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a b s t r a c t

A cograph is a graph which does not contain any induced path on four vertices. In this
paper, we characterize those cographs that are intersection graphs of paths on a grid in the
following two cases: (i) the paths on the grid all have atmost one bend and the intersections
concern edges (→ B1-EPG); (ii) the paths on the grid are not bended and the intersections
concern vertices (→ B0-VPG).

In both cases,we give a characterization by a family of forbidden induced subgraphs.We
further present linear-time algorithms to recognize B1-EPG cographs and B0-VPG cographs
using their cotree.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Edge intersection graphs of paths on a grid (or EPG graphs) are graphs whose vertices can be represented as paths on a
rectangular grid such that two vertices are adjacent if and only if the corresponding paths share at least one edge of the grid.
We may assume that the grid is Z2 or a sufficiently large subset of it. The EPG graphs were first introduced in [16] and have
been studied by several authors (see for instance [2,3,5,22,23]). Every graphG is an EPG graph [16], somotivated by the study
of these graphs with constraints from circuit layout problems, Golumbic, Lipshteyn and Stern introduced subclasses of EPG
graphs based on restricting the number of bends permitted for each path. Specifically, for a fixed k ≥ 0, the paths on the grid
that represent the vertices of a graph are allowed to have at most k bends, i.e., at most k grid point turns, and the subclass of
graphs that admit such a representation is denoted by Bk-EPG. Notice that B0-EPG graphs are equivalent to interval graphs.

In [3], the authors show that for any k, only a small fraction of all labeled graphs on n vertices are Bk-EPG. Some results
of [3] were also proved in [5]. In addition, the authors of [5] consider different classes of graphs and show, in particular,
that every planar graph is a B5-EPG graph. This result was later improved in [23], where the authors show that every planar
graph is a B4-EPG graph. It is still open if k = 4 is best possible. So far it is only known that there are planar graphs that
are B3-EPG graphs and not B2-EPG graphs. The authors in [23] also show that all outerplanar graphs are B2-EPG graphs thus
proving a conjecture of [5].

For the case of B1-EPG graphs, Golumbic, Lipshteyn and Stern [16] showed that every tree is a B1-EPG graph, and Asi-
nowski and Ries [2] showed that every B1-EPG graph on n vertices contains either a clique or a stable set of size at least
n1/3. The problem of recognizing B1-EPG graphs was shown to be NP-complete by Heldt, Knauer and Ueckerdt in [22]. It is
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therefore interesting to see which subfamilies of B1-EPG graphs have special properties and which can be efficiently recog-
nized. Asinowski and Ries [2] give a characterization of the B1-EPG graphs among some subclasses of chordal graphs, namely,
chordal bull-free graphs, chordal claw-free graphs, chordal diamond-free graphs, and special cases of split graphs. It follows
from [16,3] that a complete bipartite graph Km,n (m ≤ n) is B1-EPG if and only if m ≤ 2 and n ≤ 4. Since complete bipar-
tite graphs are a special case of cographs, it is natural to ask for a characterization of B1-EPG cographs. In [12], it is proven
that cographs are well quasi ordered with respect to the induced subgraph relation. Therefore, any subfamily of the class of
cographs can be characterized by a finite set of forbidden minimal induced subgraphs and recognized in polynomial time.
However, it is only proven that such obstruction set exists. In Section 4 of this paper, we provide such a characterization
for B1-EPG by giving a complete family of minimal forbidden induced subgraphs. Later, in Section 6, we present an efficient
linear-time algorithm to recognize this subfamily using their cotrees.

Instead of considering edge intersection graphs of paths on a grid, one may be interested in vertex intersection graphs of
paths on a grid (or VPG graphs). The VPG graphs are graphs whose vertices correspond to paths on a rectangular grid such
that two vertices are adjacent if and only if the corresponding paths share at least one grid point. These graphs were first
introduced in [1] and have also been studied by several authors (see for instance [7,8,17]). In [1], the authors show that VPG
graphs are exactly string graphs, i.e., intersection graphs of arbitrary curves in the plane. As in the case of EPG graphs, one
may restrict the number of bends for each path. Hence, for a fixed k ≥ 0, the paths on the grid that represent the vertices
of a graph are allowed to have at most k bends, i.e., at most k grid point turns, and the subclass of graphs that admit such
a representation is denoted by Bk-VPG. In [1], the authors notice that B0-VPG graphs are equivalent to the so called 2-DIR
graphs, whose recognition complexity is NP-complete [24].

A hierarchy of VPG graphs, relating them to other known families of graphs, is presented in [1], where they show for
instance that planar graphs are B3-VPG graphs. This result was recently improved in [8] where it was shown that planar
graphs are B2-VPG graphs. It remains open if k = 2 is best possible for planar graphs. In [17], the authors characterize split
graphs that are B0-VPG graphs by giving a family of minimal forbidden induced subgraphs. Furthermore, they characterize
chordal claw-free B0-VPG graphs as well as chordal bull-free B0-VPG graphs. It is easy to see that all permutation graphs
are B1-VPG by labeling the x and y axes with the two permutations and connecting each pair of numbers with a single bend
path. It thus follows that cographs (a subfamily of permutation graphs) are B1-VPG. So it is natural to ask which cographs
are B0-VPG. In Section 5 of this paper, we characterize the B0-VPG cographs as those which contain no induced 4-wheel, and
present an efficient linear-time recognition algorithm using the cotree of the graph in Section 6.

We start with some preliminaries in Section 2, and in Section 3 we present some useful basic properties of the neigh-
borhoods of C4’s in cographs which will be useful in our proofs characterizing B1-EPG cographs. In Sections 4 and 5 we
present characterizations for the classes of B1-EPG cographs and B0-VPG cographs, respectively. Linear time recognition al-
gorithms for both of these classes are given in Section 6. Finally, we conclude with some open questions in Section 7. For
graph theoretical terms that are not defined here, we refer the reader to [14,25].

2. Preliminaries

2.1. General graph definitions and notation

All graphs in this paper are connected, finite and simple. A clique is a set of pairwise adjacent vertices and a stable set is a
set of pairwise nonadjacent vertices. The size of a maximum stable set in G is called the stability number of G and is denoted
by α(G). A set U ⊆ V is called dominating if for every vertex v ∈ V r U there exists u ∈ U such that uv ∈ E. For disjoint
sets A, B ⊆ V , we say that A is complete to B if every vertex in A is adjacent to every vertex in B, and that A is anticomplete
to B if every vertex in A is nonadjacent to every vertex in B. The complement of a graph G will be denoted by G. As usual,
Ck, k ≥ 3, denotes an induced cycle on k vertices. A vertex v which is adjacent to all the vertices of a Ck is called a center,
and we call the graph induced by V (Ck) ∪ {v} a k-wheel denoting it byWk (although it has k + 1 vertices). Finally, Pk, k ≥ 0,
denotes an induced path on k vertices, Kp, p ≥ 0, denotes a clique on p vertices, mKp, m, p ≥ 0, denotes m disjoint copies of
mKp, and Kp,q denotes the complete bipartite graphwith p vertices in one set of the bipartition and q vertices in the other set
of the bipartition. More generally, Km1,...,mt is the complete multipartite graphwith part-sizesm1, . . . ,mt .

Let G = (V , E) be a graph. For a vertex v ∈ V , we let NG(v) denote the set of vertices in G that are adjacent to v, i.e.,
the neighbors of v. NG(v) is called the neighborhood of vertex v. We will write NG[v] = NG(v) ∪ {v}, and call NG[v] the
closed neighborhood of vertex v. Whenever it is clear from the context what G is, we will drop the subscripts and write
N (v) = NG(v) and N [v] = NG[v]. A vertex v is called a true twin of some vertex u if N [v] = N [u]. We will denote by G[X]

the subgraph induced by X ⊆ V . We write G − v for the subgraph obtained by deleting vertex v and all the edges incident
to v. Similarly, for A ⊆ V , we denote by G − A the subgraph of G obtained by deleting the set A and all the edges incident to
some vertex in A, i.e., G − A = G[V r A].

We will denote by GR the reduced graph of G, that is, the graph obtained from G by deleting for each set U of true twins
all but one u ∈ U . Thus, GR does not contain any pair of adjacent vertices which have exactly the same closed neighborhood.
The next lemma immediately follows from the definition of the reduced graph GR.

Lemma 1. Let G be a graph and let GR be its reduced graph. Then any connected component of GR isomorphic to a clique is an
isolated vertex.
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2.2. EPG and VPG graphs

LetG be a rectangular grid. LetP be a collection of nontrivial simple paths onG. As in [16], we define the edge intersection
graph EPG(P ) of P to have vertices which correspond to the members of P , so that two vertices are adjacent in EPG(P ) if
and only if the corresponding paths in P share at least one edge in G. An undirected graph G is called an edge intersection
graph of paths on a grid (EPG) if G = EPG(P ) for some P and G, and ⟨P , G⟩ is an EPG representation of G.

Similar to EPG graphs, following [1], we define the vertex intersection graph VPG(P ) of P as the graph whose vertices
correspond to the members of P , and such that two vertices are adjacent in VPG(P ) if and only if the corresponding paths
in P share at least one grid point in G. An undirected graph G = (V , E) is called a vertex intersection graph of paths on a grid
(VPG) if G = VPG(P ) for some P and G, and ⟨P , G⟩ is a VPG representation of G.

For any vertex v ∈ V , we denote by Pv the corresponding path in the EPG (resp., VPG) representation of G. In this paper,
we will always assume that the size of the grid G, in particular m, is sufficiently large such that the EPG (resp., VPG) graphs
that we are interested in admit an EPG (resp., VPG) representation in G.

A turn of a path at a grid point is called a bend and the grid point is called a bend point. An EPG (resp., VPG) representation
is Bk-EPG (resp., Bk-VPG) if each path has at most k bends. A graph that has a Bk-EPG (resp., Bk-VPG) representation is called
Bk-EPG (resp., Bk-VPG). In this paper, we are interested in B1-EPG graphs and B0-VPG graphs which are also cographs.

Consider a rectangular grid of size (2m+ 1)× (2m+ 1). The horizontal grid lines will be referred to as rows and denoted
by y−m, y−m+1, . . . , y0, . . . , ym−1, ym, and the vertical grid lines will be referred to as columns and denoted by x−m, x−m+1,
. . . , x0, . . . , xm−1, xm. We define a -path P as a single bended path with bend point (xi, yj) such that P uses column xi be-
tween rows yk and yj, for some j > k, and P uses row yj between columns xi and xl, for some l > i. In a similar way, -paths,

-paths, and -paths are defined. We say that a path P on the grid contains a grid point (xi, yj) if (xi, yj) ⊆ P and (xi, yj) is
not an endpoint of P .

The next observation shows that, when convenient, we do not need to consider true twins.

Lemma 2 (True Twin Lemma). Let G = (V , E) be a graph. Let v ∈ V be a true twin of u ∈ V . Then G is Bk-EPG (resp., Bk-VPG) if
and only if G − v is Bk-EPG (resp., Bk-VPG).
Proof. Consider a graph G = (V , E) containing a true twin v ∈ V of some vertex u ∈ V . Clearly, if G is Bk-EPG (resp.,
Bk-VPG), then G−v is also Bk-EPG (resp., Bk-VPG). So assume now that G−v is Bk-EPG (resp., Bk-VPG) and consider a Bk-EPG
representation (resp., a Bk-VPG representation) of G − v. We then simply add a copy Pv of the path Pu representing vertex
v. Since N [u] = N [v], this gives us a feasible Bk-EPG representation (resp., a Bk-VPG representation) of G. �

3. Neighborhood properties of C4’s in cographs

Consider two graphs G and H . We say that G is H-free, if G does not contain any induced subgraph isomorphic to H . Let
F be a family of graphs. G is said to be F -free if G is H-free for every graph H of F .

A graph G is a cograph if G is P4-free. Cographs (complement reducible graphs) were originally defined recursively as
follows:
(1) a single vertex is a cograph;
(2) the disjoint union of cographs is a cograph;
(3) the join of disjoint cographs is a cograph,

where the join of disjoint graphs G1, . . . ,Gk is the graph G with
V (G) = V (G1) ∪ · · · ∪ V (Gk) and
E(G) = E(G1) ∪ · · · ∪ E(Gk) ∪ {xy | x ∈ V (Gi), y ∈ V (Gj), i ≠ j}.

The recursive construction of a cograph can be recorded in a data structure known as the cotree which fully encodes the
cograph, and is often used for algorithms applied to cographs, such as those we will see in Section 6.

Remark 3. The equivalence of cographs as defined by (1)–(3) and P4-free graphs was given independently by Gurvich
[18–20] and by Corneil, Lerchs and Burlingham [10] where further results on the theory of cographs were developed. See
also [15].

We start by giving somepreliminary resultswhichwill be used later in themain proofs. LetG = (V , E) be a graph contain-
ing an induced 4-cycle C with vertex set {v1, v2, v3, v4} and edge set {v1v2, v2v3, v3v4, v4v1}. Let V123 be the set of vertices
in G−V (C) adjacent to each of v1, v2, v3 and nonadjacent to v4. We define V234, V341 and V412 similarly. Let V13 be the set of
vertices inG−V (C) adjacent to both v1, v3 and nonadjacent to both v2, v4.We define V24 similarly. Finally, let V1234 be the set
of centers of C , and let N (C) be the set of vertices having at least one neighbor in C . Note that, by definition, V (C) ⊆ N (C).

When G is a cograph, properties (a)–(f) below immediately follow from the fact that G has no induced P4.

Lemma 4. If G is a cograph containing an induced4-cycleC with vertex set {v1, v2, v3, v4} and edge set {v1v2, v2v3, v3v4, v4v1},
then the following properties hold:

Property (a) A vertex v not in V (C) cannot be adjacent to only one vertex of C or to only one edge of C.
Property (b) V123, V234, V341 and V412 are complete to V1234.
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Fig. 1. The graphs K3,2,1 and K2,2,2,1 .

Property (c) V123 ∪ V341 is complete to V234 ∪ V412.
Property (d) V123 is anticomplete to V341, and V412 is anticomplete to V234.
Property (e) N (C) = V1234 ∪ V13 ∪ V24 ∪ V123 ∪ V234 ∪ V341 ∪ V412 ∪ V (C).
Property (f) If v ∈ V r N (C) then v is anticomplete to every set in N (C) except possibly to the set of centers V1234.
Property (g) V13 is complete to V24.

The following lemma and its corollary will be used several times in our main proofs.

Lemma 5. Let G = (V , E) be a cograph containing an induced C4 with vertex set {v1, v2, v3, v4} and edge set {v1v2, v2v3, v3v4,
v4v1}. If G is either (i) W4-free or (ii) K3,2,1-free and V1234 ≠ ∅, then all the vertices in Vijk are true twins of vj, for ijk ∈

{123, 234, 341, 412}.

Proof. Let u ∈ Vijk and suppose that u is not a true twin of vj. Then there exists a vertex w which is adjacent to u and
nonadjacent to vj (the case when w is adjacent to vj and nonadjacent to u is symmetric). We claim that w must be adjacent
to vi and to vk. Indeed, if w is nonadjacent to vi (resp., vk), then w must be adjacent to vℓ, ℓ ∈ {1, 2, 3, 4} r {i, j, k}, since
otherwise G[{w, u, vi, vℓ}] (resp., G[{w, u, vk, vℓ}]) is isomorphic to P4, a contradiction. But now G[{w, vℓ, vi, vj}] (resp.,
G[{w, vℓ, vk, vj}]) is isomorphic to P4, a contradiction. Thus w must be adjacent to vi, vk as claimed. Hence, either w ∈ Vik
or w ∈ Vkℓi. It follows from Property (d) that w is nonadjacent to vℓ since u ∈ Vijk. We conclude that w ∈ Vik.

Case (i) If G is W4-free, then we get a contradiction because G[{vi, vj, vk, w, u}] is isomorphic toW4.
Case (ii) If G is K3,2,1-free and V1234 ≠ ∅, let v ∈ V1234. Then it follows from Property (b) that u is adjacent to v. Also,

w must be adjacent to v, otherwise G[{w, u, v, vℓ}] is isomorphic to P4, a contradiction. But now G[{vi, vj, vk, vℓ, w, v}] is
isomorphic to K3,2,1, a contradiction. Thus, in both cases, umust be a true twin of vj. �

Corollary 6. Let G be a connected and reduced cograph (i.e., with no true twins) containing an induced 4-cycle C with vertex set
{v1, v2, v3, v4} and edge set {v1v2, v2v3, v3v4, v4v1}, then the following properties hold:
(i) If G is W4-free, then V (G) = N (C) = V13 ∪ V24 ∪ V (C).
(ii) If V1234 ≠ ∅ and G is K3,2,1-free, then N (C) = V1234 ∪ V13 ∪ V24 ∪ V (C), and V13 ∪ V24 is anticomplete to V1234.
(iii) If G is K3,3-free, then at least one of V13 or V24 is empty.

Proof. (i) By Lemma 5, V123, V234, V341, V412 = ∅ since G has no true twins. If G is W4-free, then V1234 = ∅, so by Property
(e), N (C) = V13 ∪ V24 ∪ V (C). Since G is connected, it follows from Property (f) that V (G) r N (C) is empty.

(ii) Next, we assume V1234 ≠ ∅ and G is K3,2,1-free. Property (e) and Lemma 5 prove the first claim. Suppose u ∈ V1234 and
w ∈ V24. If u and w are adjacent, then G[{v1, v2, v3, v4, u, w}] is isomorphic to K3,2,1, a contradiction. So V24 is anticomplete
to V1234. Similarly for V13.

(iii) Finally, assume that G is K3,3-free. By Property (g), V13 is complete to V24. If both are nonempty, then together with
{v1, v2, v3, v4} we would have an induced K3,3, a contradiction. �

4. Characterizing B1-EPG cographs

In this section, we will characterize cographs which are B1-EPG. It was shown in [16] that K3,3 is not B1-EPG and in [3]
that K2,5 is not B1-EPG. Consider now the following two complete multipartite graphs (see Fig. 1): K3,2,1 and K2,2,2,1.

Lemma 7. The graphs K3,2,1 and K2,2,2,1 are not B1-EPG.

Proof. Let us try to construct a B1-EPG representation. Consider the induced 4-cycle C = {ab, bc, cd, ad}. It was shown
in [16] that C must be represented either as a true pie, a false pie, or a frame (see Fig. 2). Let e be a center of C . It is easy to
see that C cannot be represented as a frame since otherwise Pe cannot intersect all four paths Pa, Pb, Pc, Pd. Thus, we may
assume that C is represented as a true or false pie centered at grid point (xi, yj).

Consider the graph K2,2,2,1. If C is represented as a true pie, then every center of C corresponds either to a path using
column xi and containing but not bending at (xi, yj) or to a path using row yj and containing but not bending at (xi, yj). Thus,
in this case, the centers e1, e2, e3 cannot induce a P3, a contradiction. If C is represented as a false pie, then we may assume
without loss of generality that Pa is a -path and Pc is a -path and both have bend point (xi, yj). Then every center of C
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Fig. 2. True pie (left), false pie (middle), frame (right).

must correspond either to a -path with bend point (xi, yj) or to a -path with bend point (xi, yj). Clearly, in this case too,
it is not possible for the centers e1, e2, e3 to induce a P3. Thus, K2,2,2,1 is not B1-EPG.

Let us now consider K3,2,1. If C is represented as a true pie, then clearly we cannot add Pf since it must contain the bend
point (xi, yj) in order to intersect Pb and Pd, and hence it would share a grid edgewith at least one of Pa, Pc . If C is represented
as a false pie, we may assume as before that Pa is a -path, Pc is a -path, both having bend point (xi, yj). Furthermore, Pb
and Pd contain but do not bend at (xi, yj) and we may assume that Pb uses column xi and Pd uses row yj. Now consider the
center e. Pe must be a -path or a -path with bend point (xi, yj). But now clearly we cannot add Pf since it must contain
the grid point (xi, yj) in order to intersect all three paths Pb, Pd, Pe, and hence it would intersect at least one of Pa or Pc , a
contradiction. Thus K3,2,1 is not B1-EPG. �

We now present our characterization theorem.

Theorem 8. Let G = (V , E) be a cograph. Then G is a B1-EPG graph if and only if G is {K3,3, K2,5, K3,2,1, K2,2,2,1}-free.

Proof. If G is B1-EPG, then it follows from [3,16] and from Lemma 7 that G does not contain any of K3,3, K2,5, K3,2,1, K2,2,2,1
as an induced subgraph. Conversely, let G = (V , E) be a cograph which is {K3,3, K2,5, K3,2,1, K2,2,2,1}-free. Without loss of
generality, we may assume that G is connected, and by Lemma 2 that G is reduced (i.e., has no true twins).

If G is C4-free, then G is an interval graph and the result holds. Thus, we may assume now that G does contain induced
4-cycles. Let C be such a cycle with vertex set {v1, v2, v3, v4} and edge set {v1v2, v2v3, v3v4, v4v1}. Furthermore, by
Corollary 6(iii) since G is K3,3-free, we may assume, without loss of generality, that V13 = ∅.

We will distinguish two cases.
Case 1: No induced C4 in G contains a center.

Notice that in this case G isW4-free. From Corollary 6(i) and our assumption above that V13 = ∅, we have V (G) = V24 ∪

V (C). Let v5, v6 ∈ V24. If v5, v6 are adjacent, then consider the induced 4-cycle {v1v2, v2v5, v5v4, v4v1}. Since we may as-
sume by Lemma 5 that V254 = ∅, it follows that wemay delete v6 (it would be a true twin of v5). Thus V24 is an independent
set. Since G does not contain any induced subgraph isomorphic to K2,5, it follows that |V24| ≤ 2.We conclude from the above
that G is isomorphic either to C4, or to K2,3 or to K2,4. Since all these graphs are clearly B1-EPG, it follows that G is B1-EPG.
Case 2: C contains a center, i.e., V1234 ≠ ∅.

From Corollary 6(ii) and our assumption above that V13 = ∅, we have N (C) = V1234 ∪ V24 ∪ V (C), and that V24 is
anticomplete to V1234. Now we claim the following.

Claim (i): G[V1234] is the disjoint union of two cliques that are anticomplete to each other. In order to prove the claim, we need
to show that G[V1234] does not contain neither 3K1 nor P3 (this follows from the fact that the disjoint union of two
cliques is the complement of a complete bipartite graph). Since G is K2,2,2,1-free, G[V1234] does not contain P3. Thus,
we only need to prove that G[V1234] does not contain three vertices e1, e2, e3 which are pairwise nonadjacent. Sup-
pose that three such vertices exist. But then G[{v2, v3, v4, e1, e2, e3}] is isomorphic to K3,2,1, a contradiction. This
proves Claim (i).

We now denote by K 1
C and K 2

C the two cliques in G[V1234] (notice that one of these cliques may be empty). Let us distinguish
two subcases.
Subcase 2a: V24 ≠ ∅.

Claim (ii): V (C) is a dominating set (i.e., V r N (C) = ∅). Indeed, suppose that V (C) is not a dominating set. Let w ∈ V24.
Since G is connected, there exists a vertex u ∈ V r N (C) adjacent to some vertex v ∈ N (C). It follows from the
above and from Property (f) that we necessarily have v ∈ V1234. But then G[{u, v, v2, w}] is isomorphic to P4, a
contradiction. Thus V (C) is a dominating set. This proves Claim (ii).

We conclude from Claim (ii) that we may assume in Subcase 2a that V = V1234 ∪ V24 ∪ V (C). This together with Claim (i)
and the fact that V24 is anticomplete to V1234 implies that the vertices in K i

C , for i = 1, 2, are all pairwise twins and hence
we may assume that |K i

C | ≤ 1, for i = 1, 2. Next we will show the following.

Claim (iii): G[V24] is isomorphic to either (1) K1, or (2) 2K1, or (3) P3, or (4) C4. First notice that G[V24] has stability number at
most two. Indeed, if u1, u2, u3 ∈ V24 are three pairwise nonadjacent vertices, then G[{v1, v2, v3, v4, u1, u2, u3}] is
isomorphic to K2,5, a contradiction. Hence G[V24] has at most two connected components, and if it has exactly two
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connected components, then both must be a clique. It follows from Lemma 1 that in this case both cliques have
size one, and thus outcome (2) holds. So we may assume now that G[V24] is connected. Notice that since G[V24] is
an induced subgraph of a cograph, it is also a cograph.
If |V24| = 1, thenwe clearly have outcome (1).We cannot have |V24| = 2, since G[V24] is not a clique (by Lemma 1).
If |V24| = 3, then outcome (3) holds since P3 is the only connected graph on three vertices which is not a clique.
Similarly, it is not difficult to check that C4 is the only connected graph on 4 vertices which is P4-free with sta-
bility number at most 2 and not containing any true twins. So outcome (4) holds if |V24| = 4. Suppose now that
|V24| ≥ 5. Since G[V24] is not a clique, it follows that there exist at least two vertices u1, u2 ∈ V24 which are non-
adjacent. Therefore, α(G[V24]) = 2, and we can partition the vertices in V24 r {u1, u2} as follows: V (ui) is the set of
verticeswhich are adjacent to ui and nonadjacent to {u1, u2}r{ui}, for i = 1, 2; V (u1, u2) is the set of vertices being
adjacent to both u1 and u2. Since α(G[V24]) = 2, it follows that V (ui) induces a clique, for i = 1, 2. Since G[V24] is
a cograph, it immediately follows that V (ui) is complete to V (u1, u2) for i = 1, 2 and that V (u1) is anticomplete
to V (u2). But now every vertex v ∈ V (ui) is a true twin of ui, for i = 1, 2. Thus V (u1) = V (u2) = ∅. Finally,
since |V24| ≥ 5 and since α(G[V24]) = 2 and G[V24] does not contain any true twins, it follows that there must
exist vertices w1, w2, w3 ∈ V (u1, u2) which induce a P3. But now G[{v2, v4, u1, u2, w1, w2, w3}] is isomorphic to
K2,2,2,1, a contradiction. This proves Claim (iii).

We have now shown in Claim (iii), that we may assume in Subcase 2a that G[V24] is isomorphic either to K1, or to 2K1, or
to P3, or to C4. This allows us to construct a B1-EPG representation of G as shown in Fig. 3. The paths PV24 allow to represent
either K1 or 2K1 or P3 or C4. Hence, G is B1-EPG.
Subcase 2b: V24 = ∅.

Suppose that K 1
C and K 2

C are both non-empty. Let v5 ∈ K 1
C and v6 ∈ K 2

C . Consider the 4-cycle C ′ induced by v2, v5, v4, v6.
The vertices v1 and v3 are centers of C ′. If V56 ≠ ∅, then we are exactly in Subcase 2a with C ′ playing the role of C . So we
may assume now that V56 = ∅. Recalling that N (C) = V1234 ∪ V (C), we notice that V254 = V462 = ∅ (see Lemma 5). Thus
G consists of a C4 with two nonadjacent centers and hence G is B1-EPG (see Fig. 4).

From the arguments above, we may now assume, without loss of generality, that K 2
C = ∅. We prove the following.

Claim (iv): Let w1, w2 ∈ K 1
C . Then either N (w1) ⊂ N (w2) or N (w2) ⊂ N (w1). Since w1, w2 are not true twins, without

loss of generality, we may assume there exists a vertex u such that w1u ∉ E and w2u ∈ E. If N (w1) ⊄ N (w2),
then there exists a vertex v such thatw2v ∉ E andw1v ∈ E. Note that u, v are not in N (C). If u, v are nonadjacent,
then G[{u, w2, w1, v}] is isomorphic to P4, a contradiction. If u, v are adjacent, then G[{u, v, w1, v1}] is isomorphic
to P4, a contradiction. Hence such a vertex v does not exist and so N (w1) ⊂ N (w2). This proves Claim (iv).

It follows from Claim (iv) that there exists a vertex w ∈ K 1
C such that N (u) ⊆ N (w) for all u ∈ K 1

C . We claim that w is a
universal vertex in G. Assume by contradiction that there exists a vertex v which is nonadjacent to w. Since G is connected
we may assume that there exists z such that v, z, w induce a P3. Note that v, z are not in N (C). Since N (u) ⊆ N (w) for all
u ∈ K 1

C , it follows that z ∉ K 1
C . But now G[{v, z, w, v1}] is isomorphic to P4, a contradiction.

Clearly, if V rN (C) is empty, then G is B1-EPG. Sowemay assume now that V rN (C) is nonempty. Now suppose by con-
tradiction that G is not B1-EPG and let H be a minimal counterexample. Consider a B1-EPG representation of H r {v1, v2, v3}

(which exists because of the minimality of H). It was shown in [16] that a clique K may be represented only in two ways: as
an edge-clique, i.e., all paths representing vertices of K share at least one edge in the grid, or as a claw-clique, i.e., all paths rep-
resenting vertices of K contain exactly two of the three edges of a given claw (a K1,3) in the grid. Consider the clique K 1

C ∪{v4}.
Wemay assume that the clique K 1

C ∪ {v4} is represented as an edge clique since w is a universal vertex. Indeed, suppose it is
represented as a claw-clique with center (xi, yj). Since the path Pw must intersect all paths of the representation, it follows
that either column xi or row yj at the left of xi or row yj at the right of xi does not contain any paths representing vertices
not belonging to the clique K 1

C ∪ {v4}. Hence, we may delete that the corresponding part and transform the claw-clique into
an edge-clique (see Fig. 5 for an example). Furthermore, since K 1

C ∪ {v4} is maximal, it follows that there exists at least one
grid edge, say row yi between columns xj and xj+1, such that only paths representing vertices in K 1

C ∪ {v4} use this edge.
Clearly, by shifting and extending some paths if necessary, we may obtain a representation in which the paths representing
vertices in K 1

C ∪ {v4} are the only paths using row yi between columns xj and xj+2. But now we may delete Pv4 and add new
paths Pv1 , Pv2 , Pv3 , Pv4 to get a B1-EPG representation of H by representing C as a true pie centered at grid point (xj+1, yi), a
contradiction. This concludes the proof of Theorem 8. �

5. Characterizing B0-VPG cographs

In this section, we will give a characterization of cographs which are B0-VPG.1 It turns out that these graphs are much
simpler to characterize and the only forbidden induced subgraph is the 4-wheel.

In [1], the authors proved the following.

Lemma 9 ([1]). The graph C4 has a unique B0-VPG representation; it consists of two horizontal parallel paths intersecting with
two vertical parallel paths.

1 Note that all remaining cographs are B1-VPG since the cographs are a subclass of permutation graphs which are all B1-VPG.
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Fig. 3. B1-EPG representation of Gwhen V24 ≠ ∅ and C contains a center.

Fig. 4. B1-EPG representation of Gwhen V24 = ∅ and K 1
C , K 2

C ≠ ∅.

Fig. 5. Illustration of how to transform the claw-clique into an edge-clique for K 1
C ∪ {v4}.

From this lemma, one can immediately conclude that the 4-wheel is not a B0-VPG graph. But the following more general
result holds.

Lemma 10. Wk is not B0-VPG for k ≥ 4.

Proof. It is easy to see that in any B0-VPG representation of an induced cycle of length at least four, there must be two
non-intersecting horizontal parallel paths as well as two non-intersecting vertical parallel paths. Consider Wk, k ≥ 4, and
let Ck be the induced k-cycle of the k-wheel. Since k ≥ 4, it follows from the above that there exist at least four vertices, say
v1, v2, v3, v4 (not necessarily consecutive on the cycle), such that the paths Pv1 , Pv3 lie on two distinct horizontal grid lines
and the paths Pv2 , Pv4 lie on two distinct vertical grid lines. But then the path Pu corresponding to the center of Ck cannot
intersect these four paths since it has no bends. Thus,Wk is not B0-VPG. �

We can now state the characterization result for B0-VPG cographs.

Theorem 11. Let G = (V , E) be a cograph. Then the following statements are equivalent:
(i) G is B0-VPG;
(ii) G is W4-free;
(iii) either G is an interval graph or GR is a complete bipartite graph.

Proof. Let G be a cograph. (i) ⇒ (ii) If G is B0-VPG, then it follows from Lemma 10 that G is W4-free.
(ii) ⇒ (iii) Suppose now that G is W4-free. If G is C4-free, then G is an interval graph. So we may assume now that G and

henceGR contains a C4. Let C be an induced 4-cycle inGR with vertex set {v1, v2, v3, v4} and edge set {v1v2, v2v3, v3v4, v4v1}.
By Corollary 6 (i) we have that V (GR) = V13 ∪ V24 ∪ V (C), and by Property (g), V13 is complete to V24. It is easy to see that
V13 must be a stable set since two adjacent vertices w1, w2 ∈ V13 would necessarily be true twins. By symmetry, the same
holds for V24. Thus, we obtain that GR is a complete bipartite graph.

(iii)⇒ (i) Since interval graphs and complete bipartite graphs are clearly B0-VPG, and since the property of being B0-VPG
is maintained by adding true twins, the implication follows. �
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6. Algorithmic aspects

In this section, we present efficient linear time algorithms for the recognition of B0-VPG cographs and for B1-EPG
cographs. Since Theorems 8 and 11 give a characterization of B1-EPG and B0-VPG cographs, respectively, via a short list
of forbidden induced subgraphs, it also immediately provides a polynomial-time algorithm to recognize such graphs. The
brute force algorithm consisting of checking, for each forbidden subgraph, whether the input graph contains an induced
subgraph isomorphic to it, trivially runs in time O(n7) in the case of B1-EPG graphs and in time O(n5) in the case of B0-VPG
graphs. We will show that this can be improved by using the cotree of the input graph G.

In each case,we first run a linear time cograph recognition algorithm, such as those in [6,11,21],which also builds a cotree,
a data structure that fully encodes the cograph. Once a cotree has been constructed for a cograph G, many familiar graph
problems can be solved efficiently using a bottom-up calculation on the cotree, and in our particular case, the detection of
the forbidden induced subgraphs characterizing B0-VPG cographs and B1-EPG cographs.2

6.1. The cotree representation of a cograph and recognizing B0-VPG cographs

The recursive construction of a cograph G in a bottom-up fashion, according to rules (1)–(3) in Section 2, can be repre-
sented by a rooted tree T which records each union and join operation. The leaves of T are labeled by the vertices of G, and
the subtree Tu rooted at an internal node u represents the subgraph Gu of G induced by the labels of its leaves, where u has
as its children the roots of the subtrees of those disjoint cographs H1, . . . ,Hk (k > 1) which were combined to form Gu.
Moreover, u is labeled 0 if the union rule (2) was used, and labeled 1 if the join rule (3) was used. We call u a ‘0’-node or
‘1’-node according to its label.

Among all such constructions, there is a canonical onewhose tree is called the cotree and satisfies the additional property
that on every root-to-leaf path, the labels of the internal nodes alternate between 0 and 1, and every internal node has at
least two children. The cotree can easily be obtained from any such 0/1 labeled tree T by coalescing all pairs of child–parent
nodes in T having the same label, or where the parent has only one child. Vertices x and y of G are adjacent in G if and only
if their least common ancestor in the cotree is labeled by 1. See [10].

We illustrate first how to find an induced W4 of a cograph in linear time, if one exists, using a bottom-up calculation on
the cotree. According to Theorem 11, this will recognize whether G is B0-VPG.

An inducedW4 can appear in only a limited number of ways, namely, join (2K1, 2K1, K1), join (K2,2, K1), or join (K2,1, 2K1).
This justifies the following algorithm, where red, orange, yellow, green and gold tokens stand for the increasing chain of
induced subgraphs K1, 2K1, K2,1, K2,2, K2,2,1, (resp.) where the last graph K2,2,1 isW4.

Algorithm to find an inducedW4 in a cograph
Input: A cotree T for the cograph G.
Output: Confirmation that G is W4-free, or an internal node of T marked with a gold token indicating an inducedW4
has been found.
Method: Mark each leaf with a red token [representing K1].
Continuing bottom up on T : Find an internal node v whose children are marked,
If v is a ‘1’-node mark it as follows:

red if all its children are red [contains a K1]
yellow if exactly one child is orange or yellow and all others are red [contains a K2,1]
green if exactly two children are orange and there are no other children [contains a K2,2]
gold if two children are orange and there is a third child of any color [contains a K2,2,1]
gold if one child is green and (by default) there is another child
gold if one child is yellow and another is orange or yellow

if a gold token is produced, exit ‘‘Found an inducedW4’’ and return v.
If v is a ‘0’-node mark it as follows:

green if it has a green child; else
yellow if it has a yellow child; else
orange (by default it has at least two children) [contains a 2K1]

if the root of the cotree is marked and no gold token has been produced, exit ‘‘G is W4-free’’

This algorithm is easily seen to be linear in the size of the cotree. In practice, if there are many copies ofW4, it will likely exit
very quickly, assuming it finds one low in the cotree. However, it could run on the full cotree if the only W4 appears only

2 It should be pointed out that the problem of testing whether a cograph H occurs as an induced subgraph of a (larger) cograph G, when G and H are both
part of the input, is NP-complete [13]. If the graph H is an arbitrary fixed cograph, then the complexity is clearly polynomial in the size of H , i.e. |G|

|H| , but
it is not known whether it is linear or even FPL (Fixed Parameter Linear), see Section 7.
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Fig. 6. The Hasse diagrams corresponding to the forbidden subgraphs K3,3, K2,5, K2,2,1, K2,2,2,1 and K3,2,1 , respectively.

at the root, or if the graph is W4-free. In the following section we will generalize the algorithm and prove its correctness in
order to recognize B1-EPG graphs.

6.2. Recognizing B1-EPG cographs

The recognition problem of B1-EPG cographs is similar to the recognition of B0-VPG cographs as in both cases the
obstruction set consists of a small number of different completemultipartite graphs. Hence, the recognition problem reduces
to the problem of detecting a complete multipartite graph in a cograph. Since a complete multipartite graph is a cograph it
can be constructed using the join operation and the union operation, as follows: the union of k completemultipartite graphs
H1, . . . ,Hk results in a graph consisting of the vertices and edges of H1, . . . ,Hk, that is, no new complete multipartite graph
is created except for a possibly larger independent set, while the join of H1, . . . ,Hk results in a new complete multipartite
graph, whose maximal independent sets are precisely the maximal independent sets of each of H1, . . . ,Hk.

We already saw in the previous section that aW4, which can be alsowritten as K2,2,1, can be constructed in three different
ways, namely, join (2K1, 2K1, K1), join (K2,2, K1), or join (K2,1, 2K1), in turn K2,1, K2,2 and 2K1 can be created exactly through
join (2K1, K1), join (2K1, 2K1) and union (K1, K1), respectively. These configurations are the rules used to decide which token
is chosen for each node of the cotree in the algorithm above for finding an inducedW4 in a cograph.

We denote a complete multipartite graph H by its non-increasing sorted vector ⟨m1,m2, . . . ,mk⟩, where M(H) = {mi|

i = 1, . . . , k} is the multiset of the sizes of the maximal independent sets of H (for instance the graph K3,2,2,1 is denoted by
⟨3, 2, 2, 1⟩ and M(H) = {3, 2, 2, 1}). The relevant pieces for the construction of a complete multipartite graph H , namely,
the building blocks of H , which we will denote by BBH , consists of (i) all induced subgraphs of H corresponding to complete
multipartite graphs Kmi1 ,...,miℓ

such that {mi1 , . . . ,miℓ} ⊆ M(H) and (ii) all independent sets of size at most the stability
number of H , that is, {⟨k⟩ | k ≤ max(M(H))}. Clearly, any building block can be built from its own set of building blocks.
However, the set of building blocks is not closed under union or join. Indeed, for any complete multipartite graph H , there
exists a complete multipartite graph H ′, which is built from the set BBH and contains H as an induced subgraph, e.g.,
H = K3,2,1 is an induced subgraph of H ′

= K3,3,3, where H ′
= join(3K1, 3K1, 3K1) and 3K1 ∈ BBH . This motivates the fol-

lowing definition: A building block B′ dominates a building block B, if there exists an injection f : M(B) → M(B′), such that
for every x ∈ M(B), f (x) ≥ x. Note that B′ dominating B also implies that B is an induced subgraph of B′. For example, the
graph K3,2 dominates the graph K2,1, but the latter does not dominate the graph 3K1. For any complete multipartite graph
H , the domination relation on the set BBH defines a partially ordered set. In Fig. 6, we illustrate the Hasse diagram of the
sets of building blocks of each of the forbidden subgraphs in Theorems 8 and 11.

Our algorithm is declarative, as in every node u of the cotree we search for its tokens which represent the constructed
building blocks according to a set of rules. We summarize the set of rules for each of the forbidden subgraphs in Table 1
(the table of rules for a graph H is denoted by AH ), which specify the ways a building block can be constructed in a ‘1’-node
and in a ‘0’-node by listing the configurations of the required minimal building blocks in the children of a node. That is, we
search for the specified building blocks or building blocks which dominate them, e.g. if H = K3,2,1 and the original graph G
contains a K2,2, we would like to mark it as containing the building block K2,1. Each configuration is denoted by a sequence
of building blocks concatenated with the • sign if it is a ‘1’-node or with the ◦ sign if it is a ‘0’-node. Instead of representing
tokens with colors, we use the vector notation of a complete multipartite graph. We say that a token b′ dominates another
token b, if the building block corresponding to b′ dominates the building block corresponding to b. For example, if we search
for an induced K2,2,1 and the current node v is a ‘1’-node and it has three children each marked with ⟨2⟩, then v is marked
with the token ⟨2, 2, 1⟩ and ⟨2⟩• ⟨2⟩• ⟨1⟩ is the corresponding configuration. As special cases, we denote ⟨1⟩◦ ⟨1⟩◦ · · · ◦ ⟨1⟩,
t times and t ≥ 2, by t ◦ ⟨1⟩, rather than ⟨t⟩.

Note that the order of the rows in the table of rules of H corresponds to a topological sort of the Hasse diagram of H , in
the sense that every descending induced chain of building blocks in the diagram corresponds to the increasing indices of the
rows of the corresponding tokens. Moreover, in the cases of K2,5, K3,3, K2,2,1 and K2,2,2,1 the partially ordered sets are chains,
while the case of K3,2,1 is different, since it has width two, i.e., there are two building blocks which are incomparable with
respect to inclusion, K2,1 and 3K1. Hence, in the case of K3,2,1, we need to have the space for two tokens in every internal
node of the cotree. We are now able to describe the algorithm for detecting the forbidden subgraphs in Theorem 8, which
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(a) Detecting a K3,3 . (b) Detecting a K3,2,1 .

Fig. 7. A token marked cotree in the search cases of K3,3 and K3,2,1 .

enables us to recognize B1-EPG cographs. We assume that the given graph is a cograph and is associated with its cotree T .
The algorithm consists of calling the following procedure where AH [i] denotes line i for table AH . See Fig. 7 for two examples
of a cotree marked with tokens according to the detection of a K3,3 and a K3,2,1.

Algorithm to find a K2,5 or a K3,3 or a K2,2,1 or a K2,2,2,1 or a K3,2,1 in a cograph
Input: The cotree T for the cograph G, a table of rules AH (H ∈ {K2,5, K3,3, K2,2,1, K2,2,2,1, K3,2,1}).
Output: Confirmation that G is H-free, or an internal node of T marked with a token representing H indicating an
induced H has been found.
Method: Mark each leaf with a ⟨1⟩ token; traverse bottom up on T and mark each internal node v (whose children
have already been marked) with at most two tokens according to the table of rules.
Initialize i := 0.
Initialize token := false.
while no tokenwas found do:

if the children of v satisfy the rules in AH [i],
then token := true,

mark v with the token indicated in AH [i]
if H == K3,2,1 and AH [i] == ⟨2, 1⟩ and AH [i + 1] == ⟨3⟩,

thenmark v with a second token, indicated in AH [i + 1]
i := i + 1

end
if a token representing H (i.e. AH [0]) is produced,

exit ‘‘Found an induced H ’’ and return v

if v is the root of T and no token representing H has been produced,
return ‘‘G is H-free’’,

else return

Theorem 12. The algorithms above find an induced subgraph H in a cograph G if one exists, or declare that G is H-free, for
H ∈ {K2,5, K3,3, K2,2,1, K2,2,2,1, K3,2,1}.

Proof. Let G be a cograph, T its cotree and H ∈ {K2,5, K3,3, K2,2,1, K2,2,2,1, K3,2,1}. Suppose G contains an induced subgraph
isomorphic to H . Then there is a subtree of T rooted in some internal node, whose leaves induce a subgraph of G that con-
tains H . Let u be the lowest node in T , such that Gu contains H . Since H is connected, the node u is a ‘1’ node, and since H is
contained in Gu, there is a subset of the children of u, namely, u1, . . . , uk, which represents induced subgraphs H1, . . . ,Hk
of G, respectively, each dominating a building block of H , such that their join results in a graph H ′ which dominates H . Note
that k > 1, otherwise u has a child u′, such that Gu′ has as an induced subgraph isomorphic to H , contradicting the fact that
u is the lowest such node in T .

We distinguish between the case of H = K3,2,1 and the other cases, since the set of building blocks of H , for H ∈

{K2,5, K3,3, K2,2,1, K2,2,2,1}, forms a chain, while the set of building blocks of K3,2,1 forms a partially ordered set of width 2.
In every iteration of the while loop we search for an induced subgraph that dominates a building block of H . In every

processed row AH [i], we check if the rules are satisfied, i.e., if the children of the current node are marked with tokens that
dominate the tokens in at least one of the configurations in AH [i]. Every loop runs at most the number of rows in AH , since
every non-empty induced subgraph of G has ⟨1⟩ as an induced subgraph.

In the case of H ∈ {K2,5, K3,3, K2,2,1, K2,2,2,1}, the increasing order of the rows in AH corresponds to the decreasing order
of the total order of the building blocks of H , starting from H itself. Hence, once a building block B is detected we can stop
the loop, since B dominates all the building blocks in the following rows in AH .
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Table 1
Tables of rules for detecting a K3,3 , K2,5 , K2,2,1 , K2,2,2,1 and K3,2,1 , respectively.

A⟨3,3⟩ Token ‘1’-node ‘0’-node

0 ⟨3, 3⟩ ⟨3, 3⟩ or ⟨3⟩ • ⟨3⟩ ⟨3, 3⟩
1 ⟨3⟩ ⟨3⟩ ⟨3⟩ or ⟨1⟩ ◦ ⟨2⟩ or 3 ◦ ⟨1⟩
2 ⟨2⟩ ⟨2⟩ ⟨2⟩ or 2 ◦ ⟨1⟩
3 ⟨1⟩ ⟨1⟩ ⟨1⟩

A⟨2,5⟩ Token ‘1’-node ‘0’-node

0 ⟨2, 5⟩ ⟨2, 5⟩ or ⟨2⟩ • ⟨5⟩ ⟨2, 5⟩
1 ⟨5⟩ ⟨5⟩ ⟨5⟩ or ⟨1⟩ ◦ ⟨4⟩ or ⟨2⟩ ◦ ⟨3⟩ or 2 ◦ ⟨1⟩ ◦ ⟨3⟩ or 3 ◦ ⟨1⟩ ◦ ⟨2⟩ or

5 ◦ ⟨1⟩
2 ⟨4⟩ ⟨4⟩ ⟨4⟩ or ⟨1⟩ ◦ ⟨3⟩ or ⟨2⟩ ◦ ⟨2⟩ or 2 ◦ ⟨1⟩ ◦ ⟨2⟩ or 4 ◦ ⟨1⟩
3 ⟨3⟩ ⟨3⟩ ⟨3⟩ or ⟨1⟩ ◦ ⟨2⟩ or 3 ◦ ⟨1⟩
4 ⟨2⟩ ⟨2⟩ ⟨2⟩ or 2 ◦ ⟨1⟩
5 ⟨1⟩ ⟨1⟩ ⟨1⟩

A⟨2,2,1⟩ Token ‘1’-node ‘0’-node

0 ⟨2, 2, 1⟩ ⟨2, 2, 1⟩ or ⟨2⟩ • ⟨2⟩ • ⟨1⟩ or ⟨2, 2⟩ • ⟨1⟩ or ⟨2, 1⟩ • ⟨2⟩ ⟨2, 2, 1⟩
1 ⟨2, 2⟩ ⟨2, 2⟩ or ⟨2⟩ • ⟨2⟩ ⟨2, 2⟩
2 ⟨2, 1⟩ ⟨2, 1⟩ or ⟨2⟩ • ⟨1⟩ ⟨2, 1⟩
3 ⟨2⟩ ⟨2⟩ ⟨2⟩ or 2 ◦ ⟨1⟩
4 ⟨1⟩ ⟨1⟩ ⟨1⟩

A⟨2,2,2,1⟩ Token ‘1’-node ‘0’-node

0 ⟨2, 2, 2, 1⟩ ⟨2, 2, 2, 1⟩ or ⟨2⟩ • ⟨2⟩ • ⟨2⟩ • ⟨1⟩ or ⟨2, 2, 2⟩ • ⟨1⟩ or
⟨2, 2, 1⟩ • ⟨2⟩ or ⟨2, 2⟩ • ⟨2, 1⟩

⟨2, 2, 2, 1⟩

1 ⟨2, 2, 2⟩ ⟨2, 2, 2⟩ or ⟨2⟩ • ⟨2⟩ • ⟨2⟩ or ⟨2, 2⟩ • ⟨2⟩ ⟨2, 2, 2⟩
2 ⟨2, 2, 1⟩ ⟨2, 2, 1⟩ or ⟨2⟩ • ⟨2⟩ • ⟨1⟩ or ⟨2, 2⟩ • ⟨1⟩ or ⟨2, 1⟩ • ⟨2⟩ ⟨2, 2, 1⟩
3 ⟨2, 2⟩ ⟨2, 2⟩ or ⟨2⟩ • ⟨2⟩ ⟨2, 2⟩
4 ⟨2, 1⟩ ⟨2, 1⟩ or ⟨2⟩ • ⟨1⟩ ⟨2, 1⟩
5 ⟨2⟩ ⟨2⟩ ⟨2⟩ or 2 ◦ ⟨1⟩
6 ⟨1⟩ ⟨1⟩ ⟨1⟩

A⟨3,2,1⟩ Token ‘1’-node ‘0’-node

0 ⟨3, 2, 1⟩ ⟨3, 2, 1⟩ or ⟨3⟩ • ⟨2⟩ • ⟨1⟩ or ⟨3, 2⟩ • ⟨1⟩ or ⟨3, 1⟩ • ⟨2⟩ or
⟨2, 1⟩ • ⟨3⟩

⟨3, 2, 1⟩

1 ⟨3, 2⟩ ⟨3, 2⟩ or ⟨3⟩ • ⟨2⟩ ⟨3, 2⟩
2 ⟨3, 1⟩ ⟨3, 1⟩ or ⟨3⟩ • ⟨1⟩ ⟨3, 1⟩
3 ⟨2, 1⟩ ⟨2, 1⟩ or ⟨2⟩ • ⟨1⟩ ⟨2, 1⟩
4 ⟨3⟩ ⟨3⟩ ⟨3⟩ or ⟨1⟩ ◦ ⟨2⟩ or 3 ◦ ⟨1⟩
5 ⟨2⟩ ⟨2⟩ ⟨2⟩ or 2 ◦ ⟨1⟩
6 ⟨1⟩ ⟨1⟩ ⟨1⟩

In the case of H = K3,2,1, there are exactly two building blocks which are incomparable, namely K2,1 and 3K1. If for some
node v in Tu, Gv has two induced subgraphs isomorphic to K2,1 and to 3K1, but has no induced subgraph isomorphic to a
building block that dominates them, thenwe need tomark v with the appropriate tokens, namely, ⟨2, 1⟩ and ⟨3⟩. In the table
of rules for K3,2,1, the row of ⟨3⟩ follows the row of ⟨2, 1⟩. Therefore, when searching for a K3,2,1 in G and a K2,1 is detected,
we check if the following row in the table of rules is satisfied and mark the node accordingly.

Once a building block is found it cannot be destroyed, since no edges are added to or deleted from the current constructed
graph. Hence, when the algorithm reaches node u the subset of children u1, . . . , uk of u, are marked with the tokens which
correspond to H1, . . . ,Hk, respectively. Since u is a ‘1’-node and the join of H1, . . . ,Hk creates H ′ which dominates H , there
is a configuration in AH [0] which is satisfied.

What remains to prove is that the table of rules of H , H ∈ {K2,5, K3,3, K2,2,1, K2,2,2,1, K3,2,1}, is complete and correct. It
is easy to check that for every building block in BBH there is a row in AH and that the rows are ordered according to the
partial order ofBBH . A trivial configuration for a token in AH is the token itself, in other wordswe propagate building blocks
from a child u to a parent u′ in T , since Gu is an induced subgraph of Gu′ . When processing a ‘1’-node, the configurations of
a building block B = ⟨m1,m2, . . . ,mk⟩ correspond to all splits of ⟨m1,m2, . . . ,mk⟩ to smaller subsets. When processing a
‘0’-node, we can only create a larger independent set. Therefore, the configurations of a building block B = ⟨m⟩, correspond
to all different integer sums of the numberm. �

We now turn to analyze the time and space complexity of the algorithm. Let G be a cograph and H ∈ {K2,5, K3,3, K2,2,1,
K2,2,2,1, K3,2,1}. We traverse every leaf once and every internal node twice, first when we process it and second when we
treat it as a child. In each processed internal node, the loop runs at most the number of rows in the table of rules, which is
constant. In each iteration, we check atmost two rows in AH . SinceH is fixed and small, each row in AH has a small number of
configurations to test for. Also, testing if a configuration is satisfied and testing for domination between two building blocks
is proportional to the size of H . For every node we store at most two tokens each of constant size. The cograph recognition
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problem and the construction of the cotree of a cograph takes linear time and space [6,11,21]. Therefore, together with
Theorems 8 and 11, we have the following corollary.

Corollary 13. The recognition problem for B0-VPG cographs and B1-EPG cographs can be solved in linear time and space.

7. Conclusions and open questions

We characterized whether a cograph is a B0-VPG graph or a B1-EPG graph in terms of forbidden induced subgraphs
and presented an algorithm to recognize these classes in linear time and space. The algorithm for detecting an induced
subgraph H ∈ {K2,5, K3,3, K2,2,1, K2,2,2,1, K3,2,1} in a cograph can be generalized for an arbitrary fixed complete multipartite
graph. The proposed algorithm in this paper is written in a declarative way, while an imperative algorithm is usually more
efficient. In [9], we introduce an imperative algorithm for the generalized problem, where we first construct a hierarchical
data structure of the building blocks, and then construct (bottom-up) in each node of the cotree its set of building blocks
from those of its children, instead of iterating over all possible building blocks.

In [13], it is shown that the induced subgraph isomorphism problem for cographs is NP-complete, where G andH are part
of the input. It would be interesting to know if the stronger problem of detecting a complete multipartite graph in a cograph
remains NP-complete or if one can find a polynomial algorithm to solve it. The algorithm from [9] mentioned above shows
that this problem is FPL (Fixed Parameter Linear). The same question could be asked for other special cases of cographs H
beyond complete multipartite graphs. Similarly, one might investigate when G is restricted to be in some subfamilies of
cographs, like threshold graphs and trivially perfect graphs. Note that, like in the case of Damaschke [13], it is known that
induced subgraph isomorphism with H part of the input remains NP-complete even on connected trivially perfect graphs
(Corollary 2 of [4]).

A permutation graph is the intersection graph of straight lines ending in two parallel lines, while a circle graph is the
intersection graph of chords in a circle. It was shown in [1] that the class of circle graphs is contained in the class of B1-VPG
graphs. Since the class of cographs is contained in the class of permutation graphs which in turn is contained in the class of
circle graphs, it will be interesting to study permutation B0-VPG graphs. Similarly, for B1-EPG graphs, the characterization
problems for chordal B1-EPG graphs and permutation B1-EPG graphs remain open.
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