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We explore the evolution of the mechanical properties of a coarsening foam containing colloidal particles

that undergo a sol–gel transition in the continuous phase. This enables us to investigate the impact of

elasto-capillarity on foam mechanics over a wide range of elasto-capillary numbers. Right after initiating

aggregation the foam mechanics is predominantly determined by the elasticity of the bubbles, while the

contributions of the continuous phase become dominant as the colloidal particles form a gel. Taking into

account the confined configuration of the foam skeleton for the formation of a space spanning gel, we

find that for elasto-capillary numbers exceeding unity the foam mechanics can be described as a simple

linear combination of the contributions due to respectively the bubble elasticity and the elastic skeleton.

Surprisingly, the contributions of the elastic skeleton to the overall foam mechanics are larger for smaller

elasto-capillary numbers, scaling as the inverse of the capillary number.

Foams are densely packed assemblies of gas bubbles, in which
the main part of the continuous phase is entrapped in a
skeleton of vertices and Plateau borders. These two aspects
form the base of diverse applications of foams, ranging from
cosmetics to construction materials.1,2 Indeed, we generally
distinguish between liquid and solid foams, where liquid and
solid refers to the state of the continuous phase.1,3 The elasti-
city of a liquid foam is governed by bubble elasticity while the
elasticity of solid foams is governed by the rigidity of the
skeleton. In between these two extremes lies a wide range of
foams, which cannot be easily classified as either liquid or
solid.4–8 The continuous phase is often weakly elastic, such that
both the capillary stresses and the elasticity of the continuous
phase play a role in determining the mechanical properties of
the foam. This competition is captured in the elasto-capillary

number Cael defined as G0

. g
R

� �
, with G0 the shear modulus

of the continuous phase, g the surface tension and R the
bubble size.8–11

From amechanical point of view, the effect of adding bubbles
or drops into an elastic material are fairly well understood.11,12

By contrast, studies exploring the impact of weakly elastic
continuous phases on foam mechanics are limited. Recently,
Gorlier et al.10 reported of such study, using dense emulsions as
continuous phases to probe elasto-capillary numbers ranging

from 0.4 to 30 by changing the emulsion elasticity and the
bubble size. Their study indicated that the increase in elasticity
of a foam due to the presence of an elastic continuous phase
could be described by a unique function of the bubble volume
fraction and the elasto-capillary number.

In this work we expand the range of elasto-capillary
numbers investigated towards lower values. For this purpose,
we exploit colloidal aggregation in the continuous phase of a
SDS-stabilized foam. By probing the temporal evolution of the
foam mechanics during the gelation process, we cover a range
of Cael = 10�2–10 within a single experiment. Our experiments
reveal that the foam elasticity can be described as a simple
linear combination of the bubble elasticity and the elastic
skeleton for Cael 4 1. By contrast, for Cael o 1 the contribution
of the weakly elastic skeleton on the overall foam mechanics
is larger and scales as B1/Cael. Our results are distinct from
those obtained for foams formed in dense emulsions,10 which
indicates that the extent of strengthening of a foam via an elastic
continuous phase somewhat depends on the type of system
used as continuous phase.

Experimental section
Sample

Our foam consists of bubbles that are fully stabilized by sodium
dodecyl sulfate (SDS). The liquid fraction is set to e = 0.15,
which corresponds to the liquid fraction at which we can expect
the impact of an elastic continuous phase on the overall elastic
properties of the foam to be most pronounced.10 As elastic
continuous phase, we choose to use an aggregating colloidal
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system that exhibits elastic properties that slowly increase in
time. The colloidal system is an aqueous suspension of silica
particles (Ludox TMA) with particle diameter of 27 nm. At the
start of any experiment, the conditions are set so that the final
suspension contains 500 mM NaCl, 35 mM SDS and 17 wt%
particles, the latter corresponding to a particle volume fraction
of 8 v/v%.

Prior to final sample preparation, we prepare the following
solutions:

– The pH of the initial stock suspension containing 34 wt%
particles is adjusted to 6.8 by the dropwise addition of a NaOH
solution with pH = 12. Once the pH is adjusted, the stock
suspension is left to equilibrate for 2 days and used within
10 days.

– An aqueous SDS solution containing 555 mM SDS is
prepared with Milli-Q water and used within a week to prevent
hydrolysis of SDS.

– An aqueous solution of NaCl at a concentration of 4 M is
prepared with Milli-Q water.

All materials used were purchased from Sigma-Aldrich and
used without further purification.

To prepare an aggregating suspension for the study of the
gelation process in a rheometer, we first mix the stock suspen-
sion, with Milli-Q water and SDS solution to obtain a prepara-
tion with 19.43 wt% particles and 40 mM SDS. The salt solution
is then added to obtain the final conditions, briefly mixed using
a vortex mixer, and immediately transferred to the rheometer.
The moment the salt solution is added to the suspension is
defined as t = 0.

To generate foams we use the two-syringe technique.13

The setup consists of two disposable syringes coupled by a
connector. The volume of each syringe is 60 mL and the
diameter of their tips is 2 mm. For all preparations of foams
with non aggregating continuous phases, we fill one syringe
with the foaming solution and the other with air that has been
bubbled through perfluorohexane C6F14 (98+%, Alfa Aesar). The
volumes of the liquid and gas phase are set so to obtain the
desired liquid fraction of Vliquid/(Vgas + Vliquid) = 0.15 � 0.01.
Pushing the syringes 15 times forward and backward ensures
complete incorporation of the gas into the liquid. The moment
of foam production is defined as t = 0. For the preparation of
foams with an aggregating continuous phase, we ensure that
the moment of foam production coincides with the moment at
which the particle suspension becomes unstable by starting the
foam production with one syringe filled with the particle suspen-
sion containing SDS and the other with the salt solution and the
air containing traces of C6F14. All foams are immediately trans-
ferred to the rheometer or to test-tubes for further analysis.

All samples are prepared and investigated at a temperature
of 26.0 � 0.5 1C.

Rheometry

To follow the temporal evolution of the mechanical properties
of foams with and without aggregating continuous phase and
that of the aggregating particle suspension itself, we perform
oscillatory strain experiments with commercial rheometers

(Anton Paar MCR 300 and MCR 502). For the foam experiments,
we use a home-made Couette cell with a gap size of 5.02 mm,
which corresponds to at least 50 bubble diameters. The foams
are loaded through a 5 mm hole at the bottom of the cup after
lowering the cylinder to the measurement position, as done in
ref. 14. For the experiments probing the aggregation of the particle
system we use a standard Couette cell with a 1 mm gap, as well
as a plate-plate geometry with various gap sizes. The storage
G0(o) and loss moduli G00(o) are measured at a fixed frequency
of o = 10 rad s�1 using strains within the linear range.

Microscopy

To follow the temporal evolution of the bubble radius, we proceed
by diluting a portion of the foam after different coarsening times,
using a SDS solution as diluting agent. The diluted sample is
sandwiched between two coverslips that are spaced 150 mm from
each other by using a spacer. Images of at least thousand bubbles
are then taken by using a transmission microscope (Keyence
VHX-2000) equipped with a digital camera, using either a 50�
or 150� objective. The average bubble radius is retrieved by
treating the images with ImageJ software.

Results and discussion

As denoted in the introduction, our goal is to explore the
impact of an elastic continuous phase on the mechanical
properties of foams. To scan a wide range of continuous phase
elasticities we choose to study the temporal evolution of a foam
containing colloidal particles that undergo a sol–gel transition.

Our foams have a liquid fraction of e E 0.15 and they are
fully stabilized by SDS. In the absence of a gelling continuous
phase they are prone to coarsening and drainage. Colloidal
gelation within the continuous phase suppresses drainage
quickly after foam preparation, but not the coarsening process.
As shown in the inset of Fig. 1(a), the mean bubble radius R
increases in time independently of whether the continuous
phase undergoes a sol–gel transition or not, the time t being
here defined as the time elapsed since foam production. Due to
traces of C6F14 in the air used in the foam production the
coarsening process is significantly slower than expected when
using pure air. In the latter case we expect that R B t1/2 1 while
we find R B t1/5 for our foams. The reason for this is the low
water solubility of C6F14. Because of this low solubility, the gas
diffusing from small to large bubbles due to the difference in
Laplace pressure is mainly composed of air. The coarsening
process thus entails an increase of the osmotic pressure in the
small bubbles and a decrease in the large bubbles, which
opposes coarsening.15

A change in bubble size generally modifies the mechanical
properties of a foam.16 To be able to account for this we
characterize the temporal evolution of the elasticity of the foam
without gelling continuous phase by performing an oscillatory
strain experiment at an angular frequency of 10 rad s�1 and a
strain well within the linear range. As expected, the storage
modulus Gf decreases in time, as shown in Fig. 1(a). To further
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test whether the sole presence of particles or salt would alter
this development, we also explore the evolution of foams in the
presence of either of both. As shown in Fig. 1(a), the elastic
properties of these foams are within error bars the same as for
the standard SDS foam, which indicates that the presence of
particles or salt does not significantly modify the foam proper-
ties. As denoted by the red continuous line in Fig. 1(a), we find
that the foam elasticity displays a dependence on bubble size,
which is typical for foams for which elasticity arises purely from
the bubble capillary pressure16,17

Gf = a(1 � e)(ercp � e)g/R (1)

e is the foam liquid fraction, ercp is the liquid fraction at
random close packing, g the surface tension of the SDS loaded
water–air interface, g = 37 mN m�1, and a a dimensionless
factor. Assuming for ercp the value obtained for monodisperse
foams, ercp = 0.36, we find a = 0.2 to be significantly smaller
than expected (a E 1.4);16 this is likely due to polydispersity,
which generally entails that ercp o 0.36.18

For the evolution of the elasticity of our foams with gelling
continuous phases, called hereafter the gelling foam, we need
to account for both the evolving capillary pressure and the
evolution of the elastic properties of the continuous phase
undergoing a sol–gel transition. To account for the latter, we
investigate the gelation process of our colloidal silica suspension
in bulk. The suspension is initially charge stabilized and we
induce aggregation by increasing the ion concentration to
500 mM by the addition of a salt solution. The moment of
adding the salt solution is defined as t = 0 and we follow the
evolution of the elastic modulus, by performing oscillatory shear
experiments at an angular frequency of 10 rad s�1 within the
linear range at a strain of 0.002%. In the early stages of aggrega-
tion, the signal is too low to be resolved in our experiment.
However, upon gelation the storage modulus rises sufficiently
to be measurable and subsequently increases substantially, as
shown in Fig. 1(b). Consistent with reaction-limited aggregation19

we find that gelation is rather slow. The rate at which the

elasticity increases beyond the gel-point is reasonably described
by a critical-like power law,Ggb B (t� tg)

2.3, as shown in the inset
of Fig. 1(b). Though power law dependences of the elasticity
on time are not unusual in colloidal gels, the exponents are
generally found to be significantly lower, of the order of 1/3.20–24

However, larger power law exponents are expected from percola-
tion theory,25 and we may conceive that the distinct behaviour
observed for our gel is due to the reaction limited process
governing the aggregation of our colloidal system, as opposed
to the diffusion limited processes that govern the aggregation of
most colloidal systems.

The temporal evolution of the elasticity of the gelling foam
Ggf broadly reflects that expected from the evolution of both the
standard foam and the gelling silica suspension. As shown in
Fig. 2, the elastic modulus first decreases and then increases
again, consistent with the idea that the coarsening induced
decrease of the elastic modulus determines the evolution of Ggf

at early times, while the increase in elasticity of the continuous
phase determines the evolution of Ggf at a later stage. However,
the comparison with the temporal evolution of the elasticity of
the SDS foam denoted as red solid line in Fig. 2 reveals that
aggregation and gelation in the continuous phase leads to an
increase in the foam elasticity at remarkably early times. This
is particularly intriguing considering that the gel-point as
measured for the bulk gel is only reached at tg = 8500 s, marked
as bold circle in Fig. 2. As denoted in our study of the temporal
evolution of the bubble size for the foams with and without a
gelling continuous phase, the coarsening process of our foams
is independent of the nature of the continuous phase (see inset
of Fig. 1(a)). Moreover, we can infer from our study of the
evolution of the elastic modulus of foams in the presence of
respectively salt and particles that the sole presence of either of
both does not significantly alter the surface tension (see main
graph of Fig. 1(a)). The surface tension and the temporal
evolution of the bubble size being the same for all foams
investigated, it is thus reasonable to assume that the contribu-
tion of the bubble assembly to the elasticity of the gelling

Fig. 1 Characteristics of foam and gel evolution. (a) Temporal evolution of the elastic modulus of SDS foams without gelling continuous phase: black
squares denote the foam without any addition, green circles denote the foam containing 500 mM NaCl, blue triangles denote the foam containing 10 v/v%
particles. The solid line corresponds to Gf = a(1 � e)(ercp � e)g/R. Inset: Temporal evolution of average bubble radius R normalized by the value R0 = 25 mm
obtained at t = 0 for a SDS foam without particles (black squares), and a gelling foam containing particles (blue circles). (b) Temporal evolution of elastic
modulus of colloidal silica suspension after initiating aggregation by the addition of salt. Inset: Same data represented as a function of t � tg.
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foams Ggf should correspond to that of the simple SDS foam.
Modelling the bubbles by Kelvin cells we estimate that the
fraction of liquid in the Plateau borders of our foam is B99%;1

contributions of the films should thus be negligible. We can
therefore consider the gelling foam as an open cell system that
will exhibit an elasticity corresponding to the prediction of
Gibson and Ashby3 when Gg c Gf: e

2Ggb, where we denote with
Ggb the elastic modulus of the bulk gel. The bulk gel contribu-
tion is shown as dashed line in Fig. 2. It remains small
compared to Gf over the entire duration of our experiment
such that the distinctly higher values of Ggf as compared to Gf

appear somewhat surprising.
To account for this behaviour, we consider that the gelation

process within the confined configuration of the foam may
differ from that obtained in the 1 mm gap Couette geometry
used to probe the evolution of the aggregating silica particles
in bulk. To test this hypothesis we investigate the temporal
evolution of the mechanical properties of our gelling suspen-
sions using a plate and plate geometry varying the gap size from
1 mm to 0.1 mm. Remarkably, we find that the gel-time and the
subsequent evolution of the elastic modulus indeed depends
on gap-size, as shown in Fig. 3. Within error bars, the hallmarks
of gelation observed by using a Couette geometry with a 1 mm
gap are identical to those obtained using a 1 mm gap plate and
plate geometry. This excludes gravity effects being at the origin
of the observed gap dependence, as we would expect any effect
of sedimentation to be markedly different in both geometries,
the gravity direction being parallel to the shear plane in the
Couette geometry, while it is perpendicular to the shear plane in
the plate and plate geometry. An effect on gap size is somewhat
unexpected, and to our knowledge has not been observed so far
in colloidal gelation. It is suggestive of finite size scaling in
percolation problems.25 Let us note that the gap-size at which
the ‘finite size effect’ becomes significant is of the order of
104 particle diameters, which is significantly larger than usually
observed, finite size effects typically appearing when the system

size is of 10–100 particle diameters. On a purely speculative
base, we may envision that aggregation first leads to the
formation of clusters, and that these clusters form the unit of
a percolation problem. A full understanding of the origin of the
gap size dependence is beyond the scope of this paper. For the
assessment of the foam mechanics, it is sufficient to note
that our experiments testing the effect of a one-dimensional
confinement certainly indicate that the gel time is likely to be
significantly smaller in the confining geometry of a foam than
those measured in bulk. Based on the dependence of the gel
time on the gap size shown in Fig. 4(a), we estimate the gel-
times within the Plateau borders of our foams with diameters
B8 mm to be of the order 360 s. It is important to note that
while the gel time and the absolute magnitude of the elastic
modulus depend on gap size, the functional development does
not. As shown in the insets of Fig. 3, the time dependence of the
gel elasticity obtained at different gap sizes can be scaled onto
a single master-curve by reporting the data as a function of
(t � tg) and by applying a normalization factor a to Gg to match
the values obtained with a 1 mm gap. This scaling enables us to
estimate the temporal development of the elastic modulus in
the confining geometry of a Plateau border Ggc, by using tg and
a obtained by extrapolating the data shown in Fig. 4 to a gap
size corresponding to the dimension of the Plateau borders.

Based on this extrapolation, we postulate that for gelation
within the Plateau borders, Ggc(t) = a � B � (t � tg)

2.3, with
a = 4.1, tg = 360 s and B = 3 � 10�7, B being obtained from the
power-law fit of our reference experiment with dgap = 1 mm (see
inset Fig. 3). Using this time dependence for the elastic
modulus of the gel, we find that e2Ggc(t) exhibits a time
dependence that follows the long time limit of Ggf(t), as shown
in Fig. 5. Assuming that the elasticity of the gelling foam can be
modelled as a parallel connection of two elastic elements with
elastic constants corresponding respectively to the bubble
capillary pressure and the open cell elasticity, we can write

Ggf(t) = Gf(t) + e2Ggc(t) (2)

Fig. 3 Gap-size dependent gelation. Data obtained with a 1 mm Couette
cell are denoted as black squares. All other data are obtained with a plate
and plate geometry and gap sizes as indicated in the graph. Inset: Master
curve obtained by normalizing Gg by a factor a and reporting the data as a
function of t � tg.

Fig. 2 Temporal evolution of the elastic modulus of SDS foams with
gelling continuous phase denoted as black circles. For comparison the
pure SDS foam is shown as red continuous line and the expected con-
tribution of the gel phase as dashed green line. The gel point as measured
in the 1 mm gap Couette geometry is marked as bold circle.
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This simple additive model, shown as dark blue dashed dotted
line in Fig. 5, reasonably describes the data at long times on an
absolute scale, but it fails accounting for the large discrepancy
between Ggf and Gf at shorter times when Gf 4 Ggc. At this
condition, the elasticity of the continuous phase or more
precisely the Plateau borders and nodes seems to lead to an
increase of the foam elasticity that is significantly larger than
one would expect assuming a simple additive effect. This
broadly agrees with the behaviour observed for foams with
elastic continuous phases made of dense emulsions. Indeed
Gorlier et al. proposed to add a coupling term to eqn (2) to
describe the elasticity of their foams.10 The coupling term
linearly depending on the elasticity of the continuous phase,
this amounts to assuming that the weight of Ggc in eqn (2) is
not fixed but varies in time, Ggf(t) = Gf(t) + x(t)Ggc(t). More
precisely we can assume that x depends on the elastic capillary
number, Cael = Ggc/(R/g), a ratio describing the relative resistances

to deformation of respectively the gel and the bubble on a local
scale. As shown in Fig. 6, x = (Ggf(t) � Gf(t))/Ggc(t) exhibits a
distinct dependence on Cael. For Cael 4 1, (Ggf(t) � Gf(t))/Ggc(t)
reaches the limit expected from the open cell model e2. For
Caelo 1, (Ggf(t)� Gf(t))/Ggc(t) is approximately inversely proportional
to Cael, as denoted in the double logarithmic plot shown in the inset
of Fig. 6. In fact, we find that the elasticity of the gelling foam is
reasonably described assuming x = 0.92(1 + Cael

�1)e2 (light blue
dashed line in Fig. 5 and 6) This description is purely empirical,
and differs from that reported by Gorlier et al. who found that
the behaviour of their foam with e = 0.15 was best described with
x = (1 + 10.5Cael

�2/3)e2 for Cael Z 0.5.10

To further compare the mechanical properties of foams with
elastic continuous phases composed of respectively colloidal
gels and dense emulsions, we show in Fig. 7 the factorial
increase of the foam elasticity due to the presence of an elastic
continuous phase G(Cael)/Gf as a function of Cael. Note that
G(Cael) = Ggf in the case of the gelling foam. Clearly, the

Fig. 4 (a) Gap size dependence of the gel time tg. The dashed line corresponds to an empirical description of the data: tg = tg,N(1 � exp{dgap/0.17}) with
tg,N = 8000 s. (b) Gap size dependence of the factor a used to normalize the elastic modulus in the inset of Fig. 3. The dashed line corresponds to a linear
fit, a = 4.1 � 3.2dgap.

Fig. 5 Same data as in Fig. 2. Red continuous line denotes the evolution
of Gf, the green dashed line denotes the expected contributions of the gel
phase when accounting for finite size effects, and the dark blue dashed
dotted line corresponds to the addition of both contributions according to
eqn (2). The light blue dashed line is the description of the data assuming
that the weight of the elastic continuous phase depends inversely on the
elasto-capillary number (see text).

Fig. 6 Weight of the gel contribution x in Ggf = Gf + xGgc shown as a
function of the elasto-capillary number. The behaviour expected from the
Gibson and Ashby prediction for open cell solid foams, x = e2, is reached at
high Cael. At lower Cael, xp 1/Cael, as shown in the inset. The dashed light
blue line describing the data over the entire range of elasto-capillary
numbers investigated corresponds to (Ggf � Gf)/Ggc = b(1 + Cael

�1)e2.
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efficiency of a colloidal gel in increasing the foam elasticity is
larger than that of a dense emulsion. One may conceive that
this difference arises from the different pathways of providing
elasticity to the foam interstices. The gel is formed within the
foam interstices, while the glassy emulsion is forced into the
interstices during foam production. It is thus likely that the gel
couples more efficiently to the local bubble configuration than
the glassy emulsions droplets.

These findings certainly indicate that foam elasticity is not a
unique function of the elasto-capillary number, but also depends
on the system used as a continuous phase. Let us note that the
elasto-capillary number is nonetheless an interesting parameter.
In the case of the gelling foam it denotes a transition at Cael E 1
between the parameter space in which the foam elasticity
rises very quickly with increasing Cael before exhibiting a linear
increase consistent with the simple additive model denoted in
eqn (2). More investigations will be needed to fully elucidate this
trend. However, if confirmed, this would indicate that the foam
elasticity can be efficiently increased by using even a very weak
elastic continuous phase.

Conclusion

In conclusion, our work on the mechanical properties of gelling
foams discloses two distinct findings.

The first relates to colloidal gelation at conditions at which we
usually consider aggregation to be reaction limited,26,27 namely
in the case of colloidal aggregation in suspensions of charged
colloids exhibiting a DLVO-potential with a finite repulsive
barrier.28,29 Our experiments reveal considerable confinement
effects; they denote a decrease of the gel-time with increasing
confinement, consistent with finite size effects in percolation
theory.25 Further evidence that the gelation process in our
systems is broadly consistent with that predicted by percolation

theory is found in the evolution of the elastic modulus beyond the
gel-point. In this post-gel regime, particles and finite clusters
become part of the percolated structure as the bonding probability
increases. In our experiments the bonding probability increases
in time, and we find that the elastic modulus increases as
function of (t � tc)

s with, sE 2.3, an exponent that is within the
range of exponents predicted by percolation theory.25

With respect to foams with elastic continuous phases, our
experiment probing the mechanical properties of a foam with a
continuous phase containing colloidal particles that undergo a
sol–gel transition allowed us to probe the effects of an elastic
interstitial material over a wide range of elasticities. The main
finding is here that the development of the mechanical proper-
ties of the foam with increasing interstitial elasticity exhibits
distinct features. For elasto-capillary numbers exceeding unity
the foam mechanics is well described by a simple additive
model accounting for the contributions of the bubble assembly
and that of an open cell elastic structure. However, for elasto-
capillary numbers below one the effect of an elastic skeleton is
significantly larger than predicted by such simple additive
model. Exploring the exact origin of this enhanced impact of
weakly elastic continuous phases on foam elasticity remains a
topic of future research.
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