins, ds,t the distance between nodes s and t
in the PPI network, ‖ ∗ ‖ the number of the proteins in set ∗, centres the topological center of S, which is defined as
centres = argminu∈S

∑
s∈S ds,t , and d′

c the modified dc in which the shortest path length from a node to itself is infinite.
According to the testing of the proximity between drugs and diseases, Guney et al. found that the known drugs

(validated drug–disease associations) are much closer to their disease, and for the un-validated drugs of the disease,
the closer drugs are more likely to be tested in clinical trails [142]. More specifically, a unique integration of the
network proximity and large-scale patient-level longitudinal data can facilitate drug repurposing [143]. In addition,
similar distance-based measures are also used to depict the disease–disease relationship through the protein–protein
interactome [23].

3.2.2. Network efficiency
Based on the shortest path distance, there is an very important measure called the network efficiency [144], which

can be calculated as

NE = 1

N(N − 1)

∑
i�=j

1

di,j
. (3)

Network efficiency is an indicator of the traffic capacity of a network. Using Eq. (3), Csermely et al. found that the partial
inhibition of a small number of the links to target proteins can be more efficient than the complete drug-induced inhibition
of a single target protein in the protein–protein interaction network. The multi-target drug-design strategies may be
more effective than single drugs [145], leading to the development of drug combinations for complex diseases [26,146].
Moreover, network efficiency is widely used in brain functional networks, which have an efficient structure, supporting
parallel information transfer at very low cost [147,148]. The network efficiency would decrease significantly for some
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brain-related diseases, including small-vessel disease [149], Type 2 diabetes [150], and Alzheimer’s disease [151], and,
furthermore, the brain network evolves to more efficient structure during recovery from traumatic brain injury [152].
Human intelligence would be also related to the network efficiency of the brain anatomical network. By dividing 79
healthy young adults into general- and high-intelligence groups according to their intelligence quotient (IQ) test scores,
Li et al. found that the network efficiency of the brain network in the high-intelligence group is significantly higher than
in the general-intelligence group [153].

3.2.3. Betweenness and bottlenecks
Betweenness is a path-based measure of the node importance in terms of the number of the shortest paths that pass

through the node [154], which is defined as

Bv =
∑

i,j,v∈V ,i�=j

δi,j(v)

δi,j
, (4)

where δi,j is the number of the shortest paths from node i to j and δi,j(v) the number of these shortest paths that pass
through node v.

The node betweenness also follows the power-law distribution in Cayley trees [155,156] and other scale-free net-
works [157]. The correlations between the betweenness and the degree are not always positive, and the nodes with small
degree and large betweenness are found to be abundant in various networks [158–160]. Fig. 9 gives an example of a
node with small degree and large betweenness (the protein CAK1 labeled with a bold circle), which acts as the important
connections of different modules (as shown by the red and blue parts in Fig. 9).

The nodes with high betweenness are also referred to as bottlenecks [160]. According to the definition of betweenness,
we can find that bottlenecks would control most of the information flow in the network, and deleting the bottle-
necks will reduce the network efficiency significantly. Studies on the protein–protein network indicate that proteins
with high betweenness are more likely to be highly pleiotropic [161] and tend to be essential [162,163] or disease-
related genes [164]. Just as with the hub protein, the evolutionary age of proteins has a positive correlation with
betweenness [159], and the hubs vary significantly more slowly than bottlenecks [165]. Based on identifying generalized
hierarchies of the transcription factor regulatory network (directed network), betweenness in the middle levels (levels 2
and 3) are significantly larger than in other levels of the hierarchy [166]. Betweenness of the brain functional networks
has also attracted much attention from testing the brain activity in different scenes [167]. Makarov et al. [168] applied
betweenness to evaluate the transition of the brain functional network during mental task evaluation. Comparing the
cumulative number of shortest paths going through each brain region during the transition from a resting state to cognitive
task evaluation, they found the gradual transition from a sharp decrease of betweenness across the parietal and frontal
lobes in the delta range to a pronounced increase in the gamma range [168]. By constructing whole-brain inter-regional
interactions for each participant, Ueda et al. [169] found that the correlation between neuroticism and betweenness are
very different for various brain regions, implying that the neuroticism trait is likely formed as a result of interactions
among the brain regions related to neuroticism.

Garcia-Vaquero et al. [170] proposed the Double Specific Betweenness (S2B) score to define the node’s information
traffic between the nodes in different sets. S2B can be obtained as follows:

S2Bv(s1, s2) =
∑

i∈s1,j∈s2,i�=j,v∈V

δi,j(v)

δi,j
, (5)

where s1, s2 are two different sets in node set V . S2B can be used to discover the associated genes with two related
diseases, and s1 and s2 should be the known disease-associated genes for the two diseases, respectively [170].

The betweenness concept can also be extended to the edges [171], and the edge-based betweenness is defined as

Be =
∑

i,j∈V ,i�=j,e∈E

δi,j(e)

δi,j
, (6)

where δi,j(e) is the number of shortest paths from node i to j that pass through edge e. The edge-betweenness is a
very powerful clustering tool with which to detect the community structure (Section 3.5) in protein–protein interaction
networks [172,173].

3.3. Clustering coefficient

Triangular structures abound in many networks, for example, two individuals with a common friend are more likely
to know each other in social networks [174]. This property can be described by the clustering coefficient [175]:

Ci = 2li

ki(ki − 1)
, (7)

where li is the number of the links between the ki neighbors of node vi (number of triangles that go through i) and ki(ki−1)
2

the number of the possible connections between the ki neighbors of node i (number of the possible triangles that go
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Fig. 9. Biological example of a bottleneck in the protein–protein interaction network. CAK1 (bold circle) is not a hub (total degree is only 4),
but a bottleneck (the largest betweenness) in this network. Specifically, CAK1 is a cyclin-dependent kinase-activating kinase involved in two key
signaling-transduction pathways: cell cycle (CDC28) and sporulation (SMK1).
Source: Figure from Ref. [160].

through vi). Taking protein CKS1 (at the bottom of the left-hand red part) in Fig. 9 as an example, there are two pairs
(CLB4-CDC28 and CLB1-CDC28) among the three neighbor proteins (CLB4, CLB1, and CDC28) to be linked together, leading
to lCKS1 = 2, and CCKS1 = 2∗2

3∗(3−1)
= 2

3
. By contrast, none of the four neighbor proteins (CDC28, SGV1, SMK1, and YDR279 W)

of protein CAK1 link to each other, leading to CCAK1 = 0. The clustering coefficient of the entire network 〈C〉 is defined
as the average Ci over all nodes in the network. By definition, 0 ≤ Ci ≤ 1 and 0 ≤ 〈C〉 ≤ 1, and large 〈C〉 indicates that
nodes tend to be clustered together to form more triangles.

The average clustering coefficient for most biological networks is significantly larger than that of random networks
with similar degree distribution [176,177], and high clustering would be a generic feature of biological networks [4].
The average clustering coefficient follows a scaling law with degree k [for example, C(k) ∼ k−1] in metabolic networks,
which is also an indicator of the hierarchical modular organization (see Section 3.5) [83], and which would be caused by
the existence of super-hubs in the network [178]. Comparing the brain functional networks confronted with point-light
display stimuli depicting biological motion and scrambled motion, Fraiman et al. found higher clustering coefficients in
different brain regions; for example, the right occipital lobe for scrambled motion and central parietal lobe for biological
motion [179]. In addition, the edge clustering coefficient [180,181], which is defined as the fraction of the triangles that
path through the corresponding edge, is proposed to predict the essential proteins and protein complexes.

3.4. Small world

It is a common feature in nearly all kinds of complex networks that any node pair can be connected within very limited
links (small value of the average distance). This feature is known as the small world property, which was first investigated
as ‘‘six degrees of separation’’ in a social study [182]. Subsequently, the small world property has been observed in various
systems, including biological networks [183], communication networks [184], and co-operation networks [185] [186].
Besides, regarding the small value of average distance, the small world property observed in real networks is often related
to a high value of the clustering coefficient, which is not very common in random graph models [111,187]. Watts and
Strogatz [175] proposed the random rewiring procedure from a ring lattice to generate the small world network, the
average distance of which increases logarithmically with network size N and the clustering coefficient (〈C〉) of which
is significantly large. Therefore, the small world network would also have very high value of network efficiency (as in
Eq. (3)), which brings efficiency to information exchange [144].

With the high efficiency of the small world network, biological networks are more likely to evolve to follow the small
world property. A Fibroblastic Reticular Cell (FRC) network exhibits the typical small world properties, and the small
world topology can be regenerated within approximately 4 weeks after complete node removal [188]. Small world is
an attractive model for the organization of brain anatomical and functional networks [189,190], where small world is
economical in the sense of providing high global and local efficiency of parallel information processing for low wiring
and energy costs [14,147,191]. Upon observing changes in neuronal connectivity during the cultured neurons, Downes
et al. found that a network exhibited random topology in the early cultures stage, and evolved to a small world topology
during maturation [192]. The small world network organized by immature cells can promote cell proliferation [193]. The
functional brain network is a highly modular structure in which the distance between nodes from different modules is
not very short and the precisely organized weak ties provide the optimal global integration of these modules to generate
the small world property [194]. The functional brain networks for Alzheimer’s disease are abnormally organized for a
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Fig. 10. Illustration of disease module in protein–protein interaction network. Proteins associated with the same disease tend to localize in specific
neighborhoods in the network, indicating the approximate location of the corresponding disease modules. Topological network communities are
highly interconnected groups of nodes.
Source: Figure from Ref. [201].

loss of small world property, such as the functional disconnection between distant brain areas [195–197]. The small
world property is highly correlated with the memory performance, where a better performance in short-term memory
as evaluated by digit span tests is detected with the increase of small worldness in a specific frequency band during the
resting state from EEG data [198].

3.5. Community structure

3.5.1. Community in network biology
In a social network, many people with a similar interest would interact with each other very frequently to form a

friends circle, while the communication of people in different circles would be very little. Such a phenomenon is called
a community structure (or module) [199], where the nodes within the communities are highly connected and the links
between different communities are sparse (as in the topological module illustrated in Fig. 10, the density of edges is
higher within a community than that across communities). As illustrated in Section 3.2.3, the non-hub bottlenecks tend
to connect different modules [160]. The community feature is very common in real networks, and it is interesting to find
that communities in the network structure are always related to the network function. For example, in the network of
the World Wide Web, the communities may be the web pages on similar topics [200].

Community structure is a common feature in biological systems, and the nodes in the systems cluster into several
communities to exert their biological functions [15,202]. In a protein–protein interaction network, proteins having the
same specific function [203] or forming protein complexes [115,204] are more likely to cluster into a community, which
can also be used to predict the protein’s function [205]. Huttlin et al. applied the unsupervised Markov clustering
method [206] to detect protein communities, and most communities were found to be associated with the disease
annotations, in which the candidate disease genes enrich the communities [24]. The modularity structure can promote
resilience to the node failure within a network [207]; for example, the chaperome module can maintain the proteostasis
in brain aging and neurodegenerative disease [208]. Guimera et al. applied the modularity-based method to analyze
the metabolic networks of 12 organisms, finding that 80% of the nodes are only connected to other nodes within their
respective modules, and that metabolites whose links are not many but connect different modules (bottlenecks) are more
conserved than hubs whose links are mostly within a module [209]. Brain networks also consist of modules, which
are associated with specific cognitive functions [210–212]. Modularity plays a key role in the functional organization
of brain areas during normal and pathological activity, where healthy brains exhibit a sparse connectivity, whereas the
brain networks of patients display a rich connectivity with a clear modular structure [9]. The modularity value calculated
from fMRI data increases as children develop into adults [213]. The asymmetric activity propagation and propagation
delays in the neural circuits should be supported by the modularity structure in the brain networks [214]. Of note is
that the performance of the module structures depends on the detection algorithms, where the modules generated from
different algorithms are always very different. Choobdar et al. [215] discovered the ‘‘Disease Module Identification DREAM
Challenge’’ to test the predicted network modules from various algorithms for association with complex traits and disease,
and provided some useful practical recommendations for module identification, including applying diverse algorithms to
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identify complementary modules, using the modules from different methods without forming a consensus, leveraging
diverse networks, and applying the algorithm on each network individually first without merging networks.

In addition, the modularity in biological systems always exhibits the property of hierarchical organization
[207,216,217], in which many small, highly connected modules combine in a hierarchical manner into larger module [83].
Sales-Pardo et al. [218] proposed an unsupervised method for extracting the hierarchical organization in metabolic
networks, and almost all the metabolites in the submodules can be classified as being in the same pathways. Wei [219]
constructed a mutilayered hierarchical gene regulatory network that is centered on a given transcription factor, to identify
the target genes and collaborative regulators for the observed phenotypic changes in its transgenic lines. Jiao et al. [220]
proposed a multi-scale node-similarity-based method to mine the modular structure on protein–protein interaction
networks and reveal the hierarchical organization of protein complexes. Xu et al. [221] proposed an adaptive partitioning
algorithm to illustrate the hierarchical module structure of the gene expression network, and the risk of death could be
well predicted based on the gene expression profiles in the modules. Reyna et al. [222] introduced the hierarchical HotNet
method to find the hierarchy of modules, which is effective in predicting cancer genes. Lahav et al. [223] applied the
k-shell decomposition method on the human cortical network to reveal the human brain’s global functional organization,
in which modules were further categorized into three hierarchies reflecting different functional roles. Very recently,
Wang et al. [224] applied the eigenmode analysis to reveal the hierarchical modular structural connectome in the brain,
which allows a nested functional segregation and integration across multiple spatio-temporal scales. The combination of
the hierarchical modular organization and the critical state provides the capacity to maximize the functional diversity.
Comparing the brain’s structural and functional network architectures, Ashourvan et al. [225] found that the structural
networks display a more prominent hierarchical community organization than functional networks. Additionally, parallel
processing [226] and information retrieval [227] in biological systems are also related to the hierarchical organization of
the modularity.

3.5.2. Module detection
Identifying the topological community structure (also referred to as a dense subgraph; see the dish circle in Fig. 10)

of the complex networks is a very active field in complex networks [199,228]. Many approaches for network community
detection have been discovered in recent years [215], among which the most popular detection methods aim to find the
partition of the network to maximize the modularity [20,229,230], which is defined as follows:

Q = 1

2M

∑
i,j∈V

[Aij − Pij]δCi,Cj , (8)

where Aij is the adjacency matrix, M the total number of edges of the network, Pij represents the expected number of

edges between vertices i and j (e.g., Pij = kikj
2M

[231]), and the δCi,Cj = 1 if nodes i and j are in the same community
(Ci = Cj); otherwise, δCi,Cj = 0. In addition to the modularity-based method, numerous methods have been proposed to
solve community detection problems, including the clique percolation-based methods [232,233] and the link-community-
clustering algorithm [234] for the overlapping community structure and random-walk-based methods [235,236] for
community detection on weighted and directed networks.

Many results indicate that the disease genes’ directed neighbors in a biological network might also be suspected
to be the genes associated with the same disease, or, in other words, proteins involved in the same disease are more
likely to interact with each other (see the red circle in Fig. 10, which would be very different from the topological
module) [1,2,23,201,237]. For example, Menche et al. [23] found that disease genes associated with 226 diseases (out of
299 diseases) show a statistically significant propensity to form modules based on both the largest connected component
analysis and the disease diameter.2 The detection of these modules not only helps people understand various biological
processes from a systematic perspective and reveal the mechanism of disease occurrence, but also contributes to the
search for new drug targets in medicine, thus promoting drug development [238]. Rather than unfolding the entire
community structure of biological networks, we pay more attention to the approaches to identifying the specific modules
in biological networks.3 Although topological communities may often represent meaningful functional modules, they are
not able to capture disease modules [201]. The possible reason would be that a disease module is defined in relation to
a particular disease, leading to the unique module for each disease, and the disease genes do not constitute particularly
dense sub-graphs. Additionally, a gene (protein or metabolite) can be involved in several disease modules, indicating the
overlaps of different disease modules, which is also a crucial and difficult problem in topological community detection.
In this case, the topological community detection algorithms cannot solve such problems very well.

2 The disease diameter is defined as the average closest distance 〈ds〉, where for each disease gene, ds is the distance to the next-closest protein
associated with the same disease [23]. If 〈ds〉 of the disease is significantly smaller than its random expectations, the disease-related genes tend to
cluster into a module.
3 The module detection could be classified into four broad categories according to various data interactions: identification of ‘‘active modules’’

through the integration of networks and molecular profiles, identification of ‘‘conserved modules’’ across multiple species, identification of ‘‘differential
modules’’ across different conditions, and identification of ‘‘composite modules’’ through the integration of different interaction types. The detailed
approaches on these four categories can be found in Ref. [239].
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There are roughly two computational scenarios for specific module detection in biological networks. The first type is
to identify the module when some disease genes are approved by biological experiments, through which we can obtain
the potential disease genes for the hypothesis that genes associated with the same disease are more likely to interact
with each other. In this case, the purpose is to design an algorithm to find the gene sets that are most likely to form a
module with the known disease genes. Ghiassian et al. [201] proposed the DIAMOnD algorithm to identify proteins that
are significantly connected to known disease-associated proteins (the significance of the connection rather than of the
density). The probability that a protein with degree k has exactly ks links to the known disease-associated proteins follows
the following hypergeometric distribution:

p(k, ks) =

(
s0

ks

)(
N − s0

k − ks

)
(
N

k

) , (9)

where s0 is the number of the known disease-associated proteins and N the number of total proteins in the network. The
significance of a protein connecting to the known disease-associated proteins can be defined as the probability that the
protein has more connections to the known disease-associated proteins than expected under the null hypothesis, and it
can be calculated as the cumulative probability for observing more connections, as follows:

p+−value(k, ks) =
k∑

ki=ks

p(k, ki). (10)

The protein with the lowest p value will be added to the set of known disease-associated genes. Iterative application
of the algorithm generates a growing disease module by adding the top protein in each step. The DIAMOnD approach
can be easily extended to weighted networks by introducing an additional weight in Eq. (9). Testing the performance on
some well-controlled synthetic data, including pruned networks and partially rewired networks, the DIAMOnD approach
showed very powerful predictive ability to yield robust predictions. Although DIAMOnD can identify a connected disease
module efficiently, the coverage of known disease-associated proteins in the module may be very low, with many isolated
known disease-associated proteins unexplored. In this case, Wang and Loscalzo [240] proposed the seed connector
algorithm (SCA) to identify disease modules by adding as few additional proteins to the known disease-associated protein
pool as possible. After adding these proteins, the largest connected component of the new protein pool can increase the
coverage of the known disease-associated proteins maximally.

The other type of computational scenario for specific module detection in biological network is identification of the
biological module using the scoring and searching methods [239] by integrating the omics data onto the network. On the
projection of the omics profiles, each node (gene or protein) in the network can be annotated with a score (e.g., the gene
expression levels and mutation frequency). Then, we can define the module score (ZM ) based on the node or edge score
(Zi)

4 using the following equation as an example [241]:

ZM = 1√
m

∑
i∈M

Zi, (11)

where m is the size of the module. Then, the detailed detection method can be carried out as follows: (1) Randomly select
a seed module and calculate its module score Zm. (2) Randomly select a neighbor node of the module (not in the current
module), and calculate the new module score Zm+1. (3) Add the node into the module to form the new module with high
score (e.g., Zm+1 > Zm) using some heuristic solutions, such as the simulated annealing [244], greedy algorithm [242],
and random search [25]. (4) Repeat steps (2) and (3) to obtain the raw candidate module until that no neighbor node can
be added into the module. (5) Choose the significant module according to the normalization of the Zm (ZN

m = Zm−〈Zm(r)〉
σZm(r)

,

where 〈Zm(r)〉 and σZm(r) are the average and the standard deviation of score of the raw modules, respectively.) Similar
approaches also can be extended to edge score (e.g., differential gene co-expression)- based module detection [245]. The
modules identified using these scoring and searching methods are significantly associated with the corresponding diseases,
including Type 2 diabetes [246], autism spectrum disorders [243], and cancers [25].

3.6. Motifs

Network motifs are defined as the patterns of sub-networks that recur in the network at frequencies much higher than
those found in randomized networks that are believed to be basic building blocks of these networks to perform important
functional roles [247,251,252]. Fig. 11 illustrates all 13 possible three-node directed sub-networks [Fig. 11(A)] and 30
possible sub-networks of size two- to five-node undirected sub-networks (Fig. 11(C), also referred to as graphlets [253]).

4 The node score is defined by integrating the omics data. If pi is the significance of the expression change for gene i between the disease sample
and the controls, Zi can be transformed from pi according to Zi = Φ−1(1 − pi), where Φ−1 denotes the inverse normal cumulative distribution
function [241,242]. Additionally, Zi is also defined as the mutation frequency in cancer research [25,243].
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Fig. 11. Illustration of network motif. (A) 13 possible motifs in the three-node directed subgraphs; (B) significance of three-node motifs for the
biological networks for different kingdoms of life, and the motifs are consistent with sub-figure (A); (C) 30 possible subnetworks of size 2- to 5-node
undirected sub-networks and nodes of the same color belong to the same automorphism orbit within that graphlet; (D) number of the disease (of
519 diseases) -associated protein–protein interactions, in which the corresponding motif is significant at α = 0.01 and the structure of the motif is
represented as the orbit position corresponding to sub-figure (C).
Source: Sub-figure (A) from Ref. [247], sub-figure (B) from Ref. [248], sub-figure (C) from Ref. [249], and sub-figure (D) from Ref. [250].

Taking motif 7 in Fig. 11 as an example, it consists of three genes (X, Y, and Z), where gene X is influenced by the other
two genes, while gene Y is only influenced by gene Z, which is also referred to as a feed-forward loop (FFL). This motif is
the most prominent three-node network motif arising in the transcriptional networks in many organisms [as illustrated in
Fig. 11(B)]. Specifically, a FFL motif can provide control over the temporal integration of environmental signals, buffering
noise or sharpening the response to signals [254]. The statistical significance of a motif is described as the Z score [247],

ZMotif = Nreal − 〈Nrand〉
σNrand

, (12)

where Nreal and Nrand are the number of the appearance of the motif in the real network and the randomized networks,
respectively, and the symbols 〈Nrand〉 and σNrand

represent the mean and standard deviation values of Nrand, respectively.
The motif patterns, which can be characterized by the Z score for each sub-network, are very different for various

systems [as illustrated in Fig. 11(D)]. For example, Ferreira et al. found that the topological distributions of motifs differ
between gene regulatory and signaling networks, where the motifs in signaling networks tend to organize symmetrically
while the motifs spread out asymmetrically along the hierarchical layers in gene regulatory networks [10]. The over-
represented motifs in biological networks often form essential functional units of biological processes [255], and the
network motif analysis has been studied on regulatory networks [256], metabolic networks [257], food webs [258], brain
networks [259,260], and so on [261]. Many algorithms are proposed to count the total number of appearance of the
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motifs [249,262–265], where the main difficulty in detecting network motifs in large networks lies in the fact that the
number of possible sub-networks increases exponentially with network or motif size [263]. Network motifs have been
widely applied in biological systems, including identification of the important nodes in biological networks [266], the
search for regulatory algorithms of cells [252], druggability modulation of cellular targets [267], and identification of
cancer patients [268].

3.7. Network entropy

Network entropy is a measure of complex networks, extended from the key concepts of information theory [269], that
reveals the structural complexity and diversity of a network [270]. The most widely used form of network entropy is
based on Shannon entropy, and the entropy of node i in the network can be defined as follows: [271–273]:

Si = − 1

log ki

∑
j∈Γ (i)

pij log pij, (13)

where ki is the degree of node vi, Γ (i) the set of nodes that link to vi, and pij = wij∑
j∈Γ (i) wij

the proportion of the edge

weight wij to the node vi’s total weights. In the protein–protein interaction network, wij can be the correlation value of
the gene co-expression pair between genes vi and vj.

The network entropy also can be defined as the Shannon entropy of the distribution of node degrees [274], which can
be calculated as follows:

S = −
∑
k

P(k) log P(k), (14)

where P(k) is the proportion of the nodes with degree k, indicating the degree distribution.
Network entropy can be a useful quantitative measure with which to characterize different disease statuses, like

tumor versus normal tissue as well as various stages of progression [275]. Generally, cancer cells often have higher
network entropy [272]. By integrating microarray gene expression data into a protein–protein interaction network, Cheng
et al. used network entropy to characterize tumor progression and anticancer drug responses [275]. Banerji et al. [276]
suggested that signaling entropy provided a potential measure in cancer by investigating microarray gene expression data
in 3668 breast cancer samples and 1692 lung adenocarcinoma samples. Juarez-Flores and José [277] also detected the
sudden changes in entropy values in four cancer types and identified the most relevant genes involved in carcinogenic
processes that would be potential biomarkers or therapeutic targets. Intriguingly, Teschendorff et al. [278] found that
increased network entropy of cancer cells would be driven by the scale-free (or near scale-free) property of the interaction
network and the positive correlation between differential gene expression and node degree. Further, using over 7000
single-cell RNA-Seq profiles, they revealed that network entropy provides an accurate estimation of the differentiation
potency and plasticity of single cells, which would be a way to identify normal and cancer stem-cell phenotypes [279].

In the field of brain networks, the measure of entropy has also proved to be very important in many scenarios. Using
the resting-state fMRI data of the brains of 62 healthy subjects and 69 patients with chronic schizophrenia, Jia et al. [280]
found that the sample entropy of the amygdala-cortical connectivity decreases with advancing age in healthy subjects,
while the age-related loss of entropy could not be detected in patients. Viol et al. [274] compared the entropy of the degree
distribution of the brain network on ordinary waking and conscious states by ingestion of the psychedelic Ayahuasca, to
detect the increase in network entropy for the networks subsequent to Ayahuasca ingestion, empirically supporting the
entropic brain hypothesis [281,282]. The studies on the resting-state fMRI also reveal the high influence of brain entropy
on the human intelligence [283] and occupational functional plasticity [284]. Additionally, network entropy is also utilized
to rank the brain regions that are associated with different tasks [285], reflecting the event-related dynamic interaction
states of the brain [286], and to diagnose neurological disorders (e.g., epilepsy) using EEG data [287].

3.8. Fractal and self-similarity

Fractal properties of the networks are objects that contain self-similarity, in which they exhibit the same pattern
on increasingly network-size scales. Fractal and self-similarity properties of complex networks have attracted much
attention, since the seminal work of Song et al. [288], with a finding that a variety of real complex networks exist with
a self-similarity property. The relation between scale-free networks and self-similar networks has also been discussed
[288–290], and fractal networks seem to exhibit scale-free features, while scale-free networks are not always self-similar.
The fractal nature of a network can be revealed by the well-known box/ball-covering method [291], by calculating the
fractal dimension. Either the node-covering [288] or the edge-covering [292] box-counting method is needed to calculate
the minimum number of boxes (NB) with size lB that can cover all the nodes or edges of a network. In the node-covering
box-counting method, lB −1 represents the maximum distance of all of the possible pairs of nodes in each box, while the
corresponding value is lB in the edge-covering method. If the network is self-similar, the minimum number NB of covering
boxes scales with respect to box size lB as

NB ∼ l−D
B , (15)
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Fig. 12. Topological changes of brain networks upon various network failures. (A) Size of the largest component normalized with the original size;
(B) global efficiency; (C) local efficiency [144]. Four centrality metrics were used in the intentional attack: degree centrality (red), leverage centrality
(blue), betweenness centrality (green), and eigenvector centrality (pink).
Source: Figure from Ref. [319].

and the exponent D is just the fractal dimension of the network. Based on a similar framework. Wei et al. [293] proposed
the modified box-covering algorithm, in which the box size length is obtained by accumulating the edge weight between
two nodes connected directly, to calculate the fractal dimension of weighted networks.

The fractal and self-similar properties are empirically observed in many biological networks, such as protein–protein
interaction networks [288,294], human cell differentiation networks [295], and brain functional networks [296]. Jin
et al. [294] indicated that fractality and multiplicative growth would be the general properties of protein–protein
interaction network structure and dynamics with the duplication-divergence model on the ancient and present-day PPI
network. Brain functional networks are reported to be the fractal small world [190,297,298], and Gallos et al. [194,299]
revealed that the weak ties play a very important role in the optimal global integration of self-similar modules to
generate the small world property in the functional brain networks according to renormalization group theory [300].
The fractal properties in the brain network would be an important signature of self-organization [301]. Singh et al. [302]
investigated the fractal properties of brain networks in different species, and the fractal dimensions in the high-level
species (e.g., human and monkey) are much smaller than that in the low-level species (e.g., C. elegans), indicating a
more ordered and systematically self-organized topography in higher-level species [303]. Further, simulation results of
activity spreading on the brain network indicate that the fractal dimension would be a very relevant factor in controlling
the spreading threshold value [304]. Additionally, the fractal and self-similar properties are widely applied in biological
systems, including development of the algorithm to count the motifs in the biological networks [265], prediction of
essential genes [305], and measuring the importance of proteins [306]. However, different from the previous view [288]
in which metabolic networks exhibit self-similarity (fractality) using a box-counting method, Takemoto [307] found
that metabolic networks are almost non-fractal for the increase in network density of the latest metabolic network
data, highlighting the needs for a more suitable definition and careful examination of network fractal and self-similarity
properties.

3.9. Resilience of network failures

Network resilience (or robustness) is a measure used to depict the ability to adjust the activity to retain the network’s
basic functionality upon failure (e.g., node deletion or edge breaking) [308,309]. The most simple and frequently used
definition of network resilience is to test the network topological changes by removing a proportion of nodes or edges.
When the removal proportion (pr ) exceeds a critical value (pr > prc), the network would break down into smaller and
disconnected components [116]. In general, there are two types of network failures: random failures (e.g., random removal
of nodes) and intentional attack (e.g., removal of network hubs), and the scale-free (or scale-free-like) networks are very
robust against random failures but extremely vulnerable to intentional attacks. For random networks, the influence of the
network topology is very similar for both failure types [310,311]. Fig. 12 takes a brain network as an example to illustrate
the network topological changes of different network failures, in which the network resilience against intentional attacks is
much poorer than against random failures. The network resilience is critically important for reducing the functional losses
on the inevitable network failures. To cope with network failures, the correlation between network features (topology and
dynamics) and network resilience is deeply studied from ecological [312–314], biological to social [315], and economic
systems [316], to find and design principles to enhance network resilience and prevent system collapse [317,318].

Focusing on biological systems, the highly resilient network would help the life system retain biological functionality
against physical damage or environmental variation. Network failures in biological systems include edgetic mutations in
protein–protein interactions [320], removal of enzymes in metabolic networks [321], a nonsense/missense gene mutation
or gene dysfunction in the genetic network [320], and traumatic brain injury on the brain network. Taking the metabolic

20

ht
tp
://
do
c.
re
ro
.c
h



Fig. 13. Disintegration of network into isolated components with node removal. (A) Hypothetical interactome, the nodes of which represent
proteins and edges indicating physical protein–protein interactions (PPIs). (B) Fragmentation of interactome characterized by isolated components
and quantified by modified Shannon diversity Hmsh.
Source: Figure from Ref. [325].

network as an example, the removal of enzymes in the metabolic network would influence the corresponding reactions, in
which the damage would extend to additional reactions [321] to generate a cascading failure. Using the cascading failure
model, Smart et al. [322] found that the metabolic networks are exceptionally robust against node failures compared with
null models, and the organization of the branched metabolites [323] would be the origin of the enhanced robustness.
Comparing both interaction and regulatory networks with null model networks, which are generated with a rewiring
algorithm that preserves the degree of distribution, Maslov and Sneppen [324] found that increased overall network
resilience in real networks was achieved by localizing node failure effects for the topological properties, in that the highly
connected protein tends to be linked with low-connected proteins rather than the other highly connected proteins. The
dynamical robustness to a perturbation of the gene expression would generate the asymmetry degree distributions in
gene regulatory networks [132], where the out-degree distribution is broader than the in-degree distribution.

The good resilience of protein–protein interactions show phenotype robustness to environmental fluctuations, which
would be highly related to life evolution. Zitnik et al. [325] collected interactomes data of 1840 species across the Tree of
Life involving 8,762,166 protein–protein interactions, and defined the resilience of interactome G as follows (as shown in
Fig. 13):

Resilience(G) = 1 −
∫ 1

0

Hmsh(Gf )df , (16)

where Hmsh(Gf ) = − 1
logN

∑k
i=1 pi log pi is the modified Shannon diversity of Gf , N the number of proteins in the

interactome, pi = |Ci|/N the proportion of proteins in component Ci, and f the network failure rate. A higher value
of Resilience(G) indicates the more resilient interactome. Using this definition, Zitnik et al. found that interactomes
become more resilient during evolution, wherein a more resilient interactome is associated with the greater ability of
the organism to survive in a more complex, variable, and competitive environment. Considering the protein–protein
interaction networks for four species, i.e., yeast Saccharomyces cerevisiae, worm Caenorhabditis elegans, fly Drosophila
melanogaster, and Homo sapiens, in order from simple to complex, Rodrigues et al. [326] revealed that the more complex
species tended to exhibit more robust networks, especially when subjected to intentional attacks.

In brain research, it is critically important to quantify to what extent of failure the brain can withstand, which also
can be described as resilience from the network perspective [327]. Many results indicate that human brain networks are
remarkably resilient to different types of damage, even damage to some highly connected regions [319], compared to
other types of complex networks, such as random or scale-free networks. Generally, the damage on the network hub
regions would cause the larger disturbances in network organization, where the damages are significantly more likely
to be located in hub regions in many brain-related diseases, such as Alzheimer’s disease [328] and schizophrenia [329].
Studying the functional brain network from the resting-state fMRI data, acquired from 25 patients with schizophrenia,
25 first-degree relatives of patients and 29 healthy volunteers, Lo et al. [330] found that all of the networks were highly
resilient to random failure, and that the global network efficiency remained high even after removing more than 50% of
the nodes. In the case of an intentional attack, however, the resilience of the network of schizophrenia patients and their
relatives was much greater than that of the healthy volunteers, suggesting that this is a system-level marker of familial risk
for schizophrenia. The brain hubs are more biologically costly for energy delivery and utilization [121] and therefore they
are more vulnerable to a diverse range of pathogenic processes in their susceptibility to disconnection and dysfunction in
brain disorders [327,331]. However, the real damage may be very different from random attacks and intentional attacks.
Crossley et al. modeled a pathological attack on a brain network, and global efficiency test results showed that the
network was more resilient to pathological attack than to intentional attack on hubs [329]. Encouragingly, both empirical
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and modeling studies have indicated that, after focal damage, the connectome carries the potential to recover at least
to some extent, with normalization of graph metrics being related to improved behavioral and cognitive functioning.
Abeysuriya et al. [332] simulated a cortical brain network and used inhibitory synaptic plasticity to dynamically achieve a
spatially local balance between excitation and inhibition, to prove the potential reason for the robust dynamics of neuronal
networks against perturbations.

4. Network-based methods

This section is intended to introduce the network-based modeling approaches that are widely used in network biology.
We start from the network-structure-oriented methods, including network centrality, network propagation, structural-
similarity-based link prediction and structural control. Going beyond the specific description of the computational
methods, we focus on how to extract biological information using these approaches. Nowadays, the combination of
complex networks and data mining [333] has attracted much attention for its predictive power. Therefore, we also review
machine learning, especially the deep-learning-based approaches in biological networks, which would be a very attractive
field in computational network biology in the future.

4.1. Network centrality

Biological networks exhibit a heterogeneous nature, with nodes playing very different roles in structure and function.
In this subsection, we depict the node importance by network centrality, which is a measure that assigns a value to each
node in the network, so we can rank the node importance using the value. It is very meaningful to identify the important
nodes in the network biology for their crucial roles in biological function; for example, the hub proteins in the cell are
very important for its survival, which is referred to as the centrality–lethality rule [13]. Since the meanings of importance
are very different for various network dynamics, many network-centrality approaches have been proposed. We briefly
review several centralities, including degree-, path-, and eigenvector-based centralities, and introduce how to use them
in biological networks to identify the important nodes associated with certain biological functions. Detailed information
on vital node-identification algorithms can be found in a more specific review [17].

4.1.1. Degree-based centrality

(i) Degree centrality:
In a network, a node with large degree would be very influential because it can impact numerous nodes with

the immediate connections. Degree centrality is the simplest but the most widely used measure to identify a node’s
importance. It can be simply calculated as DC(i) = ki, and assumes that a node with high-degree centrality would have
larger influence. Although it exhibits simplicity and low computational complexity, degree centrality performs very well in
some aspects. As illustrated in Section 3.1, the biological networks always exhibit power-law (or power-law-like) degree
distribution, where several nodes have very high degree centrality (also referred to as hubs). Empirical and modeling
results reveal the importance of hubs in the biological systems; for example, the hubs in the protein–protein network
evolve more slowly [8,118,119] and are more likely to be essential for cell survival [13,117,334]. Moreover, the removal
of hubs can significantly affect network structure (see Section 3.9).

(ii) Coreness centrality:
Degree centrality only considers the number of a node’s immediate neighbors while ignoring its location in the

network. However, the location of a node is a significant effective index with which to depict the node’s importance. For
example, the influence of a node located in the central part of the network would be higher than that in the periphery.
Kitsak et al. [335] used the k-core decomposition [336] approach to obtain the coreness of each node, where a node with
a larger coreness means that the node is located in a more central place and it is much more influential in network
propagation than the high-degree nodes with smaller coreness. The k-core decomposition approach decomposes the
network iteratively according to the nodes’ remaining degree, and the method can be described as follows.

As illustrated in Fig. 14(A), at the initial step, all the nodes with degree k = 1 will be removed at first. The removal
will lead to the reduction of the degree of nodes that are connected with the removed nodes in the original network (as
shown by the yellow node in Fig. 14(A)). Continue to remove the nodes with remaining degree k ≤ 1 iteratively until
there is no node left with degree k ≤ 1 in the system. All of the removed nodes in this step form a 1-shell with coreness
value ks = 1. At the second step, all of the nodes with degree k = 2 will be removed at first. Continue to remove the
nodes with remaining degree k ≤ 2 iteratively until there is no node left with degree k ≤ 2 in the system. All of the
removed nodes in this step form a 2-shell with coreness value ks = 2. The decomposition process will continue until all
of the nodes are removed, and the latest removed shell is the most central part of the network. In addition to the original
decomposition, many modified methods [337,338] have been proposed to obtain more accurate coreness values, while
the original coreness is highly coarse grained with many indistinguishable nodes sharing the same coreness.

Because of its nice performance and low computational complexity, coreness has been widely applied to identify the
influential nodes in many real systems [340]. Lahav et al. [223] applied k-shell decomposition to reveal the hierarchical
cortical organization of the human brain, and found that the nodes with the largest coreness value (the nucleus) serve as a
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Fig. 14. Illustration of calculation of two types of degree-based centralities: (A) k-core decomposition; (B) H-index of network nodes.

Source: (A) from Ref. [335] and (B) from [339].

global interconnected collective and demonstrate high correlation with consciousness-related regions. Many empirical and
modeling results indicate that the nodes in the inner layer in k-core decomposition are highly related to some essential
genes, disease progression, etc., which would even be helpful in drug development. Narang et al. [341] found that the most
influential genes in a gene regulatory network are found within the innermost layer or core through k-shell decomposition.
Ashraf et al. [342] integrated the coreness, functional connectivity, and some other centralities on the cancer interactome,
which is comprised of 129,276 interactions arising from 8177 proteins, to extract the proteins involved in the pathways
leading to cancer, and found 10 effective candidate proteins for drug targets. Ahmed et al. [162] applied weighted k-shell
decomposition on the Arabidopsis interactome to find that coreness surpasses other centrality measures for effector target
discovery. They also integrated weighted k-shell decomposition and some other centrality measures to analyze the cell
surface interactome, and predicted the 35 most influential proteins that physically interact with pathogen effectors and
modulate plant immunity. In weighted k-shell decomposition, the weighted degree of node i is defined as

kw
i = αki + (1 − α)

∑
j∈Γ i

wi,j, (17)

where wij is the weight of edge ei,j and α ∈ [0 1] is a tunable parameter.

(iii) H-index centrality:
H index is a widely accepted measure to appraise the academic impacts of researchers or journals based on their

publications and citations. Very recently, the H index was applied to quantify the network node influence (sometimes
named the Lobby index [343,344]), where the H index of node vi is defined as the largest h that vi has at least h
neighbors whose degrees are no less than h (as illustrated in Fig. 14(B)). The high H index indicates that the node has
many high-quality neighbors.

Lü et al. [339] constructed an operator, H , to calculate the H index of a list of reals (x1, x2, . . . , xn), which can be
denoted as h = H(x1, x2, . . . , xn); h is the maximum integer that satisfies the condition that there are at least h elements
in (x1, x2, . . . , xn) with the value xi ≥ h. Denoting (j1, j2, . . . , jki ) as the sequence of the node vi’s neighbors in the network,
and the m-order (m > 0) H index of node i can be iteratively defined as

h
(m)
i = H(h

(m−1)
j1

, h
(m−1)
j2

, . . . , h
(m−1)
jki

). (18)

The zero-order H index of vi is defined as its degree, h
(0)
i = ki, and the first-order H index is just the original H index,

hi = h
(1)
i . Interestingly, Lü et al. [339] mathematically proved that the H index of node vi (h

(∞)
i ) would converge to its

coreness (ksi) within finite iterative steps. Thus, the node’s degree, H-index, and coreness can be unified by operator
H acting on its neighbors’ degree sequence, and the H index in other orders also can be used to measure the node’s
importance.

4.1.2. Path-based centrality
Betweenness centrality, which is the most important path-based centrality, measures a node’s influence on information

flow in the network according to its betweenness value. As illustrated in Section 3.2.3, the betweenness value is defined
as the ratio of the shortest paths passing through the target node among all of the shortest paths in the network. It
can be very effective to interpret the node importance, especially the bridge nodes that connect different communities
(Eqs. (4)–(6) in Section 3.2.3). However, for calculating all of the shortest paths crossing the entire network, the time
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complexity of the betweenness centrality is very high, and it is not easy to obtain the betweenness centrality for the
large real networks. Here, we introduce another path-based centrality, named closeness centrality.

The closeness centrality of node vi is characterized by the distances between node vi and all of the other nodes.
Generally, the node is more central when it is closer to the others. Furthermore, closeness centrality can be defined
as the mean value of the inverse of the distance from vi to other nodes:

CC(i) = 1

N − 1

∑
i,j∈V ,j�=i

1

dij
, (19)

where dij is the distance between node vi and vj in the network, and if nodes vi and vj do not connect with each other,
1
dij

= 0. The node with larger closeness value would be more central in the network, and has the shorter average

propagation length of information to the others. Therefore, the node’s closeness centrality reveals how efficiently it
exchanges information with other nodes, and the network efficiency, illustrated as Eq. (3) in Section 3.2.2, is just the
average closeness value over the entire network.

For directed network, the closeness centrality can be divided into output closeness centrality when dij is the distance
from vi to vj and input closeness centrality when dij is the distance from vj to vi [345]. Ma and Zeng identified the top 10
output and input closeness central metabolites in the metabolic network of E. coli (with five overlapping metabolites), in
which eight metabolites are in the central metabolism, namely the glycolysis and citrate acid cycle pathway.

4.1.3. Eigenvector-based centrality

(i) Eigenvector centrality
In contrast to the degree-based centralities, which focus on the number of a node’s neighbors, the eigenvector-based

centralities also take into account the influence of a node’s neighbors. In this consideration, the nodes connecting to nodes
that are themselves influential within the network would be more important, and the entire pattern of the network is
considered. The eigenvector centrality of node vi can be obtained as the sum of its neighbors’ centralities [346], which
can be defined as

EC(i) = 1

λ

n∑
j=1

aijEC(j), (20)

and the matrix form is

−→
EC = 1

λ
A
−→
EC , (21)

where λ is the largest eigenvalue of the adjacent matrix A. Mathematically, the eigenvector centrality EC(i) is just the ith
element in the normalized eigenvector belonging to the largest eigenvalue of A.

Eigenvector centrality can be obtained by calculating the eigenvector of matrix A directly or via the power iteration
method [347]. Negre et al. [348] applied the eigenvector centrality to identify the critical amino acid residues on the
protein residue network, where each node represents the α-carbon of an amino acid in the protein, and each edge
represents the mutual information between the two residues. The most important amino acid residues identified by
the eigenvector centrality that are involved in the allosteric mechanism triggered upon effector binding are highly
consistent with the solution of nuclear-magnetic-resonance (NMR) relaxation experiment results. In neuroscience studies,
eigenvector centrality has been employed as a mapping tool for the brain network, which can be subjected to statistical
tests to detect differences in centrality in various states [347]; for example, gender and age differences [349], the network
alterations in Alzheimer’s disease [350], and Type 1 diabetes mellitus [351].

(ii) PageRank and LeaderRank
The PageRank algorithm is proposed to rank websites in the Google search engine [352]. As a variant of eigenvector

centrality, PageRank supposes that the importance of a web page is determined by both the quantity and quality of the
pages linked to it. In the PageRank algorithm, each node in the network should be assigned a PageRank value (PR), and
the node with the larger PR value would be more important. Generally, PageRank is executed by the iterative method.
Initially, the PR value for each node is set to be 1 [PRi(0) = 1]. At each time step, every node will evenly distribute the
PR value to its neighbors along its outgoing links. The PR value of node vi at step t is

PRi(t) =
N∑
j=1

aji
PRj(t − 1)

koutj

, (22)

where aji = 1 if node vj links to vi, and aji = 0 otherwise, and koutj is the out-degree of node vj. The iteration will continue
until the PR values of all of the nodes reach the steady states, and we can rank the nodes with the converged PR values
in descending order. It should be noted that PageRank is actually a random-walk process on a directed network, and if
there exist some dangling nodes (kout = 0, without outgoing links), the walker will be trapped at these nodes and Eq. (22)
will not converge. To guarantee convergence, PageRank introduces a random jumping factor α by assuming that the web
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surfer will browse the web pages along the links with probability α, and leave the current page and open a random page
with probability 1 − α. The iteration steps can be modified as

PRi(t) = α

N∑
j=1

aji
PRj(t − 1)

koutj

+ (1 − α)
1

N
, (23)

where α ∈ [0, 1] is a tunable parameter that illustrates the random jumping probability. The parameter is usually set to
approximately 0.85; however, that is just the experienced value, and how to determine the parameter α to achieve the
best ranking on various scenarios is a significant challenge.

To solve this problem, Lü et al. [353] proposed a parameter-free algorithm, the LeaderRank algorithm, by adding a
ground node that connects to all other nodes through bidirectional links. The network is strongly connected where the
largest distance between two nodes is 2. The initial LR values are arranged by LRi(0) = 1 for all nodes vi (except for the
ground node) and LRg (0) = 0 for the ground node. Analogously, at each time step, every node will evenly distribute the
LR value to its neighbors along its outgoing links. The LR value of node vi at step t is

LRi(t) =
N+1∑
j=1

aji
LRj(t − 1)

koutj

. (24)

At the steady state, the value of the ground node will be evenly distributed to all of the other nodes, generating the
final LR value of node vi:

LRi = LRi(tc) + LRg (tc)

N
, (25)

where LRi(tc) and LRg (tc) are the LR values of node vi and the ground node at steady state, respectively.
Both PageRank and LeaderRank can be applied to real networks easily owing to their rapid convergence and good

ranking performance, and the node-ranking methods are widely used to identify the essential proteins, disease-related
genes, brain regions, neurons, etc. in biological systems. Winter et al. [354,355] employed the important genes identified
by PageRank as the significant features with which to train the classification model to improve cancer outcome prediction.
The modified PageRank algorithm on the weighted protein–protein network was applied to predict the essential
proteins [356] as well as the tumor biomarkers [357], where the modified PageRank algorithm used the following formula:

PRi(t) = α
∑
j∈Γ in

i

wji

PRj(t − 1)∑
q∈Γ out

j
wjq

+ (1 − α)PRi(0), (26)

where Γ in
i is the set of nodes pointed to vi, Γ

out
j the set of nodes that node vj pointed to, wji the weight of link ji, and

PRi(0) =
∑

j∈Γ in
i

wji∑N
i=1

∑
j∈Γ in

i
wji
.

In addition, the PageRank algorithm is also used to identify the influential protein in the bipartite graph. Jiang
et al. [358] proposed the AptRank method, which utilizes an adaptive diffusion mechanism to adjust the fixed jumping
probability in PageRank, to predict the protein function on a bi-relational graph comprised of both protein–protein
association and function–function hierarchical networks.

4.1.4. Combined methods
Prediction of the essential nodes in a biological network is a challenging task, where a single centrality measure would

be not enough to predict the essential nodes well in biological networks [359]. de Rio et al. [360] analyzed the 16 different
centralities on various metabolic networks, where no single centrality measure can identify essential genes in a statistically
significant way. There are two aspects to consider: (i) each centrality may just be advantageous in describing a unique
structural feature [360,361], and (ii) the performance of a centrality on various networks would be even very different;
for example, PageRank is sensitive to perturbations in random networks, while it is stable in scale-free networks [362].

Therefore, integrating various centrality measures would be a more reliable way to predict the essential nodes in
the biological systems [359]. Further research by de Rio et al. [360] revealed that the combination of at least two
centrality measures (e.g., closeness and clustering coefficient) achieved a reliable prediction of most essential genes,
while no improvement was achieved when three or four centrality measures were combined. Ran et al. [363] found
that blood-pressure variation is orchestrated by an integrated network centered on NOS3, which is identified by
comprehensive consideration of the betweenness and closeness centrality on the protein–protein interaction network
related to essential hypertension. Wang et al. [364] proposed a structurally dominant proteins index, which is the
combination of eight centralities using principal component analysis (PCA), to identify the more important nodes in
protein–protein interactions. Mistry et al. [365] proposed the DiffSLC centrality measure, which is a weighted combination
of eigenvector centrality and co-expression-biased degree centrality, to identify more essential proteins. Apart from the
combination of various centralities, integrating other topological and biological information into the centrality measure is
also employed to improve the accuracy of influential node identification. Li et al. [366] proposed a method of combining
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neighborhood closeness centrality and orthology information based on the effectiveness of triangular structure in a PPI
network and the orthologous information in detecting essential proteins [367]. Co-expression [368,369] and protein
complex [370,371] also comprise very important information related to the essential proteins; thereby, we can improve
the efficiency of identification by integrating these sources of information with network topological centrality.

4.2. Network propagation

4.2.1. Techniques of network propagation
We assume that there is some information located on several nodes prior, and these nodes can transmit the information

to their neighbors through links, and then extend to their neighbors’ neighbors, and so on. This propagation would execute
in an iterative way for a fixed number of steps or until convergence. This process is called network propagation, and is also
named network spreading or network diffusion, which is a fundamental network dynamics in various systems. Based on
nonlinear dynamic models, Hens et al. [372] predicted that the propagation rules condense around three highly distinctive
dynamic regimes, characterized by the interplay between network paths, degree distribution, and interaction dynamics.
The most researched field of network propagation is epidemic spreading [373] or news diffusion [136] on social networks.
Imagine that several people acquired infectious diseases, and the diseases would propagate among the people through
the contact between the infected and the susceptible people. The studies of the network propagation on these fields focus
on the estimation of the popularity of the disease, the influence of the network structure on the spreading process, how
to inhibit the disease spreading, and so on. The network resilience (Section 3.9) can also be considered as the propagation
of network failures, where the network exhibits high resilience when the failure propagation is very limited.

In biological systems, a single mutation in a gene (e.g., driver mutation), which can influence genes in its neighborhood
and amplify the mutation signal through network propagation, is sometimes enough to perturb an entire pathway and
drive disease for an individual patient [18,374]. Many experimental results indicate that the disease genes are always
biologically relevant, including the physical interaction, belonging to the same protein complexes, and involving in the
same metabolic pathway. As for the biological network, the disease-associated genes are more likely to have biological
interactions with each other than with randomly chosen genes. This may encourage us to predict that the neighbors
of disease-associated genes in the network are also potential disease-associated genes [375], and the performance is
better than that with randomly chosen genes. Network propagation would be more powerful in such prediction tasks by
simultaneously considering all of the possible paths between genes. Specifically, network propagation is schematically
illustrated in Fig. 15. The red nodes in the initial step (t = 0) in Fig. 15(A) and (B) have prior information (e.g., disease-
associated gene), which will diffuse to the other nodes through the edges of the network. At step t , the amount of
information at a node, which is described as the node color in Fig. 15, depends on the information at its neighbors at
the previous step. The node receiving the most information (labeled D in Fig. 15(A) and (B)) in the final step (steady-state
t = ∞) would be predicted to be a potential disease-associated gene.

We denote a node vector F = [f1, f2, . . . , fi, . . . , fN ]T , the elements of which represent the amount of information
located in the corresponding nodes. The network propagation can be mathematically described as

F = κF0, (27)

where κ is a N × N matrix and F0 is the initial node state. The value of F0 would represent our prior knowledge or
experimental measurements of the corresponding genes [18]. For example, in disease genetics, we can set that F0(i) = 1
if vi is the known disease-associated gene; in cancer research, we can set F0 as the somatic mutation for each patient,
where F0(i) = 1 indicates the observation of mutation on gene vi for this patient [376], or the frequency of the somatic
mutations in the cancer cohort, where F0(i) indicates the number of patients with the mutated gene vi [69]. All of the
network-propagation techniques aim to detect the expression of the global transmission matrix κ , the element κ(i, j)
of which represents the propagation-based similarity between nodes vi and vj in the network. Many mathematically
techniques, including diffusion processes, random walk, and diffusion kernel, have been discovered to interpret network
propagation.

Diffusion process:
Network propagation assumes that the node pairs with shorter distance are more likely to interplay with each other.

For example, the influence of the directed neighbors should be more important than that of the second-order neighbors.
Supposing that the information diffusing from node vi to node vj and the length of a path between node vi to node vj

is l, then the amount of information that node vj receives from this path is set to be αl, where α ∈ (0, 1) is a tunable
parameter, indicating that the information decays with propagation path length. The total amount of information that vj

received from vi through the paths with length l is αlnpl, where npl is the number of paths between node vi to vj with
length l, which can be represented as the power of the adjacent matrix Al. Therefore, the information propagation between
two nodes with path length l is αlAl, and the total propagation process can be described as the global transmit matrix:

κ =
n∑

l=1

αlAl. (28)
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Fig. 15. Schematic of network propagation. (A) Step-by-step demonstration of network propagation. The propagation process is depicted at different
time points until convergence (t = ∞). Arrows depict the direction of the flow or walk. Nodes are color-coded according to the amount of flow
that they receive. D indicates nodes that are known (square node) or that are predicted (circular node) to be associated with a disease phenotype.
(B) Example network with initial high scores for two of nine nodes (step 0, nodes A and H; score shown by color bar). These scores are allowed
to propagate over stepwise iterations 0–9; note that convergence is reached by approximately step 5 and thus the colors do not change markedly
in subsequent steps. (C) Illustration of biological network with gene scores before and after propagation, performed independently for two datasets
(profiles 1 and 2). Propagation results in greater concordance between the datasets, as is evident from the greater number of green nodes (dashed
oval).
Source: Figure from Ref. [18].

When α is less than the reciprocal of the largest eigenvalue of A, we can obtain the mathematical solution of the limitation

of κ with

κ = lim
n→∞

n∑
l=1

αlAl = (I − αA)−1 − I, (29)

where I is the identity matrix. It should be noted that Eq. (28) is also known as the famous Katz centrality, where the

Katz centrality of node vi can be described as KC(i) = ∑
j∈V ,j�=i κij [17,377].
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Random walk:
In the context of networks, a random walk describes a process in which a ‘‘walker’’ moves from one node to another

with a probability that is proportional to the weight of their edge. The random walk can be considered as a Markov
process, where the result in the current step depends on the last step’s state:

Ft = WFt−1, (30)

where W = AD−1 and D is the diagonal degree matrix of the adjacent matrix A, the diagonal entries of which hold the
node degree (D(i, i) = ki) and all other entries are 0. If we run this random-walk process for t steps, iterating Eq. (30)
generates Ft = WtF0. When t is small, the information distribution is similar to that of the initial state F0, but when t
is large the information diffuses away from the initial state and reflects the network topology. Actually, a random-walk
process is the origin of PageRank, where Eqs. (22) and (30) are, in fact, two formulas for the same process.

Random walk with restart (RWR) is very widely used random-walk-based propagation process. It states that a random
walk starts from a node vi, and at each time step t moves to one randomly selected neighbor of the current node vj with
probability α, while the walk restarts from vi with probability 1−α. This propagation process can be described as follows:

Ft = (1 − α)F0 + αWFt−1, (31)

where the parameter α ∈ [0, 1] describes the trade-off between initial information and network propagation. Running
this process until equilibrium is reached, the amount of information on each node at steady state depends on the initial
state (F0), the network topology, and the α value. The steady state can be described as

F = (1 − α)(I − αW )−1F0. (32)

Although the above propagation system can be solved exactly using Eq. (32), the inverse of the large matrix would
be very time-consuming to calculate. Therefore, an iterative propagation-based algorithm works faster for large networks
and is guaranteed to converge to the system’s solution. For example, the propagation function (Eq. (31)) is run iteratively
with t = [0, 1, 2, . . .] until Ft converges (|Ft − Ft−1| < ε, where ε is close to 0, e.g., ε = 10−6). Additionally, the definition
of the matrix W is not unique, and using different ways to define W can generate different propagation processes. In

addition to W = AD−1 for the random-walk process, some other approaches, such as W = D− 1
2 AD− 1

2 [378,379], are also
used to define the propagation process.

Diffusion kernel:
Lazy random walk [380,381] is another version of the random-walk-based propagation process. Assuming that the

random walker is at node vi at time step t , and the next step, it will walk to node vi’s neighbor with probability β and
remain at node vi with probability 1−kiβ . The transmit matrix of this process is I −βL, where L = D−A is the network’s
Laplacian matrix. In lazy random walk, the probability β decays with the walk steps, denoted β = α/t . We can obtain
the continuous time limit of lazy random walk as

lim
t→∞(1 + α

t
L)t = e−αL. (33)

Here, the κ = e−αL is called the diffusion kernel [380,382], which can be interpreted as a similarity matrix, in which
each element κij gives the amount of information propagated to node vi, given that the initial information F0 with only
F0(j) = 1.

4.2.2. Propagation in network biology
Many studies have shown that network propagation is very powerful in predicting potential disease genes. For a given

biological network structure (A) and known disease genes (F0), we can obtain the score of each gene at the steady state
(F ) through Eq. (27), where the genes with high score would be predicted as the potential disease genes (see Fig. 15(A)
and (B)). The transmit matrix κ , interpreted as the Katz process [383], random walk [378], and diffusion kernel [382] are
all very effective in potential disease gene prediction. It should be stressed that the propagation process would be very
sensitive to noise in the network [18], and choosing the suitable network would be very important in the prediction. Huang
et al. [384] evaluated 21 human genome-wide interaction networks for their ability to recover disease genes through
network propagation under the RWR model. They found that all networks have some ability to recover disease genes,
where the STRING (Search Tool for Recurring Instances of Neighboring Genes), ConsensusPathDB, and GIANT (Genome-
scale Integrated Analysis of gene Networks in Tissues) networks have the best performance, and the composite networks
outperform any single network.

Network-propagation technology can be extended to the networks that are integrated with some other biological
information, such as gene expression and phenotype information, to obtain more accurate disease gene prediction. Li and
Patra [385] proposed a RWR on heterogeneous networks (RWR-H), which was composed of a protein–protein network
(AP [N1×N1]), disease–disease similarity network (AD[N2×N2]), and protein–disease association network (APD[N1×N2]).
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Therefore, the adjacency matrix of the heterogeneous network can be represented as A =
[

AP APD

AT
PD AD

]
, and the

propagation process on the heterogeneous network can be modified as follows:

Ft = (1 − α)F0 + αWHFt−1. (34)

Let WH =
[

WPP WPD

WDP WDD

]
denote the transmission matrix on the heterogeneous networks, where WPP and WDD describe

the transmission matrix within a network (protein–protein and disease–disease), and WPD and WDP describe the jumps
between networks (protein–disease and disease–protein). The definition of the initial state F0 in the heterogeneous

networks is F0 =
[

(1 − η)u0
ηv0

]
, where u0 and v0 represent the initial information on the protein–protein interactions

and disease–disease similarity networks, respectively, and η ∈ (0, 1) is a tunable parameter used to describe the trade-
off between genotype and phenotype. Some modification of the RWR, such as the DRWR (Discriminative Random Walk
with Restarts, a two-stage RWR) [386] and RWHN (Randomly Walking in the Heterogeneous Network, considering the
weighted protein–protein interaction and disease–disease association networks) [387], have also been developed to
predict the genes most related to a given gene set on a heterogeneous biological network. More specifically, Valdeolivas
et al. [388] extended the RWR algorithm to multiplex-heterogeneous networks to predict the disease-associated genes,
and it outperformed the random-walk-based methods on monoplex or heterogeneous networks by leveraging the different
interaction sources.

Integrating the somatic mutation data on a large set of patients to identify frequently mutated subnetworks is very
important in cancer research, because somatically mutated contribute to the growth and development of cancer. The
network-propagation method, in which the ‘‘influence’’ of each mutation diffuses through the network, is very effective
to compensate the sparseness of the mutation profiles. The very famous methods, named HotNet and HotNet2 (the
improved variant) [222,389,390], applied network propagation to integrate the somatic mutation data and protein–
protein interaction network to identify significantly mutated pathways in cancer. HotNet and HotNet2 used diffusion
kernel and RWR, respectively, to model the propagation process, and the initial value (F0) can be set to be the observed
mutation frequency of each gene. Hofree et al. [376] employed the network-propagation method to identify the cancer
subtypes [391] in the TCGA datasets. They obtained the smoothed mutation profiles of each patient by the propagation
of the observed mutated genes in the RWR way (see Fig. 15(C)), and then applied the non-negative matrix factorization
method to cluster cancer patients. Cheng et al. [69] proposed the gene gravity model based on network propagation to
quantify the cancer genome evolution, and one further application of the gene gravity model was the identification of
the cancer driver genes [392]. In the gene gravity model, the smoothed mutation profiles of each gene are considered
the ‘‘gene mass’’ and the path length of gene pairs in the network is considered the ‘‘biological distance’’. Additionally,
network-propagation methods can also be applied to facilitate the identification of functional changes [393], prediction
of drug targets [25,394], and drug synergy [395] in cancers.

Additionally, a network-propagation method is also an efficient way to identify the network module (see 3.5),
where the connected nodes with large information flow would be considered as the network module. For example,
HotNet2 [390] applied a directed heat diffusion model to find the significantly mutated modules in cancers. Through
network propagation (RWR process), HotNet2 can generate a non-symmetric weighted diffusion matrix, which represents
the transmission similarity between the gene pairs. The gene pairs with similarity larger than the threshold value are
selected, and the strongly connected components can be considered as the potential modules. Using HotNet2, Leiserson
et al. [390] identified 16 significantly mutated modules in which some well-known cancer signaling pathways were
enriched. Interestingly, the identified modules also contained dozens of genes with rare somatic mutations, and their
role in cancer is supported by additional evidence. Very recently, Cáceres and Paccanaro [396] proposed the Cardigan
approach, which utilized network propagation of the query weight set5 to retrieve the disease module.

4.3. Link prediction

Link prediction aims to infer missing links or predict new interactions between non-connected nodes in networks
[397,398]. It can help complement missing data in real networks, as well as facilitate better understanding of the evolution
processes of networks. Numerous algorithms for link prediction have been set up according to network topology. Some
of these algorithms have been successfully applied in biological networks to solve a wide range of biological and medical
problems, such as the prediction of gene regulatory relations [399], protein–protein interactions [400], lncRNA–protein
interactions [401], drug–target interactions [27], drug–drug interactions [402], gene–disease associations [403], miRNA–
disease associations [404], drug sensitivity [405], and brain network connections [406]. Most of the predictions are
performed in unipartite networks, which consist of one set of nodes, while some predictions are conducted in bipartite
networks, i.e., networks consisting of two non-overlapping sets of nodes with only links joining the nodes in different sets.

5 For a given (query) disease, Cardigan calculates its phenotypic similarity to every other disease first, and the query weight set represents the
weight of each gene, which is the similarity between the query disease and gene-associated disease.
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Table 4
Illustration of commonly used local indices for node similarity.

Name of similarity index Equation (Sij =) Illustration

Common neighbor index (CN) | Γ (i) ∩ Γ (j) | (= [A2]ij) Γ (i) is the set of neighbors of node vi

Jaccard index (JC)
| Γ (i) ∩ Γ (j) |
| Γ (i) ∪ Γ (j) |

Sørensen index (SEN)
2 | Γ (i) ∩ Γ (j) |

ki + kj
ki is degree of node vi

Salton index (SAL)
| Γ (i) ∩ Γ (j) |√

kikj

Leicht–Holme–Newman (LHN)
| Γ (i) ∩ Γ (j) |

kikj

Hub depressed index (HDI)
| Γ (i) ∩ Γ (j) |
min (kikj)

Hub promoted index (HPI)
| Γ (i) ∩ Γ (j) |
max (kikj)

Common neighbors & distance
(CND)

| Γ (i) ∩ Γ (j) |
dij

dij is distance between nodes vi and vj

Adamic–Adar index (AA)
∑

vz∈Γ (i)∩Γ (j)

1

log kz

Resource allocation index (RA)
∑

vz∈Γ (i)∩Γ (j)

1

kz

Local community links (LCL)
∑

vz∈Γ (i)∩Γ (j)

γ (vz )

2
γ (vz ) is subset of neighbors of node vz

that are also common neighbors of vi

and vj . |γ (vz )| is the number of edges
which link with node vz and other
common neighbors of vi and vj .

Cannistraci–Alanis–Ravasi
(CAR)

| Γ (i) ∩ Γ (j) |
∑

vz∈Γ (i)∩Γ (j)

γ (vz )

2

Cannistraci-Resource-Allocation
(CRA)

∑
vz∈Γ (i)∩Γ (j)

γ (vz )

kz

Here, we survey link prediction algorithms frequently applied in biological networks, including unipartite and bipartite

networks.

The existing link-prediction algorithms can be roughly categorized as belonging to three classes [397,398]: similarity-

based algorithms, probabilistic and statistical models, and machine-learning-based methods. The first class comprises the

mainstreaming class of methods and has been the most widely used in researching biological networks. Thus, we focus

on this class of algorithms in this subsection, while the machine-learning-based methods are illustrated in Section 4.5.

4.3.1. Similarity-based methods

Similarity-based methods assume that a pair of non-connected nodes tends to establish a link if they are similar or

close to each other in the network. Different similarity indices Sij were proposed to measure the similarity or proximity

of two nodes vi and vj in the network. A larger value of the score suggests a higher probability of a link between the

nodes. Similarity indices are further classified into three classes, local, global, and quasi-local indices, according to the

topological information used in the indices.

(i) Local indices:

Local indices are designed from triadic closure principle and use different normalization or adjusting methods. Triadic

closure suggests that, if two links exist among three nodes, the two non-connected nodes tend to build a link. The

commonly used local indices for the similarity are illustrated in Table 4.

(ii) Global indices:

Global indices utilize the entire topological information to measure the possibility that two non-connected nodes

establish a link. For simplicity, some indices below are represented by matrix form S, which is the similarity matrix,

and each element Sij represents the similarity between nodes vi and vj.
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Cosine based on L+ (Cos+) [407]: Cosine based on L+ index is defined as the cosine of the node vectors, as follows:

Sij = cos(Vi, Vj) = VT
i Vj

|Vi ‖ Vj| = L+
ij√

L+
ii L

+
jj

, (35)

where Vi = Λ
1
2UT−→ei , U is the orthonormal matrix made of the eigenvectors L+ (pseudo inverse of Laplacian matrix)

ordered in decreasing order of corresponding eigenvalue λi, Λ is diag(λi), and
−→
ei is an N × 1 vector with the ith element

equal to 1, while the other elements are 0. |Vi| is the length of Vi, L
+
ij is the entry of L

+, and L+
ij = VT

i Vj.
Structural perturbation method (SPM) [408]: The structural perturbation index is derived from structural consistency,

which is defined as the consistency of structural features before and after the removal of some randomly selected links.
It is calculated as follows:

• Randomly select a fraction of links from the network (with edge set E) to constitute a perturbation set ΔE; then,
the adjacency matrix of the remaining network (with link set ER = E − ΔE) is as follows:

AR =
N∑

k=1

λk
−→
x

−→
x T . (36)

• Compute Δλk as follows:

Δλk ≈
−→
x TΔA

−→
x

−→
x T−→x , (37)

where ΔA is the adjacency matrix corresponding to ΔE.
• Compute structural perturbation matrix:

Ã =
N∑

k=1

(λk + Δλk)
−→
x

−→
x T . (38)

• Repeat above steps, and then the similarity matrix S is the average of all of the structural perturbation matrices Ã.

In terms of structural perturbation, a perturbation-based framework based on non-negative matrix factorization (NMF)
is proposed for link prediction by considering random noises and irregular links [409].

In addition, the Katz index and RWR index, which can be obtained according to Eqs. (29) and (32) in Section 4.2,
respectively, are also effective in link prediction.

(iii) Quasi-local indices:
Quasi-local indices use topological information more than local indices and less than global indices. Their computa-

tional complexity is below the complexity of global methods and can reach the prediction precision as well as global
methods do.

Degree-normalized L3 index(L3) [400]:

Sij =
∑
u,v

aiuauvavj√
kukv

, (39)

where ku is the degree of node vu and auv the (u, v) element of the adjacent matrix. This index counts the number of
length-3 paths existing between node vi and vj, and meanwhile normalizes it with degrees of intermediate nodes.

Local path index (LPI) [410]:

S =
l∑

k=2

ak−2Ak, (40)

where l is the length of the longest path under consideration and α ∈ (0, 1) is a tunable parameter. (Ak)ij equals to the
number of paths of length k between vi and vj. This index shows that the shorter the path between nodes vi and vj, the
more similar the two nodes are to each other. When l is taken as 2, this index is just the common neighbor index.

Node graphlet degree vector similarity (Node-GDV-similarity) [411]:
This index measures the similarity of two- to five-node graphlet degree vectors (GDVs) of two nodes. A graphlet is a

small induced subgraph of the network (as illustrated in Fig. 11(C) in Section 3.6). Since a node vi can be included in at
most 73 different graphlets with two to five nodes (considering one predicted edge), the GDV of node vi has 73 dimensions,
in which each element is the number of corresponding types of graphlets that the node vi touches. Supposing that ik is
the kth element of the GDV of node vi, the distance between the kth elements of nodes vi and vj is defined as

Dk(i, j) = wk

|log(ik + 1) − log(jk + 1)|
log(max (ik, jk) + 2)

, (41)
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and the node-GDV similarity between vi and vj is defined as

Si,j = 1 − D(i, j) = 1 −
∑73

k=1 Dk(i, j)∑73
k=1 wk

, (42)

where wk is the weight of the kth graphlet type that accounts for the dependencies.

4.3.2. Link prediction for bipartite networks
Link-prediction algorithms in bipartite networks have been used in biological networks for the prediction of drug–

target [27], miRNA–disease [412], and miRNA-lncRNA interactions [413]. Unlike unipartite networks, in which any pair
of nodes can make links, bipartite networks only allow links between nodes of two disjoint sets. Thus, the topological
methods based on the triadic closure model cannot directly work in the bipartite case. There are two main directions for
link prediction in bipartite networks: the first is to extend the similarity indices of unipartite networks to the bipartite
case (called extension methods), and the second is to project a bipartite network into two unipartite networks and use one
or both of them for link prediction (called projection methods). Here, we focus on these two directions of link-prediction
methods.

(i) Extension methods:
Instead of triadic closure in unipartite networks, this class of methods extends the definition of common neighbors to

quadratic closures in bipartite networks. Supposing a bipartite network has two disjoint node sets U and V , for a pair of
non-connected nodes (i ∈ U, j ∈ V ) the common neighbor index can be defined as follows [412]:

Sij = |Γ (i)
⋂

Γ̂ (j)|, (43)

where Γ (i) is the set of neighbors of node i and Γ̂ (j) is the set of neighbors of j’s neighbors. According to the similar
extension of Γ̂ (j), all of the local indices listed in Table 4 can be generalized to bipartite networks easily.

Similarly, global similarity indices can also be generalized to bipartite cases. Taking the Katz index (KI) as an example,
the KI in the bipartite network can be obtained as follows:

Sij =
∞∑
l=1

al|pslij|, (44)

where pslij is the set of all of the length-l paths from node i to j.

(ii) Projection methods:
For bipartite network that has two disjoint node sets U and V , V projection is used to construct a network containing

only V nodes, where two V nodes are linked if they have common U neighbors. Since the projection loses much
information in the original bipartite networks, many algorithms have been proposed to construct weighted projection
networks to better reflect the topology of bipartite networks, some of which still use the similarity between two nodes
as the weight of their link.

Once the weight matrix W = (wij) for the V -projection network is produced, the likelihood matrix for link prediction
can be calculated as

S = WA, (45)

where A = (alm) is a |V | × |U |-dimensional adjacent matrix of the bipartite network. Therefore, for any V node vi, its
likelihood index with non-collected U node uj is

Sij =
|V |∑
l=1

wjlali, (46)

and the node pairs with highest similarity scores are predicted to be linked. Therefore, the key problem for the projection
method lies in how to quantify the weight for the V-projection network.

The first class of weights is defined based on node similarity. For a pair of V nodes vi and vj, similarity-based weights
in the projection network are defined as follows (taking the common neighbor as an example):

wij = |Γ (vi)
⋂

Γ (vj)|, (47)

and the local similarities listed in Table 4 can all be defined as the similarity-based weights. In addition to the local
similarities, there are some other similarity definitions that can be used to define the link weight in the V-projection
network.

Euclidean [414]:

wij =
√√√√ |U |∑

l=1

(vi(U) − vj(U))2, (48)
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where vi(U) is a vector denoting node vi’s neighbors in U , in which an element is 1 if the corresponding U node links
with vi; otherwise, it is equal to 0.

Pearson [414]:

wij = corr(vi(U), vj(U)) = cov(vi(U), vj(U))

σ (vi(U))σ (vj(U))
. (49)

The second class of weights is defined based on information propagation in bipartite networks, and the typical
algorithms are as follows:

Probabilistic spreading (ProbS) [415]:

wij = 1

k(vj)

|U |∑
l=1

ailajl

k(ul)
, (50)

where (alm) is a |V | × |U |-dimensional adjacent matrix of the bipartite network and k(vj) the degree of node vj. The
probabilistic spreading (ProbS) considers resource allocation in bipartite networks. It assumes that the relatedness
between a pair of V nodes vi and vj depends on the resource flow from vi and vj to the U nodes and back.

Heat spreading (HeatS) [416]:

wij = 1

k(vi)

|U |∑
l=1

ailajl

k(ul)
, (51)

and HeatS represents a discrete analogy of a heat diffusion process. It is similar to ProbS, while the only difference is that
HeatS is a row-normalized matrix while ProbS is a column-normalized one.
Hybrid method [416]:

wij = 1

k(vi)1−λk(vj)λ

|U |∑
l=1

ailajl

k(ul)
, (52)

where λ ∈ [0, 1] is a tunable parameter and Hybrid a combination of ProbS and HeatS.

4.3.3. Evaluation metrics
Usually, area under the receiver operating characteristic curve (AUC), Precision, and Recall are used to measure the

performance of link-prediction algorithms, defined as follows [397]:
AUC: In link prediction, a simplified method is used to compute the AUC value. A missing link and a non-existent link

are randomly picked and their scores are compared. If among n independent comparisons, there are n′ times that the
missing link has a higher score and n′′ times that they have the same score, then AUC = n′+0.5n′′

n
.

Precision: Precision is the ratio of real predicted missing links to all of the predicted links. If the top L links are
considered predicted links, while Lr of which appear in the test set, then Precision = Lr

L
.

Recall: Recall is the ratio of real predicted missing links to all of the missing links. If the top L links are considered
predicted links, while Lr of which appear in the test set, and the total number of missing links in the test set is Lm, then
Precision = Lr

Lm
.

4.4. Network control

4.4.1. Structural controllability
In recent years, the control of complex systems has become an important research topic in statistical physics [19,417].

According to control theory, a dynamic system is controllable if suitable external inputs can drive the system from
any initial state to any desired final state in a finite time interval [19,418]. The ability to control the complex systems
would be the ultimate aim in our search for understanding of the systems. However, controlling complex systems is still
an outstanding challenge. In this subsection, we focus only on the structural controllability of complex networks and
identification of the minimum number of driver nodes [418].

Although the dynamics of biological systems are nonlinear in practical applications, linear systems have been success-
fully used as tools in modeling, analysis, and control technology systems in control theory. To study the controllability
of biological networks, researchers have used linear dynamic models to represent the dynamics of biological networks.
Kalman [420] proposed that the structural controllability of linear systems can provide a sufficient condition for the
controllability of most nonlinear systems. For linear time-invariant networks with N nodes, the dynamic representation
is as follows [418]:

dx(t)

dt
= Ax(t) + Bu(t), (53)

where x(t) = (x1(t), x2(t), . . . , xN (t))
T is an N-dimensional vector describing the state of all the nodes (e.g., the amount of

transcription factor concentration in a gene regulatory network). A is an N×N state transition matrix, which represents the
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Fig. 16. Schematic of controlling a simple network. (A) Sample network. (B) Full controlled network with maximum matching approach. Two links
can be part of a maximum matching for the network, yielding two unmatched nodes (driver nodes). There are two different maximum matchings
for this network. (C) Greedy algorithm for target control with the target set {x2, x3} (in yellow). All target nodes are matched by an induced bipartite
graph in the first iteration. Target nodes x2 and x3 are matched by node x1 and x4, which are the new target nodes considered in the next iteration.
We find that node x1 is the driver node for the target set {x2, x3} after two iterations. (D) Target controlled network. By controlling the unmatched
node x1, the target nodes x2 and x3 are controllable, while we must control two nodes to obtain full control.
Source: Adapted from Refs. [418] and [419].

regulatory relationship between nodes in the network. The input Aij represents the impact strength of node vj on node
vi. u(t) = (u1(t), u2(t), . . . , uM (t))

T is the M-dimensional vector of M independent input control signals. B is the input
matrix of the node driven directly by the input control signal. The network system described by Eq. (53) is represented
as system (A, B).

The system is controllable if it can be transferred from any initial state to any final state in a limited time with a
suitable choice of inputs. Kalman’s controllability theorem [420] proposed that the system (A-B) is controllable, if and
only if the N × NM controllability matrix,

C = [B AB A2B · · · AN−1B], (54)

has full row rank of N . In a complex network, the structural controllability problem can be transformed to identify the
minimum number of driver nodes (inputs control signals) to satisfy that the rank of the controllability matrix C is N . It
has been proved that the minimum number of driver nodes needed to maintain full control of the network is determined
by the ‘‘maximum matching’’ in the network [418]. In the maximum-matching approach, the maximum matching is the
maximum set of links that do not share start or end nodes. A node is said to be matched if a link in the maximummatching
points at it; otherwise, it is unmatched. The unmatched nodes in the maximum-matching approach would be the driver
nodes, where the network can be fully controlled if each unmatched node is directly controlled (the input control signals).
Generally, there are many kinds of maximum matching for a given network, leading to various driver-node combinations.
Results show that the number of driver nodes is mainly determined by the networks’ degree distribution [418].

Fig. 16 provides an example of a controlled network with the maximum-matching approach. Fig. 16(A) shows a
sample directed network in which the weight of the edge for node vj point to vi is represented as aij. As illustrated
in Fig. 16(B), there are two different maximum matchings, where the matching edges are shown in purple, matched
nodes in green, and unmatched nodes in white. Taking the maximum matching of the upper panel in Fig. 16(B)
as an example (the driver nodes are x1 and x2), we can calculate the controllability matrix C as follows: C =⎡⎢⎢⎢⎣

0 0 0 0
b1 0 0 0 0 0 0 0
0 b2 a21b1 0 0 0 0 0
0 0 a31b1 0 a34a41b1 0 0 0
0 0 a41b1 0 0 0 0 0

⎤⎥⎥⎥⎦, where A =

⎡⎢⎣ 0 0 0 0
a21 0 0 0
a31 0 0 a41
a41 0 0 0

⎤⎥⎦ and B =

⎡⎢⎣ b1 0
0 b2
0 0
0 0

⎤⎥⎦. The rank of

C is 4, which is just the number of the total nodes in the networks, suggesting that the mathematical condition for
controllability is satisfied. To obtain the maximum matching of the directed network efficiently, we can convert a directed
network into a bipartite graph with two disjoint sets of out- and in-nodes (as illustrated in Fig. 16(C)). A directed link
from node vi to vj corresponds to a connection between node vi in the out-set and node vj in the in-set. By finding the
maximum matching of the bipartite graph, the minimum driver nodes are unmatched nodes in the in-set. Maximum
matching has the power to solve the structural controllability of a directed network, while it cannot be extended into the
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undirected network arbitrarily. Nacher and Akutsu [421] addressed the controllability problem on the undirected network
from the perspective of minimum dominating set (MDS), from which all the remaining nodes can be reached by one link.
The results show that it is easier to control a network with a more heterogeneous degree distribution. Yuan et al. [422]
proposed the exact-controllability paradigm based on maximum multiplicity to identify the minimum set of driver nodes,
which can be applied to analyze the controllability of undirected networks.

However, sometimes it is not necessary to be completely controllable, which would waste many resources in practical
problems. Gao et al. [419] proposed target control, which is an efficient control of a pre-selected subset of nodes (the
yellow nodes in Fig. 16(D)). In target control, the linear time-invariant dynamics of the system can be represented as⎧⎨⎩

dx(t)

dt
=Ax(t) + Bu(t)

y(t) =Cx(t)
, (55)

where x(t) = (x1(t), x2(t), . . . , xN (t))
T , u(t) = (u1(t), u2(t), . . . , uM (t))

T , and y(t) = (y1(t), y2(t), . . . , yS(t))
T represent the

system’s state, input, and output vectors, respectively. A is an N × N state transition matrix. B is an N × M input matrix,
which identifies the M driver nodes controlled by the external controller. C is an M×S output matrix, which identifies the
S target nodes to be controlled. The network system described by Eq. (55) is represented as system (A, B, C). The system
(A, B, C) is said to be target controllable if the target nodes can be transferred from the initial state to any desired final
state in finite time with the suitable input vector u(t). Target controllability can be viewed as a special type of output
controllability, and the system (A, B, C) is target controllable if and only if the rank of the target controllability matrix
satisfies

rank([CB CAB CA2B · · · CAN−1B]) = S, (56)

which is the mathematical condition for target controllability. To identify the minimum set of driver nodes sufficient for
target control, Gao et al. [419] developed a ‘‘k-walk’’ theory for a directed tree network, in which one node can control
a target set of nodes if the length of the path from the control node to each target node is unique. The greedy algorithm
(as illustrated in Fig. 16(C)) is proposed to approximate the minimum set of driver nodes sufficient for target control for
more general cases [419].

4.4.2. Controllability of biological networks
Structural controllability has been widely applied in biological networks. First, network controllability facilitates the

identification of the essential or disease genes, whereas the driver nodes in biological networks tend to be significantly
related to some specific biological functions. Vinayagam et al. [423] applied structural controllability theory to identify
a minimum set of driver proteins on protein–protein interaction networks. Based on the influence of the driver-node
number, the proteins could be classified into three parts: ‘‘indispensable’’, ‘‘neutral’’, and ‘‘dispensable’’, and removing
the corresponding protein leads to increasing, not changing, or decreasing the number of driver nodes, respectively.
Results indicate that indispensable proteins are the primary targets of disease-causing mutations, human viruses, and
drugs, suggesting that altering a network’s control property is critical for the transition between healthy and disease
states. Wuchty [424] used the MSD model [421] to identify the driver proteins, and enrichment analysis showed that
the predicted proteins not only carry important functional characteristics (e.g., essential proteins, cancer-related proteins,
and virus-targeted proteins), but they also play a key role in controlling the entire network (e.g., transcription factors and
protein kinases). Bidkhori et al. [425] applied the MSDs to identify the hepatocellular carcinoma (HCC) subtype-specific
genes with pivotal roles in controlling the metabolic network, and in silico knockout of these genes led to lethality in
their respective subtype. Zhang et al. [426] developed a centrality-corrected minimum dominating set (CC-MDS) model
that can capture more driver proteins than the MDS model. Schwartz et al. [427] proposed the probabilistic minimum
dominating set model (PMDS) to identify a minimum set of nodes that act as driver nodes to control the entire network.
Comparing the metabolic networks corresponding to healthy and cancer tissues, PMDS analysis shows that cancer states
require fewer controllers than their corresponding healthy states. Nowadays, some direct experimental proofs are also
provided to validate the efficiency of the control principles on biological systems [428].

Many results indicate that drug target identification can be formulated as a problem of network control by finding
driver nodes in biological networks [429,430]. For example, the critical network control proteins, which belong to every
MDS configuration, may be of interest as drug targets and possibly useful for drug design and development [431].
Based on the concept of target control, Guo et al. proposed constrained target controllability (CTC) [432] and the target
control problem with objectives-guided optimization (TCO) [433] on biological networks to facilitate the identification
of drug targets, where just a subset of nodes must be controlled (e.g., disease-associated genes). The constrained target
controllability model required that all of the selected driver nodes must be in the constrained-nodes set [432], while the
target control problem with the objectives-guided optimization model [433] considered both the number of driver nodes
(minimum) and the correlation between the identified driver nodes and the prior known drug–target genes (maximum).
In addition to great advances in linear control of single networks, structural controllability on some more complicated
systems also can generate similar observations. Zheng et al. [434] studied the control of multilayer biological networks
by identifying the minimal driver nodes that can steer a multilayered nonlinear dynamical system toward any desired
dynamical attractor. Results on disease-related multilayer networks show that the known drug targets are enriched in the
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Fig. 17. Simple schematic of machine-learning framework of biological network analysis.

Source: Adapted from Ref. [21].

identified minimal set of the driver nodes. Sun [435] studied the co-controllability of a drug–disease–gene network, which
consists of a drug–drug network, a disease–disease network, and a gene–gene network. The results show that driver nodes
tend to be highly correlated, e.g., diseases highly associated with driver nodes of a drug–drug network tend to be driver
nodes in a disease–disease network and drugs tend to dominate diseases by controlling a protein–protein interaction
network. Network control would be an efficient way to identify drug targets for leading the phenotype transitions of
underlying biological networks [433].

4.5. Machine learning in network biology

4.5.1. Basics of machine learning
Machine learning, which is at the core of artificial intelligence and data science, has progressed dramatically over the

past two decades [436]. Machine-learning methods are the practice of generating a predictive model based on learning
feature patterns from the data and predicting the final label of the new data through the model. Fig. 17 is a simple
schematic of a machine-learning framework of biological network analysis. The general machine-learning workflow
consists of four parts: raw data processing, feature extraction, model training or learning process, and predictions of
new data based on the trained model.

To make accurate predictions, the machine-learning model must use many different types of data. The quality
of the data is key to the entire machine-learning process, where the performance of any given machine-learning
algorithm is dependent on the data used to train the model. With the development of high-throughput technology,
we can conveniently obtain a huge amount of experimental data, but how to use the incredibly complex biological
dataset effectively is still a significant challenge. Features hidden in the data are the directed inputs of the machine-
learning methods. In machine learning in network biology, features include two types of information: the network-based
features (such as node centrality, interaction, local structure, subgraph, network propagation results, and network-based
similarities) and the biological information (such as the gene expression profile, gene mutation frequency, and gene
functional annotation). It is very important to identify the informative features, where the performance is highly sensitive
to the quality of the features, and including irrelevant features would lower the performance of the machine-learning
model. An example for informative feature selection is to correlate all of the input features with the labels and retain
only those significant features.
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The learning process aims to find the optimal model that can map the features in the input data into accurate
predictions of the labels. Machine-learning methods can be roughly divided into two categories: supervised and
unsupervised-learning (see Fig. 17). The supervised-learning methods are used when labels of the input data are available,
which are applied to train the machine-learning model and then predict the labels of the new data. As labels can
be continuous or discrete, the corresponding supervised methods can be considered regression or classification tasks,
respectively. Regression tasks aim to predict a continuous label value of the new data and classification tasks aim to
predict the label category. For example, in disease gene prediction, a set of genes are the known disease genes. A machine-
learning model based on the prior information must be obtained first to predict whether the others are disease genes,
which falls under a classification task. Commonly used supervised approaches include linear regression, support vector
machines (SVM), logistic regression, k-nearest neighbors, decision tree, and random forest. Generally, in supervised-
learning, x = (x0, x1, . . . , xm) ∈ X is set as the input (feature) space and y ∈ Y as the output space (label). The goal
of supervised-learning is to choose a function fω(x) with parameter vector ω that can predict the supervisor’s label in the
best possible way. The goodness of a function f with parameter ω can be obtained by minimizing the follow loss function:

L(ω) =
∑

x∈X,y∈Y
Θ(y, fω(x)), (57)

where Θ(∗, ∗) is the metric used to evaluate the gap between the label and the prediction. Taking the widely used logistic
regression model as an example, the target of logistic regression is to find a classification model that can map a label to
a piece of sample data. fω(x) can be defined as a sigmoid function:

fω(x) = 1

1 + e−ωT x
= 1

1 + e−(ω0x0+ω1x1+···+ωmxm)
, (58)

which can be considered as the probability that maps label 1 to the corresponding sample, while 1−fω(x) is the probability
that maps label 0 to this sample. The probability that the prediction is true can be calculated as follows:

P(true) = fω(x)
y ∗ (1 − fω(x))

1−y, (59)

where y = 1 or 0 is the label of the corresponding sample x. To obtain the function fω , we must select the vector ω when
the P(true) for all the samples (x ∈ X) is maximized. According to maximum likelihood, we can obtain the loss function
as follows:

L(ω) =
∑

x∈X,y∈Y
−ylog(fω(x)) − (1 − y)log(1 − fω(x)), (60)

where Θ(∗, ∗) in Eq. (57) is defined as the cross-entropy loss, evaluating the gap between the label y and the prediction
fω(x). The regression model fω can be obtained by minimizing the loss function L(ω). In general, all of the supervised
machine learning methods can be studied within the framework described in Eq. (57).

Unlike the supervised-learning methods, the unsupervised-learning methods are used when the labels for the input
data are unknown. Without the labels to supervise the machine learning, the unsupervised methods can only be trained
from the patterns hidden in the input data. The widely used unsupervised models applied to biological data include
clustering, PCA, and outlier detection. For instance, in the task of community detection in biological networks (which
can also be considered a clustering task), the label of each node in the network is not known, and the sub-graphs are
sought using the network structure features. In unsupervised approaches, an algorithm that can automatically divide the
similar data into closely related subsets or clusters is desired. Different unsupervised methods are proposed based on the
different definitions of ‘‘similar’’. For example, the assumption in the k-means method is that nodes close to each other
are more likely to be clustered into the same group, which generates the following loss function (here, the data is set that
can be clustered in to K groups):

L =
∑
x∈X

min k ‖ x − μk ‖2, (61)

where x ∈ X is the input space and μk the center vector of the kth cluster. Upon minimizing L, the best clustering of the
input data can be obtained. Sometimes, the results of unsupervised-learning, e.g., the clusters of the input data, can be
used as the input features of supervised-learning [437].

When the model is well trained, it can be used to predict the results of the new data. Many problems in network
biology can be transformed into a classification or regression task, which can be solved in the machine-learning
framework very well [21,438]. For instance, Moore et al. [437] proposed a prediction model based on 10,243 features
using random-forest and SVM algorithms to predict specialized metabolism genes. Results indicate that the random-
forest method generated the most accurate prediction with a true positive rate of 87%. Tokheim et al. [439] applied the
random-forest approach to identify the cancer-driver genes based on their patterns of mutation in large patient cohorts.
Additionally, machine-learning methods have also demonstrated their utility in drug discovery and development [440],
cellular decision-making [441], community prioritization of biological networks [442], and so on. However, using the
machine-learning approach in network biology effectively is not straightforward [21]. Generally, the performance of
machine-learning methods can be significantly affected by multiple factors, such as features, user-defined parameters,

37

ht
tp
://
do
c.
re
ro
.c
h



and the methods in which any incorrect operation would generate pool outcomes. Fortunately, Saez-Rodriguez et al. [443]
extracted several rules, including that a simple model is often better, that prior knowledge boosts performance, and that
multitasking models produce robust results, for applying machine-learning approaches in network biology.

4.5.2. Deep learning in network biology
Deep learning, as one of the most active fields in machine learning, is making major advances in artificial intelligence

and is transforming many fields, including computer vision and natural language processing [436,444]. Deep-learning
methods are mainly composed of the artificial neural network model, which was initially inspired by the human brain’s
neural networks (a very important class of biological networks). An artificial neural network consists of three layers
of interconnected computing units (neurons): the input layer, hidden layer, and output layer (as illustrated in Fig. 18).
The raw data are processed and fed into the input layer, transformed in a nonlinear way through the hidden layer, and
generated as the final prediction in the output layer. As in machine learning, the purpose of the artificial neural network
is to obtain a trained neural network model to accurately predict output values for new sets of input data. The depth of a
neural network is the number of hidden layers, and when neural networks with large depth are trained, the artificial neural
networks are called ‘‘deep neural networks’’, which is referred to as ‘‘deep learning’’. Just like the representation-learning
methods with multiple levels of representation, deep-learning methods have turned out to be very good at discovering
intricate structures in high-dimensional data [444].

In deep learning, each unit in the hidden layers computes a weighted sum of its inputs from the previous layer and
passes the outputs using a nonlinear function to the unit in the next layer. For instance, the outputs of the unit i in the
lth layer can be calculated as follows6:

h
(l)
i = σ (

∑
j∈Γ

i(l)

h
(l−1)
j wj(l−1)i(l) ), (62)

where Γi(l) is the set of the units in the layer (l − 1) that link to the unit il, wj(l−1) i(l) the weighted value from unit j(l−1)

to i(l), and σ (∗) the nonlinear active function, such as the rectified linear unit (ReLU, σ (z) = max(0, z)) and the sigmoid
function (σ (z) = 1

1+e−z ). The parameter w can be estimated using back-propagation methods [444]. Next, the outputs of
the new input data can be predicted using the well-learned neural network model.

Typically, the network architecture of the hidden layers can be designed according to the purpose of the learning
model. Several major classes of neural networks have been intensively researched in recent years, as follows.

• Fully connected neural networks (FCNNs) (Fig. 18(A)): Fully connected is the most commonly used network
architecture, in which each computed unit receives inputs from all of the units of the previous layer. The problem in
a fully connected network is that the number of parameters increases dramatically with increasing network depth,
yielding new problems, such as overfitting or trapping in the local optimum.

• Convolutional neural networks (CNNs) (Fig. 18(B)): CNNs are designed to process data in the form of multidimen-
sional arrays, e.g., two-dimensional images with three color channels. The hidden layer in a CNN typically consists
of multiple convolutional and pooling layers and fully connected layers. A convolutional layer consists of multiple
feature maps, in which each unit is connected to local patches in the feature maps of the previous layer through a
convolution kernel (a set of parameters that must be learned). At each unit, the dot-product operation is conducted
between its inputs and the convolution kernel, and then a nonlinear activation function (typically ReLU) is applied to
obtain the outputs. Local connectivity and parameter sharing, where all of the units in a feature map share the same
convolution kernel, result in the significant reduction of the number of parameters compared with fully connected
networks. A pooling operation is applied after the convolutional layer, which summarizes adjacent units of the
feature map by typically computing the maximum or average over their outputs. The pooling layer aims to smooth
the feature map by merging semantically similar features into one. The outputs of the pooling operation are fed into
the next stage of the convolutional and pooling layer. Finally, the outputs of the last convolutional and pooling layer
can be used as inputs to a fully connected layer to generate the final prediction.

• Recurrent neural networks (RNNs) (Fig. 18(C)): RNNs are designed to process one-dimensional sequential data. The
network architecture of a RNN is not very complicated, in which the hidden layer can be designed as a fully connected
network. The difference is that the units in a RNN get input from other units at previous time steps rather than from
the previous layer as in a CNN. At each time step, the outputs of the previous time steps and the new raw input
make up the inputs for the current time step. Of note is that the outputs of each time step can be considered the
predictions, or used as inputs for the next time step. When a RNN is unfolded in time, it can be considered a very
deep feedforward network (the depth is the number of recurrent time steps) in which all of the layers share the
same parameters.

For leveraging large datasets very effectively, deep-learning methods have generated many dramatic achievements
in computational biology [22,445,446], such as somatic mutation detection in cancer analysis [447], cancer screening

6 l = 0 represents the input layer and h
(0)
i is just the raw input data to unit i.
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Fig. 18. Simple schematic of several commonly used deep-learning models: (A) fully connected neural network; (B) convolutional neural network;
(C) recurrent neural network; (D) graph convolutional neural network.
Source: Adapted from Ref [21].

using computed tomography [448], survival prediction of patients diagnosed with cancers using microscopic images of
tissue biopsies [449], drug–target interaction prediction using protein sequences [450], and identification of the role of
non-coding mutation in autism spectrum disorders using genomic sequence data [451]. With the development of deep-
learning frameworks, such as PyTorch and TensorFlow, users can build neural networks conveniently by designing the
network architecture. Unfortunately, modern deep-learning toolboxes are designed for grid or sequence data. However,
network data are far more complicated than sequence or grid data; for example, there is no spatial locality like grids or
images, and the performance of a CNN and RNN would be limited for a network problem.

Graph convolutional neural networks (GCNs) have been proposed to process network data and they can be considered
extensions of CNNs [452]. GCNs use the individual features of nodes and the node connectivity in a graph to solve machine-
learning tasks. GCNs sequentially apply multiple graph layers (Fig. 18(D)), whereby each graph layer aggregates features
from the neighboring nodes or edges in a nonlinear manner and represents nodes or edges with a new set of features.
The state in the l-layer can be obtained with the following layer-wise propagation rule:

Hl = σ (D̂− 1
2 ÂD̂

1
2H (l−1)W (l−1)), (63)

where Â = A+ I is the adjacency matrix (A) with added self-connections (the identity matrix I), D̂ is the diagonal degree
matrix of the adjacent matrix Â, W (l−1) is a layer-specific trainable parameter matrix, and σ (∗) is the activation function.

Transformation has been shown to be very effective at accumulating and encoding features from network neighbor-
hoods and has led to significant improvements in various prediction tasks in network biology. For instance, Luo et al. [453]
predicted cancer-driver genes by applying a CNN to learn information within mutation data and similarity networks
simultaneously, and the AUC scores were superior to those of competing algorithms. Zitnik et al. [454] proposed the

39

ht
tp
://
do
c.
re
ro
.c
h



Decagon method, which developed the GCNN for multi-relational link prediction in multi-modal networks (e.g., protein–
protein interactions and drug–protein target interactions), to model polypharmacy side effects of drug combinations. The
approach generated very accurate predictions while outperforming the baselines by up to 69%; it can thus open up new
opportunities for development of combinatorial drug therapies. Rhee et al. [455] proposed an approach of merging the
GCNN and relation network to investigate human disease subtypes classification using the gene expression profile and
protein–protein interaction data. Currently, increasingly more researchers are focused on how to apply deep learning to
network biology, and this could be a very active field in computational network biology in the near future.

4.5.3. Network embedding
Deriving most informative features is essential for performance, but the process can be labor-intensive and requires

domain knowledge. Network embedding approaches, which extract the feature automatically and map network nodes to
d-dimensional embeddings, such that similar nodes in the graph are embedded close together, have been widely used
in biological network analysis recently. The network embedding approaches aim to find an encoder function that maps
node vi in the original network to the embedding Zi. The encoder function satisfies the following expression7:

Sim(vi, vj) ≈ ZT
i Zj, (64)

indicating that similarity in the embedding space (e.g., dot product; right-hand side of Eq. (64)) approximates similarity
in the original network (left-hand side of Eq. (64)). The embedding Z can be obtained by minimizing the loss function:

L =
∑

vi,vj∈V
‖ ZT

i Zj − Sim(vi, vj) ‖2 . (65)

Defining the similarity as the connection (or the edge weight) between two nodes, the graph factorization (GF)
method [456] can obtain the network embedding by minimizing the following loss function:

L = 1

2

∑
vi,vj∈V

‖ ZT
i Zj − Aij ‖2 +λ

2
‖ Zi ‖2, (66)

where λ
2

‖ Zi ‖2 is the regularization item used to avoid over-fitting and λ the regularization coefficient. In addition to the
directed connection, all the network structure-based similarities (as illustrated in Section 4.3) can be used. In High-Order
Proximity-preserved Embedding (HOPE) [457], the authors experimented with different similarity measures, including KI,
PageRank, Common Neighbors, and Adamic–Adar score. The node similarity was represented as S = M−1

g Ml; for example,{
Mg = I − αW

Ml = (1 − α)I
for the PageRank index (the matrix formula of Eq. (23), where W is the probability transition matrix).

Therefore, generalized singular value decomposition (SVD) can be used to obtain the embedding upon minimizing Eq. (65)
efficiently.

The second category of network embedding is the random-walk-based approaches and the representative methods
include DeepWalk [458] and Node2Vec [459]. They use random walks to generate sequences of nodes from the network,
and nodes close in the network will tend to have similar contexts that would be near one another in the embeddings.
Technically, for each node vi, the network neighborhood ΓR(i) can be obtained, which is a sequence of nodes that appear
in short random walks starting at node vi. The algorithms aim to find the embedding Zi by maximizing the conditional
probability of observing ΓR(i), which can be described as follows:

L =
∑
vi∈V

∑
vj∈ΓR(i)

log (P(j|Zi)). (67)

The crucial difference between DeepWalk and Node2vec is that DeepWalk uses truncated random walks [458], while
Node2vec employs biased random walks that provide a trade-off between breadth-first (BFS) and depth-first (DFS) graph
searches [459]. The biased random walks in Node2vec can provide more flexibility when generating the node context,
leading to higher quality and more informative embeddings than DeepWalk. Apart from the assumption that nearby nodes
in the graph have similar embeddings, struc2vec [460] and GraphWave [461] were developed with specific designs to
capture structural roles. Additionally, network embedding is also an important application of deep learning, in which many
deep-neural-network-based methods were also proposed to embed networks. For additional insight into the network
embedding algorithms, we refer the reader to several excellent review articles (Refs. [462–464]).

Once embeddings are learned, each node is embedded as a low-dimensional vector that can be intuitively used for
any downstream prediction task, including node classification, link prediction, and clustering, through the application of
machine learning. For example, node classification can be conducted by applying a classifier, such as logistic regression,
SVM, and random forest classification, on the set of labeled node embedding for training. For an unlabeled node, the
trained classifier can predict its label with its embedding. For high performance over the traditional methods, the network

7 It should be noted that other similarity measures other than dot products in the embedding space could be used (e.g., Euclidean distance), but
the dot product is the standard measure of similarity used.
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Fig. 19. Diagram illustrating different types of network perturbation altered by disease-causing mutations leading to distinct phenotypes
(e.g. diseases). There are two types of networm perturbations: (a) nodetic effects that proteins completely lose expression by disease mutations
(e.g., nonsense mutations) or alter protein folding or protein stability by point mutations (e.g., missense mutations); and (b) edgetic mutations or
protein–protein interaction (PPIs) disruptive mutations that alter PPIs (including lose of PPIs [edges or links] and gain of PPIs. The details are given
in previous studies [119,320].

embedding approaches are widely used in computational biology [464,465], including for the prediction of the specific
pathways [466], associations between microRNA and human disease [467], disease-associated genes [468], drug target
associations [469,470], relations between brain structure and function [471], protein function [472], and protein functional
similarity and synthetic lethality across species [473]. Of note is that the performances of different embedding methods
are always different in various case; for example, Node2Vec performs better on node classification while HOPE performs
better on link prediction [462]. Therefore, the suitable embedding approaches should be selected for the specific prediction
task in computational network biology.

Although machine-learning approaches perform very well in many cases, their ‘‘black box’’ nature, which is the
mechanistic uninterpretability of most machine-learning based models, would be the critical challenge for biological appli-
cations [21]. For machine-learning (especially deep-learning) methods, the training procedure is so complicated that it can
be very difficult to determine the relative importance of the input features or whether a feature is positively or negatively
correlated with the outcome. However, it is very important to provide the interpretation of how particular models relate
to input features [474]. Very recently, Yang et al. [475] proposed a ‘‘white-box’’ machine-learning approach to reveal the
antibiotic mechanisms of action. The proposed approach integrated a genome scale computational model of metabolism
with metabolic network simulations to provide mechanistically linked training data for machine learning. In this case,
the ‘‘white-box’’ machine-learning analysis, underpinned with mechanistic metabolic information [476], can identify the
complex causal mechanisms of drug efficacy rather than only the correlative relationships. Therefore, to extend the
application of machine-learning approaches to network biology, more attention should be paid to the development of
such ’’white box’’ machine-learning approaches, which can be interpreted from the biological perspective [21,477].

5. Applications of computational network biology

5.1. Human disease

5.1.1. Network perturbation by disease mutations
Biological entities are involved in intricate and complex interactions, thereby forming highly complex dynamic systems.

Understanding human diseases from the point-of-view of how sub-cellular systems and molecular ‘‘interactome’’ network
perturbations underlie disease initiation and progression is the essence of the fields of systems biology and network
medicine. The main hypothesis of network medicine is that sub-cellular networks gradually rewire throughout disease
initiation, progression, and maintenance, leading to progressive shifts of local and global network properties and systems
states, all of which, in turn, underlie disease-causing factors [1]. For example, although being often described as a
disease of the genome, it is perhaps more appropriate to describe complex disease as a ‘‘disease of the interactome’’.
Obviously, genome alterations, such as amplification, deletion, translocation, and mutations, are the primary events of
disease initiation and progression, but such events can only be selected in cells if they encode the appropriate changes
or perturbations in the human interactome and systems properties of the affected cells.

Recent remarkable advances in genome sequencing technologies have enabled detailed maps of identified and
interpreted genomic mutations. The availability of 10,000 whole-exome/genome sequencing data in patient samples has

41

ht
tp
://
do
c.
re
ro
.c
h



Fig. 20. Network representation of global cancer protein interactome. Node size indicates node connectivity. Edges are hidden. TSG, tumor suppressor
genes; MDG, Mendelian disease genes; ODMG, orphan disease mutated genes.
Source: Figure from Ref. [119].

prompted the emergence of multiple challenges for personalized diagnosis and treatment in the clinical setting. To date,
the consequences of mutations in enzyme active sites or in ligand–protein binding sites are more straightforward to
interpret, named ‘‘nodetic’’ effects on the human interactome [478,479]. However, recent functional studies show that
disease-associated alleles commonly alter distinct PPIs or gene regulation rather than grossly affect folding and stability
of proteins [320,480]. A new conceptual paradigm (see Fig. 19) that incorporates both innovative experimental and
computational strategies, such as ‘‘edgetic’’ mutations [320] or ‘‘network-attacking’’ mutations [119,481,482], enables
better assessment of the intrinsic complexities of human diseases from the sub-cellular-molecular level of the human
protein–protein interactome. A recent study revealed the unique network centrality of cancer proteins, which is largely
independent of gene essentiality, and the network representation of the global cancer protein interactome is illustrated
in Fig. 20. By inspecting the network-attacking perturbations by somatic mutations derived from 3268 tumors across 12
cancer types, Cheng et al. found a positive correlation between protein connectivity (degree) and the number of non-
synonymous somatic mutations, whereas there is a weaker or insignificant correlation between protein connectivity and
the number of synonymous somatic mutations. These comprehensive network analyses support the proof-of-concept of
somatic mutational network-attacking perturbations to hub proteins playing a crucial role in tumorigenesis and tumor
genome evolution [119].

5.1.2. Disease module
There is convincing evidence that genes associated with complex diseases tend to interact with each other, participating

in the same biological pathways [1,2]. Analysis of the disease modules (the proteins that associate with and functionally
govern a disease phenotype are localized in the corresponding disease module or subnetwork within the comprehensive
protein–protein interaction network) shows that genes that contribute to common disorders (i) show an increased ten-
dency for their products to interact with each other via PPIs; (ii) tend to be expressed together in specific tissues; (iii) tend
to display high co-expression; and (iv) tend to share Gene Ontology (GO) terms [23]. These findings support a network-
based model for the disease module, whereby cellular networks are modular, consisting of groups of highly interconnected
proteins responsible for specific cellular functions. A disease then represents a variation-induced perturbation of a specific
disease module, producing developmental and pathophysiological abnormalities. For convenience, we provide several
representative bioinformatics resources for building disease modules from the human protein–protein interactome in
Table 5.

Most diseases cannot be fully described by a single gene in the gene network; instead, most diseases are associated
with multiple genes or a set of genes. Recent studies have found that most of the disease-related proteins show a modular
structure in the interactome space, and the module depends on the completeness of the interactome space. From a disease-
disorder bipartite network, Goh et al. [2] projected the human disease network and disease gene network. The disease
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Table 5
Summary of representative bioinformatics resources for building disease modules from human protein–protein interactome.

Databases Description Website Refs.

OMIM Comprehensive collection covering
literature-curated human disease genes with
experimental evidence.

http://www.omim.org/ [483]

CTD Database containing literature-curated
interactions connecting chemical, genes, and
diseases.

http://ctdbase.org/ [484]

ClinVar Public archive of relationships among sequence
variation and various human phenotypes.

https://www.ncbi.nlm.nih.gov/clinvar/ [485]

GWAS Catalog Database containing unbiased SNP-trait
associations with genome-wide significance.

https://www.ebi.ac.uk/gwas/ [486]

GWASdb Data curation and knowledge database for
SNP-trait associations from GWAS for PubMed.

http://jjwanglab.org/gwasdb [487]

PheWAS Catalog Catalog containing SNP-trait associations
identified by the phenome-wide association
study (PheWAS).

phewas.mc.vanderbilt.edu [488]

HuGE Navigator Integrated disease candidate gene database
based on the core data from PubMed abstracts
using text-mining algorithms.

https://phgkb.cdc.gov/PHGKB/ [489]

DisGeNET Disease-gene database created by assembling
expert-curated databases and text-mined data.

http://www.disgenet.org/ [490]

network showed that diseases associated with disorders in the same class have a modular structure. By using percolation
theory, Menche et al. [23] showed that, despite the incompleteness of the entire interactome, the fragmentation of the
disease modules is still enough to investigate the mechanisms and the pathological complexity between diseases.

Disease proteins are not scattered randomly in the human protein–protein interactome, but form one or several
connected sub-graphs, defining the disease module [23]. Yet, whether the mutant proteins directly derived from individual
patient sequencing data (e.g., whole-exome sequencing) form a statistically significant module in the human protein–
protein interactome (or sub-network in a disease module) remains unknown. A recent study demonstrated that the
significantly mutated genes (SMGs), identified from large-scale genome sequencing projects across 15 cancer types [25],
are more likely to form modules [Fig. 21(C)]. For instance, in lung adenocarcinoma, 83.1% of genes [172/207, P =
1.6 × 10−62 permutation test, as illustrated in Fig. 21(B)] form significantly the largest connected component compared
to the same number of randomly selected genes with similar connectivity (degree) as the original SMGs in the human
interactome. Fig. 21(A) illustrates the connectivity of products of several highly mutated genes (such as EGFR, TP53,
and NF1) compared to genes with low somatic mutation frequency in lung adenocarcinoma. The strong modularity of
gene products with high mutation frequency have motivated the development of new network-based methodologies to
identify patient-specific disease modules by mapping individual patient DNA sequencing data to the human protein–
protein interactome network model. Therefore, Cheng et al. [25] proposed a Genome-wide Positioning Systems network
(GPSnet) algorithm for drug target identification by specifically targeting disease modules derived from individual patients’
DNA and RNA sequencing profiles mapped to the human protein–protein interactome disease network model.

Numerous bioinformatics and network-based approaches have been proposed for disease module identifications,
including Kernel clustering, modularity optimization, random-walk-based, local methods, and ensemble methods. For
example, a recent study comprehensively evaluated 75 module identification methods across diverse biological networks,
such as PPIs, signaling, gene co-expression, and homology and cancer-gene networks [215]. Through systematic metric
evaluation, five practical recommendations for disease module identification were made [215]: (i) Methods from diverse
categories should be applied to identify complementary module; (ii) the resulting modules from different methods should
be used as is, without forming a consensus network; (iii) diverse networks with complementary information should be
leveraged; (iv) module identification methods should be applied to each network individually; and (v) multi-network
methods should be applied to illustrate modules in layered networks.

5.2. Network theory in neuroscience

5.2.1. Controlled brain and neuro network
Network control theory was well studied with a systematic mathematical framework in the last decade, both for static

networks and temporal networks [19,418,419,491]. As described in Section 4.4, the minimum number of driver nodes
is identified in network control, and the network can be fully controlled by the driver nodes so that any signals passed
through will lead to a desired network state. However, few experiments were conducted to validate the control theory
in real biological systems due to the difficulties of, and accuracy in, mapping the complete structural connectome in the
neural level. Yan et al. [428] conducted an experiment to validate the control theory by predicting the neuron function in
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Fig. 21. Proof-of-concept of disease module for mutant genes derived from patient-specific DNA sequencing data. (A) A subgraph illustrating a
subnetwork of highly mutated genes versus genes with low mutation frequency in lung adenocarcinoma. (B) The sizes of the largest connected
component of significantly mutated genes and of highly mutated proteins are shown for lung adenocarcinoma. The observed module sizes, 172
(SMGs, orange line) and 76 (highly mutated gene, cyan line), are significantly larger than the random expectation. (C) Both significantly mutated
genes identified by statistical approaches and highly mutated genes ranked by mutation frequency form a significant largest connected component
(LCC) compared to random genes with matching connectivity (degree) distributed in the human protein–protein interactome, across 15 cancer types.
Source: Figure from Ref. [25].

the Caenorhabditis elegans (C. elegans) connectome, which is the only one with relatively complete mapping. The entire
nervous system can be modeled as a directed network, in which part of the nodes are neurons that accept the input
signals, part of the nodes are muscles that capture the locomotion status, and the electrical and neuromuscular junctions
connect these parts together. It was found that by a total of 12 neuronal classes could the C. elegans entire motor neuron
system be fully controlled. Yan et al. also found one neuron, PDB, that was not fully understood before, and that has a
special role in locomotion. This work provided strong experiment evidence for controlling real-world biological complex
systems.

Control of the brain network offers great opportunities for fully understanding the brain circuit and the cognitive roles
in human brain regions [492,493]. Gu et al. [492] applied control theories to the controllability of the brain network. Based
on the different control strategies, they reported the distribution of hub driver nodes in different cognitive systems (see
Fig. 22). In detail, they determined the following. (i) The average control strategy that identifies the set of nodes that can
drive the network into various states with little input energy, which is related to the trace of the controllability matrix.
30% of the hub controllers are located in the default mode system, followed by the visual system (19%), somatosensory
system (18%), and frontoparietal system (11%). (ii) The modal control strategy that identifies the set of nodes that can
drive the network dynamics to states that are difficult to control and usually related to the states that need substantial
input energy. The hub controllers are mainly located in the somatosensory systems (18%), cingulo-opercular system (17%),
auditory system (16%), frontoparietal system (15%), and dorsal attention system (12%). (iii) The boundary control strategy,
which identifies the set of nodes that are located at the boundaries of network modules and that leverage the segregation
of network modules. They found that the hub controllers are relatively uniformly located in each cognitive system, with
dorsal attention system possessing 19%, which is the largest one, and most of the systems studied have approximately
10% hub controllers. Therefore, network control theory can be used to understand how the brain moves between cognitive
states drawn from the network organization of white-matter microstructure. The global controllability analysis indicated
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Fig. 22. Distribution of hub drivers in different cognitive systems in the brain using three control strategies: (A) average controllability, (B) modal
controllability, and (C) boundary controllability.
Source: Figure from Ref. [492].

that, while the brain is consistently theoretically controllable through a single region (node), it is extremely difficult to
control the system through a single region in practice. Regional controllability analysis revealed that densely connected
areas, preferentially located in the default mode system, are postulated to facilitate the movement of the brain to many
easily reachable states; weakly connected areas, predominantly located in cognitive control systems, are postulated to
facilitate the movement of the brain to difficult-to-reach states; and areas at the boundary between network communities,
predominantly located in attentional control systems, are postulated to facilitate the integration or segregation of cognitive
systems. These results suggest that structural network differences between the default mode, cognitive control, and
attentional control systems dictate their distinct roles in brain network function. Network control theory can also be used
to predict if the effects of stimulation to a single region on the brain remained focal or were spread globally, and structural
connectivity differentially constrains the effects of regional stimulation [494]. Moreover, preferentially optimized dynamic
network control would be a possible mechanism of human brain development [495].

5.2.2. Identifying influential nodes in brain network
A complex network is an interactive system in which the action on one node will influence the entire system via the

interaction links. Studies have found that a much smaller subset of structural nodes play an important role in information
spreading and epidemic propagations [335]. A series of works have been done to measure and identify the influential
nodes in the network. For example, recently Morone et al. [496] proposed a method that maps the problem to the optimal
percolation, which offers strong insights into the weakly connected nodes in the network.

Identifying the essential nodes is of importance for brain networks. On the one hand, these nodes are associated with
many brain-related disorders, which can help understand the disorder-related information transmission in the brain
network. On the other hand, these nodes are functionally connected to the entire brain network, which can be used
to efficiently modulate the entire brain network via the minimal set of nodes. Ferraro et al. [497] applied the optimal
percolation theory to identify the influential nodes in the brain network and found that a small set of nodes with lower
degree in the nucleus cumulatively influences the entire brain memory network, and the results were confirmed by
targeted inactivation regions in the brain network.

5.2.3. Brain network dynamics
Along with the change of our live environment and social communications during human living, the functional

configurations of our brain also change and develop accordingly, based on our adaptive systems [93]. Studying brain
network dynamics can help us understand the interdependence of brain regions in cognitive function evolution, the
dynamic control of the brain network, and the early warning signals of diseases, all of which requires accurate detection
of functional changes in brain regions and sufficient real data samples across time and space. Here, we list some of the
advances in cognitive system dynamics in brain networks. Wang et al. [498] found that during the stroke recovery process
the motor execution network in the brain was evolving to random mode by using the linear mixed regression model,
which integrated the network characteristics, including clustering coefficient, shortest path length, and betweenness
centrality. Grefkes and Fink [499] reviewed the motor system reorganization after a stroke, discussed the advantages and
disadvantages of the connectivity approaches, and highlighted the network analysis in understanding the motor system.
Khambhati et al. [500,501] studied brain network dynamics during neocortical epilepsy episodes using connectivity matrix
analysis constructed from brain function networks. Bassett et al. [502–504] studied the dynamics of functional regions in
the brain during learning and lexical processing.
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Fig. 23. Schematic of network-based approach in prediction of drug–target interactions: (A) drug-based similarity inference (DBSI), (B) target-based
similarity inference (TBSI), and (C) network-based inference (NBI) methods. In ACC, given drug node (pink circle) denotes the drug that we want
to predict a new target for, given target node (pink square) denotes the target that we want to predict a new drug for, drug with resource (green
circle) denotes that this drug has a resource, and target with resource (green square) denotes that this target has a resource. The more resources a
node possesses, the darker the color is. Blue edges denote the drug–target interactions with known experimental evidence and black arrows denote
the resource diffusion direction.
Source: Figure from Ref. [27].

5.3. Drug development

Although investment in biomedical and pharmaceutical research and development has increased significantly over
the past two decades, the annual number of new treatments approved by the U.S. Food and Drug Administration has
remained relatively constant and limited [505]. While there are many factors that contribute to this limited approval
rate, one important and often overlooked determinant is the continued adherence to the classical ‘‘one gene, one drug,
one disease’’ hypothesis of drug development dating to the work of Ehrlich. As drug targets do not operate in isolation
from the complex system of proteins that comprise the molecular machinery of the cell with which they associate, we
believe that each drug–target interaction must be examined in appropriate integrative context.

5.3.1. Prediction of drug–target interactions
There are several different categories of computational drug repositioning approaches, including ligand-based [506],

target-based [507], chemogenomics-based [506], and network-aided approaches [27,508,509]. Here, we focus on three
types of network-based methodologies for prediction of DTIs.

Drug similarity-based network inference:
The underlying hypothesis of drug similarity-based network inference posits that if a drug interacts with a target,

then other drugs similar to this drug will be inferred to the given target with a high probability [27] (see Fig. 23(A)). An
interaction between di and tl can be determined by the following equation:

vd
il =

∑N
j=1,j�=i Sx(di, dj)ajl∑N
j=1,j�=i Sx(di, dj)

, (68)

where N is the number of drugs in the system, if there is an interaction between drug dj, ajl = 1; otherwise, ajl = 1,
and target tl, Sx(di, dj) denotes the similarity between drugs di and dj, which can be measured by different approaches as
below.
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Chemical similarity. Chemical similarity Sc(di, dj) between drugs di and dj is often measured by various chemo-physical
descriptors or fingerprints [510]. For example, the Tanimoto similarity for drugs di and dj can be calculated using molecular
fingerprints calculated by OpenBabel [511] or other tools [512]:

Sc(di, dj) = cij

ai + bj − ci,j
, (69)

where ai and bj denote the bit set in di and dj fingerprint bit-strings, respectively, cij represents these bits being set in both
di and dj. In addition to Tanimoto similarity, several other metrics, including Cosine, Hamming, Russell-Rao, and Forbes,
are often used as well [513].

Drug side-effect similarity. Mathematically, each drug is coded by a given number of side-effect bit vectors. Each bit
denotes a side effect for a specific drug annotated in the publicly available clinical databases [514]. If a side-effect event
is reported to be associated with a given drug in clinical settings, the corresponding bit is set to 1; otherwise, it is set
to 0. Then, side-effect similarity SSE(di, dj) between drugs di and dj can be measured by Tanimoto, Cosine, Hamming,
Russell-Rao, or Forbes.

Drug therapeutic similarity. Drug therapeutic profiles, such as the Anatomical Therapeutic Chemical Classification
System (ATC) codes, offer a new dimension with which to quantify drug similarity [513]. The drug ATC codes can be
downloaded from several public databases, such as DrugBank (Table 3). Then, the kth level drug therapeutic similarity
(Sk) between di and dj is calculated by the ATC codes as below:

Sk(di, dj) = ATCk(di) ∩ ATCk(dj)

ATCk(di) ∪ ATCk(dj)
, (70)

where ATCk(d) denotes all of the ATC codes at the kth level of drug d. Finally, a score SATC (di, dj) between di and dj at all
of the ATC codes is used to define the therapeutic similarity between di and dj as

SATC (di, dj) =
∑n

k=1 Sk(di, dj)

n
, (71)

where n denotes all five-level ATC codes (1 to 5). However, for some drugs with multiple ATC codes, SATC (di, dj) is often
calculated for each code, and the average therapeutic similarity is used for network building as described in Eq. (70).

Target similarity-based network inference
The biological hypothesis for target similarity-based network inference posits that, if a drug interacts with a target

protein, then the drug will be inferred to other targets that share a similarly biological distance (e.g. protein sequence
identity) or a closely functional similarity (e.g. network topological similarity in the human protein–protein interaction
network or the GO similarity [515]) to a specific protein (see Fig. 23(B)). An interaction between di and tl is calculated by
the following predicted score:

vt
il =

∑M
j=1,j�=l Sx(tl, tj)aij∑M
j=1,j�=l Sx(tl, tj)

, (72)

where M is the number of targets in the systems and Sx(tl, tj) denotes the protein evolutionary distance or functional
similarity between targets tl and tj as described below.

Protein sequence identity. Protein biological distances are often measured using protein sequence alignment. For
example, a normalized version of Smith–Waterman scores [516] is commonly used to quantify protein sequence identity
between corresponding proteins/targets tl and tj, as described in our previous studies [27,506].

Network topological similarity in protein–protein interaction network. The network distance SN (tl, tj) between correspond-
ing proteins/targets tl and tj is calculated using all-pair network distances on the human protein–protein interaction
network via the shortest path distance measure. Then, network distance can be transformed to similarity measure as
below [517]:

SN (tl, tj) = Ae−S(tl,tj), (73)

where A is often assigned an empirical value 0.9 [517] and self-similarity is assigned a value of 1.
Functional similarity by sharing the terms of the Gene Ontology. The functional similarity of drug corresponding

proteins/targets is often measured by their shared GO terms [515]. A functional similarity asserts that drug target-coding
genes sharing very specific functions are more similar to each other than those only sharing generic GO terms. The
biological or functional similarity SGO(tl, tj) between corresponding targets tl and tj is measured by the most specific GO
terms they share:

SGO(tl, tj) = 2

min(ny)
, (74)

where ny denotes the total number of genes (proteins) annotated in the entire GO corpus. The value of SGO(tl, tj) ranges
from 0 (no shared GO terms) to 1 (drug corresponding proteins/targets tl and tj are the only two according target-coding
genes (proteins) annotated to a specific GO term).

Network-based inference:
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Unweighted network-based inference. Considering the bipartite graph G(D, T , E), a mass diffusion-based method can be
used to generate the predicted list. For a given drug di, supposing that a kind of resource is initially located in the targets
interacting with di, the resource will diffuse to all of the targets in the DTI network after the network-based resource
allocation process [27]. Each target node will averagely distribute its resource to all of the neighboring drugs and then
each drug redistributes the received resource to all of the neighboring targets (see Fig. 23(C), and this process can be
represented as Eq. (50) in Section 4.3)). The final resource on the targets that are not connected with the drug di in
G(D, T , E) could be considered the predicted score for each target, and the targets with high scores are more likely to
interact with di. This shows the initial resource of aij between di (cycle) and tj (square) defined in Eq. (1).

Denoting F0N×M as the initial resource and F0(i,j) = aij, RN×N as the total resource (e.g., degree) for each drug,

R = diag(

M∑
j=1

a1j,

M∑
j=1

a2j, . . . ,

M∑
j=1

aNj), (75)

and HM×M as the total resource (degree) for each target,

R = diag(

N∑
i=1

ai1,

N∑
i=1

ai2, . . . ,

N∑
i=1

aiM ). (76)

Finally, the resource matrix (F1N×M ) is obtained as

F1 = F0WM×M or FT
1 = FT

0 WN×N , (77)

where the transfer matrix is

{
WM×M = (F0H

−1)T (R−1F0)

WN×N = (R−1F0)(F0H
−1)T

. The large value in the matrix F1 would be the predicted

drug–target interactions, and the in vitro assays show the predictive power [27].
Node-weighted network-based inference. In general, hub nodes with more receiving resources often tend to generate

the higher predicted scores, which often leads to a potential risk of false positive rate. Compared to the unweighted NBI
method, the node-weighted network-based inference (NWNBI) utilizes a new expression of initial resource distribution
by taking into account the influence of resources associated with the receiver nodes in the DTI network [509]. For
the initial resource matrix, the resource for each drug and target node is the same as the unweighted NBI. The final
resource matrices can be calculated as Fd

1 = F0W
d
M×M for drugs and F t

1 = FT
0 W

t
N×N for targets. The transfer matrix is{

Wd
M×M = (F0H

−1)T (R−1F0H
′−1), whereH ′

ij = H
β

ij

W t
N×N = (R−1F0)(R

′−1F0H
−1)T , whereR′

ij = R
β

ij

. β is a tunable parameter used to balance the influence. Compared with

a uniform case (β = 0), a positive β value strengthens the influence of hub nodes, while a negative β value weakens
it [509].

Edge-weighted network-based inference. Mathematically, an edge between a drug and target can be weighted using
binding affinity data, such as IC50 or Ki value. For edge-weighted network-based inference (EWNBI), each edge of the DTI
network will be weighted by the drug-protein binding affinity, where aij is the specific value rather than the binary (0 or
1). We can obtain the prediction of the edge-weighted DTI interaction by substituting the binary value of aij in Eqs. (75),
(76), and (77) for the weighted value.

5.3.2. Drug repurposing
Novel approaches, such as network-based drug–disease proximity, that shed light on the relationship between

drugs (i.e., drug targets) and diseases (i.e., molecular disease determinants in disease modules within the PPI network)
[23,518,519] can serve as useful tools for efficient screening of potentially new indications for approved drugs, or for
previously unidentified adverse events [142,520,521]. The basis for network-based drug repurposing rests on the notions
that (i) the proteins that associate with and functionally govern a disease phenotype are localized in the corresponding
disease module or sub-network within the comprehensive PPI network [23], and (ii) proteins that serve as drug targets for
a specific disease may also be suitable drug targets for another disease owing to common PPIs and functional pathways
elucidated by the PPI (see Fig. 24).

Given the set of drug targets (T ) and the set of disease proteins (S), we can quantify the network topological distance
d(s, t) between nodes s ∈ S and t ∈ T in the human interactome. As illustrated in Section 3.2.1, there are four different
distance measures that take into account the path lengths between drug targets and the set of disease proteins [142]:
(a) the closest measure (dc), representing the average shortest path length between targets of T and the nearest proteins
of S; (b) the shortest measure (ds), representing the average shortest path length among all targets of drugs; (c) the kernel
measure (dk), down-weighting longer paths via an exponential penalty; and (d) the center measure (dcc), representing the
shortest path length among all targets of drugs with the greatest closeness centrality among proteins in S and T . These
four measures can be calculated according to Eq. (2) in Section 3.2.1.

Finally, the significance of the measure can be evaluated by comparison to the reference distance distribution
corresponding to the expected network topological distance between two randomly selected groups of proteins matched
to size and degree (connectivity) distribution as the original disease proteins and drug targets in the human interactome.
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Fig. 24. Schematic of network-based relationship of drug–disease proximity. A small neighborhood of the interactome revealing the pharmacological
nature of each interaction of the origin of drug–target interactions and disease-gene associations. Drug targets associated with Imatinib are shown
in yellow squares. Leukemia-associated gene-coding proteins are shown in red circles. Shared proteins are shown as drug or disease modules by a
connected sub-graph.

This procedure is often repeated 1000 or 10,000 times in order to perform permutation test. For closest distance measure
[dc in Eq. (2)], the mean distance (d̄c) and standard deviation (σdc ) of the reference distribution are used to calculate a z
score (z) by converting an observed closest distance to a normalized distance using

z = dc − d̄c

σdc

. (78)

If the distance is significantly smaller than the randomly selected groups (e.g., z < −2), there would be a therapeutic effect
of the drug on the corresponding disease. Cheng et al. [143] selected four network-predicted drug–disease associations
and tested their causal relationship using large health-care databases with over 220 million patients. Two of the four
predictions were validated with patient-level data: carbamazepine is associated with an increased risk of coronary artery
disease (CAD) and hydroxychloroquine is associated with a decreased risk of CAD.

5.3.3. Network based drug combinations
The clinical safety and effectiveness of monotherapeutic agents are intrinsically characterized by their biological

activity spectrum on many proteins in the human proteome, which is named network pharmacology [518,522]. A ‘‘magic
bullet’’ drug in monotherapy is commonly said to have effects far broader than its molecular targets according to the
interdependencies of cellular and molecular effector components in biological systems [523]. The promiscuous off-target
profiles of drugs are commonly associated with various side effects of monotherapeutic agents and adverse drug–
drug interactions (DDIs) of polypharmacy [524,525]. Combination therapies (see Fig. 25) that use pairwise or multiple
drugs in combination to target the complementary cellular pathways have suggested higher effectiveness compared to
monotherapy [526,527]. In addition, combination therapy can also reduce side effects of monotherapies, as the dosage of
each active ingredient in combination is lower than the dosage of the respective drug during monotherapy [528]. Hence,
drug combinations have boosted clinical outcomes for many notoriously complex diseases, such as hypertension [529],
cancer [530,531], and viral infection [532], via synergistically targeting multiple disease proteins or pathways. However,
the effectiveness of beneficial drug combinations and adverse DDIs are intimately coupled by the shared biological
pathways among different diseases and cellular heterogeneity [533]. Identifying drug combinations with high efficacy and
low toxicity – to achieve to synergistically target a specific disease cellular pathway over thousands of types of diseases
towards minimizing the toxic profiles (e.g., adverse DDIs) – is an exceedingly difficult task in drug discovery and patient
care.

The traditionally experimental assays carried out to map and understand the systems-level view of disease and drug
pathways is expensive, time-consuming, and not necessarily feasible. Despite recent rapid developments in chemistry,
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Fig. 25. Schematic of network-based relationship of drug–drug interactions in human interactome network. (A) Traditional ‘‘magic bullet’’ drugs that
focus on designing maximally selective ligands to target a single disease protein [134] have contributed to a significant decrease in pharmaceutical
research and development productivity due to lack of efficacy or toxic effect. (B) Drug combinations that show partial inhibition of a small set of
disease proteins (e.g., disease modules) have been recognized to be more efficient than ‘‘magic bullet’’-drug-based monotherapy.
Source: Figure from Ref. [26].

biology, and medicine that have been remarkably productive over the past century, experimental assays for pairwise
combinations of thousands of FDA-approved drugs are infeasible without an efficient method to test vast amounts of
pairs [534–536]. For example, for 100 drugs, there are 4950 possibly pairwise combinations on one disease; for 1000
drugs, 499,500; and for 10,000 drugs, 49,995,000. We are still far from even a cursory searching of the vast number
of possible pairwise combinations that could exist for hundreds of different complex diseases and for different doses
of individual active ingredients. In the past decade, two major types of computational methods for prediction of drug
combinations have emerged: (i) data-driven approaches [523,534,537–539], and (ii) systems-biology approaches [526].
Data-driven approaches mainly include machine-learning-based approaches [537,538] and mathematical modelings [539].
However, most of the currently reported approaches are machine-learning-based ‘‘black box’’ models. Highly predictive,
mechanism-based models have been described very rarely. Developing new systems-biology-based, mechanism models
are urgently needed for the emerging development of combination therapies.

Drug targets are not scattered randomly in the human interactome, but they tend to interact with each other, forming
one largest connected sub-graph that we call a drug module (see Fig. 26). The agglomeration of drug targets has been
used for the development of various network approaches to assess adverse DDIs and drug combinations [537,540,541]. A
recent study described an interactome-based solution to uncover drug–drug relationships for the emerging development
of drug combination therapies. Specifically, they measured the network proximity of drug–target modules A and B as
reflected in their target localizations using the recently introduced separation measure [23],

SAB = 〈dAB〉 − 〈dAA〉 + 〈dBB〉
2

, (79)

which compares the mean shortest distance within the interactome between the targets of each drug, 〈dAA〉 and 〈dBB〉, to
the mean shortest distance 〈dAB〉 between A–B target pairs [Fig. 26(A)]. In 〈dAB〉, targets associated with both drugs A and B
have a zero distance by definition. For SAB < 0, the targets of the two drugs are located in the same network neighborhood
[Fig. 26(B)], while for SAB ≥ 0 the two drug targets are topologically separated [Fig. 26(C)]. For example, imatinib (I) is a
FDA-approved agent for the treatment of chronic myeloid leukemia [542]. Fig. 26(A) and (B) show that imatinib’s targets
are in the same network neighborhood as the targets of tandutinib (T), a FMS-like tyrosine kinase 3 (FLT3) inhibitor under
phase III trial for treating acute myeloid leukemia; consequently, the separation score between their targets is negative,
SIT = −0.35. However, the targets of natalizumab (N), an FDA-approved drug for treating multiple sclerosis, are in a
topologically distinct neighborhood from the targets of imatinib and tandutinib, having a positive SIN = 0.59 [Fig. 26(C)].
These network analyses offer proof-of-concept of drug–drug–target relationships in the human interactome network.

In this work, Cheng et al. [26] further explored the network-based relationship between two drug–target modules and
a disease module (drug–drug–disease combinations). Mathematically, all of the possible drug–drug–disease combinations
can be classified into four topologically distinct classes: (a) overlapping exposure, in which two overlapping drug–
target modules also overlap with the disease module of interest [Fig. 27(A)]; (b) complementary exposure, in which two
separated drug–target modules overlap individually with the disease module [Fig. 27(B)]; (c) single (indirect) exposure
[Fig. 27(C)]; and (d) non-exposure, in which two overlapping drug–target modules are topologically separated from the
disease module [Fig. 27(D)]. The question is do these four classes manifest in detectable differences in clinical efficacy for
drug combinations?
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Fig. 26. Network separation and drug–drug relationships. (A) Subnetwork of global interactome illustrating the network-based relationship between
drug targets associated with three drugs (imatinib, lapatinib, and natalizumab) shown in the legend. (B) and (C) Cartoon representing the definition
of drug pairs that are topologically overlapped [SAB < 0, (B)] and separated [SAB > 0, (C)], respectively.
Source: Figure from Ref. [26].

To test this hypothesis, Cheng et al. assembled two benchmark datasets: (i) clinically reported adverse DDIs and (ii)
FDA-approved or experimentally validated pairwise drug combinations [26]. One key finding is that a drug combination is
therapeutically effective only if it follows a specific relationship to the disease module, as captured by the complementary
exposure pattern in the targets’ modules of both drugs (Fig. 27). Importantly, if we are looking for therapeutically
synergistic combinations, the two drugs must not only overlap with the disease module, but the two drug–target modules
must also be separated in the human interactome without overlapping toxic mechanisms (Fig. 27). This study offers the
first proof-of-concept of rational design of drug combination from the human interactome network perspective.

5.3.4. Personalized treatment
At the root of so-called ‘‘precision medicine’’ is the hypothesis that disease treatment would be considerably better if

therapies were guided by a patient’s genomic mutations/alterations. This hypothesis has sparked major initiatives focusing
on whole-genome/-exome sequencing, creation of large databases, and developing tools for their statistical analyses —
all aspiring to identify actionable mutations, and, molecular targets, in a patient. At the center of the massive amount of
collected sequence data is their interpretation, which largely rests on statistical analysis and phenotypic observations.
From the network biology and protein conformational standpoints, statistics is vital, since it guides identification of
disease-associated mutations. However, statistics of mutations does not identify a change in protein conformation and
network perturbations in cells; thus, it may not define sufficiently accurately actionable mutations, neglecting those which
are rare. Understanding biological networks, pathways, and broadly sub-cellular systems will require dynamic information
at multi-dimensional levels, including cells, tissues, organs, and organisms, which are missing in current experimental and
computational approaches. Currently, disease therapy is moving from a drug-centered to a patient-centered approach
with different levels of personalization. This requires paradigm shifts along the entire drug development process and
multi-omics data integration using network-based approaches. For example, Cheng proposed a network-based approach
for accelerated development of personalized medicine, termed genome-wide positioning systems network (GPSnet)
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Fig. 27. Network hypothesis of efficacious drug combinations. (A–D) Diagrams of distinct exposure classes capturing the network-based relationship
between two drug–target modules and one disease module.
Source: Adapted from Ref. [26].

Fig. 28. A diagram illustrating the genome-wide positioning systems network (GPSnet) algorithm for personalized medicine. Individualized disease
network modules built from multi-omics data and the human interactome could guide therapeutic evaluation during clinical trials and optimize new
treatment for current patients. Specifically, GPSnet can built disease module (subnetworks) by a unique integration of multi-omics data, including
genomics, proteomics, metabolomics, and other types of omics data. And GPSnet then can utilize disease modules for patient clustering (subtype
identification) and for guiding personalized treatment.

algorithm (Fig. 28) [25]. Specifically, GPSnet integrates individual patient’s DNA and RNA sequencing profiles into the
human protein–protein interactome networks. They demonstrated that GPSnet-predicted disease modules were highly
correlated with drug responses and prioritize new therapeutic discovery by the ‘‘precise’’ targeting of individualized
disease modules. More details about network-based approaches for accelerating personalized medicine are given in several
reviews [543,544].

6. Outlook

The application of network perspective to the study of biological systems is generating great interest and attention from
scientific researchers, and describing a complex disease as a ‘‘disease of the interactome’’ has become a widely accepted
concept [545]. Ranging from biological molecular–molecular interaction to cell–cell interaction, and from unipartite
networks (e.g., PPI interactions) to heterogeneous networks (e.g., drug–target networks), we have reviewed how to
understand the biological insights from various kinds of biological network data and help disease diagnosis and drug
discovery via computational network-based approaches. Despite all of the achievements outlined in this review, many
open questions and unexplored directions still must be reckoned with in future studies. In this section, we list some of
the critical challenges in computational network biology.
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First, more high-quality biological data are needed to extract more reliable biological insights. In the so-called Big Data
era, the increasing amount of available biological data encourages us to study biological systems from the point of view
of data analysis, where all of the achievements outlined in this review will all benefit from the advances of network data
science. However, data quality is the critical limitation in the application of computational network biology. The biological
network data quality issues arise from two aspects.

(i) Data incompleteness. For instance, despite impressive advances in high-throughput methods, we have obtained only
less than 20% of all of the potential pairwise protein interactions in the human cell [23,32]. That is to say, many network
biological studies are fulfilled relying on interactome maps that are more than 80% incomplete. In this case, we must
ask that to what extent the current achievements are reliable and the current data are sufficient for the network-based
studies (e.g., mapping out the disease module). The data incompleteness would hinder the extraction of novel biological
insights.

(ii): Data bias. The current biological network data are biased toward much-studied genes [546]. These genes, to
which much attention has been paid in many previous studies, could be identified in more interactions. In this way,
the important genes will more likely be the hubs because of the data bias. An open question is how to eliminate the data
bias influence in order to mine more reliable biological insights in computational network biology. Therefore, high-quality
datasets and effective pre-treatments are needed to improve the data quality. Additionally, biological network datasets are
collected from various experiments (Section 2), and the extra biological data, such as somatic mutation information and
differential expression information, can be downloaded from different databases, such as Online Mendelian Inheritance in
Man (OMIM),8 The Cancer Genome Atlas (TCGA),9 Gene Expression Omnibus (GEO),10 and International Cancer Genome
Consortium (ICGC).11 Integrating the biological data from various datasets well is of great importance to future studies
in computational network biology.

Second, in-depth understanding of the biological network structure should be presented. Although some new insights
have been obtained from computational network biology, there is still no clear mapping between cell function and its
topological features within the biological network. As illustrated in this review, the current studies are focused on the
identification of topological structural properties in biological networks, such as the scale-free (-like) degree distribution,
betweenness centrality, module structure, and good resiliency. Some studies should test the correlation between the
structural properties and some biological functions, e.g., the hub nodes tend to be the essential proteins (centrality–
lethality rule) and the disease genes tend to be linked together. However, the questions of how the corresponding network
structure forms through biological activities and how the structure properties influence cell function are still unclear. This
blind spot limits the identification of biological insights from network biology and the application of the network-based
approaches. The interpretation of biological network structure calls for deep cooperation between communities, including
physicists, biologists, and computer scientists.

The third aspect is that the approaches in computational network biology need further development. We have reviewed
many kinds of network-based approaches that are widely applied in biological systems, including network centrality,
network propagation, link prediction, structural controllability, and machine-learning-based approaches. To deal with
the specific problems, we must select suitable methods. For instance, many kinds of approaches can be used to identify
disease genes, but different methods may have very significant impacts on the identification, and generate diverse results.
It would be very challenging to choose the best method for a specific disease-gene prediction problem. Generally, most
current network-based approaches are developed in the social networks, and they are directly transferred to the biological
systems to solve the network biology problems. With the different hypotheses on the patterns of the social networks, the
performance of the corresponding approaches on biological systems would be limited. In this way, we hope for some
biological-network-oriented approaches in computational network biology studies. Because of the power of predictive
and descriptive tasks, designing machine-learning-based, especially deep-learning-based, approaches by merging different
types of bio-information would be of great potential for future studies. Additionally, the application of the computational
biology network must be extended, for instance, network-based approaches would shed some light on traditional Chinese
medicine [547–549].

The above-mentioned issues and open directions mainly concern theoretical and methodological developments. In
biology, many experiments are proposed to validate network biology predictions. However, this is far from sufficient, and
we are also eager to develop evaluations based on the real biological experiments or even clinical trials of computational
biology network approaches. As we are convinced that the computational network biology framework is really an effective
tool for mining new biological insight, we believe this review will offer many valuable enlightenments for related
researchers, and we hope to see an increasing range of communities – including physicists, biologists, computer scientists,
and interdisciplinary researchers – contributing to this field.
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