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exponential concentration gradients were 
generated when sedimentation and diffu-
sion were in equilibrium at lower centrif-
ugal forces.[13]

This is a big step in the design of soft 
nanocomposites for it enables that such 
monotonic gradient profiles can be mod-
eled quantitatively and designed precisely 
before processing—owing to the avail-
ability of a mathematical framework that 
is able to model faithfully the related phe-
nomena. Following this concept, i.e., that 
1) the creation and fixation of macroscale
gradient profiles may be decoupled and

2) may be designed and tailored accurately by mathematical
means, we present an approach dedicated to creating contin-
uous and smooth long-range longitudinal concentration gradi-
ents of NPs in macroscopic 1D soft materials, such as fibers.
The available design-space is rich, and includes either sym-
metric or asymmetric, monotonic or nonmonotonic, linear,
or nonlinear profiles, with the possibility of, e.g., periodicity,
having multiple local minima and maxima with either comple-
mentary or orthogonal functionalities.

The physical phenomenon our approach is based on is called 
Taylor dispersion, which can be accurately described by the 
asymptotic solution of the convective-diffusion equation[14–16] 
corresponding to the geometry of the flow channels.[17] Taylor 
dispersion refers to the enhanced dispersion of particles in a 
steady Poiseuille flow, where the linear shear stress creates a 
quadratic flow-velocity profile, and induces a spontaneous net 
transport of particles via translational self-diffusion. The rate 
and overall extent of spread is a function of the unidirectional 
velocity profile and translational self-diffusion coefficient of the 
particles. Taylor dispersion is characteristic to laminar flows 
and scalable on a wide range of dimensions. In the case of 
NPs, the phenomenon can be easily realized in a microcapillary 
laminar flow, which also provides an outstanding experimental 
technique to characterize the hydrodynamic radius of organic 
and inorganic NPs.[18–26]

Although from the theoretical point of view, its dimension-
ality is scalable, Taylor dispersion is essentially a microfluidic 
technique, and microfluidics offer an excellent platform to 
create a gradient, e.g., via electrospinning.[27] Indeed, Taylor dis-
persion was connected to the creation of simple concentration 
gradients more than ten years ago,[28–30] yet it was shown only 
recently that Taylor dispersion is de facto a casual linear time-
invariant system.[31] We show here that this mathematical prop-
erty has important implications for the applicability of Taylor 
dispersion when creating macroscale gradient profiles of NPs, 
because the gradient profile of NPs can be designed accurately 

Nanocomposite materials benefit from the diverse physicochemical 
properties featured by nanoparticles, and the presence of nanoparticle 
concentration gradients can lend functions to macroscopic materials beyond 
the realm of classical nanocomposites. It is shown here that linearity and 
time-shift invariance obtained via the synergism of two independent physical 
phenomena—translational self-diffusion and shear-driven dispersion—
may give access to an exceptionally high degree of flexibility in the design 
of scalable and programmable long-range concentration gradients of 
nanoparticles in solidifiable liquid matrices.

The history of functionally graded materials began far from 
the realm of soft matter,[1–3] yet the emerging promise of bio-
mimicry, biomimetics, and eventually true bioinspiration,[4,5] 
brought the necessity to design and fabricate smooth mac-
roscale-gradients also in polymer- supramolecular-, and soft 
nanocomposites.[6,7] Conventional nanocomposites merge the 
specific optical, magnetic, thermal, catalytic and mechanical 
properties of nanoparticles (NPs) with the properties of the 
surrounding matrix, resulting in macroscopically homogenous 
hybrid materials.[8,9] Spatial NP gradient profiles, such as con-
centration, size, shape, and orientation can add additional 
degrees of freedom to soft condensed matter designs, and thus, 
they represent a considerable interest.[10]

Recently, beside translational self-diffusion[11] and buoyancy-
driven gradient creation,[12] analytical ultracentrifugation was 
presented as one of the most versatile approaches to design 
and create macroscale concentration gradient profiles in liquid 
matrices that were solidified subsequently by gelation.[13] 
Depending on the relative rate of sedimentation and diffusion, 
different concentration gradients are generated: for example, 
sigmoidal profiles were obtained at high centrifugal forces 
where sedimentation governed the concentration profile, and 
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in advance, and the design-space is vast: it enables arbitrary 
profiles and virtually unlimited flexibility.

First, we discuss the mathematical background of Taylor dis-
persion as a signal system (Figure 1). Briefly, if the system is 
1) casual, 2) linear, and 3) time invariant, the temporal output 
signal is the temporal input signal convolved with the impulse 
response function. For the sake of simplicity, our discussion 
will be restricted to circular flow channels, which, however, 
does not represent either a necessity or a boundary of applica-
bility. We define the output signal as the NP concentration aver-
aged over the cross section of the channel. Then, the impulse 
response function of Taylor dispersion of uniform particles of 
hydrodynamic radius r may be very well approximated by a 
Gaussian function[14,15]
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the viscosity of the fluid, T the temperature, kB the Boltzmann 
constant, and t0 = l/v the so-called residence time defined by 
the distance between detection and injection points (l) and the 
mean velocity of the flow (v).

Taylor dispersion is a casual, linear, and time-invariant 
system. Accordingly, when the input is a given function of time 
x(t), the output as a function of time y(t) can be accurately cal-
culated as

y t x h t
t

d
0∫ τ τ τ( ) ( ) ( )= ⋅ −  (2)

The mathematical operation defined by Equation (2) is 
called convolution, and means that when one administers an 
either continuous or discontinuous succession of impulses of 

different amplitudes defined by the value of x, then y is the 
output response to x. Accordingly, this relationship also means 
that the impulse response function h(t) describes completely 
the relationship between the input and output signals y(t), and 
by programming x(t), one can design and tailor y(t), which is 
the concentration gradient profile of the NPs. In fact, one can 
even reverse the order, i.e., for creating a given output y(t), one 
can find the required input x(t) via deconvolution, by using the 
convolution theorem. This mathematical property of Taylor 
dispersion offers yet-untapped opportunities in the design and 
creation of particle concentration gradients in quasi 1- and 2-D 
liquid matrices, such as in flat flow channels.

To illustrate the versatility, we design some output profiles 
using simple inputs profiles (Figure 2). If the input profile is 
that of a uniform distribution
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i.e., the concentration of the injection is constant, the output—
as obtained via Equation (2)—is
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When the input profile increases/decreases linearly from a con-
centration of c1 to c2 between t1 and t2 time, the input function is
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where c1 ≥ 0 and c2 ≥ 0 (i.e., concentration cannot be negative), 
and the corresponding output particle concentration profile is
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Figure 1. Taylor dispersion as a signal system. The injected narrow band of a dispersion of NPs is dispersed by the interplay of the pressure-driven 
laminar flow of the carrier fluid and the translational self-diffusion of the particles, while traveling the distance between injection (input) and detection 
point (output). Taylor dispersion is a causal process: the output depends only on the current and past input, but not on future inputs. Taylor dispersion 
is also time-invariant: a given time-delay on the input results in the same time-delay on the output. Furthermore, Taylor dispersion is linear: changing 
the input in a linear way will change the output in the same linear way. Accordingly, any linear combination of distinct inputs will produce the same 
linear combination of the related outputs.
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Finally, when the concentration of the input profile decreases 
exponentially

x t t( ) eλ= λ−  (7)

the output particle concentration profile is

y t
t tt t

2
e Erfc

2
2

2 2 0
2

0
2λ λσ

σ
( ) = + −⎡

⎣⎢
⎤
⎦⎥

λ λσ( )+ −
 (8)

Figure 2. Input–output pairs of particle concentration profiles. a) Equations (3) and (4): the concentration of the input (injection) is constant  
b) Equations (5) and (6): the concentration of the input profile increases/decreases linearly, c) Equations (7) and (8): the concentration of the input 
profile decreases exponentially, and d) different particle system can be co-dispersed as wished, which enables the combination of complementary and 
orthogonal properties.
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To draw these designs, the parameters t0 and σ were chosen 
to be fully realistic so that they correspond to aqueous colloidal 
systems: We modeled particles with a hydrodynamic radius 
of 5 nm, in a cylindrical capillary with a total length of L = 
100 cm with a radius of Y = 70 μm, in water at room tempera-
ture (25 °C), with a pressure of P  =  100 mbar. According to 
these parameters, rearranging the Hagen–Poiseuille equation  
v = Y2 P/(8 L η) determined a mean flow velocity of 1.72 mm s−1.  
We set the observation distance l at 50 cm, and thus, according 
to Equation 1, the residence time t0 was 290.5 s, and the of 
the width σ of the impulse response function was 12.3 s. We 
emphasize that these parameter choices were arbitrary, and not 
in any way represented a limit or restriction. The corresponding 
input-output pairs of particle concentration profiles are shown 
in Figure 2.

To illustrate the versatility, we also present an example of 
using the convolution theorem: Let φ denote the Fourier trans-
form of a real-valued function, and φ−1 denote the inverse Fou-
rier transform. Then, according to the convolution theorem: 
x (t) = φ−1 (φ(y)/φ(h)). For example, if the desired gradient pro-
file (output) is a perfect sine function, being similar to a sinu-
soidal grating, y (t) = a + sin (ω t) where a ≥ 1, the necessary 
input function must be x t a t( , ) 2 2 e sin( )2

2 2

ω π π ω ω μ= + +
σ ω

 as 
obtained via the convolution theorem. Now, given that sine 
functions can be used to design and create very specific and 
complex periodic profiles—which is usually referred to as 
Fourier synthesis—linear combinations of input signals, i.e., 

A x ti
i

i( , )∑ ω  where Ai > 0, provide limitless combinations of 
sine functions A yi

i
i∑ , and hence, gives access to an exception-

ally versatile particle-gradient design.
While both the fundamental principles and arbitrary spe-

cial cases can be captured with exact mathematical models, to 
demonstrate experimentally the full versatility of the design 
of particle gradients is well beyond the capacity of our cur-
rent Taylor dispersion setup. Our setup is dedicated to char-
acterize accurately and precisely the hydrodynamic radius of 
small molecules, proteins, supramolecular complexes, mac-
romolecules, nanoparticles, and their self-assembly.[22,25,31,32] 
Accordingly, our ability to modulate experimentally the tem-
poral shape of the input signal (Figures 1 and 2 and x(τ) in 
Equation 2) is fairly limited at the present.

Nonetheless, to demonstrate experimentally the basic 
aspects, we studied experimentally a few cases. We used 
aqueous dispersions of 1) polymer-coated gold particles 
(PEGylated AuNPs with carboxylic acid (COOH) end group), 
2) polymer-coated silver particles (PVP-coated AgNPs), and  
3) their co-dispersion. In the first experiment, we created 
periodic gradients of AuNPs, in which the particle gradient 
profiles are modulated periodically (Figure 3).

Combining particle systems enables to impart the concen-
tration gradients with either orthogonal or complementary 
properties, e.g., with magnetic and optical features. To show 
the linearity in gradient generation as well as the possibility 
of combining different particle systems, in the second experi-
ments we created a single gradient peak where AuNPs and 
AgNPs were co-dispersed (Figure 4). We have performed five 
set of Taylor dispersion analyses: 1) Ag dispersion measured at 
400 nm, 2) Au dispersion measured at 400 nm, 3) Au disper-
sion measured at 520 nm, 4) Au/Ag co-dispersion measured at 

400 nm, and 5) Au/Ag co-dispersion measured at 520 nm. To 
prove the mutual presence of both AuNPs and AgNPs in the 
gradient profile, we relied on the fact that the AgNPs absorb 
strongly around 400 nm, and weakly beyond 500 nm, while the 
AuNPs absorb strongly around 520 nm, owing to localized sur-
face plasmon resonances.[33] Therefore, the apparent particle 
size (absorption-weighted average) of the Au/Ag co-dispersion 
was expected to be different when measured at these two wave-
lengths. When the measurement—Taylor dispersion analysis 
of nanoparticles[22]—was performed at 400 nm, the presence of 
AgNPs was clear, while when it was performed at 520 nm, the 
presence of AuNPs was dominant.

To summarize, our study presents the challenging idea that 
Taylor dispersion—being a linear time-invariant system—can 
be used to create macroscale gradients of nanoparticles dis-
persed and co-dispersed in liquid matrices. In our theoretical 
approach, we dealt with inert and stationary particle systems, 
e.g., the shear-force and liquid matrix do not change either the 
hydrodynamic radius or the colloidal stability of the particle 
system. The idea we put forward addressed particles that are 
dispersed in a liquid matrix that is itself solidifiable, e.g., a low-
viscosity UV-curable photopolymer with low curing shrinkage. 
Therefore, we did not consider the addition of any agent to 
impart this ability, although to prove the concept of creating 
gradients, we addressed aqueous systems, owing to the param-
eters of our Taylor dispersion setup.

Furthermore, we addressed particle systems where inter-
particle interactions are negligible, and accordingly, the simul-
taneous dispersion of different particle systems does not 
influence each other’s output signals, in other words there is 
no interference between output signals. To achieve perfectly 
smooth and locally homogeneous long-range gradients, e.g. 
even spanning over a few meters is arguably difficult,[34] and 
our study aims to change that. We showed that the related phys-
ical principles can be described by exact mathematical models, 
and consequently, particle gradients of exceptional versatility 
can be designed at wish. These scalable and programmable 
long-range concentration gradients can be fixed by solidifying 
the liquid matrix, e.g. either by gelation or resin curing or using 
one-component composites particles[35] or stimuli responsive 
noncovalent supramolecular interactions.[36]

We believe that there is plenty of room for extending the ver-
satility of such particle concentration gradients. For example, 
local hierarchical assemblies may be made available by using 
specific interactions between particles.[37,38] Furthermore, the 
application of external fields, e.g., electromagnetic fields and 
anisotropic nanoparticles can further add to the versatility of 
the design via alignment, and local or global perturbations, to 
introduce, e.g., disorder and randomness. For the sake of sim-
plicity, we discussed homogeneous inputs in this study, i.e., 
the input concentration was homogeneous across the cross 
section of the channel geometry. However, if the input can be 
modulated spatially—e.g., in the case of a cylindrical channels: 
radially (polar coordinates)—it attributes yet another degree 
of freedom to the versatility of the design. To achieve diverse 
modulated inputs, microfluidic techniques offer a vast toolbox 
for input generation, including, e.g., programmable sequences 
of composition[39] and complex input waveforms,[40] which 
enable co-dispersing different particles—even different carrier 
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fluids—in a composition- time-, and position-shared manner. 
Furthermore, the velocity of a laminar flow in a tapered 
channel would systematically increase/decrease (narrowing/
widening channel radius), even if the driving pressure remains 
constant. Therefore, the interplay between time-dependent 
pressure and a nonconstant velocity could offer interesting pos-
sibilities for creating non-conventional concentration-gradients 
in such geometries.

Last but not least, as mentioned above, Taylor dispersion is 
scalable, which means that as long as i) the flow is laminar, 
ii) the residence time is much larger than the characteristic 
time required for the particles to diffuse across the capillary 
(D t0/Y2 < 1.4) and iii) the transport rate due to axial diffusion 
is negligible compared to dispersion due to shear (v Y/D < 69), 
the theory outlined here is complete and valid.[14–16] Until the 
Reynolds number (Re) is below 2100, the flow remains lam-
inar. By using the Hagen–Poiseuille equation, one can express 

this condition by a straightforward inequality: Re = P Y3ρ/
(4 L η2) < 2100, where L is the total length of the flow-channel. 
Accordingly, the number of possible combinations to meet this 
condition is vast, and for a given channel-geometry (radius Y 
and length L) and given fluid type (viscosity η and mass den-
sity ρ) one can set the driving pressure accordingly. As an 
example, if we consider NPs with a hydrodynamic diameter of 
10 nm, dispersed in a long cylindrical channel with a radius of  
0.5 mm and a length of 15 m, in water at a temperature of 37 °C,  
driven by a pressure of 3 mbar, the smooth concentration gra-
dient profile will span over more than 1 m in the middle of  
the channel.

Finally, while in our case the primary parameter was time—
owing to the original mathematical formulation—, time as 
parameter can be converted into distance by using the flow 
velocity, and the transformation of the related mathematical 
expressions is straightforward.

Figure 3. a) Transmission electron microscopy image and b) the UV-Vis spectrum of AuNPs with a mean core radius of ≈21 nm (Feret radius).  
c,d) Output gradient profiles resulting from periodic inputs corresponding to Equations (3) and (4). In these experiments, alternating sequences of 
AuNPs and Milli-Q water were injected into the capillary as input. c) AuNPs 200 mbar for 0.08 min and then Milli-Q water 90 mbar for 8 min, repeated 
three times (input length was 5 s and consecutive input events were set apart by 8 min). The dashed line indicates the theoretically expected profile. 
d) AuNPs 200 mbar for 10 min and then Milli-Q water 90 mbar for 8 min, repeated three times (input length was 10 min and consecutive input events 
were set apart by 8 min.). The dashed line indicates the theoretically expected profile. We point out that at the moment we are unable to perform 
experiments with input profiles corresponding to Figure 2b,c, simply because we do not have the experimental means to create and control accurately 
such input profiles.
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Experimental Section
Chemicals: Gold (III) chloride trihydrate (HAuCl4 · 3H2O, ≥99.9%), 

sodium citrate tribasic dihydrate (C6H5Na3O7 · 2H2O, ≥98%), and 
hydroxylamine hydrochloride (NH2OH · HCl, ACS reagent, 98%), silver 
nitrate (AgNO3, ACS reagent, ≥99%), tannic acid (C76H52O46, ACS  
reagent) and polyvinylpyrrolidone (PVP, Mw = 10000) were purchased from 
Sigma-Aldrich. Thiol-PEG-carboxylate and methoxy poly(ethylene glycol)  
(Mw = 5000) were purchased from Creative PEGWorks. Milli-Q water 
was used in all preparations.

Synthesis of the AuNPs: The larger particles were prepared by 
seeded-growth method based on the procedure described in detail 
elsewhere.[41,42] Briefly, 1.34 mL of hydroxylamine hydrochloride (0.22 M)  
were added to 144 mL aqueous solution containing gold salt 
(0.25 × 10−3 M), 15 nm gold seeds ([Au] = 0.0125 × 10−3 M) and sodium 

citrate (0.5 × 10−3 M) under vigorous magnetic stirring. After 3 h, a 
solution of SH-PEG-COOH sonicated previously for 30 min was added 
dropwise to the mixture and stirred overnight to coat the particles, 
resulting in a surface density of ≈25 molecules nm−2. The dispersion was 
cleaned twice by centrifugation at 2800 rpm for 35 min and redispersed 
in Milli-Q water. The small seeds (S-AuNPs) were prepared by the well-
known Turkevich method,[43] where an aqueous solution of sodium 
citrate (1.7 × 10−3 M) was added quickly to a boiling solution of gold 
salt (0.5 × 10−3 M) under vigorous magnetic stirring. After 15 min,  
the dispersion was allowed to cool down to room temperature. 
Particles were coated with 5 molecules nm−2 mPEG following the same 
protocol used for the L-AuNPs. The excess of mPEG was removed by 
centrifugation at 10 000 rpm for 30 min.

Synthesis of the AgNPs: The particles were synthetized by following 
the method described in detail elsewhere.[44] Briefly, silver nitrate  

Figure 4. The analysis of single gradient profiles of co-dispersed AgNPs and AuNPs. a,b) Transmission electron microscopy images of the AgNPs 
and AuNPs. c) The UV–vis spectra of single and co-dispersed AgNPs and AuNPs ([Ag] = [Au] = 0.6 × 10−3 M). d) Taylor dispersion analysis of single 
and co-dispersed AgNPs and AuNPs. Data points (mean and standard deviation) are statistics of five measurements. In this experiment, five sets of 
Taylor dispersion analyses were performed: In the first one (#1), the dispersion of the AgNPs was measured at 400 nm, in the second one (#2), the 
dispersion of the AuNPs was measured at 400 nm. In the third run (#3), the dispersion of the AuNPs was measured at 520 nm, in the fourth run (#4), 
the Au/Ag co-dispersion was measured at 400 nm, and finally in the fifth run (#5), the Au/Ag co-dispersion was measured at 520 nm. Given that i) 
the AgNPs absorb strongly around 400 nm but weakly beyond 500 nm, and ii) the AuNPs absorb strongly around 520 nm, the apparent particle size 
(here: optical-absorption-weighted average) of the Au/Ag co-dispersion must be different when measured at these two wavelengths. Accordingly, at 
400 nm, the presence of AgNPs must be evident, while at 520 nm, the presence of AuNPs must be dominant. Measuring the co-dispersion at different 
wavelengths therefore resulted in different apparent particle sizes (absorption-weighted average), proving that the particles were truly co-dispersed in 
the gradient profile.
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(1.06 × 10−3 M) was refluxed at 130 °C in the presence of tannic acid 
(0.29 × 10−3 M) and sodium citrate (2.45 × 10−3 M) for 20 min. The NPs 
were coated with PVP by adding dropwise a solution of PVP to the 
dispersion (resulting in a surface density of approx. 18 molecules nm−2). 
After 4 h, the dispersion was cleaned by centrifugation at 3500 rpm for 
25 min, and redispersed in Milli-Q water.

UV–Vis Spectra: Spectra were recorded at 25 °C in a Jasco V-670 
spectrophotometer using 10 mm path length quartz Suprasil-grade 
cuvettes (Hellma Analytics).

Transmission Electron Microscopy: NPs were imaged by using a Tecnai 
Spirit transmission electron microscope (FEI, Hillsboro, OR, US) 
operating at 120 kV equipped with a CCD camera (Eagle, ThermoFischer, 
Waltham, MA, US). Samples were prepared by drop casting 10 μL of the 
dispersion onto a 300-mesh carbon-membrane-coated copper grid. The 
size distribution of the particles was estimated by using an open source 
image processing program (ImageJ).[45,46]

Observing Gradient Profiles in a Capillary-Electrophoresis System: 
Optical absorbance was recorded in a capillary electrophoresis system 
(Prince560CE Autosampler, Prince Technologies, B.V., Netherland), 
using a 145 cm long fused silica capillary with an internal diameter of 
74.5 μm (Polymicro Technologies, Phoenix, USA). The detection window 
(output) was 72 cm apart from the injection point (input), and an ActiPix 
D100 area detector (Paraytec, York, UK) in combination with a bandpass 
filter (either 520 ± 10 nm or 400 ± 10 nm) and a neutral density filter of 
10% transmission (Edmund Optics, York, UK) was used to record the 
optical absorbance.

In the first experiment (Figure 3), alternating sequences of AuNPs 
and Milli-Q water were injected into the capillary as input. AuNPs ([Au] 
= 0.6 × 10−3 M; 200 mbar for 0.08 min or 10 min) and Milli-Q water
(90 mbar for 8 min). In the second experiment (Figure 4), AuNPs and
AgNPs as well as their co-dispersion ([Au] = [Ag] = 0.6 × 10−3 M) were
injected at 200 mbar for 0.2 min and were driven through the capillary
at 90 mbar for 20 min. Milli-Q water was used as eluent for all the
experiments. After each set of experiments, the fused silica capillary was
cleaned by pumping NaOH (0.1 M) at 2500 mbar for 10 min and then
rinsed with Milli-Q water at 2500 mbar for 10 min.

Taylor Dispersion Analysis: To characterize the apparent hydrodynamic 
radius, the same capillary-electrophoresis system was used as described 
above, using two detection windows (37 and 72 cm apart from the 
injection point). Using two detection points promotes accuracy,[47,48] 
and the apparent translation self-diffusion coefficient D is estimated 
through the differences in variances and residence times of the gradient 
profiles recorded at the two windows: σ σ= − − −D Y t t/24( )( )2

2 1 2
2

1
2 1. The 

absorption-weighted average hydrodynamic radius[22,25] is determined 
from D via the Stokes-Einstein equation (D = kB · T/6 · π · η · r ) where 
η is the viscosity of the carrier fluid, T is the temperature, and kB is
the Boltzmann constant.[49–51] Given that the optical extinction of a
nanoparticle is a power function of the radius, μ(r, λ)∝rn,[52] it can be
shown that the absorption-weighted average hydrodynamic radius of
polydisperse NPs scales as 〈r4〉/〈r3〉, where 〈rn〉 is the nth raw moment of
the particle size distribution ∫〈 〉 ≡ ⋅

∞
r P r r rn n( ) d

0
.

Data Availability: All data—raw and derived—can be obtained free of 
charge from the corresponding author.
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