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The chromatic number χ (Rn) of the Euclidean space R
n is the smallest number of colors

sufficient for coloring all points of the space in such a way that any two points at the
distance 1 have different colors. In 1972 Larman–Rogers proved that χ (Rn) � (3+o(1))n.
We give a new proof of this bound.

1. Introduction

The chromatic number χ (Rn) of the Euclidean space Rn is the smallest number of colors sufficient for coloring all points
of this space in such a way that any two points at the distance 1 have different colors. This problem was initially posed
by Nelson for n = 2 (see the history of this problem in [2,19,21,22,27]).

The exact value of χ (Rn) is not known even in the planar case. The best known bounds are

5 � χ (R2) � 7.

See [27] for the upper bound and [6] for the lower one. Bounding the chromatic numbers of Euclidean spaces of small
dimension attracts constant attention of researchers. Some recent results were obtained, e.g., in [1], [4] and [5]. It is
interesting that if one considers the product of the Euclidean plane with an arbitrarily small square, then the lower bound
can be improved. This is investigated in [10]. In the case of growing n we have

(1.239 + o(1))n � χ (Rn) � (3 + o(1))n. (1)

The lower bound is due to Raigorodskii [18] and the upper bound is due to Larman and Rogers [12].
The proof of Larman and Rogers is based on a hard theorem due to Butler [3] and on a result of Erdős and Rogers about

coverings of Rn with translates of a convex body. In this paper we present a new proof that does not use neither of them.
Instead we adapt the approach developed by Marton Naszódi in [14]. It connects geometrical covering problems with
coverings of finite hypergraphs. An advantage of this approach in contrast to the previous one is that it could be turned
into an algorithmic one. Indeed, the original paper of Erdős and Rogers used probabilistic arguments. Therefore, the same
is true for the Larman and Rogers proof. We will rely only on a theorem by Johnson, Lovász and Stein that establishes a
connection between the fractional covering number of a hypergraph and its integral covering number. The proofs of this
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theorem are quite easy and provide an algorithm which constructs an economical covering based on an optimal fractional
covering. A problem of finding an optimal fractional covering is a problem of linear programming.

The author developed this method further in [15], where new upper bounds for chromatic numbers of spheres were
obtained.

We obtain the upper bound in (1) from a slightly more general result, stated in the next section. It is motivated by
the following generalization of χ (Rn). Let K be a convex centrally-symmetric body. Consider the space R

n with the norm
determined by K . Let χ (Rn

K ) be the chromatic number of this normed space. If Bn is the usual unit ball in R
n, then we

have χ (Rn) = χ (Rn
Bn ). In 2008 Kang and Füredi [8] obtained an upper bound for an arbitrary K :

χ (Rn
K ) � (5 + o(1))n.

In 2010 Kupavskii [11] improved it to

χ (Rn
K ) � (4 + o(1))n.

No exponential lower bounds are known for the general case, although such bounds are known to hold for the case of
lp-norms [20].

In the statement of our main theorem we give an upper bound for χ (Rn
K ) in terms of another quantity: the tiling

parameter of K (see below for the precise definition). It is of interest to investigate this quantity on its own. In particular,
the lattice tiling parameter measures a distance from a centrally-symmetric convex body to the closest parallelohedron.
We show that any progress on bounding the tiling parameter will lead to a progress on bounding χ (Rn

K ).
From the paper of Butler a bound on the lattice tiling parameter of K = Bn can be established. In Section 3 we

demonstrate that for our generalization a similar bound can be obtained without any efforts.
We end this introduction by mentioning two related problems. First, one can investigate chromatic numbers of metric

spaces with different forbidden configurations, e.g., with a regular simplex of some dimension. This is the topic of so-called
Euclidean Ramsey theory. The reader may consult [16], [23], [24] and [26] for some recent progress. Another interesting
direction is the search of distance graphs having simultaneously large chromatic number and large girth. This question
is considered in papers [17] and [25] (the first one deals with the case of diameter graphs and their relation to Borsuk’s
problem).

This paper is organized as follows. In Section 2 we give all necessary definitions and formulate the main result of this
paper. In Section 3 we deduce the upper bound in (1) from this result.

2. The main result

2.1. Multilattices and tiling parameters

Let Ω be a lattice. A multilattice is the union Φ = ∪q
i=1(Ω + xi) of translates of Ω by a finite number of vectors. A

lattice can be considered as a multilattice with q = 1. The number q in the definition of Φ is denoted by q(Φ). A tiling Ψ

of the space R
n by convex polytopes is called associated with the multilattice Φ if there is a bijection between polytopes

of Ψ and points in Φ such that every point x is contained in the interior of the corresponding polytope ψx.
Let K be a bounded closed centrally-symmetric convex body. The tiling parameter is

γ (K , Φ, Ψ ) = inf{β/α|∀x ∈ Φ, αK + x ⊂ ψx ⊂ βK + x}.
Define

γ (K , k) = inf
Φ,Ψ : q(Φ)�k

γ (K , Φ, Ψ ),

where the infimum is taken over all multilattices Φ with q(Φ) � k and all tilings associated with them. We call γ (K , 1)
to be the lattice tiling parameter of K .

Our main result is

Theorem 1. We have

χ (Rn
K ) � (1 + γ (K , k))n

[
n ln n + n ln ln n + 2 ln k + 2n

(
1 + ln

(
2γ (K , k)

))]
.

In particular, if Kn is a sequence of bodies and kn is a sequence of positive numbers such that for some absolute constant c we
have kn � ncn, then

χ (Rn
Kn
) � (1 + γ (Kn, kn) + o(1))n.
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2.2. Preliminaries with fractional coverings

Let Z be a set, F be a family of its subsets, and Y ⊆ Z . By the covering number τ (Y ,F) denote the minimal cardinality
of a family H ⊆ F such that Y is covered by the union of all sets F ∈ H.

If Z is finite, then the pair (Z,F) is a finite hypergraph. In this case a fractional covering of Y by F is a function
ν : F → [0; +∞) such that for all y ∈ Y we have∑

F∈F :y∈F
ν(F ) � 1.

Define the fractional covering number of Y :

τ ∗(Y ,F) = inf{
∑
F∈F

ν(F ) : ν is a fractional covering of Y by F}.

The following theorem establishes a connection between τ and τ ∗

Theorem 2 ([9,13,28]). Suppose Z is a finite set and F ⊆ 2Z , then

τ (Z,F) <

(
1 + ln

(
max
F∈F

(|F |)
))

τ ∗(Z,F).

2.3. Proof of Theorem 1

In what follows, all distances are calculated with respect to the norm, determined by K . For 0 < μ < 1 define

μΨ =
⋃

ψx∈Ψ

(μ(ψx − x) + x) .

Fix ε > 0. Choose a pair (Φ, Ψ ) such that

γ (K , Φ, Ψ ) < γ (K , k) + ε.

Let α, β be numbers such that

γ = β/α < γ (K , Φ, Ψ ) + ε

and for all x ∈ Φ we have

αK + x ⊂ int(ψx),

ψx ⊂ int(βK + x).

Since ψx is contained in int(βK + x), we see that the diameter of ψx is strictly less than 2β . Let

μ = α/(α + β).

Then for all x the polytope ψx does not contain a pair of points at distance 2βμ.
We show that for all x, y ∈ Φ , x 
= y, the distance between μψx and μψy is greater than 2βμ. It is sufficient to

consider only such polytopes that share a common face in some dimension. Since ψx and ψy are convex and share some
k-dimensional face, there is a hyperplane containing this face and separating ψx and ψy. Let lx and ly be the distances
from x and y to this hyperplane. The distance between μψx and μψy is greater than the distance between the images of
this hyperplane under homothety with center x and homothety with center y. Since αK + x ⊂ int(ψx), this distance is

(lx + ly)(1 − μ) > 2α(1 − μ) = 2βμ.

Therefore, the set μΨ does not contain a pair of points at the distance 2βμ and we can color it with one color.
Next, we cover Rn by the copies of μΨ . This set is a disjoint union of several convex bodies. Hence, typical covering

results (like in [7]) cannot be applied to it. Now we show how to overcome this difficulty.
Let Ω be the base lattice of Φ . Consider the torus Tn = R

n/Ω . Let x̃i be the projections onto Tn of the translation
vectors xi of the lattice Ω in the multilattice Φ and X̃ be their union. The tiling Ψ is periodical over the lattice Ω , hence
we can define its projection Ψ̃ , which is a tiling of Tn associated to the set X̃ . For x̃i ∈ X̃ and δ : 0 < δ � 1 we denote by
δψ̃i the projection of δ(ψxi − xi) + xi to Tn.

We will cover Tn by less than

(1 + γ )n(n ln n + n ln ln n + 2 ln k + 2n(1 + ln 2γ ))

translates of μΨ̃ .
We need the following lemma.
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Lemma 1. Fix 0 < δ < 1. Let F and F ′ be the families of translates of the sets μΨ̃ and μ(1 − δ)Ψ̃ by all points of T n.
Suppose Λ ⊂ Tn is a finite point set of maximal cardinality such that αμδ

2
K + Λ is a packing of the bodies αμδ

2
K . Then

τ (Tn,F) � τ (Λ,F ′).

Proof. Since the cardinality of Λ is maximal, then αμδK + Λ is a covering of Tn.
Let Y = {yj, j = 1, . . . ,m} ⊂ Tn be a point set such that μ(1 − δ)Ψ̃ + Y covers Λ. We show that μΨ̃ + Y covers Tn.
Let t ∈ Tn be an arbitrary point. Since αμδK + Λ is a covering of Tn, then there exists λ ∈ Λ such that αμδK + λ

contains t . There also exists j such that

λ ∈ ((μ(1 − δ)ψ̃i + yj))

for some i. Since for all i we have αK ⊂ int(ψ̃i − x̃i), we obtain

t ∈ μδψ̃i − x̃i + λ ⊂ ((μδψ̃i − x̃i) + (μ(1 − δ)ψ̃i − x̃i)) + x̃i + yj ⊂ μψ̃i − x̃i + x̃i + yj = μψ̃i + yj.

The proof is complete. �

Consider F , F ′ and Λ as in the notation of Lemma 1. Define

E = {Λ ∩ F : F ∈ F ′}.
Then (Λ, E) is a finite hypergraph and τ (Λ,F ′) = τ (Λ, E).
From Lemma 1 and Theorem 2 it follows that

τ (Tn,F) � τ (Λ, E) �
(
1 + ln

(
max
E∈E

(|E|)
))

τ ∗(Λ, E).

We want to bound τ ∗(Λ, E). By σ denote the usual measure on Tn induced by the Lebesgue measure on R
n and scaled

in such a way that σ (Tn) = 1.
For λ ∈ Λ and E ∈ E define

S(λ) = {t ∈ Tn : λ ∈ μ(1 − δ)Ψ̃ + t},
S(E) = {t ∈ Tn : E = Λ ∩ (μ(1 − δ)Ψ̃ + t)}.

The sets S(λ), S(E) are measurable. Moreover, for every λ ∈ Λ,

σ (S(λ)) = σ (μ(1 − δ)Ψ̃ ),

σ (S(λ)) =
∑
λ∈E

σ (S(E)),

∑
E∈E

σ (S(E)) = σ (Tn) = 1.

Define ν : E → [0; +∞) as

ν(E) = σ (S(E))

σ (μ(1 − δ)Ψ̃ )
.

Then it is a fractional covering of Λ by E and

τ ∗(Λ, E) �
∑
E∈E

ν(E) = 1

σ (μ(1 − δ)Ψ̃ )
.

Now we bound maxE∈E |E| = maxF ′∈F ′ |Λ ∩ F ′|.
Recall that αμδ

2
K + Λ is a packing of bodies αμδ

2
K . If λ ∈ F ′ = μ(1 − δ)Ψ̃ + t , then λ ∈ μ(1 − δ)ψ̃i + t for some i.

Since αK ⊂ int(ψ̃i − x̃i), we have

αμδ

2
K + λ ⊆

(
μ

δ

2
ψ̃i − x̃i

)
+ (μ(1 − δ)ψ̃i − x̃i) + x̃i + t ⊆ μ

(
1 − δ

2

)
ψ̃i + t ⊆ μψ̃i + t.

Now we can compare the volumes and get the bound for |Λ ∩ F ′|. Since every ψ̃i is contained in βK + x̃i, we get
vol(ψ̃i) � βnvol(K ) and

|Λ ∩ F ′| � vol(μψ̃)

vol( αμδ

2
K )

�
k∑

i=1

vol(μψi)

vol( αμδ

2
K )

�
kμnβnvol(K )

μnαn(δ/2)nvol(K )
= k(2γ /δ)n.

Finally, we obtain

τ (Tn,F) �
(
1 + ln

(
max
F ′∈F ′(|Λ ∩ F ′|)

))
τ ∗(Tn,F ′) �

(1 + n ln(2γ /δ) + ln k)(1 + γ )n

(1 − δ)n
.
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Now we take δ = 1
2n ln n

and use (for arbitrary large n)

(
1 − 1

2n ln n

)−n

� exp
( 1

ln n

)
� 1 + 2

ln n
.

Thus we have

χ (Rn
K ) � τ (Tn,F) � (1 + γ )n

(
1 + 2

ln n

)
(1 + n ln ((4n)(ln n)(γ )) + ln k)

� (1 + γ )n
(
1 + n ln n + n ln ln n + 2n

(
1 + ln 2 + ln 4

ln n
+ ln ln n

ln n

)
+ 2

ln n

+
(
1 + 2

ln n

)
(n ln γ + ln k)

)

� (1 + γ )n(n ln n + n ln ln n + 2 ln k + 2n + 2n ln(2γ ))

� (1 + γ (K , k) + ε)n [n ln n + n ln ln n + 2 ln k + 2n(1 + ln(2(γ (K , k) + ε)))] .

This inequality holds for every ε > 0. This completes the proof of Theorem 1.

3. Chromatic number for the Euclidean metric

In the paper [12], Larman and Rogers proved that for a Euclidean ball Bn, the lattice tiling parameter γ (Bn, 1) � 2+o(1)
as n → ∞. They used a theorem due to Butler [3]. We need some notation to state the Butler result.

Let K = K +Ω be a system of translates of K by the vectors of the lattice Ω , ξ1 = ξ1(K) be the infimum of the positive
numbers ξ such that the system ξK is a covering of Rn, and ξ2 = ξ2(K) be the supremum of the positive numbers ξ such
that ξK is a packing in R

n.
Denote ξ (K) = ξ1(K)/ξ2(K). Consider γ̃ (K ) = infK ξ (K), where the infimum is over the set of all lattices in R

n. By DK
denote the difference body of K , i.e. DK = {x − y| x, y ∈ K }.
Theorem 3 (Butler, [3]). Let K be a bounded convex body in R

n, then there exists an absolute constant c such that

γ̃ (K ) �
[
vol(DK )

vol(K )
nlog2(ln n)+c

]1/n
.

If K is centrally symmetric, then we get γ̃ (K ) � 2 + o(1). It is easy to see that if K = Bn, then γ (Bn, 1) � γ̃ (Bn).
Indeed, let Ω be a lattice such that ξ (K) < γ̃ (Bn) + ε and Ψ be a Voronoi tiling which corresponds to Ω . Then for all

x ∈ Ω we get

K + x ⊂ ψx ⊂ ξ (K)K + x.

Since ε is arbitrary close to zero, we obtain our inequality. Unfortunately, if K is not a Euclidean ball, then Voronoi
polytopes might be non-convex and the locus of the points that have equal distances to a pair of given points might
have nonzero measure. Therefore, the problem of bounding γ (K , 1) becomes much harder.

The proof of Theorem 3 is quite nontrivial. But the problem of bounding of our generalized tiling parameter instead
of the lattice one is much easier. First, we show that for some k, γ (Bn, k) � 2.

Let Ω be a lattice such that K = Bn + Ω is a packing. We claim that there is some multilattice Φ with the base lattice
Ω such that Bn = K +Ω is a packing and 2K = 2Bn+Ω is a covering. By Tn denote the torus Rn/Ω . Choose a set Y = {yi}
of the maximal cardinality such that

(Bn + yi) ∩ (Bn + yj) = ∅, ∀i 
= j.

For all x ∈ Tn there exists i such that ‖x − yi‖K < 2. Otherwise, (Bn + x) ∩ (Bn + yi) = ∅ which implies that Y does not
have the maximal cardinality. Therefore, we have proved that

⋃
i 2B

n + yi covers T
n. Hence, we can take the multilattice

Φ = Ω + Y .
Now associate to it the Voronoi tiling Ψ of the point set Ω + Y . Then in turn

γ (Bn, k) � γ (Bn, Φ, Ψ ) � 2.

Now we supply an upper bound on k. Let Bn be inscribed into a cube C with the side length 2. The edges of C generate
a lattice Ω in R

n such that K = Bn + Ω is a packing. We can bound k using volumes

k �
vol(C)

vol(Bn)
� ncn.

Finally, we can apply Theorem 1 and get the upper bound for (1).
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