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On the genus defect of positive braid knots

LIVIO LIECHTI

We show that the difference between the Seifert genus and the topological 4–genus
of a prime positive braid knot is bounded from below by an affine function of the
minimal number of strands among positive braid representatives of the knot. We
deduce that among prime positive braid knots, the property of having such a genus
difference less than any fixed constant is characterised by finitely many forbidden
surface minors.

57M25, 57M27; 06A06

1 Introduction

The discrepancy between the smooth and the topological category in dimension four
distinctly manifests itself in the behaviour of the smooth and the topological 4–genus
of positive braid knots.

Let g
top
4

, gsmooth
4

and g be the topological 4–genus, the smooth 4–genus and the
Seifert genus, respectively. Then we have

1
2
j�.K/j � g

top
4
.K/� gsmooth

4 .K/� g.K/

for any knot K , where � is the signature invariant. The first inequality is due to
Kauffman and Taylor [9], and the others follow quickly from the definitions, which
we will give shortly. We say the knot K has maximal signature, topological 4–genus
or smooth 4–genus if the above inequality between the respective invariant and the
Seifert genus g is an equality.

Positive braid knots have maximal smooth 4–genus by the resolution of the Thom
conjecture due to Kronheimer and Mrowka [10], and Rudolph’s extension to strongly
quasipositive knots [12]. In strong contrast, a positive braid knot that fails to have
maximal signature also fails to have maximal topological 4–genus by a result of
the author [11]. Using Baader’s classification of positive braid knots with maximal
signature [1], this implies that a positive braid knot of positive braid index greater than
or equal to four never has maximal topological 4–genus.
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The aim of this article is to study the quantity g�g
top
4

, which we call the genus defect,
in the context of positive braid knots, where it also equals gsmooth

4
�g

top
4

. We show that
the genus defect of a positive braid knot is bounded from below by an affine function
of the positive braid index (Theorem 1), and prove the existence of a characterisation
by finitely many forbidden surface minors for the property to have genus defect smaller
than or equal to c , where c is any fixed constant (Theorem 2).

1.1 The genus defect

Let L be an oriented link in the 3–sphere. The Seifert genus g.L/ of the link L is the
minimal genus among connected compact oriented surfaces in the 3–sphere having L

as boundary. The topological 4–genus g
top
4
.L/ of the link L is the minimal genus

among properly topologically locally flatly embedded, connected, compact, oriented
surfaces in the 4–ball having the link L in the 3–sphere as boundary. The smooth 4–
genus gsmooth

4
.L/ of the link L is defined analogously, by replacing “topologically

locally flatly” with “smoothly”.

For large enough parameters p and q , the genus defect of the torus knot T .p; q/ is
greater than one quarter of its Seifert genus by a result of Baader, Feller, Lewark and
the author [3]. Our first result applies to a more general class of knots, but draws a
weaker conclusion. It states that the genus defect of any positive braid knot is bounded
from below by an affine function of the positive braid index. Here, a positive braid
knot on nC1 strands is defined to be the closure of a braid given by a positive word in
the braid generators �1; : : : ; �n (see Section 2 for a precise definition), and the positive
braid index b is the minimal number of strands among positive braid representatives
of the knot.

Theorem 1 For a prime positive braid knot K of positive braid index b , we have

g.K/�g
top
4
.K/�

�
1

16
b
˘
:

The proof of Theorem 1 critically uses the fact that genus defect is inherited from
surface minors (defined in Section 1.2 below). More precisely, we study the linking
graph of positive braid knots, a concept implicitly used by Baader, Feller, Lewark and
the author [1; 3; 11] and rigorously defined by Baader, Lewark and the author [4].
We deduce a series of lemmas to find an affinely increasing (in the positive braid
index) number of certain surface minors zT , zE or zX of the canonical Seifert surface
of any prime positive braid knot. Finally, for the boundary links of the surfaces zT , zE
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and zX, a positive genus defect was established by the author [11] using Freedman’s
disc theorem [7].

We note that it is essential to assume that K is a knot in Theorem 1. Indeed, for prime
positive braid links, there exists no nontrivial lower bound for the genus defect g�g

top
4

in terms of the minimal positive braid index: in Remark 15, we give examples of prime
positive braid links of arbitrary positive braid index for which g D g

top
4

.

1.2 Surface minors

The surface minor relation is a partial order on embedded surfaces in the 3–sphere,
where a surface †1 is a minor of another surface †2 if †1 can be isotoped in the 3–
sphere to an incompressible subsurface of †2 . It was introduced by Baader and
Dehornoy in the context of Seifert surfaces of links [2].

The surface minor relation is well suited for the study of properties of links which are
inherited from Seifert surface minors, for example having genus defect: by a surgery
argument, g � g

top
4
� c is inherited from surface minors if we restrict ourselves to

Seifert surfaces which realise the genus of the links; see for example [3]. Our second
result establishes the existence of a forbidden minor characterisation for the genus
defect of prime positive braid knots. We use that prime positive braid knots have a
canonical genus-minimising Seifert surface (described in Section 2) by a result of
Stallings [13].

Theorem 2 Among prime positive braid knots, for any c � 0, having a genus defect
g�g

top
4
� c is characterised by finitely many forbidden surface minors of the canonical

Seifert surface.

Having maximal topological 4–genus has previously been characterised for prime
positive braid knots by the author [11]. More precisely, this has been done by giving
four explicit forbidden surface minors zT , zE, zX and zY of the canonical Seifert surface.
From this perspective, Theorem 2 is a nonexplicit generalisation of this result.

In order to prove Theorem 2, we use the theory of well-quasiorders. Higman’s lemma
states that finite words in a finite alphabet with the subword partial order are well-
quasiordered, that is, there exists no infinite antichain and no infinite descending
chain [8]. In this context, a subword of a word w is obtained by deleting any number
of letters anywhere in w . For well-quasiordered sets, properties that are passed on to
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minors — that is, smaller elements with respect to the partial order — are of special
interest: they can be characterised by finitely many forbidden minors. Indeed, if
infinitely many forbidden minors were necessary to characterise such a property, then
they would constitute an infinite antichain. Baader and Dehornoy noted that, restricting
to the positive braid monoid on a certain number of strands, Higman’s lemma states that
the subword partial order is a well-quasiorder, and it directly follows that their canonical
Seifert surfaces are well-quasiordered by the surface minor relation [2]. However, the
subword partial order on the positive braid monoid is not a well-quasiorder if we do
not restrict to a fixed number of strands: for example, already �1; �2; �3; : : : is an
infinite antichain. The key input for the proof of Theorem 2 is a reduction to the case
of restricted braid index, so we can apply Higman’s lemma. Such a reduction can be
achieved with the help of Theorem 1.

Remark 3 Theorems 1 and 2 answer two questions asked by the author [11]. In
the context of positive braids and the surface minor relation, there is another relevant
question, asked by Baader and Dehornoy [2]: are canonical Seifert surfaces of positive
braids with the surface minor relation well-quasiordered? While it does not answer the
question of Baader and Dehornoy, Theorem 2 directly gives the application a positive
answer would yield for the genus defect g�g

top
4

of positive braid knots.

Remark 4 Our proof of Theorem 1 is slightly stronger as it in fact gives the stated
bound for the algebraic genus galg , defined by Feller and Lewark [6], which in turn is an
upper bound for the topological 4–genus by Freedman’s disc theorem [7]. Furthermore,
Theorem 1 implies the same bound also for the signature defect g � 1

2
j� j of prime

positive braid knots, by the bound due to Kauffman and Taylor [9]. Theorem 2
consequently holds for the algebraic genus defect and the signature defect as well.

Organisation In Section 2, we introduce the necessary background on positive braids,
their canonical Seifert surfaces and linking graphs, and the surfaces zT , zE and zX.
Sections 3 and 4 are devoted to finding surface minors zT , zE or zX of the canonical
Seifert surfaces of positive braid knots by considering induced subgraphs of the linking
graph. In Sections 5 and 6, we finally prove Theorems 1 and 2, respectively.

Acknowledgements I warmly thank Sebastian Baader, Peter Feller and Lukas Lewark
for many inspiring discussions on the subject of this article. I also thank an anonymous
referee for their helpful comments, in particular for a comment that has led to a
stronger form of Remark 15. The author was supported by the Swiss National Science
Foundation (grant no. 175260).
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2 Positive braids and the linking pattern

A positive braid on nC 1 strands is given by a positive braid word in n generators,
that is, a word in positive powers of the generators �1; : : : ; �n . Usually, a positive
braid is defined to be such a word up to braid relations �i�j D �j�i for ji � j j ¤ 1

and �i�iC1�i D �iC1�i�iC1 for 1 � i < n. As this difference is not crucial for our
purposes, we often blur the distinction between positive braids and words representing
them. We usually say “positive braid” when in fact it would be precise to say “positive
braid word”. A positive braid ˇ can be represented geometrically by taking nC 1

strands and inserting a positive crossing between the i th and iC1st strand for every
occurrence of �i . A positive braid link y̌ is the closure of the geometric representation
of a positive braid ˇ . See Figure 1 for an example of the geometric representation and
the closure of the positive braid given by ˇ D �2

1
�2

2
�1�3�

2
2
�3 . There is a unique (up

to isotopy) genus-minimising Seifert surface †.ˇ/D†. y̌/ for each nonsplit positive
braid link y̌, by a theorem of Stallings [13]. We call the surface †.ˇ/ the canonical
Seifert surface of y̌. It is obtained by taking n discs and connecting them with a
curved handle for every occurrence of �i . On the left in Figure 2, the surface †.ˇ/
is depicted for ˇ D �2

1
�2

2
�1�3�

2
2
�3 . By construction, the canonical Seifert surface

retracts to a collection of rectangles in the plane, called the brick diagram, as shown in
Figure 2. From this diagram, we construct the linking pattern P.ˇ/, a plane graph, by
the following rules. There is one vertex for each rectangle. Furthermore, two vertices

Figure 1: The positive braid link associated with the word �2
1�

2
2�1�3�

2
2�3 .
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Figure 2: Retracting the canonical Seifert surface to bricks, and the associated
linking pattern.

are connected by an edge exactly if the corresponding rectangles share a horizontal side
or if two vertical sides overlap partially (so that the intersection is not equal to one of
the sides); see Figure 2 for an example. If there is an edge between two vertices of the
linking pattern, we also say that the two corresponding rectangles link. We note that
the linking pattern does depend on the braid word, not only on the positive braid link.
We also mention that positive braid links are visually prime by a result of Cromwell [5],
so a positive braid link is prime exactly if the linking pattern is connected.

2.1 The surface minors zT , zE and zX

Let zT , zE and zX be the canonical Seifert surfaces

zT D†.�5
1�2�

4
1�2/; zE D†.�7

1�2�
3
1�2/; zX D†.�2

1�
2
2�1�3�

2
2�3/:

The surface zX is depicted in Figure 2. Figure 3 in addition shows the brick diagrams and
the linking patterns for zT and zE. By a result due to the author [11], we have g

top
4
Dg�1

for @ zT , @ zE and @ zX. Since genus defect is inherited from surface minors, we can
deduce genus defect of a positive braid knot by finding surface minors zT , zE and zX in
the canonical Seifert surface. We do this with the help of the following lemma. An
induced subgraph of a graph � consists of a subset of the vertices of � and all the
edges of � between those vertices.
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Figure 3: The brick diagrams and the linking patterns �zT , �zE and � zX
of zT , zE and zX , respectively.

Lemma 5 If the linking pattern P.ˇ/ for a positive braid ˇ contains one of the
graphs �zT , �zE or �zX as an induced subgraph, then the canonical Seifert surface †.ˇ/
contains zT , zE or zX, respectively, as a surface minor.

Proof Suppose the linking pattern P.ˇ/ for a positive braid ˇ contains one of the
graphs �zT , �zE or � zX as an induced subgraph. Then, the positive braid ˇ contains a
subword ˇ0 whose linking pattern is �zT , �zE or � zX , respectively. For ˇ0, just take all
the letters of ˇ which in the brick diagram define the horizontal edges of the rectangles
corresponding to the vertices of the induced subgraph. Here, it is important that the
subgraph �zT , �zE or � zX is induced: if it were not, then the above definition of ˇ0

would yield a braid word whose linking pattern might have more edges.

The canonical Seifert surface †.ˇ0/ is a surface minor of †.ˇ/. It only remains to show
that the canonical Seifert surface †.ˇ0/ equals zT , zE or zX, respectively. This follows
from the fact that the linking pattern can be enriched with some additional information,
encoded by an edge orientation, so that it uniquely determines the positive braid link
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type. This is a result due to Baader, Lewark and the author [4], and this enriched graph
is called the linking graph. We note that while the linking graph a priori contains more
information than the linking pattern (which is the unoriented version of the linking
graph), it does not in case the underlying abstract graph is �zT , �zE or � zX . Indeed,
removing any edge of one of the graphs �zT , �zE or � zX divides the graph into two
connected components, at least one of which is symmetric with respect to a reflection
in the plane. The uniqueness now follows from Corollary 8 in [4]. In particular, we get
that y̌0 has the same link type as the boundary link @ zT ; @ zE or @ zX, respectively, so the
canonical Seifert surface †.ˇ0/ is isotopic to zT ; zE or zX, respectively.

2.2 The positive braid index

Recall that the positive braid index of a positive braid link is the minimal number of
strands necessary to represent the link as the closure of a positive braid. The following
lemma gives a condition under which a positive braid ˇ cannot be of minimal positive
braid index, that is, does not realise the positive braid index of its closure y̌. It is stated
also by the author in [11]. As the proof there contains a mistake, we give a new proof.
Let the subword of a positive braid ˇ induced by a subset S of generators �i be the
word obtained from ˇ by deleting all occurrences of generators that are not in S.

Lemma 6 Let ˇ be a prime positive braid on at least three strands. If, for some i , the
linking pattern of the subword of ˇ induced by the generators �i and �iC1 is a path,
then ˇ is not of minimal positive braid index.

Proof We can assume the subword of ˇ induced by the generators �i and �iC1 to
be �k

i �iC1�i�
l
iC1

for some positive numbers k and l . This can be achieved by cyclic
permutation and possibly reversing the order of the word ˇ , operations that do not
change the positive braid index. Similarly, we can assume that all occurrences of
generators with index smaller than i take place before the last occurrence of �i , and,
likewise, all occurrences of generators with index greater than i C 1 take place after
the first occurrence of �iC1 . The situation is schematically depicted in Figure 4 on the
left. The strand depicted in thick red passes below the two strands it crosses. Thus, the
closure of ˇ is isotopic to the closure of the braid depicted schematically in Figure 4
on the right. (In the figure, only the closure of the strand which is moved in the isotopy
is shown, in dashed red.) This braid is still positive but has one strand less than ˇ .
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ˇ1

ˇ2

ˇ1

ˇ2

�

Figure 4

3 Induced subgraphs of the linking pattern and surface
minors

Let K be a prime knot obtained as the closure of a positive braid ˇ on b strands. We
denote by †.ˇ/ and P.ˇ/ the canonical Seifert surface of y̌ and the linking pattern
of ˇ , respectively. For I � f1; : : : ; b � 1g, let ˇI be the subword of ˇ induced by
generators with indices in I. Furthermore, let †I .ˇ/ be the surface minor of †.ˇ/
given by the vertical discs and curved handles corresponding to generators with indices
in I. Similarly, we denote by PI .ˇ/ the subgraph of the linking pattern induced by
the vertices corresponding to braid generators with indices in I. For example, with this
notation, Lemma 6 states that for a positive braid ˇ on b � 3 strands, if Pfi;iC1g.ˇ/

is a path for some 1 � i < b � 2, then ˇ is not of minimal positive braid index. We
write Pi instead of Pfig for index sets with one element.

Our proof method requires us to find the linking patterns corresponding to zT , zE or zX
as induced subgraphs of the linking pattern of prime positive braid knots. An important
way for us to achieve this is the following. Sometimes, it is possible to find an induced
subgraph of the linking pattern with a vertex of degree three. In some cases, it is even
possible to prolong the arms of this graph (while staying an induced subgraph of the
linking pattern) until it is a linking pattern corresponding to zT , zE or zX. In this context,
we make use of the following observation:
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Lemma 7 Let ˇ be a prime positive braid on b strands, and let v be a vertex of Pi.ˇ/

for some 1� i � b� 1.

(i) For any natural number 1� j � i � 1, Pfi�j ;:::;ig contains an induced path that
begins at v and is of length at least j .

(ii) For any natural number 1� j � b� i � 1, Pfi;:::;iCjg contains an induced path
that begins at v and is of length at least j .

Proof We give a recipe for finding induced paths starting at a given vertex of the
linking pattern (thought of as a brick in the brick diagram) and going in a chosen
direction (right or left) in the standard visualisation of the brick diagram.

(1) Fix your chosen brick v . Depending on whether the brick v is linked with a
brick in the column on the right (left) or not, proceed with (3) or (2), respectively.

(2) If the brick v is not linked with a brick in the column on the right (left), add a
brick w to the path. Here, w is the brick either above or below v , depending
on which one is closer to a brick in the same column linking with a brick in the
column on the right (left). Then go back to (1) with v D w .

(3) If the brick v is linked with at least one brick on the right (left), add a linked
brick w on the right (left) to the path. Here, the brick w is chosen to be as close
as possible to a brick in its column that is linked with a brick in the column to
its right (left). Then go back to (1) with v D w .

Choosing the brick closest to a linking brick in step (3) ensures that there is no linking
with the former column when adding bricks as in step (2) until again arriving at step (3).
Figure 5 illustrates the induced path starting at the endpoint on the left chosen by this
recipe for a sample brick diagram.

Figure 5

Algebraic & Geometric Topology, Volume 20 (2020)



On the genus defect of positive braid knots 413

v

Figure 6

The following lemma shows how we can use Lemma 7 in order to find surface mi-
nors zT , zE or zX. We prove several similar statements in Section 4.

Lemma 8 Let K be a prime knot obtained as the closure of a positive braid ˇ

of minimal positive braid index b . Furthermore, let i be a natural number such
that 5< i < b� 6. If Pi.ˇ/ and PiC1.ˇ/ are connected by exactly one edge in P.ˇ/,
then †fi�5;:::;iC6g.ˇ/ contains zT , zE or zX as a surface minor.

Proof Up to cyclic permutation, ˇfi;iC1g equals �a
i �

b
iC1

�c
i �

d
iC1

, where a; b; c; d > 0

are integers (the inequality is strict due to the assumption that the closure is prime).
Either a; c � 2 or b; d � 2. Otherwise, Pfi;iC1g.ˇ/ is a path and ˇ is not of minimal
positive braid index by Lemma 6. By symmetry, we may assume a; c�2. Assume a�3

for a moment. Then, ˇ contains the subword �3
i �iC1�

2
i �iC1 . In particular, Pfi;iC1g.ˇ/

contains the graph D5 as an induced subgraph, as indicated in Figure 6. We now apply
Lemma 7(ii) for v and j D 5. This yields an induced path in Pfi;:::;iC6g that is of
length at least 5 and starts at the vertex v . Furthermore, no vertex (except for v ) of
this path is connected to a vertex of Pi.ˇ/ in P.ˇ/. This follows from our assumption
that Pi.ˇ/ and PiC1.ˇ/ are connected by exactly one edge in P.ˇ/. As the longest
arm of �zE is of length 6, we obtain that †fi;:::;iC6g.ˇ/ contains a surface minor zE.
Therefore, we can now restrict to the case aD c D 2. By symmetry, if in the beginning
we assumed b; d � 2, using the same strategy we could apply Lemma 7(i) and find
a surface minor zE of †fi�5;:::;iC1g.ˇ/. From now on, we often do not mention this
symmetry anymore.

Now, we consider the generator �i�1 . Assume that the first occurrence of �i�1 happens
before the first occurrence of �i in ˇ . There has to be another occurrence of �i�1

before the last occurrence of �i in ˇ , otherwise Pfi�1;ig.ˇ/ is disconnected and y̌ is
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v v v

Figure 7

not prime. Independently of where this occurrence takes place, we can find a surface
minor zE or zX of †fi�1;:::;iC6g.ˇ/ by adding a path at the vertices v depicted in
Figure 7, using Lemma 7.

Now consider Figure 8. We have just shown that we may restrict to the case where
there are no crossings in the two regions marked with “X”. Hence, there must be at
least one crossing in the region marked with “�”. Otherwise, the i th strand (the thick
strand depicted in Figure 8) is left invariant by the permutation given by ˇ , and y̌ is
not a knot. Furthermore, in at least one of the two regions marked with “?”, there must
be at least one crossing. Otherwise, y̌ is not prime. If there is no crossing in the upper
of the two regions marked with “?”, we find a surface minor zT in †fi�4;:::;iC4g.ˇ/

by adding a path at the vertices w (to the left) and v (to the right) shown in Figure 9,
using Lemma 7. Similarly, we find a surface minor zT in †fi�4;:::;iC4g.ˇ/ if there is
no crossing in the lower of the two regions marked with “?”.

We have shown that we may restrict to the case where, up to possibly deleting some
generators �i�1 , ˇfi�1;i;iC1g equals �i�i�1�i�

b
iC1

�i�1�i�i�1�i�
d
iC1

. Applying two
braid relations �i�i�1�i ! �i�1�i�i�1 yields �i�1�i�i�1�

b
iC1

�2
i�1
�i�i�1�

d
iC1

, the
linking pattern of which contains D5 as an induced subgraph, as indicated in Figure 10.

X

X

�

?

?

Figure 8
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v

w

Figure 9

Note that by the manipulations we just described, we never change an occurrence
of �iC1 . In particular, †fi�1;:::;iC6g.ˇ/ contains a surface minor zE by adding a path
starting at the vertex v in Figure 10, using Lemma 7.

The statement of Lemma 8 also holds if Pi.ˇ/ and PiC1.ˇ/ are connected by exactly
two edges in P.ˇ/.

Lemma 9 Let K be a prime knot obtained as the closure of a positive braid ˇ

of minimal positive braid index b . Furthermore, let i be a natural number such
that 5< i < b�6. If Pi.ˇ/ and PiC1.ˇ/ are connected by exactly two edges in P.ˇ/,
then †fi�5;:::;iC6g.ˇ/ contains zT , zE or zX as a surface minor.

Proof If Pi.ˇ/ and PiC1.ˇ/ are connected by exactly two edges in P.ˇ/, then ei-
ther ˇfi;iC1gD �

a
i �

b
iC1

�c
i �

d
iC1

�e
i or ˇfi;iC1gD �

a
iC1

�b
i �

c
iC1

�d
i �

e
iC1

. In particular, up
to cyclic permutation of ˇ , ˇfi;iC1gD�

aCe
i �b

iC1
�c

i �
d
iC1

or ˇfi;iC1gD�
aCe
iC1

�b
i �

c
iC1

�d
i ,

respectively. Hence, Lemma 8 gives the existence of a surface minor zT , zE or zX
of †fi�5;:::;iC6g.ˇ/.

v

Figure 10
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4 Finding minors zT , zE and zX

The goal of this section is to give the means for detecting surface minors zT , zE and zX
of canonical Seifert surfaces of prime positive braid knots. We establish a series of
lemmas in the spirit of Lemma 8 with changing assumptions on the braid ˇ , providing
such surface minors. These lemmas basically constitute a case distinction which allows
us to prove Proposition 14 in Section 5, from which we deduce Theorem 1.

Lemma 10 Let K be a prime knot obtained as the closure of a positive braid ˇ

of minimal positive braid index b . Furthermore, let i be a natural number such
that 6 < i < b � 6. If ˇfi;iC1g ends, up to cyclic permutation, with �c

iC1
�b

i �
a
iC1

for a; b; c � 2, then †fi�6;:::;iC6g.ˇ/ contains zT , zE or zX as a surface minor.

Proof We only have to consider the case where there are at least two additional occur-
rences of �i in ˇfi;iC1g . Otherwise, there cannot be three or more edges between Pi.ˇ/

and PiC1.ˇ/ in P.ˇ/, so we are done by Lemmas 8 and 9. In particular, ˇfi;iC1g

contains �d
i �

c
iC1

�b
i �

a
iC1

as a subword, where a; b; c; d � 2. If one out of a, b , c or d

is strictly greater than 2, then †i;iC1.ˇ/ contains zX as a surface minor; compare with
the situation in Figure 11 (which is obtained by a cyclic permutation and, if need be,
taking a subword). So, we are left with the case where, up to cyclic permutation, we
have ˇfi;iC1g D �i�

e
iC1

�i�
2
iC1

�2
i �

2
iC1

for e � 1.

Now we consider how the occurrences of the generator �i�1 fit into the fixed sub-
word ˇfi;iC1g D �i�

e
iC1

�i�
2
iC1

�2
i �

2
iC1

. Assume that the first occurrence of �i�1

happens before the first occurrence of �i in ˇfi�1;i;iC1g . There has to be another
occurrence of �i�1 before the last occurrence of �i in ˇfi�1;i;iC1g , otherwise Pfi�1;ig

is disconnected and y̌ is not prime. In each case, we can find a surface minor zX
of †fi�1;i;iC1g (by contracting the dotted edge if necessary; compare with Remark 11)

Figure 11
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Figure 12

as shown in Figure 12. By cyclic permutation, an occurrence of �i�1 in ˇfi�1;i;iC1g

after the last occurrence of �i also yields a surface minor zX. So, let �i�1 occur only
after the first occurrence of �i , but before the last one. Since �i occurs (counted with
multiplicity) exactly four times in ˇfi�1;i;iC1g , the only way for Pi�1.ˇ/ and Pi.ˇ/ to
be connected by at least three edges in P.ˇ/ is for �i�1 to split every pair of occurrences
of �i in ˇfi�1;i;iC1g . Otherwise, we are again done by Lemmas 8 and 9. In this
case, ˇfi�1;i;iC1g must contain �2

i �
2
iC1

�i�1�i�i�1�i�
2
iC1

as a subword. Applying the
braid relation �i�i�1�i! �i�1�i�i�1 yields the braid word �2

i �
2
iC1

�2
i�1
�i�i�1�

2
iC1

,
whose canonical Seifert surface contains zX as a surface minor. This can be seen by
contracting the dotted edge in Figure 13; compare with Remark 11.

Remark 11 The linking patterns shown in Figures 12 and 13 with a dotted edge
contain the graph � zX as an induced subgraph, but only after contracting the dotted
edge. We note that the associated canonical Seifert surfaces also contain the surface zX
as a surface minor. This can be seen by cutting the ribbon of the surface which retracts
to the vertical side segment of the brick diagram intersected by the dotted edge, as
indicated in Figure 14. After cutting the ribbon in Figure 14, instead of the two Hopf
bands corresponding to the vertices connected by the dotted edge, there is only one
Hopf band, which retracts to the Hopf band depicted in blue. So, after cutting this

Figure 13
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Figure 14

vertical ribbon of one of the surfaces corresponding to the intersection patterns with a
dotted line in Figure 12 or Figure 13, what is left is a plumbing of positive Hopf bands
along the tree � zX . There is only one such surface up to ambient isotopy, namely zX ;
see for example [4]. Hence, zX is indeed a surface minor.

Lemma 12 Let K be a prime knot obtained as the closure of a positive braid ˇ of
minimal positive braid index b . Let i be a natural number such that 6 < i < b � 6.
Assume furthermore that, up to cyclic permutation, ˇfi�1;i;iC1g ends with �2

i and no
braid moves

�i�i�1�i! �i�1�i�i�1; �i�iC1�i! �iC1�i�iC1

can be applied to any cyclic permutation of ˇ . Then †fi�6;:::;iC6g.ˇ/ contains zT , zE
or zX as a surface minor.

Proof We first arrange by cyclic permutation that ˇfi�1;i;iC1g does not end with �3
i

(but still ends with �2
i ). Now, if ˇfi�1;i;iC1g ended with �i�1�iC1�

2
i , using Lemma 7

vw

Figure 15

Algebraic & Geometric Topology, Volume 20 (2020)



On the genus defect of positive braid knots 419

v

a

Figure 16: Here and in other figures later on, a variable z in a brick without
a depicted vertex stands for z� 2 additional horizontal segments in the brick.

one could find a surface minor zT by adding a path at the vertices w (to the left) and v
(to the right) indicated in Figure 15. So, we can assume without loss of generality (using
the symmetry of the situation) that only �i�1 splits the last two occurrences of �i , that
is, the end �3

i of ˇfig gets split into �i�
a
i�1
�2

i in ˇfi�1;i;iC1g for some a� 1. Actually,
this occurrence of �i�1 must be to a power a� 2, otherwise a braid move �i�i�1�i!

�i�1�i�i�1 is possible. So, we have to consider the case where both ˇfi�1;i;iC1g

and ˇfi�1;ig end with �b
i �

a
i�1
�2

i . If b � 2, then we are done by Lemma 10, so we
assume b D 1 and consider the case where ˇfi�1;ig ends with �i�1�i�

a
i�1
�2

i for
some a� 2.

We now again consider the generator �iC1 . If ˇfi�1;i;iC1g ends with �iC1�i�1�i�
a
i�1
�2

i ,
we find a surface minor zE by adding a path at the vertex v shown in Figure 16, using
Lemma 7. Recall for this that we can assume at least one more occurrence of �iC1

and �i earlier in ˇ , because this is the only way for PiC1.ˇ/ and Pi.ˇ/ to be connected
by at least three edges in P.ˇ/ (otherwise, we are done by Lemma 8 or Lemma 9). With
the same argument, we can also assume another occurrence of �i�1 before the additional
occurrence of �i . So, we can assume that ˇfi�1;i;iC1g ends with �i�

b
i�1
�i�

a
i�1
�2

i ,
where a; b � 2, since otherwise a braid move �i�i�1�i! �i�1�i�i�1 is possible.

Up to now, we have reduced the proof to the case where the induced subword ˇfi�1;ig

ends with �d
i�1
�c

i �
b
i�1
�i�

a
i�1
�2

i , where a; b � 2 and c; d � 1. Now, we distinguish
cases depending on where the last occurrence of �iC1 happens in ˇfi�1;i;iC1g .

Case 1 (c � 2 and the last occurrence of �iC1 splits �c
i ) Similarly to what we did

in Figure 16, we can find a surface minor zE by adding a path at the vertex v shown
with Figure 17, left, using Lemma 7.

Case 2 (the last occurrence of �iC1 happens before �c
i ) Again, we can find a surface

minor zE by adding a path at the vertex v shown in Figure 17, right, using Lemma 7.
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v

a

b

c

d
v

b

c

d

Figure 17

Lemma 13 Let K be a prime knot obtained as the closure of a positive braid ˇ of
minimal positive braid index b . Let i be a natural number such that 7 < i < b � 7.
Assume furthermore that no braid moves

�i�1�i�2�i�1! �i�2�i�1�i�2;

�i�i�1�i! �i�1�i�i�1;

�iC1�iC2�iC1! �iC2�iC1�iC2;

�i�iC1�i! �iC1�i�iC1

can be applied to any cyclic permutation of ˇ . If ˇfi;iC1g has at least two occurrences
of �iC1 to a power � 2, then †fi�7;:::;iC7g.ˇ/ contains zT , zE or zX as a surface minor.

By symmetry, Lemma 13 also holds if ˇfi�1;ig has at least two occurrences of �i�1 to
a power � 2.

Proof Suppose first that at least two occurrences of �iC1 to a power � 2 in ˇfi;iC1g

get split by occurrences of �iC2 . Then, these occurrences of �iC2 must be to a
power � 2, otherwise, a braid move �iC1�iC2�iC1 ! �iC2�iC1�iC2 is possible.
In particular, ˇfi;iC1;iC2g contains the subword �iC1�

2
iC2

�2
iC1

�2
iC2

�iC1 . For Pi.ˇ/

and PiC1.ˇ/ to be connected by at least three edges in P.ˇ/, there must be at least
one more occurrence of �iC1 . It follows that, up to cyclic permutation, ˇfiC1;iC2g

contains the subword �iC1�
2
iC2

�2
iC1

�2
1C2

�2
iC1

, and hence †fiC1;iC2g.ˇ/ contains zX
as a surface minor; compare with Figure 11.
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vw

b a

d c

Figure 18

Now, we suppose at most one occurrence of �iC1 to a power �2 in ˇfi;iC1g gets split by
an occurrence of �iC2 . We think of ˇfi;iC1;iC2g as a product of factors .�x

i �
y
iC2

�iC1/,
where x;y � 0. There are at least two factors with x D 0, since ˇfi;iC1g has at least
two occurrences of �iC1 to a power � 2. Furthermore, there is at most one factor
with xD 0 but y � 1, since we suppose at most one occurrence of �iC1 to a power � 2

in ˇfi;iC1g gets split by an occurrence of �iC2 . In particular, there is at least one
factor .�iC1/. For PiC1.ˇ/ and PiC2.ˇ/ to be connected by at least three edges
in P.ˇ/, there must be at least three factors with y � 1. Hence, there must be at least
two factors with x;y � 1. We now delete every occurrence of �iC1 , except the ones
from the factor .�iC1/, the one from the factor right in front of the factor .�iC1/, and
one of the factors with x;y � 1. We do this so that after this deletion, we obtain, up to
cyclic permutation, ˇfi;iC1;iC2g D �

d
i �

c
iC2

�iC1�
b
i �

a
iC2

�2
iC1

for some a; b; c; d � 1.
Note that even though we have an occurrence of �2

iC1
in ˇfi;iC1;iC2g , Lemma 12

does not apply directly, since the condition on the braid moves might not be satisfied
anymore, as we deleted some generators �iC1 . However, we can use the argument at
the beginning of its proof and find a surface minor zT by adding paths at vertices w (to
the left) and v (to the right) that are indicated in Figure 18.

5 Linear growth of the genus defect

We are ready to show that for prime positive braid knots, the genus defect g � g
top
4

grows linearly with the positive braid index. The following proposition is all we need
to prove Theorem 1:

Proposition 14 Let K be a prime knot obtained as the closure of a positive braid ˇ

of minimal positive braid index b . Let i be any natural number such that 7< i < b�7.
Then, †fi�7;:::;iC7g.ˇ/ contains zT , zE or zX as a surface minor.
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Proof of Theorem 1 Let †j D †f1C16j ;:::;15C16jg.ˇ/. By Proposition 14, †j

contains zT , zE or zX as a surface minor for each integer j such that 0� 16j � b�16.
Since the disjoint union of all surfaces †j is an incompressible subsurface of †.ˇ/,
we get that †.ˇ/ contains a disjoint union of at least

�
1

16
b
˘

copies of zT , zE or zX as
a surface minor. Hence, g�g

top
4
�

�
1

16
b
˘

holds for y̌, since genus defect is inherited
from surface minors.

Proof of Proposition 14 We start by repeatedly applying a cyclic permutation fol-
lowed by one of the braid moves below, until there is no cyclic permutation allowing
for a possible braid move

�i�1�i�2�i�1! �i�2�i�1�i�2;

�i�i�1�i! �i�1�i�i�1;

�i�iC1�i! �iC1�i�iC1;

�iC1�iC2�iC1! �iC2�iC1�iC2

anymore. This process might not be unique. However, it terminates within a finite
number of braid moves, since each of these braid moves either reduces the sum of
powers of generators �i or the sum of powers of generators �i�1 , �i and �iC1 . As
this process does not change the canonical Seifert surface †fi�7;:::;iC7g.ˇ/, we may
assume that ˇ is the result of such a process, that is, no braid move

�i�1�i�2�i�1! �i�2�i�1�i�2;

�i�i�1�i! �i�1�i�i�1;

�i�iC1�i! �iC1�i�iC1;

�iC1�iC2�iC1! �iC2�iC1�iC2

can be applied to any cyclic permutation of ˇ .

If there is an occurrence of �i to a power � 2 in ˇfi�1;i;iC1g , we are done by
Lemma 12. So we assume this is not the case, and think of ˇfi�1;i;iC1g as a product of
factors .�x

i�1
�

y
iC1

�i/, where either x>0 or y>0. If there is more than one occurrence
of �i�1 or �iC1 to a power � 2 in ˇfi�1;i;iC1g , we are done by Lemma 13. So we
may assume there is at most one factor .�x

i�1
�

y
iC1

�i/ with x � 2 and at most one such
factor with y � 2. Furthermore, we may assume Pi.ˇ/ and PiC1.ˇ/ to be connected
by at least three edges in P.ˇ/, and likewise for Pi�1.ˇ/ and Pi.ˇ/, since, otherwise,
we are done by Lemmas 8 and 9. It follows that ˇfi�1;i;iC1g consists of at least three
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vw

� �

yx

Figure 19

factors .�x
i�1
�

y
iC1

�i/. Note that factors .�i�1�i/ and .�iC1�i/ are ruled out by the
braid relations we performed at the beginning of the proof. Indeed, if a factor .�i�1�i/

or .�iC1�i/ appeared in ˇfi�1;i;iC1g , then so would, up to cyclic permutation, a sub-
word �i�i�1�i or �i�iC1�i , respectively. But this would allow for one of the forbidden
braid moves. In summary, there is at least one factor .�i�1�iC1�i/ in ˇfi�1;i;iC1g .

If ˇfi�1;i;iC1g ends, up to cyclic permutation, with .�x
i�1
�

y
iC1

�i/.�i�1�iC1�i/ for
numbers x;y � 1, we find a surface minor zT by adding a path at the vertices w (to
the left) and v (to the right) shown in Figure 19, using Lemma 7. Note that in order to
obtain the surface minor zT , we need to add a path to w and v not passing through the
bricks marked by “�”. (This is because we are looking for an induced subgraph �zT .)
However, if we assume PiC1.ˇ/ and PiC2.ˇ/ to be connected by at least three edges
in P.ˇ/, this can be achieved for v : the vertex corresponding to the brick marked
by “�” has at most two edges connecting to a vertex from PiC2.ˇ/, so there must
exist at least one other vertex of PiC1 that is connected by an edge to a vertex of PiC2 .
Similarly, this can be done for w if Pi�2.ˇ/ and Pi�1.ˇ/ are connected by at least
three edges in P.ˇ/. If either PiC1.ˇ/ and PiC2.ˇ/ or Pi�2.ˇ/ and Pi�1.ˇ/ are not
connected by at least three edges in P.ˇ/, we are already done by Lemmas 8 and 9.

So far, we have shown that we can assume the factors before and after (in the cyclic order)
the factor .�i�1�iC1�i/ to be .�a

i�1
�i/ and .�b

iC1
�i/, respectively, for a; b� 2. In this

case, we may assume there is at least one other factor .�x
i�1
�

y
iC1

�i/. Otherwise, Pi.ˇ/

and PiC1.ˇ/ are connected by only two edges in P.ˇ/, and we are done by Lemma 9.
For this factor, only x D y D 1 is possible, since we already assumed there is at most
one occurrence of �i�1 or �iC1 to a power � 2 in ˇfi�1;i;iC1g . In case there was more
than one such additional factor, ˇfi�1;i;iC1g would contain, up to cyclic permutation,
subsequent factors .�x

i�1
�

y
iC1

�i/.�i�1�iC1�i/ for x;y � 1, a case we have already
dealt with. Altogether, we may assume that, up to cyclic permutation, ˇfi�1;i;iC1g is
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a

b

Figure 20

given by .�b
iC1

�i/.�i�1�iC1�i/.�
a
i�1
�i/.�i�1�iC1�i/ for a; b�2. The corresponding

brick diagram is depicted in Figure 20.

We now consider the generator �i�2 . We first note that in ˇfi�2;i�1;i;iC1g , there must
be an occurrence of �i�2 either before the first occurrence of �i�1 or after the last
occurrence of �i�1 . Otherwise, the i�1st strand is left invariant by the permutation
given by ˇ (as depicted in thick red in Figure 20), and y̌ is not a knot. Up to cyclic per-
mutation, we can assume there is an occurrence of �i�2 after the last occurrence of �i�1 .

There must be other occurrences of �i�2 splitting occurrences of �i�1 . Otherwise, P.ˇ/
is disconnected and y̌ is not prime. We now distinguish cases depending on where
occurrences of �i�2 happen.

Case 1 (the occurrence of �a
i�1

in ˇfi�1;i;iC1g is split by �i�2 ) The occurrence
of �i�2 is to a power � 2, otherwise a braid move �i�1�i�2�i�1! �i�2�i�1�i�2

is possible. In particular, ˇfi�2;i�1g contains �2
i�1
�2

i�2
�2

i�1
�i�2 as a subword and

we can find a surface minor zE of †fi�2;:::;iC4g.ˇ/ by adding a path at the vertex v
indicated in Figure 21, left, using Lemma 7.

b

v

b

v

Figure 21
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Case 2 (the occurrence of �a
i�1

in ˇfi�1;i;iC1g is not split by �i�2 ) In this case,
for Pi�2.ˇ/ and Pi�1.ˇ/ to be connected by at least three edges in P.ˇ/, ˇfi�2;i�1g

contains �i�1�i�2�
2
i�1
�i�2�i�1�i�2 as a subword. Thus, we can find a surface minor

zE of †fi�2;:::;iC5g.ˇ/ by adding a path at the vertex v indicated in Figure 21, right,
using Lemma 7.

Remark 15 Theorem 1 does not hold for prime positive braid links. In fact, for prime
positive braid links, there exists no nontrivial lower bound for the genus defect g�g

top
4

in
terms of the minimal positive braid index. As examples, we consider the positive braids

ˇk D .�1 : : : �k�k : : : �1/
2

on kC 1 strands. The positive braid link y̌k is visually prime and hence prime by a
theorem of Cromwell [5]. Furthermore, y̌k is a link with kC1 components. Therefore,
the positive braid link y̌k needs at least kC 1 strings to be represented as a braid, and
hence is of positive braid index kC 1.

Claim j�. y̌k/j D 2kC 1 and null. y̌k/D k � 1.

Assuming the claim for just a moment, we have b1. y̌k/D j�. y̌k/jC null. y̌k/, so y̌k
is of maximal topological 4–genus, that is, g D g

top
4

, by the lower bound of Kauffman
and Taylor [9].

In order to prove the claim, we use the canonical Seifert surface for positive braid
links. Let Sk be the symmetrised Seifert form for †.ˇk/. By definition, �. y̌k/ is the

e1

e2

e3

e4

e5

e6

e7

e8

e9

e10

e11

e12

Figure 22: The brick diagram for the braid ˇ4 .
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signature of Sk , and null. y̌k/ is the nullity of Sk . For the calculation, let e1; : : : ; e3k

be the basis of the first homology induced by the bricks of the brick diagram, where all
curves are oriented anticlockwise and numbered as indicated in Figure 22 for k D 4.
Inspecting the canonical Seifert surface yields the following description of Sk :

Sk.ei ; ei/D�2 for all i;

Sk.ei˙1; ei/D Sk.ei ; ei˙1/D 1 for i � 2 .mod 3/;

Sk.ei�2; ei/D Sk.ei ; ei�2/D�1 for 2¤ i � 2 .mod 3/;

Sk.ei�4; ei/D Sk.ei ; ei�4/D 1 for 2¤ i � 2 .mod 3/;

Sk.ei ; ej /D 0 otherwise:

Let Nk be the subspace of the first homology of †. y̌k/ generated by e2 and all ei such
that i 6� 2 .mod 3/. We see that Sk restricted to Nk is negative definite. Furthermore,
let Ok be the subspace of the first homology of †. y̌k/ generated by all xi , where
we define xi D ei C

1
2
.ei�1C eiC1C ei�4 � ei�2/ for 2¤ i � 2 .mod 3/. One can

compute Sk.xi ;xj / D 0 for all 2 ¤ i � 2 .mod 3/ and 2 ¤ j � 2 .mod 3/, so Sk

restricted to Ok is trivial. Furthermore, Sk.xi ; ej / D 0 for all 2 ¤ i � 2 .mod 3/

and j either equal to 2 or 6� 2 .mod 3/. We obtain that the nullity of Sk equals the
dimension of Ok , which is k � 1. Furthermore, the absolute value of the signature
of Sk equals the dimension of Nk , which is 2kC 1. This proves the claim.

6 Surface minor theory for the genus defect

In this section, we deduce the surface minor-theoretic applications of Theorem 1. More
precisely, we show that, among prime positive braid knots, having at most a certain
genus defect g�g

top
4

can be characterised by finitely many forbidden surface minors
of the canonical Seifert surface.

Lemma 16 Let K be a prime knot obtained as the closure of a positive braid ˇ of
minimal positive braid index b . Then g� g

top
4
� c holds for K D y̌ if and only if it

holds for y̌f1;:::;16cC15g , where we regard ˇf1;:::;16cC15g as a braid on min.b; 16cC16/

strands.

Proof If b � 16c C 16, then ˇ D ˇf1;:::;16cC15g and the statement is obviously
true. Now let b > 16c C 16. By Proposition 14, both †.ˇ/ and †.ˇf1;:::;16cC15g/

contain a disjoint union of at least c C 1 copies of zT , zE or zX as a surface minor.
Hence, g�g

top
4
> c holds for both K and y̌f1;:::;16cC15g .
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Proof of Theorem 2 We show that among positive braids of minimal positive braid
index whose closure is a prime knot, g � g

top
4
� c can be characterised by finitely

many forbidden subwords for any c � 0. This implies the result on the level of surface
minors of canonical Seifert surfaces, since every prime positive braid knot can be
written as the closure of a positive braid of minimal positive braid index, while the
associated canonical Seifert surface does not change its isotopy type. Furthermore, the
forbidden surface minors are simply given by the canonical Seifert surfaces (described
in Section 2) associated with the forbidden subwords. For this to make sense, recall
that if ˇ0 is a subword of a positive braid ˇ , then †.ˇ0/ is a surface minor of †.ˇ/.

Consider the collection Pn of positive braid words on nC1 strands whose closures are
prime links. By Higman’s lemma, the words in a finite alphabet are well-quasiordered
by the subword partial order [8]. In particular, also Pn is well-quasiordered by the
subword partial order. Since subwords induce surface minors, genus defect g�g

top
4
> c

of the closure is inherited from subwords in Pn . Equivalently, the property that the
positive braid closure has g�g

top
4
� c is passed on to subwords in Pn . In particular, the

property to have genus defect g�g
top
4
� c is characterised by finitely many forbidden

subwords for Pn . Here, we use that a property that is passed on to minors with respect
to some well-quasiorder is characterised by finitely many forbidden minors.

Now, let K be a prime knot obtained as the closure of a positive braid ˇ of minimal
positive braid index b , where b can be arbitrarily large. We argue that if g�g

top
4
> c

holds for K , then ˇ must contain one of the finitely many forbidden subwords character-
ising g�g

top
4
� c for Pmin.b�1;16cC15/ . To see this, note that a genus defect g�g

top
4
> c

for K implies g� g
top
4
> c for y̌f1;:::;16cC15g by Lemma 16. In particular, we have

that ˇf1;:::;16cC15g contains one of the forbidden subwords characterising genus de-
fect g � g

top
4
� c for Pmin.b�1;16cC15/ , and hence so does ˇ . It follows that the

finitely many forbidden subwords characterising the property g�g
top
4
� c for braids

in P1;P2; : : : ;P16cC15 suffice to characterise the property g � g
top
4
� c among all

positive braids of minimal positive braid index whose closure is a prime knot.
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