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a b s t r a c t

In this paper we consider graphs Gwhose vertices can be represented as single-bend paths
(i.e., paths with at most one turn) on a rectangular grid, such that two vertices are adjacent
in G if and only if the corresponding paths share at least one edge of the grid. These graphs,
called B1-EPG graphs, were first introduced in Golumbic et al. (2009) [13]. Here we show
that the neighborhood of every vertex in a B1-EPG graph induces a weakly chordal graph.
From this we conclude that the family F of B1-EPG graphs satisfies the Erdős–Hajnal
property with ϵ(F ) =

1
3 , i.e., that every B1-EPG graph on n vertices contains either a

clique or a stable set of size at least n
1
3 . Finally we give a characterization of B1-EPG graphs

among some subclasses of chordal graphs, namely chordal bull-free graphs, chordal claw-
free graphs, chordal diamond-free graphs, and special cases of split graphs.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Edge intersection graphs of paths on a grid (or for short EPG graphs) are graphs whose vertices can be represented as
paths on a rectangular grid such that two vertices are adjacent if and only if the corresponding paths share at least one
edge of the grid. These graphs were first introduced in [13] and have also been studied by several authors (see [2,6,14]). The
motivation for studying these graphs comes from circuit layout problems (see for instance [3]). In [13] the authors show that
every graph G is an EPG graph. They also introduce some subclasses of EPG graphs, namely Bk-EPG graphs, for k ≥ 0. For
these graphs, the paths on the grid that represent the vertices of G are allowed to have at most k bends, i.e., at most k turns.
They show that every tree is a B1-EPG graph and they also give some examples of graphswhich are not B1-EPG. Furthermore,
the representation of cliques and cycles in B1-EPG graphs is considered. In [2] the authors study questions related to the size
of the grid that is needed in order to represent every n vertex graph as an edge intersection of paths on a grid. Furthermore,
they show that for any k, only a small fraction of all labeled graphs on n vertices are Bk-EPG. Some results of [2] were also
proved in [6]. In addition the authors in [6] consider different classes of graphs and show in particular that every planar
graph is a B5-EPG graph. In [14], the authors prove that recognizing B1-EPG graphs is N P -complete.

In this paper we focus on B1-EPG graphs. The paper is organized as follows. In Section 2 we give definitions and notation
as well as some useful results from [13]. In Section 3we present some properties of the neighborhood of a vertex in a B1-EPG
graph. In Section 4 we prove that B1-EPG graphs satisfy the Erdős–Hajnal property with ϵ(F ) =

1
3 , i.e., that every B1-EPG

graph on n vertices contains either a clique or a stable set of size at least n
1
3 . Section 5 focuses on some subclasses of chordal
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Fig. 1. Left: an edge clique. Right: a claw clique.

graphs and gives a characterization of B1-EPG graphs of these subclasses. Finally we conclude with some open questions in
Section 6. For graph theoretical terms that are not defined here, we refer the reader to [4].

2. Preliminaries

All graphs in this paper are finite and simple. Let G = (V (G), E(G)) be a graph. For a vertex v ∈ V (G), we letNG(v) denote
the set of vertices in G that are adjacent to v, i.e., the neighbors of v. NG(v) is called the neighborhood of vertex v. We will
write NG[v] = NG(v) ∪ {v}, and call NG[v] the closed neighborhood of vertex v. Whenever it is clear from the context what G
is, we will drop the subscripts and write N(v) = NG(v) and N[v] = NG[v]. A clique is a set of pairwise adjacent vertices and
a stable set is a set of pairwise nonadjacent vertices. For X ⊆ V (G), we denote by G|X the subgraph induced by X . For graphs
G and H , G is said to be H-free if G has no induced subgraph isomorphic to H .

For disjoint sets A, B ⊆ V (G), we say that A is complete to B if every vertex in A is adjacent to every vertex in B, and that A
is anticomplete to B if every vertex in A is nonadjacent to every vertex in B. A hole is an induced cycle on at least four vertices.
An antihole is the complement of a hole. The length of a hole (antihole) is the number of vertices inducing the hole (antihole).
A hole (antihole) is odd if it has odd length. A graph G is chordal if G does not contain any hole. A graph G is weakly chordal
if it contains no hole of length at least 5 and no antihole of length at least 5. For a graph G, let ω(G) denote the size of a
largest clique in G, and let χ(G) denote the chromatic number of G. A graph G is perfect if χ(G′) = ω(G′) for every induced
subgraph G′ of G. It has been shown in [7] that a graph is perfect if and only if it contains no odd hole and no odd antihole.
Three vertices u, v, w of a graph G form an asteroidal triple (AT) of G if for every pair of them there exists a path connecting
the two vertices and such that the path avoids the neighborhood of the remaining vertex. We denote by Pk an induced path
on k vertices, and by Hk a hole on k vertices. The complement of a graph G is denoted by G.

Let G be a rectangular grid of size (2m + 1) × (2m + 1). The horizontal grid lines will be referred to as rows and
denoted by y−m, y−m+1, . . . , y0, . . . , ym−1, ym, and the vertical grid lines will be referred to as columns and denoted by
x−m, x−m+1, . . . , x0, . . . , xm−1, xm. Let P be a collection of nontrivial simple paths on G. We define the edge intersection
graph EPG(P ) of P to have vertices which correspond to the members of P , such that two vertices are adjacent in EPG(P )
if and only if the corresponding paths in P share at least one edge in G. An undirected graph G is called an edge intersection
graph of paths on a grid (EPG) if G = EPG(P ) for some P and G, and ⟨P , G⟩ is an EPG representation of G. For any vertex
v ∈ V (G), we denote by Pv the corresponding path in the EPG representation of G. In this paper we will always assume that
the size of the grid G, in particularm, is sufficiently large such that the B1-EPG graphs that we are interested in admit an EPG
representation on G.

A turn of a path at a grid point is called a bend and the grid point is called a bend point. An EPG representation is a Bk-EPG
representation if each path has at most k bends. A graph that has a Bk-EPG representation is called Bk-EPG. In this paper we
only consider B1-EPG graphs. We define a p-path P as a bended path with some bend point (xi, yj) such that P uses column
xi between rows yk and yj, for some k < j, and P uses row yj between columns xi and xl, for some l > i. q-paths, x-paths, and
y-paths are defined in a similar way. We say that a path P on the grid contains a grid point (xi, yj) if (xi, yj) ⊆ P and (xi, yj)
is not an endpoint of P . A horizontal segment (resp. vertical segment) on a row y (resp. a column x) between columns xi and
xj, i < j (resp. between rows yp and yq, p < q) is denoted by [xi, xj] × {y} (resp. [yp, yq] × {x}).

Let K be a clique of a B1-EPG graph G. If there exists an edge ϵ in the grid G such that ϵ ⊆ Pv for all v ∈ K , we say that K is
represented as an edge clique. Another way to represent K in a B1-EPG representation of G is as follows. Every path Pv , v ∈ K ,
has one of the following properties: (i) Pv is a y-path (resp. q-path) with bend point (x, y); (ii) Pv is a x-path (resp. p-path)
with bend point (x, y); (iii) Pv uses row y and contains the grid point (x, y). If there exists a path Pv , v ∈ K , of each of these
three types, we say that K is represented as a claw cliquewith horizontal basis y and center (x, y). See Fig. 1 for an example
of an edge clique and one of a claw clique. We define in a similar way claw cliques with vertical basis.

In [13] the authors showed the following result.

Theorem 1. Let ⟨P , G⟩ be a B1-EPG representation on a gridG of a graph G. Every clique in G corresponds to either an edge clique
or a claw clique in ⟨P , G⟩.

Consider H4 with edge set {ab, bc, cd, ad} in a B1-EPG graph G, and consider a B1-EPG representation of G. If Pa is a y-path
with bend point (x, y), Pb is a x-path with bend point (x, y), Pc is a p-path with bend point (x, y), and Pd is a q-path with bend
point (x, y), then we say that H4 is represented as a true pie with center (x, y). Another possible representation of H4 is as
follows. Pa is a y-path (resp. x-path) with bend point (x, y), Pb uses column x and contains (x, y), Pc is a p-path (resp. q-path)
with bend point (x, y), and Pd uses row y and contains (x, y). Such a representation of H4 is called a false pie with center
(x, y). Finally a third possible way to represent H4 is to use what the authors in [13] call a frame. A frame is a rectangle in G
such that each corner is the bend for a different member of Pa, Pb, Pc, Pd, the subpaths Pa ∩ Pb, Pb ∩ Pc , Pc ∩ Pd, Pd ∩ Pa are
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Fig. 2. H4 represented as a true pie, a false pie, and a frame.

Fig. 3. Two possible B1-EPG representations of H4 ∪ {w}. Left: H4 corresponds to a true pie. Right: H4 corresponds to a false pie.

nonempty, and the subpaths Pb ∩ Pd, Pa ∩ Pc are empty. See Fig. 2 for an example of a true pie, a false pie, and a frame. In [13]
the authors showed the following result.

Theorem 2. Let ⟨P , G⟩ be a B1-EPG representation on a grid G of a graph G. Every hole of length 4 in G corresponds to a true pie
or a false pie or a frame in ⟨P , G⟩.

3. Some properties of the neighborhood

In this section, we focus on the neighborhood of a vertex in a B1-EPG graph. In particular we will give some properties of
the subgraph induced by the neighborhood of any vertex in a B1-EPG graph. First we start with an easy observation.

Lemma 3. Consider H4 with edge set {ab, bc, cd, ad} and let w be adjacent to a, b, c and d. Then in any B1-EPG representation
on a grid G of H4 ∪ {w}, H4 corresponds either to a true pie or to a false pie.

Proof. From Theorem 2 it follows that in any B1-EPG representation, H4 corresponds to a true pie, or a false pie, or a frame.
Suppose that H4 corresponds to a frame. Thus every path Pi, i ∈ V (H), is bended and two paths cannot have a same bend
point. So we may assume, without loss of generality, that Pa, Pb, Pc, Pd have bend points, respectively in (x1, y1), (x2, y1),
(x2, y2), (x1, y2). Now in order to intersect both paths Pa and Pc , the path Pw must be bended either in (x1, y2) or in (x2, y1).
In the first case Pw will clearly not intersect Pb and in the second case Pw will clearly not intersect Pd. Thus H4 cannot be
represented as a frame.

If H4 corresponds to a true pie with center (x, y), then Pw intersects the paths of the pie either on column x or on row y
(see Fig. 3). IfH4 corresponds to a false piewith center (x, y), wemay assume,without loss of generality, that Pa is represented
as a y-path, Pb uses column x and contains (x, y), Pc is represented as a p-path, and Pd uses row y and contains (x, y). Then
Pw is either a x-path with bend point (x, y) or a q-path with bend point (x, y) (see Fig. 3). �

Let us now focus on some configurations which can never occur in the neighborhood of a vertex in a B1-EPG graph.

Lemma 4. Let G be a B1-EPG graph. Then G|N(v) does not contain H6, P6 as induced subgraphs, for all v ∈ V (G).

Proof. The proof is by contradiction. We will prove that G|N(v) does not contain H6. The proof for P6 is similar. Consider
H6 with vertex set {a, b, c, d, e, f } and edge set {ab, bc, cd, ad, ae, de, ef , bf , cf }. Suppose a vertex v ∈ V (G) is complete to
V (H6). It follows from Lemma 3 that the hole H4 with vertex set a, b, c, d is represented either as a true pie or as a false pie.
First suppose that H4 is represented as a true pie with center (xi, yj). Without loss of generality, we may assume that Pa is
represented as a y-path, Pb as a x-path, Pc as a p-path, and Pd as a q-path. Since e is adjacent to a and d, but not to b and c , Pe
must use row yj only at the left of column xi and cannot use column xi. Similarly since f is adjacent to b and c , but not to a
and d, Pf must use row yj only at the right of column xi and cannot use column xi. But now clearly Pe and Pf cannot intersect,
a contradiction (see Fig. 4). So suppose that H4 is represented as a false pie with center (xi, yj). Without loss of generality,
we may assume that Pa is represented as a y-path, Pb uses column xi and contains (xi, yj), Pc is represented as a p-path, and
Pd uses row yj and contains (xi, yj). Using the same arguments as before we obtain that Pe must use row yj only at the left
of xi and cannot use column xi, and Pf must use column xi only below row yj and cannot use row yj. Thus Pe and Pf cannot
intersect, a contradiction (see Fig. 4). �

Since every antihole of length at least 7 contains P6 as an induced subgraph, the following result follows immediately
from Lemma 4.

Corollary 5. Let G be a B1-EPG graph. Then G|N(v) contains no Hk, k ≥ 6, for all v ∈ V (G).

We prove the following lemma.

Lemma 6. Let G be a B1-EPG graph. Then G|N(v) contains no Hk, k ≥ 5, for all v ∈ V (G).
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Fig. 4. Left: H4 represented as a true pie; Pe and Pf cannot intersect. Right: H4 represented as a false pie; Pe and Pf cannot intersect.

Fig. 5. Pk−1 cannot intersect Pk and Pv .

Proof. The proof is by contradiction. Consider Hk, k ≥ 5, with vertex set {a1, a2, . . . , ak} and edge set {a1a2, a2a3, . . . ,
ak−1ak, aka1}. Suppose that a vertex v ∈ V (G) is complete to V (Hk). Without loss of generality, we may assume that Pv is
represented as a p-path with bend point (xi, yj) and endpoints (xi′ , yj), (xi, yj′). Furthermore, since k ≥ 5, we may assume
that there are at least three paths representing vertices of Hk which intersect Pv on row yj. Thus we may assume that Pa1 is
the path having the rightmost intersection with Pv on row yj among the paths Pai , i ∈ {1, . . . , k}. We may also assume that
the intersection of Pa1 with Pv lies between columns xl and xl′ , i < l < l′ ≤ i′. Since Pa2 and Pak do not intersect, we may
assume that the intersection of Pak with Pa1 is at the right of the intersection of Pa2 with Pa1 . This implies that Pak intersects
Pv only on row yj. Since Pa1 is the path having the rightmost intersection with Pv on row yj, and since Pak−1 does not intersect
either Pa1 or Pa2 , it follows that Pak−1 must intersect Pak on some column xp, l ≤ p ≤ l′, and Pak−1 must intersect Pv on column
xi. But this is clearly impossible since Pak−1 has a single bend (see Fig. 5). �

We can now state our main result of this section.

Theorem 7. Let G be a B1-EPG graph. Then G|N(v) is weakly chordal, for all v ∈ V (G).

Proof. It follows from Lemma 6 that G|N(v) contains no Hk, k ≥ 5, and does not contain H5 (since H5 is isomorphic to its
complement), for all v ∈ V (G). From Corollary 5 it follows that G|N(v) contains no Hk, k ≥ 6, for all v ∈ V (G). This proves
the theorem. �

Since weakly chordal graphs are perfect graphs, we obtain the following result.

Lemma 8. Let G be a B1-EPG graph. Then G|N(v) is perfect, for all v ∈ V (G).

Finally let us show the following result which we will use later in the paper.

Theorem 9. Let G be a B1-EPG graph. Then G|N(v) is AT-free, for all v ∈ V (G).

Proof. The proof is by contradiction. Suppose that G|N(v) contains an asteroidal triple a, b, c for some vertex v ∈ V (G).
Suppose, without loss of generality, that Pv is represented as a p-path with bend point (xi, yj) and endpoints (xi, yj′), (xi′ , yj).
We may assume that Pa and Pb intersect Pv on row yj, that Pa is at the right of Pb, and that Pc intersects Pv on row yj at the
left of Pb or on column xi. Let (xl, yj) be the rightmost intersection point of Pb with Pv , i < l < i′. In G|N(v) there exists a
path π = {av1, v1v2, . . . , vq−1vq, vqc} from a to c avoiding the neighborhood of b. Clearly there exists at least one vertex
vi, i ∈ {1, . . . , q}, such that the corresponding path Pvi contains a grid point lying at the left of column xl. Let vp be the first
vertex in the order {v1, v2, . . . , vq} whose corresponding path contains a grid point lying at the left of column xl. Pvp cannot
contain a grid point on row yj at the left of column xl, otherwise it intersects Pb. Thus Pvp uses some row yj′′ , j′′ ≠ j (see Fig. 6).
Since Pvp must intersect Pv , it necessarily uses column xi. Now consider Pvp−1 . By definition of vp, Pvp−1 lies at the right of
column xl and must intersect Pvp on row yj′′ . But then clearly Pvp−1 cannot intersect Pv , since they must necessarily intersect
on row yj. �

As a consequence we get the following result.

Corollary 10. Let G be a B1-EPG graph not containing H4. Then for every vertex v ∈ V (G), G|N(v) is an interval graph.

Proof. Let v ∈ V (G). Since G does not contain H4 and because G|N(v) cannot contain Hk, k ≥ 5 (see Lemma 6), G|N(v) is a
chordal graph. From Theorem 9, we know that G|N(v) is AT-free. By a result from [15], a graph is an interval graph if and
only if it is chordal and AT-free. Therefore G|N(v) is an interval graph. �
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Fig. 6. Illustrating the proof of Theorem 9.

4. The Erdős–Hajnal property for B1-EPG graphs

In [10], Erdős and Hajnal made the following conjecture.

Conjecture 11. For every graph H, there exists δ(H) > 0 such that if G is a graph and no induced subgraph of G is isomorphic
to H, then G contains either a clique or a stable set of size at least |V (G) |

δ(H).

Related to this, we consider the following definition (see [12]).

Definition 12. A family F of finite graphs has the Erdős–Hajnal property if there exists a constant ϵ(F ) > 0 such that every
graph in F on n vertices contains either a clique or a stable set of size at least nϵ(F ).

Notice that the family F of perfect graphs satisfies the Erdős–Hajnal property with ϵ(F ) =
1
2 . Indeed for any perfect

graph G on n vertices we have n ≤ ω(G)α(G), where ω(G) is the size of a largest clique in G and α(G) is the size of a largest
stable set in G. It follows that either ω(G) or α(G) has value at least n

1
2 .

It follows from [1,12] that the familyF of B1-EPG graphs satisfies the Erdős–Hajnal property butwithout giving any fixed
value of ϵ(F ). Here we will prove that the family F of B1-EPG graphs satisfy the property with ϵ(F ) =

1
3 .

Theorem 13. Let G = (V , E) be a B1-EPG graph with |V | = n. Then G contains either a clique or a stable set of size at least n
1
3 .

Proof. First suppose that there exists a vertex v ∈ V (G) with degree at least n
2
3 . Thus it follows from Lemma 8 that G|N(v)

is a perfect graph of size at least n
2
3 . From the remark above we deduce that G contains either a clique or a stable set of size

(n
2
3 )

1
2 = n

1
3 .

Now suppose that G does not contain any vertex with degree at least n
2
3 . Thus G has maximum degree at most n

2
3 − 1.

In [5] it was proven that every maximal stable set in a graph on n vertices and of maximum degree h has size at least
 n

h+1


.

It follows that in our case G contains a stable set of size at least


n

(n
2
3 −1)+1


≥ n

1
3 . �

5. Subclasses of chordal graphs

In this section we focus on subclasses of chordal graphs. We consider several classes of chordal graphs: chordal bull-
free graphs, chordal claw-free graphs, chordal diamond-free graphs (see Fig. 7; formal definitions will be given in the
corresponding sections), and finally special cases of split graphs.We give necessary and sufficient conditions for such graphs
to be B1-EPG graphs or we prove that all graphs of the class considered are B1-EPG.

We start with two easy observations.

Lemma 14. Let G be a B1-EPG graph and let K be a maximal clique in G.

(1) If K is represented as an edge clique, then there exists a segment on the grid which is used by all paths corresponding to the
vertices of K and no other path uses that segment.

(2) If K is represented as a claw clique with a horizontal basis and with center C = (xi, yj) and if G is C4-free, then there exists
a B1-EPG representation of G in which all the paths corresponding to the vertices of K use row yj between column xi−1 and
column xi+1 and no other path uses that segment.

Proof. (1) By definition of an edge clique there exists an edge on the grid such that all paths corresponding to vertices of
K use this edge. If there is a path Pv with v ∉ K using this same edge, then K is not maximal, a contradiction. This
proves (1).
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Fig. 7. Bull, claw, and diamond graphs.

Fig. 8. In this figure, Pv is represented by a path with small dots as endpoints and the bend point. (a) Pv intersects a q-path with bend point C . (b) The
vertical segment of Pv intersects a path using the grid segment {x1} × [y0, y1]. (c) The vertical segment of Pv intersects a path not containing C . (d) C is an
endpoint of Pv .

(2) Denote by K the set of paths corresponding to vertices of K . Assume, without loss of generality, that the basis of the
claw clique is [x0, x2] × {y0} and that C = (x1, y0). If no path Pv ∉ K uses row y0 between columns x0 and x2, then we
are done. So we may assume now that there exists a path Pv ∉ K such that Pv uses the grid segment [x1, x2] × {y0}.
Clearly Pv cannot use either the segment [x0, x1]×{y0} or the segment {x1}× [y0, y1], otherwise v ∈ K , a contradiction.
Thus we may distinguish two cases: (i) C is an endpoint of Pv; (ii) Pv is a p-path with bend point C .

First we transform the grid G into a new grid G′ by inserting between every two columns xi, xi+1 a new column xi′ . Thus
in the new grid G′ all paths P have doubled in length as regards their horizontal part.

If C is an endpoint of Pv , then we may shorten P on row y0 without changing the adjacencies, i.e., we may delete the
horizontal part of Pv using the segment [x1, x2] × {y0} such that (x1′ , y0) becomes a new endpoint of Pv (see Fig. 8(d) for an
example).

So wemay assume now that Pv is a p-path with bend point C . Then we distinguish three cases: (i) the vertical segment of
Pv intersects a q-pathwith bend point C (see Fig. 8(a)); (ii) the vertical segment of Pv intersects a path using the grid segment
{x1} × [y0, y1] (see Fig. 8(b)); (iii) the vertical segment of Pv intersects a path not containing C (see Fig. 8(c)). Clearly in the
first two cases we get a C4 represented as a true pie in case (i) and represented as a false pie in case (ii), a contradiction. In
case (iii) wemay transform the representation so that all the paths using x1 and not contained in K will use instead column
x1′ . To do so, we have to extend or shorten these paths in order to keep the same adjacencies (see Fig. 8(c)).

Note that similar transformations are applied if Pv is a path using the grid segment [x0, x1] × {y0} in the original grid G.
Thuswe obtain a representation inwhich only paths corresponding to vertices in K use the grid segment [x0′ , x1′ ]×{y0}. �

Notice that Lemma 14(2) can also be stated with the claw clique having a vertical basis.

5.1. Chordal bull-free graphs

A bull is a graph with vertex set {a, b, c, d, e} and with edge set {ab, ac, ad, bc, be}. A graph is bull-free if it does not
contain any induced subgraph isomorphic to a bull.

A homogeneous set in a graph G is a subset H ⊆ V (G) with 2 ≤ |H| < |V (G)|, such that every vertex in G \ H is either
complete to H or anticomplete to H . For such an H , let N(H) denote the set of vertices in G \H which are complete to H and
N(H) the set of vertices in G \ H which are anticomplete to H .

In [16], the authors show that every connected bull-free graph G satisfies one of the following five properties: (i) G
containsH5, (ii)G is triangle-free, (iii)G is triangle-free, (iv)Ghas a homogeneous set, (v)G orG contains an induced subgraph
isomorphic to F0 = {ab, bc, cd, ad, ae, be, cf }. This result will be used in order to prove the main result of this subsection.

We will first start with the following observation.

Lemma 15. Let G be a {bull, C4}-free B1-EPG graph. Then G admits a B1-EPG representation in which every clique is represented
as an edge clique.

Proof. Suppose the result is false, i.e., for every B1-EPG representation of G there exists at least one clique in G which is
represented as a claw clique. Consider one such representation and let K denote a clique in G which is represented as a
claw clique. Without loss of generality, we may assume that K is maximal, and that the claw clique has horizontal basis
[x0, x2] × {y0} and center C = (x1, y0). From Lemma 14(2) it follows that we may assume that no path Pv , v ∉ K , uses the
grid segment [x0, x2]× {y0}. Let us denote by K the set of paths corresponding to the vertices of K . For every y-path Pv ∈ K
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(resp. x-path Pv′ ∈ K), we do the following: if Pv (resp. Pv′ ) does not intersect any path Pw ∉ K on column x1, thenwe delete
its vertical segment and add the grid segment [x1, x2]×{y0} (resp. [x0, x2]×{y0}). If after these transformations either there
exist no more y-paths in K or there exist no more x-paths in K , then we are done since we have obtained an edge clique.
So we may assume that there exists at least one y-path Pv ∈ K and at least one x-path Pv′ ∈ K . Since both paths Pv, Pv′

intersect a path on column x1, they necessarily intersect a common path, say Pt ∉ K . Now if all y-paths (resp. x-paths) do
not intersect any path on row y0, then wemay transform them into x-paths (resp. y-paths) with rightmost endpoint (x2, y0)
(resp. with leftmost endpoint (x0, y0)) and thus obtain an edge clique. Sowemay assume that there exists at least one y-path
intersecting a path Pt ′ ∉ K on row y0 and there exists at least one x-path intersecting a path Pt ′′ ∉ K on row y0. Without
loss of generality, we may assume that Pv intersects Pt ′ and that Pv′ intersects Pt ′′ . Clearly Pt ′ and Pt ′′ cannot intersect since
t ′, t ′′ ∉ K and all paths are single-bended. By the same arguments, Pt ′ , Pt ′′ cannot intersect Pt . But now v, v′, t, t ′, t ′′ induce
a bull, a contradiction. �

We are now in a position to prove our main result of this subsection.

Theorem 16. Let G be a chordal bull-free graph. Then G is a B1-EPG graph if and only if it does not contain any induced subgraph
isomorphic to T2 = {ab, bc, cd, de, cf , fg} in the neighborhood of a vertex.

Proof. From Theorem 9 it follows that if G is a B1-EPG graph then T2 is a forbidden induced subgraph for G|N(v), ∀v ∈ V (G),
since a, e and g form an asteroidal triple. For the ‘‘if’’ direction, assume that the result is false and consider a minimal
counterexample G′. Clearly G′ must be connected. If G′ is AT-free, then G′ is an interval graph (see [15]) and thus it is B1-EPG,
a contradiction. So suppose that G′ contains an asteroidal triple. Since G′ is chordal and bull-free, it must contain T2 as an
induced subgraph. Indeed, T2 is the only graph among the forbidden induced subgraphs that characterize AT-free graphs
which does not contain either a hole or a bull (see [8]). From the aforementioned result [16], it follows that G′ must contain
a homogeneous set H . Indeed, G′ does not contain H5 since it is chordal; G′ is not triangle-free since otherwise it is a tree and
thus B1-EPG (see [13]); Ḡ′ is not triangle-free since G′ must contain T2 as an induced subgraph (b, d, f induce a triangle in G′);
neither G′ nor G′ contains F0 as an induced subgraph since both F0 and F 0 containH4. Therefore G′ must satisfy the remaining
property, i.e., G′ must contain a homogeneous setH . Since |H| < |V (G)| and G′ is connected, wemust have |N(H)| ≥ 1. Next
notice that H does not contain T2 as an induced subgraph, since otherwise T2 is in the neighborhood of every vertex of N(H).
ThusG′

|H is an interval graph since it is chordal and AT-free. Furthermore eitherG′
|H orG′

|N(H) is a clique. Indeed, if neither
of them is a clique, i.e., if there exist two vertices v1, v2 ∈ H and two vertices w1, w2 ∈ N(H) such that v1v2, w1w2 ∉ E(G′),
then these vertices induce a C4, a contradiction. First suppose that G′

|H is a clique. Delete v1 ∈ H . G′
\ {v1} admits a B1-EPG

representation by minimality of G′. Now add Pv1 to that representation such that Pv1 coincides with Pv2 for some v2 ∈ H
(v2 exists since |H| ≥ 2). This clearly gives us a feasible B1-EPG representation of G′, a contradiction. So suppose G′

|N(H)
is a clique. Consider a B1-EPG representation of G′′

= G′
|(V \ H) ∪ {v′

} where v′
∈ H (v′ exists since |H| ≥ 2). It follows

from Lemma 15 that we may assume that the clique K induced by N(H) ∪ {v′
} is represented as an edge clique. Since K is

maximal in G′′, it follows from Lemma 14 that wemay assume that only paths representing vertices of K use row y0 between
columns xi and xj, i < j. Now delete Pv′ and add a B1-EPG representation of G′

|H on row y0 between columns xi and xj. This is
possible because G′

|H is an interval graph and we may choose xi, xj such that a B1-EPG representation of G′
|H fits between

these columns on row y0. Thus we get a B1-EPG representation of G′, a contradiction. �

5.2. Chordal claw-free graphs

A claw is a graph with vertex set {a, b, c, d} and edge set {ab, ac, ad}. A graph is claw-free if it does not contain any
induced subgraph isomorphic to the claw. A claw with vertices a, b, c, d and edges ab, ac, adwill be denoted by (a; b, c, d).
A simplicial vertex in a graph is a vertex whose neighbors induce a clique. From [9], we know that every chordal graph has a
simplicial vertex.

Theorem 17. Every chordal claw-free graph G is a B1-EPG graph.

Proof. Suppose that the statement is wrong. Then let G be aminimal counterexample, i.e., let G be a chordal claw-free graph
such thatG has no B1-EPG representation, butG\{v} has a B1-EPG representation for every vertex v ∈ V (G).Wewill consider
several cases and in all of them we will deduce that G actually has a B1-EPG representation; thus we get a contradiction.

According to the result mentioned above from [9], G has a simplicial vertex. Let v be such a vertex. Let G′
= G \ {v} and

let ⟨P ′, G⟩ be a B1-EPG representation of G′. Let K be the clique induced by N(v) and denote by K the set of paths in ⟨P ′, G⟩

corresponding to the vertices in K . If K is a maximal clique in G′, then it follows from Lemma 14 that there exists a segment
on the grid used by all the paths in K and no other path uses this segment. Thus we may add a path Pv on this segment and
hence we obtain a B1-EPG representation of G, a contradiction.

Therefore wemay assume that K is not maximal. Thus there exists at least one vertex w ∈ V (G′) which is complete to K .
Let W be the set of all such vertices w and denote by W the set of paths in ⟨P ′, G⟩ corresponding to the vertices in W . We
make the following easy observations:

Observation I. If w1, w2 ∈ W , then w1w2 ∈ E(G). Indeed, if w1w2 ∉ E(G), then (u; v, w1, w2) is a claw for any u ∈ K , a
contradiction.
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Observation II. If ut ∈ E(G), for u ∈ K and t ∉ W ∪ K ∪ {v}, then wt ∈ E(G) for all w ∈ W . Indeed, if wt ∉ E(G), then
(u; v, t, w) is a claw, a contradiction.

Observation III. If ut1, ut2 ∈ E(G) for u ∈ K and t1, t2 ∉ W ∪ K ∪ {v}, then t1t2 ∈ E(G). Indeed, if t1t2 ∉ E(G), then
(u; v, t1, t2) is a claw, a contradiction.

It follows from Observation I that K ∪ W is a clique—the unique maximal clique including K in G′. We will distinguish
two cases according to whether K ∪ W is represented in ⟨P ′, G⟩ by an edge clique or by a claw clique.

Case 1: K ∪ W is represented in ⟨P ′, G⟩ by an edge clique.
It follows from Lemma 14 that we may assume, without loss of generality, that the segment [x0, x2] × {y0} is used by all

paths of K ∪ W and no other path uses that segment. From this and from the fact that all paths have at most one bend we
obtain the following observation.

Observation IV. If a path Pt intersects (on at least one edge) a path from K ∪ W and t ∉ K ∪ W , then the intersection lies
either at the left of x0 or at the right of x2.

This observation allows us to define the following subsets of V (G′).
Tℓ is the set of vertices t ∉ K ∪ W such that Pt intersects (on at least one edge) a path of K at the left of x0;
Tr is the set of vertices t ∉ K ∪ W such that Pt intersects (on at least one edge) a path of K at the right of x2;
Kℓ is the set of vertices u ∈ K with at least one neighbor in Tℓ;
Kr is the set of vertices u ∈ K with at least one neighbor in Tr ;
T1 is the set of vertices t ∉ K ∪ W ∪ Tℓ ∪ Tr such that Pt intersects (on at least one edge) a path of W at the left of x0;
T2 is the set of vertices t ∉ K ∪ W ∪ Tℓ ∪ Tr such that Pt intersects (on at least one edge) a path of W at the right of x2.
In what follows we will prove several claims.

Claim 1. W is complete to Tℓ ∪ Tr .

This immediately follows from Observation II.

Claim 2. Tℓ ∪ T1 is anticomplete to Tr ∪ T2.

This follows from the fact that no path Pt with t ∈ Tℓ ∪ Tr ∪ T1 ∪ T2 uses row y0 between columns x0 and x1 and from the
fact that all paths have at most one bend.

Claim 3. Kℓ ∩ Kr = ∅.

Suppose that u ∈ Kℓ ∩ Kr . Let t ∈ Tℓ and t ′ ∈ Tr be two neighbors of u. It follows from Claim 2 that t and t ′ are nonadjacent.
But now (u; v, t, t ′) is a claw, a contradiction. This proves Claim 3.

Claim 4. Tℓ ∪ T1, Tr ∪ T2 ≠ ∅.

By symmetry it is enough to prove the claim for Tℓ ∪ T1. Suppose that Tℓ ∪ T1 = ∅. Then we may assume that all paths
in K ∪ W have their leftmost endpoint in (x0, y0). Furthermore we may assume, without loss of generality, that no path
is using the grid segment [x−1, x0] × {y0}. Thus we may extend the paths of K to the grid point (x−1, y0) and then add Pv

as a path using only segment [x−1, x0] × {y0}. Hence we obtain a B1-EPG representation of G, a contradiction. This proves
Claim 4.

Claim 5. Kℓ, Kr ≠ ∅.

If Kℓ, Kr = ∅, then it follows from Observation IV that no vertex in K has a neighbor outside of K ∪ W ∪ {v}. Thus we may
assume that all paths in K only use the segment [x0, x2] × {y0}. Without loss of generality, we may assume that no path
uses the segment {x0} × [y0, y1]. Now we may add a vertical part {x0} × [y0, y1] to all the paths in K and add Pv as a path
using only this segment, {x0} × [y0, y1]. Hence we obtain a B1-EPG representation of G, a contradiction.

By symmetry we may assume that Kℓ ≠ ∅. Let u ∈ Kℓ and let t ∈ Tℓ be a neighbor of u. Assume that Kr = ∅. This clearly
implies that Tr = ∅. It follows from Claim 4 that T2 ≠ ∅. Let t2 ∈ T2 and let w ∈ W be a neighbor of t2. It follows from
Observation II that wt ∈ E(G) and it follows from Claim 2 that tt2 ∉ E(G). Furthermore it follows from Claim 3 that u is
nonadjacent to T2. Since t ∉ K ∪ W , we conclude (by Observation II) that there exists a vertex u∗

∈ K which is nonadjacent
to t . It follows that u∗t2 ∈ E(G), since otherwise (w; t, u∗, t2) is a claw, a contradiction. But this implies that Pu∗ intersects
Pt2 necessarily at the right of x2, and hence u∗

∈ Kr , a contradiction. This proves Claim 5.
It follows from Claim 5 that Tℓ, Tr ≠ ∅.

Claim 6. T1, T2 = ∅.

By symmetry it is enough to show that T1 = ∅. Suppose that there exists a vertex t1 ∈ T1 and let w ∈ W such that
wt1 ∈ E(G). Consider u ∈ Kℓ. Since t1 ∉ Tℓ, it follows that ut1 ∉ E(G). But now (w; u, t1, t ′) is a claw for any vertex t ′ ∈ Tr
(recall that wt ′ ∈ E(G) by Observation II and that t1, t ′ are nonadjacent due to Claim 2), a contradiction. Thus T1 = ∅. This
proves Claim 6.
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Fig. 9. The different sets of vertices and their relation.

Claim 7. Kℓ is complete to Tℓ and Kr is complete to Tr .

By symmetry it is enough to show that Kℓ is complete to Tℓ. Suppose u ∈ Kℓ is nonadjacent to some vertex t ∈ Tℓ. Let
w ∈ W such that wt ′ ∈ E(G) for some t ′ ∈ Tr ∪ T2 (Claim 4 implies that such a vertex t ′ exists). It follows from Claim 1
that wt ∈ E(G) and it follows from Claim 2 that t and t ′ are nonadjacent. Furthermore it follows from Claim 3 that u is
nonadjacent to t ′. But now (w; u′, t, t ′) is a claw, a contradiction. This proves Claim 7.

Claim 8. Tℓ and Tr are cliques.

This immediately follows from Claim 7 and Observation III.

Claim 9. Kℓ ∪ Kr = K .

Let u ∈ K \ (Kℓ ∪ Kr) and let t ∈ Tℓ, t ′ ∈ Tr , w ∈ W . Then t is nonadjacent to t ′ (see Claim 2) and w is adjacent to both t
and t ′ (see Claim 1). Thus (w; u, t, t ′) is a claw, a contradiction. This proves Claim 8.

Fig. 9 illustrates the different sets of vertices and their relation.
From the above it follows that for each u′

∈ Kℓ, we have NG′ [u] = K ∪ W ∪ Tℓ, and that for each u ∈ Kr , we have
NG′ [u] = K ∪W ∪ Tr . Therefore all the vertices in Kℓ have exactly the same neighbors and all the vertices in Kr have exactly
the same neighbors.

It follows that we may assume that |Kℓ| = |Kr | = 1. Indeed if for instance u1, u2 ∈ Kℓ, then we obtain a B1-EPG
representation of G by adding Pu2 coinciding with Pu1 to a B1-EPG representation of G \ {u2}. Thus we assume from now
on that Kℓ = {u′

}, Kr = {u′′
}.

It also follows that for eachw ∈ W ,NG′ [w] = K ∪W ∪Tℓ ∪Tr . Thus all the vertices inW have exactly the same neighbors.
Similarly to the assumption we did above, we may assume that |W | = 1 andW = {w}.

Notice that at least one of the paths Pu′ , Pu′′ is bended. For suppose not.Wemay assume that Pu′ has its rightmost endpoint
in (x2, y0) and Pu′′ has its leftmost endpoint in (x0, y0). Without loss of generality, we may assume that no path uses the
segment {x1}×[y0, y1]. Nowwemay bend Pu′ and Pu′′ at (x1, y0) such that theywill intersect along the segment {x1}×[y0, y1]
by deleting the part [x1, x2] × {y0} from Pu′ and the part [x0, x1] × y0 from Pu′′ . Adding Pv on exactly this segment gives us
a B1-EPG representation of G, a contradiction. So, without loss of generality, we may assume that Pu′ is a x-path with bend
point (x−1, y0). It follows that there exists t ∈ Tℓ such that u′t ∈ E(G) and the intersection of Pu′ and Pt is on column x−1,
since otherwise Pu′ does not need to be bended.

Clearly at the left of x0, Pw and Pu′ intersect exactly the same paths (namely Pt ′ for all t ′ ∈ Tℓ). Thus we may assume that
Pw coincides with Pu′ at the left of x0. In particular, they are bended at (x−1, y0). Since at the right of x2, Pw and Pu′′ intersect
precisely the same paths, namely Pt ′′ for all t ′′ ∈ Tr , we may assume that Pu′′ is not bended and coincides with Pw .

Recall that Tℓ is a clique (see Claim 8). Thus it is represented either by an edge clique or by a claw clique. Recall that at least
one path Pt , t ∈ Tℓ, intersects Pu′ on column x−1. We distinguish several caseswhich are also shown in Fig. 10. The bold paths
correspond to Pw , Pu′ , Pu′′ and Pt ′′ for some t ′′ ∈ Tr . Thin paths represent paths Pt for t ∈ Tℓ. Dotted vertical lines are x = x0
and x = x2. For each case that may occur, the figure presents a transformation which yields a B1-EPG representation of G.
a. Tℓ is represented by an edge clique and the common segment of all the paths Pt , t ∈ Tℓ, is on column x−1 (see Fig. 10(a)).

Notice that wemay assume, without loss of generality, that no path Pt , t ∈ Tℓ, uses the grid segment [x−2, x−1]×{y0}. If a
path Pt , t ∈ Tℓ, is a p-path or a x-path with bend point (x−1, y0), then its horizontal segment may be deleted. Under these
assumptions, we may transform Pu′ into a y-path with bend point (x−1, y0) and leftmost endpoint (x−2, y0). Next we ex-
tend Pu′′ such that its left endpoint becomes (x−2, y0). Now it is possible to add Pv on the grid segment [x−2, x−1] × {y0}
and thus we obtain a B1-EPG representation of G, a contradiction.

b. Tℓ is represented by a claw clique with its center on column x−1 but not (x−1, y0) (see Fig. 10(b)). Notice that the claw
clique can only have a vertical basis. The same transformation as in case a. will lead to a contradiction.

c. Tℓ is represented by a claw clique with a vertical basis and center (x−1, y0) (see Fig. 10(c)). Then the horizontal segments
of all the paths Pt , t ∈ Tℓ, which use row y0 may be deleted and their vertical segments slightly extended to keep all the
intersections, which gives us an edge clique for Tℓ. Then we are in case a. again and thus we obtain a contradiction.

d. Tℓ is represented by a claw clique with a horizontal basis and center (x−1, y0) (see Fig. 10(d)). We delete the vertical
segment of Pu′ and extend the horizontal segment slightly to the left. Notice that we may assume that no path except
Pt , t ∈ Tℓ, uses the grid segment [x−2, x−1] × {y0}. Now Pu′ and Pu′′ are both not bended. Then we conclude by using the
transformation mentioned above.
This completes the proof for the case where K ∪ W is represented as an edge clique.
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Fig. 10. Several cases that may occur and their transformation.

Case 2: K ∪ W is represented by a claw clique.
From Lemma 14 it follows that we may assume that the basis of the claw clique is on row y0, the center is (x1, y0), and

the segments [x0, x2] × y0 and x1 × [y0, y1] are only used by paths corresponding to vertices in K ∪ W .
First suppose there is no path Pt ∉ K ∪ W which intersects a path Pu ∈ K on column x1. Then we proceed as follows. If

no Pw ∈ W uses column x1, we can delete vertical segments on column x1 of all the paths in K and extend their horizontal
segments slightly (either to (x2, y0) or to (x0, y0)) to preserve the intersections. Thus K ∪W is represented as an edge clique
and we are done. Notice that the same transformation can be applied in the case where all the paths Pw ∈ W which are
bended at (x1, y0) are y-paths and in the case where all of them are x-paths.

The remaining case is when there are paths Pw, Pw′ ∈ W such that Pw is a q-path and Pw′ is a x-path. Thenwemay assume
that all paths Pu ∈ K are not bended. Indeed, first notice that no Pu can intersect some Pt ∉ K ∪ W at the left of x0 or at the
right of x2, otherwise Pw′ (resp. Pw) cannot intersect Pt (resp. Pt ′ ), thus contradicting Observation II. Furthermore if Pu is a
y-path, then wemay delete its vertical part and add the horizontal segment [x1, x2]×{y0}, and if Pu is a x-path, then wemay
delete its vertical part and add the horizontal segment [x0, x1] × {y0}. Thus all the vertices u ∈ K have the same neighbors,
namely W . So we may assume that |K | = 1, say K = {u}, and Pu is not bended. Without loss of generality, we may assume
that no path uses the segment on {x2} × [y−1, y0]. But now we can add to Pu the vertical segment on {x2} × [y−1, y0] and
add Pv on this segment to get a B1-EPG representation of G, a contradiction.

Thus we may assume now that there exists Pt ∉ K ∪ W , which intersects a path Pu ∈ K on column x1. Notice that
there cannot exist Pt ′ , Pt ′′ ∉ K ∪ W such that Pt ′ intersects some path Pu′ ∈ K at the left of x1 and Pt ′′ intersects some
path Pu′′ ∈ K at the right of x1. Indeed, every path Pw ∈ W must intersect all these paths Pt , Pt ′ , Pt ′′ which is clearly not
possible since the paths are single-bended and t, t ′, t ′′ ∉ K ∪ W . Thus we may assume that there is no path Pt ′′ ∉ ∩K ∪ W
intersecting some path Pu′′ ∈ K at the right of x1.

First assume that there exists a path Pt ′ ∉ K ∪ W intersecting some path Pu ∈ K at the left of x1. Notice that Pt and Pt ′
cannot intersect because t, t ′ ∉ K ∪ W and because all paths are single-bended. Furthermore no path Pu ∈ K intersects
both Pt and Pt ′ , otherwise (u; t, t ′, v) is a claw, a contradiction. Also all paths Pw ∈ W must be y-paths in order to intersect
both Pt and Pt ′ . Now distinguish two cases: (i) if Pu′ ∈ K is a y-path and intersects Pt , then we may assume that its left-
most endpoint is (x0, y0); now transform Pu′ into a x-path with rightmost endpoint (x2, y0); (ii) if Pu′ ∈ K is a y-path and
intersects Pt ′ , then delete its vertical part and add the horizontal segment [x1, x2] × {y0}; but now all the paths P ∈ K use
the horizontal segment [x1, x2] × {y0} and no other path uses it; thus we may add Pv on that segment to obtain a B1-EPG
representation of G, a contradiction.

Finally consider the case where there exists a path Pt ∉ K ∪ W such that Pt intersects a path Pu ∈ K on column x1, but
there exist no path Pt ′ ∉ K ∪ W intersecting a path Pu′ ∈ K at the left of x1 or at the right of x1. Clearly all paths Pw ∈ W
are bended at (x1, y0) in order to intersect Pt . If all the paths Pw ∈ W are y-paths (resp. x-paths), we may proceed as in the
previous case. Thus we may assume that there exists Pw ∈ W which is a y-path and there exists Pw′ ∈ W which is a x-path.
We may also assume that for every path Pu ∈ K , either it is a x-path and intersects Pt , or it is non-bended. This follows
from our hypotheses and from the fact that if Pu ∈ K is a y-path and intersects Pt , we may transform it into a x-path with
rightmost endpoint (x2, y0). But now we may delete the horizontal parts from all the bended paths Pu ∈ K (recall that no
path Pu ∈ K intersects a path Pt ′ ∉ K ∪W at the left of x1 or the right of x1) and wemay transform all non-bended Pu paths
(for which we may assume that their endpoints are (x0, y0) and (x2, y0)) into non-bended paths using the grid segment
{x1} × [y0, y1]. Thus K ∪ W is represented as an edge clique and we are done.

This proves the case where K ∪ W is a claw clique. �



A. Asinowski, B. Ries / Discrete Mathematics 312 (2012) 427–440 437

Fig. 11. The split graph G0 .

5.3. Chordal diamond-free graphs

A diamond is a graph with vertex set {a, b, c, d} and edge set {ab = ac, bc, bd, cd}. A graph is diamond-free if it does not
contain any induced subgraph isomorphic to the diamond.

We will first start with an easy observation which will be helpful in the proof of the main result of this subsection.

Lemma 18. Let G be a C4-free B1-EPG graph and let v ∈ V (G) be a simplicial vertex. Then there exists a B1-EPG representation
of G in which Pv is a non-bended path.

Proof. Consider a B1-EPG representation of G \ {v}. If the clique N(v) is represented as an edge clique, then it follows from
Lemma 14(1) that we may assume that there exists an edge e in the grid only used by paths corresponding to vertices of
N(v). Now Pv may be added such that it coincides with exactly this edge e. If the clique N(v) is represented as a claw clique,
then it follows from Lemma 14(2) that we may assume that only paths corresponding to vertices of N(v) use some row
yj between columns xi−1 and xi+1, for some i and j. Now Pv may be added such that it uses row yj between columns xi−1
and xi+1. �

Theorem 19. Every chordal diamond-free graph G is a B1-EPG graph.

Proof. Suppose the result is false and let G′ be a minimal counterexample. Let v ∈ V (G′) be a simplicial vertex. Denote by
K the clique induced by N(v). As in the proof of Theorem 17, we are done if K is maximal in G′

\ {v}. Thus we may assume
that K is not maximal, i.e., there exists at least one vertex w ∈ V (G′) \ (K ∪ {v}) which is complete to K . This implies that
|N(v)| = 1. Indeed, if u1, u2 ∈ N(v), we get a diamond induced by {v, w, u1, u2}, a contradiction. So let N(v) = {u} and
consider a B1-EPG representation of G′′

= G′
\ {v}. Clearly the graph Gu = G′′

|N(u) must be connected, otherwise there
exists a grid point (xi, yj) such that Pu is the only path using that grid point. But then we may assume that there is an edge
either on column xi or on row yj which is only used by Pu (we may have to shift some paths to obtain this configuration).
Thuswemay add Pv on that particular edge and get a B1-EPG representation ofG′, a contradiction. Sowemay assume thatGu
is connected. Furthermore, Gu must be a clique. Indeed, if z, z ′

∈ V (Gu) and zz ′
∉ E(Gu), then there must be an induced path

{zz1, z1z2, . . . , zkz ′
} in Gu from z to z ′ since Gu is connected. But now {u, z, z1, z2} induce a diamond, a contradiction. Thus u

is a simplicial vertex in G′′. It follows from Lemma 18 that we may assume that Pu is represented as a non-bended path in
the B1-EPG representation of G′′. Suppose Pu uses some row yk between columns xi and xj, i < j. Next we insert an additional
column xi′ between xi and xi+1. Clearly no path uses column xi′ . Now we delete the horizontal part of Pu between columns
xi and xi′ and we add a vertical part on column xi′ between rows yk and yk−1 (Pu becomes a p-path with bend point (xi′ , yk)).
Hence wemay represent Pv on that vertical part. Thus we obtain a B1-EPG representation of G′, which is a contradiction. �

5.4. Split graphs

A split graph is a graph G such that V (G) can be partitioned into a clique K and a stable set S. In [11] the following
characterization of split graphs is given. A graph G is a split graph if and only if G is {H4,H5,H4}-free. It is easy to see that
all split graphs with either |K | ≤ 2 or |S| ≤ 2 are B1-EPG. Here we will consider split graphs for which either |K | = 3 or
|S| = 3 and we will give a characterization of those that are B1-EPG. We may assume, without loss of generality, that the
split graphs G that we consider are connected.

In the following figures, the vertices of the clique K will be represented as white nodes (in some figures we represent
a clique by a shaded area instead of drawing the edges of the clique) and the vertices of the independent set S will be
represented as black nodes. First we consider the split graph G0 represented in Fig. 11. We obtain the following result.

Lemma 20. The graph G0 is not B1-EPG.

Proof. Suppose for a contradiction that G0 is B1-EPG and consider a B1-EPG representation. First assume that the clique K
is represented as a claw clique with center (xi, yj). It follows that Pd and Pe must both contain the grid point (xi, yj) and
intersect all three paths Pa, Pb and Pc . But then Pd and Pe necessarily intersect, which is a contradiction.
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Fig. 12. Split graph Gwith |K | = 3 (a path corresponding to vJ is denoted by PJ , rather than by PvJ ).

Fig. 13. Split graph Gwith |K | = 3; case where |N{a,b,c}| ≥ 2 and N{a,b} = ∅.

Thus we may assume now that K is represented as an edge clique. Let [xi, xi+1] × {yj} be an edge on the grid contained
in all three paths Pa, Pb, Pc . Notice that G0|{a, b, c, f , g, h} is isomorphic to the 3-sun S3 which is not an interval graph since
f , g, h form an asteroidal triple (see [15]). Thus at least one path of Pa, Pb, Pc must be bended and intersect a path of Pf , Pg , Ph
on a column xk. Without loss of generality, we may assume that Pf uses column xk and intersects Pa on that column, with
k < i.

Let us now distinguish two cases. First assume that Pb also intersects Pf on column xk. Then necessarily Pg must intersect
Pb and Pc on row yj at the right of xi+1. But now clearly Ph cannot intersect Pa and Pc without intersecting any other path. Thus
we may assume now that Pb intersects Pf on row yj. Hence G0|{a, b, f } is represented as a claw clique with center (xk, yj). It
follows that both Pg and Ph must lie at the right of xi+1 and in fact Ph must intersect Pa and Pc on row yj. But now Pg cannot
intersect Pb and Pc without intersecting any other path. Thus we conclude that G0 is not B1-EPG. �

We are now ready to give a characterization of all split graphs with |K | = 3 that are B1-EPG.

Theorem 21. Let G be a split graph with V (G) = K ∪ S, K ∩ S = ∅, where K is a clique, S is a stable set and |K | = 3. Then G is
B1-EPG if and only if G is G0-free.

Proof. It follows from Lemma 20 that G0 is not B1-EPG. Let G be a split graph with |K | = 3 and not containing any induced
subgraph isomorphic to G0. Let a, b, c be the vertices of K . For each J ⊆ {a, b, c}, denote by NJ the set of vertices of S that
are adjacent only to the members of J . We may assume that N∅ = ∅. Indeed it is always possible to add isolated paths to
a B1-EPG representation. Assume first that for each nonempty J ⊆ {a, b, c}, we have |NJ | = 1; define NJ = {vJ}. Then we
obtain the graph represented in Fig. 12 and a feasible B1-EPG representation of it.

Consider now the general case, i.e., |NJ | ≥ 0 for all nonempty sets J ⊆ {a, b, c}. We will distinguish two subcases.
If |N{a,b,c}| ≤ 1, we modify the previous construction as follows. For every ∅ ≠ J ⊆ {a, b, c} such that NJ = ∅, we just

delete PJ ; for every ∅ ≠ J ⊂ {a, b, c} such that |NJ | > 1, we split the path PJ into |NJ | non-overlapping segments.
If |N{a,b,c}| ≥ 2, we proceed as follows. Since G is G0-free, at least one of the sets N{a,b},N{b,c},N{a,c} is empty. Without

loss of generality, we may assume that N{a,b} = ∅. Then we clearly obtain a feasible B1-EPG representation of G as shown in
Fig. 13. Notice that, for the sake of simplicity, we took |N{a,b,c}| = 2 and |NJ | = 1 for each J ⊆ {a, b, c}, J ≠ {a, b, c}, {a, b};
we can easily transform this representation if we have |NJ | > 1 for some sets J ⊆ {a, b, c}, J ≠ {a, b, c}, {a, b}, by splitting
the corresponding paths PJ into |NJ | non-overlapping segments (as mentioned already above). �

Let us now consider split graphs with |S| = 3. Consider the three split graphs G1, G2, G3 shown in Fig. 14. Notice that
in all these graphs the vertices of S form an asteroidal triple contained in the neighborhood of the vertex denoted by v. It
follows from Theorem 9 that G1, G2 and G3 are not B1-EPG. In particular, these graphs show that in Theorem 21 |K | = 3
cannot simply be replaced by |K | = 4.

We obtain the following result.

Theorem 22. Let G be a split graph with V (G) = K ∪ S, K ∩ S = ∅, where K is a clique, S is a stable set and |S| = 3. Then G is
B1-EPG if and only if G is {G1,G2,G3}-free.



A. Asinowski, B. Ries / Discrete Mathematics 312 (2012) 427–440 439

Fig. 14. The graphs G1 , G2 , G3 .

Fig. 15. Split graph Gwith |S| = 3, N{d,e,f } = ∅.

Fig. 16. Split graph Gwith |S| = 3, N{d,e,f } ≠ ∅, N{d,e} = N{d} = ∅.

Fig. 17. Split graph Gwith |S| = 3, N{d,e,f } ≠ ∅, N{d,e} = N{f } = ∅.

Proof. Let d, e, f be the vertices of S. For each J ⊆ {d, e, f }, denote by NJ the set of vertices of K that are adjacent only to
the members of J . Assume first that N{d,e,f } = ∅. We may assume that for each J $ {d, e, f } we have |NJ | = 1. Let NJ = {vJ}

(otherwise we shall duplicate or delete the corresponding paths in the following construction). Then we obtain the graph
represented in Fig. 15 and a B1-EPG representation of it.

Assume now that N{d,e,f } ≠ ∅. At least one among the sets N{d,e}, N{d,f }, N{e,f } is empty since otherwise G contains an
induced subgraph isomorphic to G1. Moreover, at least one among the setsN{d},N{e},N{f } is empty since otherwise G contains
an induced subgraph isomorphic to G2. Thus there are, up to relabeling, two cases to distinguish: (1) N{d,e} = N{d} = ∅; (2)
N{d,e} = N{f } = ∅.

In the first case, wemay assume that for all J ⊆ {d, e, f }, J ≠ {d, e}, {d}, we have |NJ | = 1, NJ = {vJ}. Then G has a B1-EPG
representation as shown in Fig. 16.

In the second case, it is impossible that all the sets N{d,e,f }, N{d,f }, N{e,f }, N{d}, N{e} are nonempty since otherwise G contains
an induced subgraph isomorphic to G3. Then we have essentially two cases: (2a) N{d,f } = ∅ and (2b) N{d} = ∅ (recall that we
are dealing with the case N{d,e,f } ≠ ∅). In both cases we assume that for all the sets NJ (except those assumed to be empty)
we have |NJ | = 1, NJ = {vJ} and obtain a B1-EPG representation of G as shown in Fig. 17.
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Notice that in the case where N{d,e,f } ≠ ∅, we could (instead of giving a B1-EPG representation) note that G is a chordal
AT-free graph and therefore it is an interval graph, and hence B1-EPG. �

6. Conclusion

In this paper we considered edge intersection graphs of single-bend paths on a grid (B1-EPG graphs). We showed that in
B1-EPG graphs the subgraph induced by the neighborhood of any vertex is weakly chordal, and thus perfect. This allowed
us to prove that these graphs satisfy the Erdős–Hajnal property, i.e., they contain either a large clique or a large stable set.
Then we considered some subclasses of chordal graphs and characterized the B1-EPG graphs of these subclasses. Some of
these results are constructive and explain how to obtain a B1-EPG representation if one exists.

There remain a lot of open questions concerning B1-EPG graphs andmore generally Bk-EPG graphs for k ≥ 1. For instance
it would be interesting if one could characterize B1-EPG graphs of special classes of graphs other than those presented here.
Chordal graphs would be of major interest. Furthermore, a question arising from our results is that of whether 1

3 is best
possible for the Erdős–Hajnal property for B1-EPG graphs.

Finally let us mention that it is still unknown whether, for instance, the vertex coloring problem or the maximum clique
problem is polynomially solvable in B1-EPG graphs.
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