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Supplementary materials

In this section we show that Sz is an approximate quantum number for the systems with

SOC which we discuss in this work. To this end, we have solved the Kohn-Sham equations

including the SOC (numerical details in the Materials and Methods section), treating the

Bloch wave-functions |Ψkα〉 as general spinors. This allows for calculating the expectation

value Sz(k) = 〈Ψkα|Ŝz|Ψkα〉, where Ŝz = (h̄/2)σ̂z denotes the operator of the z-projection

of the spin.
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Spin expectation value S z(k) of the predominantly
graphene with enchanced SOC, and (b) BiH. The color bar is in

Fig. S1 shows Sz(k) for both graphene with enhanced SOC as well as for BiH with full

intrinsic SOC. We have focused on the bands with predominant spin-up character close

to the Fermi energy. As Fig. S1 demonstrates, Sz(k) is very close to +h̄/2 in the vicinity
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of the K and K′ point for the top valence band and most parts of the bottom conduction

band. Hence, Sz can be regarded as good quantum number, justifying the block-diagonal

structure of the Hamiltonian Eq. (1) in the main text.

The physical explanation of why the SOC does not induce significant spin mixing

is based on the restricted matrix elements with respect to the orbitals forming the top

valence and bottom conduction band, respectively. The leading order of intrinsic SOC

is the atomic contribution L · S, computed on each sublattice site. The most important

orbitals for the systems studied by us are s, pz (forming a π band) and the px, py (forming

σ bands) orbitals, respectivly. Evaluating L ·S with respect to these atomic orbitals yields

spin-mixing terms only for 〈pz|L · S|px〉 = −iŜy, 〈pz|L · S|py〉 = iŜx. Matrix elements

with respect to px and py are proportional to Ŝz, preserving Sz as quantum number.

All other matrix elements vanish. Hence, noncollinear spin textures arise due to π–σ

hybridization. For BiH, the σ orbital character dominates around the Dirac points [17],

while the π–σ hybridization becomes active closer to the Γ-point and the lower valence

band (see Fig. S1(b)). For graphene, on the other hand, the pz orbitals dominate at the

Dirac points; the atomic SOC vanishes. The π–σ hybridization gives rise to spin mixing

closer to Γ in graphene (Fig. S1(a)). Hence, the next-nearest-neighbour SOC becomes the

leading term for the π bands in the vicinity of the Dirac points (Kane-Mele term [45]).

The Kane-Mele SOC is proportional to Ŝz as long as the lattice is completely planar.
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for the Berry curvature. (c), (d) Orbital z

n n

for the top two valence bands (n = 0, 1)
are shown for the spin-up channel.

As introduced in the main text, the z component of the orbital polarization for Bloch

band n is defined by

`zn(k) = Im〈∂kxukn|ĥσ(k)− εkn|∂kyukn〉 (1)

where |ukn〉 is the cell-periodic part. Replacing the derivatives in momentum space by

the sum-of-states formula, one finds

`zn(k) = Im
∑
n′ 6=n

vxnn′(k)vyn′n(k)

εkn′ − εkn
(2)

where vxnn′(k) (vynn′(k)) is the velocity matrix element with respect to the x (y) direction.

Comparing to the Kubo formula for the Berry curvature

Ωn(k) = −2 Im
∑
n′ 6=n

vxnn′(k)vyn′n(k)

(εkn′ − εkn)2
(3)

one realizes that both quantities are tightly connected. In case there is only one hybridiza-

tion gap between bands n and n′ with sufficiently small energy difference |εkn− εkn′| (for

Fig. S2. Orbital polarization and Berry curvature of BiH. (a) Sketch of the Brillouin zone
(b) Band structure of BiH within the TB model

tions at the high-symmetry points importantThe arrows indicate hybridiza

polarization ` (k) and Berry curvature Ω (k)
along the paths indicated in (a). ll quantitiesA

Section S2. Orbital angular momentum and Berry
curvature in multiband systems



instance, the top valence (v) and bottom conduction (c) band), while all other energy

differences are larger, one finds

`zn(k) ≈ −1

2
(εkn′ − εkn)Ωn(k) , Ωn(k) ≈ − 2`zn(k)

εkn′ − εkn
(4)

Considering a fixed band n, the band with the dominant hybridization n′ can change

over the Brillouin zone, which makes the evaluation of the Berry curvature via the rela-

tion (4) difficult. However, assuming the band structure and the orbital character at the

hybridization points in the Brillouin zone are known, one can obtain a good guess for the

involved bands and still extract information on the Berry curvature from Eq. (4). We

demonstrate this idea for BiH, which is a four-band system within the TB model.

Let us consider the lowest band ( n = 0 in Fig. S2(b)). At Γ, we would expect that

n′ = 1 is the largest constribution to the sum in Eq. (3). Inspecting Fig. S2(c) (upper

panel), we see that around Γ Eq. (4) is fulfilled for n′ = 2 instead. This is due to the

dipole-forbidden transition, which is indicated by the red cross in Fig. S2(b). Away from

Γ, the multiband nature becomes apparent, as Ω0(k) changes sign; as −2`z0(k)/(εk2−εk0)

is positive along this path, this shows that n′ = 1 plays a certain role. Inspecting the M

point, there is only the contribution n′ = 1 which can have large weight due to the smaller

gap. Indeed, the Berry curvature estimated by Eq. (4) agrees well with the actual Berry

curvature, even along the considered path.

In the main text, we present the photoemission spectra for the top valence band n = 1.

Here, the topological properties are dominated by the behavior around the K and K′ point,

respectively. Following path 1 (Fig. S2(d)), we find that Ω1(k) is almost identical to the

estimate (4), especially at the hight-symmetry points K and Γ. The only slight difference

is that Ω1(k) changes sign away from Γ, which indicates some influence of the transition

(n = 1)↔ (n = 0). This is expected from the small energy difference between band n = 0



and n = 1 in the Γ-K direction (Fig. S2(b)).

Similarly, we can follow path 2 passing through K′ and M. Again, the Berry curvature

and the estimate (4) are matching perfectly. The only exception is the M point. This is

consistent with the gap εM1 − εM0 being smaller than εM2 − εM1. Thus, inserting n′ = 0

into Eq. (4) still allows for an accurate estimate of the Berry curvature.

This analysis demonstrates that the circular dichroism from the top valence band

presented in the main text is indeed dominated by the Berry curvature at K and K′,

respectively. More generally, knowing the band structure allows for guessing which terms

in Eq. (3) are predominant (at each k separately). This works particularly well for high-

symmetry points, where also the orbital character of the corresponding bands is known

from symmetry considerations. Combining these ingredients, the orbital polarization

`zn(k) – which determines the circular dichroism – provides insights in the Berry curvature

via the estimate Eq. (4) even for multiband systems.

To understand the self-rotation and the associated orbital magnetic moment, we employ

the wave packet picture. Let us consider a wave packet with respect to band α of the

form

Wkα(r) =

∫
dq a(k,q)ψqα(r) =

∫
dq a(k,q)eiq·ruqα(r) (5)

For computing ARPES matrix elements, it is convenient to introduce an analogue of cell-

periodic functions by Fkα(r) = e−ik·rWkα(r). The envelope function a(k,q) represents a

narrow distribution around a central wave vector k; its precise functional form does not

play a role. Denoting the center of the wave packet by

rc = 〈Wkα|r|Wkα〉 = 〈Fkα|r|Fkα〉 (6)

Section S3. Wave-packet picture 



one defines [30] the angular momentum as

〈L̂〉 = 〈Wkα|(r− rc)× p̂|Wkα〉 = 〈Fkα|(r− rc)× p̂|Fkα〉 (7)

where p̂ denotes the momentum operator. The wave packet representation of OAM (7)

naturally leads to the so-called modern theory of magnetization [30] in the limit of

a(k,q)→ δ(q− k).

Expansion in eigenfunctions of angular momentum

To quantify the OAM, we expand the wave packet Fkα(r) onto eigenfunctions of the OAM

L̂z

Fkα(r) =
1√
2π

∑
m

Fkα,m(s, z)eimθ (8)

Here, θ is the angle measured in the 2D plane, taking rc as the origin, while s = |r‖ − rc|

is the corresponding distance. Inserting the expansion (8) into Eq. (7) yields the simple

expression

〈L̂z〉 =
∑
m

m

∫ ∞
0

ds s

∫ ∞
−∞

dz |Fkα,m(s, z)|2

≡
∑
m

mPkα(m) (9)

Hence, a nonzero orbital angular momentum projection in the z direction can be associated

with an imbalance of the occupation of angular momentum states Pkα(m).

Photoemission matrix elements

Approximating the initial Bloch states |ψkα〉 by the wave packet state |Wkα〉 and the final

states by plane waves, the dipole matrix elements are given by

M (±)
α (p, p⊥) =

∫
dr‖

∫ ∞
−∞

dz e−ip·r‖e−ip⊥z(x± iy)Wkα(r)

=
1√
2

∫
dr‖

∫ ∞
−∞

dz e−i(p−k)·r‖e−ip⊥z(x± iy)Fkα(r) (10)



Now we insert the angular-momentum representation (8) and the plane-wave expansion

around rc

ei(p−k)·r‖ = ei(p−k)·rc
∑
m

imJm(|p− k|s)eim(θ−θ(p,k))

where θ(p,k) is the angle defining the direction of p‖ − k, into Eq. (10). Thus, we can

express the matrix elements as

M (±)
α (p, p⊥) = ei(p−k)·rc

∑
m

(−i)m±1ei(m±1)θ(p,k)

×
∫ ∞
0

ds

∫ ∞
−∞

dz e−ip⊥zJm±1(|p− k|s)s2Fkα,m(s, z) (11)

Assuming the distribution a(k,q) to be sufficiently narrow, such that Bloch states are

recovered, the energy conservation implies p ≈ k. As Jm(x) → 0 for x → 0 with m 6= 0,

only the term with m = 0 contributes to the sum in Eq. (11). The dominant matrix

element simplifies to

M (±)
α (k, p⊥) =

∫ ∞
0

ds

∫ ∞
−∞

dz e−ip⊥zs2Fkα,∓1(s, z) (12)

This expression demonstrates that the asymmetry of OAM eigenstates with m = ±1

determine the circular dichroism.

Illustration for hBN

In order to illustrate the discussion above, we have constructed Bloch wave packets ac-

cording to Eq. (5), choosing a distibution function a(k,q) = a0 exp[−(q − k)2/(2∆k2)]

(a0 is a normalization constant). The underlying Bloch wave functions are constructed

using the TB model for hBN.

We have computed the projection onto planar OAM eigenfunctions (Eq. (8)) and the

corresponding weights Pkα(m) = for the valence band (α = v), as presented in Fig. S3.



m

k = K' k = Γ k = K
P k

α(m
)

to Eq. (8) for
in reduced coordinates.
elements (12).

As Fig. S3 demonstrates, the OAM eigenstate m = −1 (m = +1) dominates at k = K′

(k = K). At k = K′, we expect photoelectrons emitted by RCP light – this is in line with

Fig. (3) in the main text. The behavior at k = K is reversed. In contrast, at k = Γ the

weights are symmetric. Hence, vanishing dichroism is expected around the Γ-point; we

have confirmed this behavior by explicitly calculating the circular dichroism within the

full TB+PW model.

We used the tight-binding (TB) representation of the Bloch states as described in the

Materials and Methods section. In this section we present the details on how photoemis-

sion spectra are computed in the TB+PW model. For completeness, let us recapitulate

the TB representation of the Bloch states

ψkα(r) =
1√
N

∑
R

eik·Rφkα(r−R) =
1√
N

∑
R

∑
j

Cαj(k)eik·(R+tj)wj(r−R) (13)

Fig. S3. Angular momentum in hBN. 
according

Weights of the projections onto OAM eigenfunctions

the TB model of hBN. The width of the distribution is ∆k = 0.025
The arrows indicate the dominant contribution for the matrix

Section S4. TB modeling of photoemission 



Here, we are employing the convention where the phase factor eik·tj (tj denotes the sub-

lattice site positions). The TB orbitals are approximated as

wγj (r) = Cjuγ · (r− t)j exp
[
−αj(r− tj)

2
]

(14)

where uγ is the unit vector in the direction γ = x, y, z. The parameters Cj and αj are

fitted to atomic orbitals.

Matrix elements

To further simplify the analysis, we approximate the final states as plane-waves (PW).

The cell-periodic part χ̃p,p⊥(r) = e−ik·rχp,p⊥(r) thus reduces to χ̃p,p⊥(r) = N−1/2eip⊥z,

where N is the normalization as in the Wannier representation (13).

Due to the periodicity of both the initial and final states, the matrix element entering

Fermi’s Golden rule

Mα(p, p⊥) = 〈χp,p⊥ |ε̂ · r|ψkα〉 (15)

is only nonzero if p = k + G, where G is a reciprocal lattice vector. Here, we focus on

ARPES from the first BZ, so that G = 0.

To evaluate the photoemission matrix element in the length gauge, we employ the

identity

rψkα(r) = ieik·r∇kukα(r)− i∇kψkα(r)

which transforms the dipole operator into a cell-periodic expression. Inserting the Wannier



representation (Eq. (7) in the main text) into Eq. (15), we find for the matrix elements

Mα(k, p⊥) =
i√
N

∑
R

∫
dr χ̃∗kp⊥(r)ε̂ · ∇k

[
e−ik·(r−R)φkα(r−R)

]
− i

N

∑
R

∫
drχ∗kp⊥(r)ε̂ · ∇k

[
eik·Rφkα(r−R)

]
=
√
N

∫
drχ∗kp⊥(r)ε̂ · rφkα(r)− 1√

N

∑
R

ε̂ ·R
∫

drχ∗kp⊥(r)φkα(r) (16)

The second term in Eq. (16) vanishes.

Note that the origin r0 from which the dipole is measured (r → r − r0) is arbitrary

if exact scattering states |χp,p⊥〉 are used. However, within the PW approximation, the

initial and final states are not exactly orthogonal, which results in a slight dependence on

r0. Here, we consistently choose r0 = (tB − tA)/2, where j = A,B denotes the sublattice

sites. This choice encodes as many symmetries as possible and leads to a very good

agreement of the ARPES intensity between TDDFT and the TB approach.

Defining the Fourier transformed Wannier orbitals by

ϕj(k, p⊥) =

∫
dr e−ik·re−ip⊥zwj(r) (17)

the matrix elements can be expressed via

Mα(k, p⊥) = i
∑
j

Cαj(k)eik·tj ε̂ · [i∇k − r0]ϕj(k, p⊥) (18)

In this appendix we demonstrate that the circular dichroism for π-conjugate systems like

graphene and hBN is directly related to the orbital pseudospin. This provides a clear link

to a topological phase transition, which is characterized by a sign change of the pseudospin

in the BZ.

Section S5. Pseudospin picture 



The starting point is the expression ( 18) for the matrix element in the length gauge.

The Fourier transformation of the Wannier orbital centered around tj can be conveniently

expressed as ϕj(k, p⊥) = e−ik·tj ϕ̃j(k, p⊥). In particular, if the Wannier orbital wj(r) is

radially symmetric around tj and symmetric or antisymmetric along the z-axis, ϕ̃j(k, p⊥)

becomes a purely real or imaginary function. Simplifying Eq. (18) in this way, we obtain

Mα(k, p⊥) = ε̂ ·
∑
j

Cαj(k)(tj − r0 + i∇k)ϕ̃j(k, p⊥)

The difference of the modulus squared matrix elements upon inserting ε̂(±) yields

∆Mα(k, p⊥) ≡
∣∣M (+)

α (k, p⊥)
∣∣2 − ∣∣M (−)

α (k, p⊥)
∣∣2

= 2Im
∑
j,l

Cαj(k)C∗αl(k) [[(tj − r0)ϕ̃j(k, p⊥) + i∇kϕ̃j(k, p⊥)]

× [(tl − r0)ϕ̃
∗
l (k, p⊥)− i∇kϕ̃

∗
l (k, p⊥)] (19)

where we take the z component of the vector product. Further evaluating Eq. (19), the

matrix element asymmetry can be decomposed into two terms

∆Mα(k, p⊥) = ∆M(1)
α (k, p⊥) + ∆M(1)

α (k, p⊥) (20)

where

∆M(1)
α (k, p⊥) = 2Re

∑
j,l

Cαj(k)C∗αl(k)
[
(tl − r0)ϕ̃

∗
l (k, p⊥)×∇kϕ̃j(k, p⊥) (21)

+ (tj − r0)ϕ̃j(k, p⊥)×∇kϕ̃
∗
l (k, p⊥)

]
(22)

and

∆M(2)
α (k, p⊥) = 2Im

∑
j,l

Cαj(k)C∗αl(k)∇kϕ̃j(k, p⊥)×∇kϕ̃
∗
l (k, p⊥) (23)

Both the contributions (21) and (23) are important. However, assuming a radial symme-

try of the Wannier orbitals around their center renders ϕ̃j(k, p⊥) real and, furthermore,

ϕ̃j(k, p⊥) = ϕ̃j(k, p⊥). In this case, ∆M(2)
α (k, p⊥) = 0.



Let us now specialize to the two-band TB model of graphene or hBN. The atomic pz

orbitals fulfill the above requirement. Thus, we arrive at

∆M(1)
α (k, p⊥) =

4

k

∑
j,l

Re [Cαj(k)C∗αl(k)]

· ((tl − r0)× k) ϕ̃j(k, p⊥)ϕ̃′l(k, p⊥)

Here, ∇kϕ̃j(k, p⊥) = (k/k)ϕ̃′j(k, p⊥) has been exploited. Furthermore, the sublattice sites

j = A,B are equivalent, such that ϕ̃j(k, p⊥) = ϕ̃(k, p⊥). Inserting r0 = (tB − tA)/2 and

tA = 0, tB = τ , the asymmetry simplifies to

∆M(1)
α (k, p⊥) =

2

k

(
|CαA(k)|2 − |CαB(k)|2

)
[k · τ ]z

× ϕ̃(k, p⊥)ϕ̃′(k, p⊥) (24)

Eq. (24) contains an important message: the difference of the sublattice site occupation,

or, in other words, the pseudospin

σz(k) = |CαA(k)|2 − |CαB(k)|2 (25)

determines the sign of the dichroism in each valley. For graphene, one finds σz(k) = 0

and hence no circular dichroism is expected.

Furthermore, a topological phase transition can be detected based on Eq. ( 24). To

support this statement, let us express the generic two-band Hamiltonian by

ĥ(k) = D(k) · σ̂ (26)

The main difference between a topologically trivial and nontrival system is the zero cross-

ing of the Dz(k) component. The states (spin-up or spin-down) correspond to sublattice

sites; the Pauli matrices represent pseudospin operators. Suppose that the second state

(spin-down) possesses a lower energy (like in hBN, where the nitrogen lattice site has a



deeper potential), corresponding to Dz(k) < 0. The eigenstate of the Hamiltonian (26)

then reads

C(k) =
1

N

(
Dz(k)− |D(k)|
−Dx(k) + iDy(k)

)
(27)

Evaluating the pseudospin in the z-direction yields

σz(k) =
2

N
Dz(k) (|D(k)| −Dz(k)) < 0

Trivial case— Assuming Dz(k) < 0 across the whole BZ (which yields a trivial band

insulator) then leads to opposite dichroism at K and K′. This is a direct consequence of

TRS: σz(k) = σz(−k). Thus, we find∫
V1

dk ∆M(1)
α (k, p⊥) = −

∫
V2

dk ∆M(1)
α (k, p⊥) (28)

Here, the BZ is divided equally into two parts V1 and V2, with V1 (V2) containing K (K′).

Topologically nontrivial case— In contrast, a topologically nontrivial phase is chac-

terized by Dz(k) > 0 in some part of the BZ. One can show that the eigenvector in the

vicinity of K′ has to be chosen as

C(k) =
1

N

(
Dz(k) + |D(k)|
Dx(k) + iDy(k)

)
(29)

which results in

σz(k) =
2

N
Dz(k) (|D(k)|+Dz(k)) > 0

For this reason, the pseudospin σz(k) is has the same sign at both K and K′. Therefore,

this behavior is reflected in the matrix element asymmtry (24), and thus the relation (28)

breaks.



at K

at K'

n=1 n=2 n=3 n=4

n=1 n=2 n=3 n=4
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k y
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.u.
)
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 (a

.u.
)

k y
 (a

.u.
)

k y
 (a

.u.
)

kx (a.u.) kx (a.u.) kx (a.u.) kx (a.u.)

Hence, the following simple criterion can be formulated: if the valley-integrated cir-

cular dichroism has the same sign at K and K′, the system represents a Chern insulator.

This conclusion is supported by the ab initio calculations for graphene with enhanced

SOC and the discussion of the Haldane model in the main text.

To show that the direct connection between orbital polarization and Berry curvature

holds for important materials beyond those considered in our work, we discuss monolayer

Section S6. Orbital polarization for monolayer s TMDC

Fig. S4. Topological properties of monolayer TMDCs. Figure S4: Orbital polarization (upper 
rows) and Berry curvature (lower rows) of monolayer TMDCs at the valleys K and Kʹ. We 
adopted the parameters for WSe2. The color scale is normalized to the maximum absolute value, 
ranging from blue (negative values) to red (positive values). Results are shown for the spin-up 
channel. Momenta are measured relative to K and Kʹ, respectively. 



transition metal dichalcogenides (TMDCs) of the type MX2. Close to the Γ point and

the K and K′ valleys, respectively, the multiband problem reduces to an effective descrip-

tion involving two bands with SOC. The effective Hamiltonian can be obtained by k · p

perturbation theory, expanding the ab initio tight-binding Hamiltonian for MoS2, MoSe2,

WS2 and WSe2, as detailed in Ref. [29].

Based on the k · p Hamiltonian, we have computed the orbital angular momentum

`zn(k) and the Berry curvature Ωn(k) for the four bands n = 1, . . . , 4 in the vicinity of

the K/K′ valleys (Fig. S4). For concreteness, we have used the parameters for WSe2 [29].

Due to the reflection symmetry, Ŝz is an approximate quantum number (exact quantum

number within the lowest-order k · p theory) close to the valleys; the main effect of the

SOC is an effective Zeemann splitting.

In Fig. S4 we present `zn(k) and Ωn(k) at the respective valleys. As Fig. S4 shows,

both quantities are proportional to each other. For valence bands, `zn(k) and Ωn(k) have

opposite sign, while they possess the same sign for conduction bands. This is exactly

as expected from Eq. (4). The overall trivial topological character is reflected in the

sign change that `zn(k) and Ωn(k) undergoes upon replacing K↔ K′. Hence, the circular

dichroism due to the pronounced valley polarization `zn(k) is due to the properties of the

Berry curvature.

On the level of the k · p Hamiltonian, the one-to-one correspondence between Berry

curvature and orbital polarization (4) becomes exact. This implies that Eq. (4) is still a

good estimate even beyond the k·p approximation. We remark that similar considerations

apply to the Γ point.

Furthermore, a similar k · p treatment applies for 2H bilayers of the above materials.

Therefore, the connection between orbital polarization and Berry curvature remains well

defined at the high-symmetry points.
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