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Revealing Hund’s multiplets in Mott insulators under strong electric fields
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We investigate the strong-field dynamics of a paramagnetic two-band Mott insulator using real-time dynamical
mean-field theory. We demonstrate that strong electric fields can lead to a transient localization of electrons. This
nonequilibrium quantum effect allows us to reveal specific signatures of local correlations in the time-resolved
photoemission spectrum. In particular, we demonstrate that the localization can be strong enough to produce
atomiclike spin multiplets determined by the Hund’s coupling J , and thus provide a way of measuring J inside
the solid. Our simulation also fully incorporates nonlinear field-induced tunneling processes, which would lead
to a dielectric breakdown in the steady state limit. A careful analysis of these processes, however, shows that
they remain weak enough and do not prevent the measurement of the transiently localized spectra.
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Introduction. The interplay between orbital degeneracy
and strong interactions is the origin of some of the most
spectacular phenomena in correlated materials. Embedding
atomiclike multiplets which are determined by the Hund’s
coupling J and other local interactions into the solid gives rise
to a plethora of interesting phenomena, including supercon-
ductivity or magnetism driven by spin or orbital fluctuations,
strange metallic behavior, and metal-insulator transitions [1].
Hund’s multiplets can also leave interesting signatures in the
ultrafast dynamics [2,3].

Accurate estimates of local interactions are hard to obtain
from first principles [4,5], and multiplets are often not directly
visible through spectroscopy on the solid. Following the rapid
progress in the control of solids with ultrashort laser pulses
[6,7], it is therefore an obvious question whether nonequilib-
rium probes can provide different means to uncover the local
interactions. An intriguing gedanken experiment is to perform
a spectroscopic measurement while electrons are transiently
localized by switching off the tunneling to neighboring atoms.
This could be realized by photoemission in the presence of
a strong time-periodic field, which is known to renormalize
the tunneling through dynamical localization [8]. However,
the driving frequency would have to be both large compared to
the relevant energy scales (interaction, bandwidth) and avoid
resonant interband transitions. This constraint is already diffi-
cult to realize in cold atom experiments [9], and even more so
in solids. We thus pose the question whether experiments in
the opposite regime, i.e., using a subcycle resolved measure-
ment of the spectrum for driving frequencies far below the
Mott gap, can realize a similar transient localization.

The basic mechanism we hope to exploit in this way is
field-induced localization (FIL), i.e., the transient localiza-
tion of electrons in a potential energy gradient. FIL is well
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understood for noninteracting systems, where single-particle
wave functions become exponentially localized in a potential
gradient, with equally spaced energy levels (Wannier-Stark
ladder). The effect has been observed in bulk GaAs [10],
and the Wannier-Stark localization was proposed to enhance
polaronic effects in organic crystals [11], or induce a dimen-
sional crossover [12]. For correlated electrons, however, there
is no simple analytical understanding of the bandwidth renor-
malization (in contrast to dynamical localization). Moreover,
strong fields in Mott insulators have an antagonistic effect,
field-induced tunneling (FIT), where charge excitations in the
insulator are created due to the field [13–17] (the analog of the
Zener breakdown [18] in band insulators). Such excitations
may mask the spectra of transiently localized electrons, sim-
ilar to electron-electron scattering washing out the Wannier-
Stark ladder in metals [19,20]. In this Rapid Communication
we study a setting which captures both FIL and FIT, and
demonstrate that correlation effects in transiently localized
spectra can be observed for realistic values of the Mott gap and
bandwidth. The necessary atomically strong electric fields on
the femtosecond timescale have been already used to explore
intriguing phenomena, including Bloch oscillations, Landau-
Zener tunneling [21,22], and the electric field control of
spin [23].

Model and method. We study an orbitally degenerate Mott
insulator using the two-orbital Hubbard model

H = −
∑

i, j,ll ′σ

eiφi j (t )c†ilσ T̂ i j
ll ′ c jl ′σ +

∑

i

H loc
i , (1)

where c†ilσ creates an electron at the lattice site i in an orbital
l ∈ {1, 2} with spin σ ∈ {↑,↓}. The T̂ i j are the hopping matri-
ces along the bonds (i j), and the electric field enters in Eq. (1)
as a time-dependent Peierls phase φi j = e( �Ri − �Rj ) �A(t )/h̄c,
where �A(t ) = −c

∫ t
0 ds �E (s) is the vector potential. The local
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term contains the Kanamori interaction [24]

H loc
i =U

∑

l

nil↑nil↓ +
∑

σ,σ ′,l �=l ′
(U ′ − Jδσσ ′ )nilσ nil ′σ ′

+ J
∑

l �=l ′
(c†il↑c†il↓cil ′↓cil ′↑ + c†il↑c†il ′↓cil↓cil ′↑), (2)

where U and U ′ = (U − 2J ) are the intra- and interorbital
Coulomb interactions, respectively, and J is the Hund’s cou-
pling. For two electrons, the local multiplet energies U + J ,
U − J , and U − 3J are split by 2J .

We use real-time dynamical mean-field theory (DMFT)
[25,26] to solve this model. While the results of this Rapid
Communication should hold qualitatively for a generic lat-
tice structure, we employ the specific setting introduced in
Ref. [27], which allows for a closed form of the DMFT self-
consistency relation: This involves a Bethe lattice in which
each site reflects the local environment of an atom in a cubic
lattice with eg orbitals l = dx2−y2 , d3z2−r2 , and in which the
electric field acts along the body diagonal [28]. The DMFT
equations for the local orbital-dependent Green’s function
Gl,l ′ (t, t ′), and the current j(t ) are identical to Ref. [27], and
therefore repeated only in the Supplemental Material [29].
The largest hopping matrix element t0 = 1 sets the energy
scale, so that the free half bandwidth is W = 2t0. Furthermore,
we set h̄ = 1 (time is measured in units of h̄/t0), and e = 1,
i.e., the field is measured in units of t0/ea, where a is a lattice
constant. Unless otherwise stated, for all results the system is
initially in equilibrium at temperature T = 0.1 (paramagnetic
phase), the Hubbard interaction is U = 8 (Mott insulator), and
the total filling of the system ntot = 1 (quarter filling).

Field-induced tunneling. We first characterize the FIT
which may potentially compete with the observation of lo-
calized spectra. We smoothly ramp on a field of amplitude
E0 within a time tr = 15. The results do not depend on the
chosen ramp profile as long as E (t ) has negligible frequency
content at the Mott gap U (to avoid direct absorption), which
is the case for tr � 1/U [30]. The time-dependent electric
current j(t ) and the fraction of doubly occupied sites δd (t ) ≡
[d (t ) − d (0)] is plotted in Fig. 1. Similar to the analogous
setting in the one-orbital case [15] we can distinguish two
regimes, (i) and (ii), as described below:

(i) When E0 is sufficiently smaller than the gap, the current
saturates to a nonzero constant value after a peak during the
switch-on of the field (E0 = 1.6 in Fig. 1). The initial peak
corresponds to the build-up of a polarization in the insulator,
while the almost constant current at later times amounts to
processes (“FIT”) in which an electron tunnels over � sites
and thereby gains the energy �g to create a doublon-holon
pair (� ∝ �g/E0). Correspondingly, after the switch-on, d (t )
increases with a rate proportional to j/E0. The tunneling
mechanism suggests that the current is proportional to j/E0 ∝
exp(−Eth/E0), where the threshold field Eth should scale
with the gap. This has been confirmed for the single-band
Mott insulator [13,15]. Here, we demonstrate this behavior
in Fig. 2(a) by plotting j/E0 (measured at late times when
the current is steady) logarithmically against 1/E0. Linear
fits (dashed lines) indicate the exponential behavior, and Eth

is extracted from the slope [see Fig. 2(c)]. For given J , the
threshold field increases with U , due to an increase in the
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FIG. 1. (a) Electric current and (b) double occupancy for differ-
ent field strengths E0 at J = 0. Inset: Current averaged over times
25 � t � 35 as a function of E0.

Mott gap. With increasing J , Eth decreases linearly Eth ≈
a(U − bJ ) as expected from the dependence of the Mott gap
on J [1]. A rough understanding of this behavior is obtained
from the multiplets in the atomic limit. Due to the exponential
dependence on the gap, the tunneling rate is dominated by
the smallest multiplet excitation U − 3J . For a nonzero band-
width, the parameter b ≈ 5.4, 5.2, 5 for U = 6, 7, 8 turns out
to be different from 3, but has the correct sign and becomes
closer to 3 with increasing U . For further confirmation, we
have also performed an analogous analysis in the half-filled
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FIG. 2. Upper panel: Current (averaged over the times 25 < t <

35) in the Mott insulator for two different fillings: (a) ntot = 1 and
(b) ntot = 2. Lower panels: The threshold field Eth extracted from the
exponential fit for E0 � 1 (dashed lines in the upper panel), plotted
as a function of J for (c) ntot = 1 and (d) ntot = 2.
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Hubbard model (ntot = 2) [see Figs. 2(b) and 2(d)]. In this
case, the system is initially predominantly in the high-spin
doublon state (energy U − 3J), and tunneling creates a singly
occupied and a triply occupied state with excitation energy
(3U − 5J ) − 2(U − 3J ) = U + J , which is consistent with
an increase of Eth with J [Fig. 2(d)].

(ii) For larger fields, a strong enhancement of the field-
induced excitation is observed. The doublon density quickly
saturates to a large value, after which the current decays to
zero (E0 = 4.1 in Fig. 1). Similar to the one-band Hubbard
model, at J = 0 this rapid excitation occurs at resonances
U = nE0 with a small integer n (inset in Fig. 1). In the two-
band model, once sites become doubly occupied by the field,
resonances 2U = nE0 become visible due to the generation
of triply occupied sites from doubly occupied sites. Due to
the broadening of the resonances and the quick heating of
the system to infinite temperature, the J dependence of these
resonances is hard to resolve and unlikely to provide a good
experimental path to extract local physics. We have therefore
shifted a detailed analysis to the Supplemental Material [29],
and in the following focus on the observation of local correla-
tion effects in the transient spectral functions.

Spectral functions. For the same protocol as above, we
have calculated the time-dependent single-particle spectral
functions A(t, ω) = −Im

∫
0

smax ds GR(t, t − s)eiωs for differ-
ent field strengths. Here, GR = ∑

l GR
ll is the orbitally aver-

aged local propagator, and smax a cutoff set by the simulation
time. In equilibrium, the spectrum has a clear Mott gap
[Fig. 3(a)]. For very large values of J , the upper Hubbard
band, which corresponds to transitions from predominantly
singly occupied sites to the doublon multiplets, is split into
three peaks separated by 2J , but this multiplet structure is
no longer visible when J is sufficiently smaller than the
bandwidth. When the field is turned on [Fig. 3(b) for J = 0],
we observe the emergence of Wannier-Stark states at energy
shifts nE0 from the main Hubbard bands at ω = μ,U + μ

(and also from the weak higher-order Hubbard bands at ω ≈
2U − μ, 3U − μ), together with a band narrowing of the
central peak which manifests FIL. (The band at ω = 2U − μ

mainly corresponds to the insertion of an electron to a doubly
occupied site, which has a substantial amplitude only once
such doublons have been induced by field-induced tunneling,
while the resonance at ω = 3U − μ corresponds to the simul-
taneous creation of a triply occupied site and a holon upon
insertion of an electron, which is possible even in equilibrium
due to virtual charge fluctuations.) Weak Hund’s coupling
J [Fig. 3(c)] broadens the sidebands, and eventually splits
all peaks emerging from the Hubbard band into multiplets
separated by 2J . This is shown clearly by three line plots
of the upper Hubbard band for different electric fields [see
Figs. 3(d)–3(f)]. The splitting is observed for intermediate
E0 = 3.2, but disappears for large fields (E0 ≈ U ) where the
strong excitation broadens the bands. Due to the band narrow-
ing the multiplet splitting of the Hubbard bands is observed at
much smaller values of J than in the equilibrium case.

The above analysis indicates that FIL can be used to
measure the multiplets spectroscopically, if a strong field
can be maintained for long enough without substantial FIT.
In a realistic setup for measuring the doublon multiplets,
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FIG. 3. (a) Equilibrium single-particle spectral function at U =
8 for different values of J . (b) and (c) Intensity map of the time-
dependent single-particle spectral functions [log10|A(ω)|] plotted for
(b) J = 0 and (c) J = 0.48. Lower panel (d)–(f): Line plots of single-
particle spectral functions plotted for the field strengths shown by the
dashed lines in (c).

the Mott insulator could be exposed to strong THz pulses
with frequencies much smaller than the Mott gap. Here, we
simulate a drive of the system with a single-cycle pump pulse
of the form

Epu(t ) = E0 sin[ωp(t − t0)]e−4.6(t−t0 )2/t2
0 , (3)

and then calculate the time-resolved photoemission spec-
trum (trPES) at different delay times td , for a Gaussian
probe pulse with envelope S(t ) = exp ( −t2

2t2
c

) that is sufficiently
shorter than the time period of the pump, using the stan-
dard expression [31] I (ω, td ) ∝ −i

∫∫
dtdt ′S(t − td )S(t ′ −

td )eiω(t−t ′ )G<(t, t ′). In the quarter-filled case (ntot = 1), FIL
becomes manifest through a narrowing of the lower band and
a splitting of the upper band, following the time profile of the
field |Epu(t )| of the pump pulse [Fig. 4(a)]. The upper Hubbard
band corresponds to unoccupied states in equilibrium and is
therefore only revealed after it has acquired some occupation
due to FIT during the pulse itself. In a three-quarter-filled
system [ntot = 3, Fig. 4(b)], multiplets are also seen below
the Fermi energy, i.e., in the lower Hubbard band, which
corresponds to transitions from mainly triply occupied sites
into the doublon manifold [Fig. 4(b)]. Note that the multiplet
position does not shift during the pulse, which shows that
there is no measurable field-induced renormalization of the
multiplet energies.

Optical response. The multiplet splitting observed in the
spectrum suggests that similar signatures resulting from
transitions between the various sidebands may be observ-
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units. The interaction parameters are U = 8, J = 0.48, the amplitude
of the pump pulse is E0 = 5.4, and ωp = 0.18.

able in the (experimentally more easily accessible) optical
response. We have calculated the optical conductivity of the
Mott insulator in a pump-probe setup using the expression
[32] σ (ω) = Jpr (ω)

Epr (ω) , where Jpr(ω) = Jpr+pu(ω) − Jpu(ω) is the
difference in the current measured with and without the probe
field Epr(ω). The pump profile is given by the electric field
used in the FIT, and the probe is Epr(t ) = A0e−(t−td )2/2t2

c (t −
td )/t2

c , with pulse duration tc and delay td ; A0 is weak
enough to ensure we probe the linear response. Figure 5
shows σ (ω) for three different values of the pump field E0.
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FIG. 5. Optical conductivity of the Mott insulator plotted for dif-
ferent field strengths. The arrows indicate the multiplet excitations.
The parameters are U = 8 and J = 0.48. Same field profile E (t ) as
in Fig. 3, probe at delay td = 10.

For small E0, there is a broad Hubbard band around ω ≈ 7
[Fig. 5(a)]. A three-peak structure (shown by black arrows)
with a separation of 2J between the peaks becomes visible for
moderate field strengths [Fig. 5(b)]. The peaks highlighted by
blue arrows represent the transitions from the lower Hubbard
band to Wannier-Stark sidebands of the doublon multiplets.
Because in the optical excitation, intersite transitions parallel
(opposite) to the field direction are dominant, the 2J-split
Wannier-Stark sidebands of the Hubbard band are much
stronger than the main Hubbard band in the optical conduc-
tivity. The peaks for ω � 4 correspond to inter-Hubbard-band
transitions, which become possible once the system is excited.
The optical conductivity around the Hubbard bands finally
becomes flat for large fields [E0 ≈ U , Fig. 5(c)] due to the
increase of the effective temperature of the system. This shows
that σ (ω) is more strongly affected by excitations through
FIT than the trPES, but multiplet signatures in the optical
conductivity can be expected in a regime of moderately strong
fields. We have also performed simulations with transient THz
pulses, as in Fig. 4, and confirmed that multiplet signatures
become visible for suitable parameters.

Conclusion. We have studied a two-band Mott insulator
in strong electric field transients. The results demonstrate
that strong fields can transiently localize electrons in Mott
insulators, so that spectroscopic probes such as trPES can
reveal local interaction effects. To utilize this field-induced
localization (FIL) in real materials, it is important that the
antagonistic field-induced tunneling (FIT) remains weak, be-
cause a large density of excitations can destroy the Mott state,
renormalize interactions through dynamic screening [33], or
generate Mott-Hubbard excitons [34,35], which would com-
plicate the analysis. Both FIT and FIL nontrivially depend
on the Mott gap and the bandwidth, and the present nonequi-
librium DMFT approach can nonperturbatively treat both ef-
fects. We observe an exponentially activated tunneling current
(analogous to the one-orbital case), but in a large parameter
regime the tunneling rate is sufficiently weak that the spectra
of transiently localized electrons can be probed long enough
to reach high energy resolution. This provides a general path
to reveal local correlation effects in the solid, and to measure
interaction parameters which are often hard to obtain from
first-principles simulations. The present model focuses on the
Hund’s coupling J , which is the dominant local interaction
in many transition metal oxides, but one can anticipate that
spin-orbit coupling, crystal field effects, and local phonon
couplings can also be resolved when they are of sufficient
magnitude. While the present model simulation intends to
establish the effect in principle, and material-specific simula-
tions would be needed to establish the optimal pulse duration
and amplitude to balance FIT and FIL for a given material,
the parameters of our model are in the realistic range for
transition-metal monoxides such as MnO, FeO, CoO, and
NiO, with a Coulomb interaction comparable to the band-
width, and J a factor 3–5 smaller [36,37]. Experimentally, it is
challenging to perform time-resolved angle-resolved photoe-
mission spectroscopy (trARPES) experiments in the presence
of strong fields (due to the ponderomotive effect of the field on
the photoemitted electrons), but the recent realization of such
an experiment [38] shows that the observation of transient
electron localization is within in reach.
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