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Among adult vertebrates, the zebrafish presents the rather

exceptional capacity to efficiently regenerate its heart after

injury. This bony fish has thus become a leading genetic model

organism to elucidate the natural mechanisms of successful

cardiac restoration. Given its potential biomedical significance,

parallel analyses between zebrafish and mammals are aiming

at the identification of the permissive and restrictive factors

modulating the underlying cardiomyocyte proliferation. The

recent discovery that some other bony fish species have a

lower regenerative competence than zebrafish opens new

opportunities for comparative studies within a framework of

similar animal physiology and organ structure. Here, we review

recently identified modulators of cardiomyocyte proliferation in

zebrafish and highlight the results obtained by this comparative

approach.
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Introduction
The heart is one of the most important vertebrate organs

due to its vital blood-pumping function. Consequently, a

prompt and efficient mechanism to heal heart injuries

would be particularly beneficial. A restoration of the

myocardium to a pre-injury state obviously represents

the optimal strategy. Yet, cardiac regeneration is absent in

adult mammals and has only been observed in a few

anamniotic vertebrates, such as zebrafish and axolotls [1�].
As the heart lacks competent cardiac stem cells, the

regenerative mechanism solely relies on the proliferative

capacity of pre-existing cardiomyocytes (CMs) [2–5].

Understanding how the cellular plasticity of CMs is

modulated is thus of major scientific and therapeutic

relevance.

In non-regenerative hearts, such as in adult mammals,

damage leads to scarring, which causes varying degrees of
www.sciencedirect.com 
cardiac dysfunctions including heart failure [6]. This

imperfect repair seems to be a consequence of the inabil-

ity of mature mammalian CMs to efficiently multiply for

restoring the missing tissue [4]. Indeed, mammalian CMs

substantially diminish their access to the cell cycle after

the neonatal stage [7]. Nevertheless, the inherent renewal

of some mature CMs can be experimentally enhanced

by hypoxic conditions, pharmacological treatment, and

genetic modifications of molecular pathways [8–10]. Yet,

it is still debated whether mammalian CMs could reach a

proliferative state sufficient for regeneration.

By contrast, the zebrafish can naturally regenerate its heart

after different types of injuries, and recover the functional-

ity of this organ, as recently reviewed in [1�,11–14]. For

example, cryoinjured hearts regenerate most of their

damaged tissue within 30–60 days [15], and their complete

restoration may require 130–180 days [16,17]. This process

is sustained by CMs that are stimulated upon injury to

revert to a less differentiated state, which is thought to

facilitate cell proliferation and morphogenesis [18–21].

Myocardial regeneration is accompanied by the activation

of other tissue types of the heart, such as the endocardium,

epicardium, blood and lymphatic vasculature, nerves and

immune system [22–30]. Thus, the intrinsic features of

CMs and extrinsic signals from other tissues contribute to

the restorative outcome. Consequently, identifying, char-

acterizing and controlling some of these factors constitute

major scientific interest.

Cellular complexity and polyploidy of
cardiomyocytes as obstacles for proliferation
Increased structural and physiological complexity of the

heart has been proposed to be one of the limiting factors

for regeneration in mammals [1�,13]. Because the metab-

olism of endothermic organisms requires more energy,

mammals have acquired a more performant heart through

enlargement and specialization of their CMs. Although

bigger CMs can be better at generating contractile forces,

their structural complexity imposes more challenges on

cell division and plasticity [31]. Moreover, the mamma-

lian cardiac hypertrophy is typically associated with a

polyploidization event, meaning that the set of chromo-

somes is multiplied without a subsequent cell division

[32]. This polyploidization coincides with the loss of

proliferative capacity of the mammalian myocardium

around the time of birth, suggesting a correlation between

both changes [33]. The loss of the proliferative capacity

can thus be considered, at least to a certain extent, as a

trade-off for fostering the contractile tissue with special-

ized and polyploid CMs [1�].
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Two recent studies tested this hypothesis in the zebrafish

heart, which nearly entirely comprises diploid CMs

[34��,35]. First, Gonzalez-Rosa et al. investigated if experi-

mentally induced polyploidy is sufficient to affect heart

regeneration in the zebrafish [35]. They established a

transgenic approach to inhibit CM division during

ontogenic growth by the transient overexpression of a

dominant-negative form of Ect2 (dnEct2), a Rho GEF

protein required for cytokinetic ring assembly. This model

yielded mosaic zebrafish hearts with different proportions

of polyploid CMs, which were lineage-traced through a

Cre-lox based system. Following cardiac injury, polyploid

CMs contributed to the regenerated tissue much less

efficiently than diploid CMs. Moreover, hearts with a high

percentage of polyploid myocardium (>50 %) failed to

regenerate. Thus, polyploidization interfered with the

robust proliferative capacity of the zebrafish heart.

Another recent study has reached similar conclusions by

inducing polyploid CMs in zebrafish through administration

of thyroid hormone [34��]. This chemical treatment

increases the frequency of binucleated CMs by fivefold in

the zebrafish heart. After injury, these hearts displayed

reduced CM proliferation and blocked regeneration. Thus,

polyploid zebrafish CMs tend to lose their proliferative

efficiency, similarly to their mammalian counterparts [36].

Interestingly, a possible link between altered thyroid

hormone availability and the loss of cardiac regenerative

capacity has recently been described in frogs (Xenopus laevis)
[37]. The underlying causes of regenerative impairment due

to polyploidy and thyroid hormone remain to be elucidated.

In addition, research on zebrafish has identified a number of

signalling pathways, DNA-binding proteins, epigenetic

factors, microRNAs and extracellular matrix proteins

required for heart regeneration, as comprehensively

reviewed in Ref. [11]. The interruption of these endoge-

nous molecular factors typically impairs CM proliferation

and prevents regeneration. However, identifying exoge-

nous stimulators of CM proliferation provides a comple-

mentary approach to dissect the mechanisms underlying

heart regeneration.

Boosting cardiomyocyte proliferation by
vitamin D and preconditioning in zebrafish
Although zebrafish perfectly regenerate their heart after

injury, two recent studies have succeeded in further

improving this dramatic process by two different

approaches, both resulting in an increased CM proliferative

activity. In the first study, Han et al. demonstrated the pro-

mitotic role of the steroid pro-hormone Vitamin D by

administration of an exogenous analogue, called alfacalci-

dol [38�]. This effect was blunted by the inhibition of

ErbB2 signalling, a receptor of Neuregulin 1 [39], indicat-

ing that Vitamin D partially acts through this cascade.

Moreover, blockade of the Vitamin D receptor (VDR)

impairs the regenerative process. During ontogenesis,
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genetically induced activation of VDR signalling in the

heart leads to cardiomegaly, a phenotype characterized by

an enlarged and thickened myocardial wall. These results

highlight the importance of the endocrine system during

cardiac regeneration [3,40,41]. In humans, Vitamin D

signalling has been reported to protect ischemic myocar-

dium through anti-inflammatory and anti-apoptotic mech-

anisms [42]. Vitamin D could, thus, have a conserved

beneficial pro-regenerative function in vertebrates.

In the second study, our laboratory has shown that the

Cilliary Neurotrophic Factor (CNTF) cytokine is a stimu-

lating factor in the context of cardiac preconditioning and

regeneration in zebrafish [43]. Preconditioning is a

‘resilience’ mechanism that is triggered by exposure to

low doses of a harmful stimulus in order to enable tissues to

better withstand the deleterious effects of more severe

subsequent injuries [44]. We induce cardiac precondition-

ing in adult zebrafish by performing thoracotomy a few days

before ventricular injury [45]. This procedure increases cell

survival and CM proliferation during the first week of

regeneration through upregulation of epicardial factors,

such as CNTF [46,47]. Remarkably, a single injection of

CNTF into the pericardial cavity is sufficient to trigger CM

proliferation in the intact heart [43]. Mutation of the cntf
gene suppresses the preconditioning effects after thoracot-

omy. In the regenerating zebrafish heart, delivery of CNTF

before ventricular cryoinjury improves the initiation of

regeneration via reduced cell apoptosis and boosted CM

proliferation. The downstream targets of CNTF include

JAK/STAT3 signalling, as the inhibition of this pathway is

sufficient to suppress the effects of the cytokine. Interest-

ingly, overexpression of a dominant negative STAT3 has

been shown to restrict CM proliferation during regenera-

tion, but not during normal growth in zebrafish [48]. In

mammals, exogenous administration of the CNTF protein

is known to exert protective effects for neural tissues and to

promote myoblast proliferation [49]. The mechanisms of

CNTF-based preconditioning are thus potentially evolu-

tionarily conserved.

Taken together, these recent studies suggest the exis-

tence of physiological and paracrine mechanisms that can

boost the proliferative programs in the zebrafish heart.

The identification of additional positive modulators and a

deeper comprehension of the cardioprotective machinery

will provide important lines of research with the ultimate

goal of mimicking such processes in mammals.

Insights from comparative studies of heart
regeneration in different fish species
CM proliferation is the key process for heart restoration.

In order to understand the molecular causes regulating

CM proliferation, a promising approach is to determine

the similarities and differences between the injured

hearts of regenerative and non-regenerative organisms.

An example of such comparisons is the recent creation of a
www.sciencedirect.com



Heart regeneration in fish Ja�zwi�nska and Blanchoud 23
common platform for transcriptomic databases to facili-

tate cross-experiment analyses [50]. This interspecies

approach is elegantly represented by a study in which

zebrafish regeneration-specific enhancers are activated in

the post-injury tissues of neonatal mice, suggesting a

shared potential [51]. However, the important taxonomic

distance between zebrafish and mammals might lead to

organismal and genomic differences that hinder the iden-

tification of factors specifically linked to regeneration.

A number of fish species have been shown to efficiently

restore a variety of organs in addition to their heart [52].

Interestingly, while regenerative capacities seem to be

highly conserved for some body parts (e.g. fins), others

vary between species (e.g. heart, Figure 1). Therefore,

bony fishes provide a morphologically coherent and

genetically focused context for interspecies research.

One of the first reported interspecies analysis on heart

regeneration was performed between zebrafish and medaka

(Oryzias latipes) [53], two species that separated during the

early teleost radiation approximatively 250 million years ago

[54] (Figure 1). Aftercardiac injuries, medaka react with high
Figure 1

Cladistia

Teleostei

Clupeocephala

Euteleostei

Ovalentaria

Actinopterygii

Otophysa

Osteoglossomorpha

Protacanthopterygii

400 300 100200  0
Mya

Phylogeny of selected orders of bony fishes and their reported regenerative c

fishes) is depicted and overlaid with relevant taxonomic groups and the corres

which were selected as having at least one species with a reported regenerat

listed in each order was used to create the schematic drawing of fish. For eac

capacities for the fin, the nervous system and the heart. Colour-code is green

shown absence of regeneration and grey for absence of published data. Phylo

[52,53,56��,59–61,63,64].

www.sciencedirect.com 
mortality, excessive fibrosis and health impairments

[53,55��]. In addition to these phenotypes, low CM prolifer-

ation and a lack of revascularization are observed, indicating

an absence of heart regeneration. Interestingly, the regener-

ative failure was also associated with delayed macrophage

recruitment, along with suppressed neutrophil clearance.

Using interspecies transcriptomic analyses, Lai and collea-

gues identified a reduction in the immune response

compared to zebrafish [55��]. The authors then confirmed

the significance of this difference by improving cardiac

regeneration in medaka through polyIC injections. This

treatment, which stimulates the Toll-like receptor signaling,

results in enhanced CM proliferation, neovascularization

and scar resolution. These findings not only suggest a crucial

role for the immune system in pro-regenerative programs,

but they also demonstrate the value of interspecies analysis

to identify modulators of regeneration.

A second and particularly interesting study has recently

been elaborated using intraspecies comparisons of

the Mexican cavefish (Astyanax mexicanus) [56��]. This

species, which had a common ancestor with zebrafish

approximately 180 million years ago (Figure 1), includes
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two distinct morphotypes. In addition to the typical river

A. mexicanus, a subpopulation has evolved to inhabit cave

ponds where they got trapped following transient

floodings between 1 and 3 million years ago [57]. These

fish have adapted their behavior, metabolism and mor-

phology to dark environments. Surprisingly, the cave fish

have not only lost their eyes and skin pigmentation but

also their ability to undergo heart regeneration [56��]. By

comparing non-regenerative cave population with the

regenerative river population using quantitative trait

locus analysis, the authors have identified three loci

putatively linked with cardiac healing. One of these genes

is lrrc10, a leucine-rich repeat protein. However, further

analyses are needed to determine the mechanistic causes

of the diminished cardiac regeneration. The Mexican

cavefish represents a very promising model to study

the fast evolutionary loss of heart regeneration capacity

and thus a platform to identify central modulators of this

process.

Genetic changes associated with adaptation to life in

darkness could possibly be linked to the loss of systemic

factors required for stimulation of CM proliferation. In

particular, it would be interesting to investigate whether

cavefish display an insufficiency in Vitamin D, as suggested

by the aforementioned work in zebrafish [38�]. Indeed,

sunlight exposure is probably required for the synthesis of

this hormone in fish, as rainbow trout reared in the dark for

two years develop a deficiency in Vitamin D, which can be

rescued by exposure to artificial light [58]. Thus, the

Mexican cavefish might have evolved metabolic adaptations

that are not compatible with this cardiac pro-regenerative

pathway. It would be interesting to test whether exogenous

administration of Vitamin D would restore heart regenera-

tion in cavefish, and if constant darkness prevents cardiac

restoration in zebrafish. More generally, it will be highly

relevant formyocardial research to assess and understand the

evolution and modulation of the regenerative capacity

among fishes (Figure 1).

Currently, heart regeneration has been assessed in a

limited number of fish species. In this context, it is impor-

tant to note that because negative results are notably more

difficult to publish, other species of fish might have been

sampled but their absence of regeneration never reported.

Cypriniformes is the most assessed phylogenetic order

with two additional fish species shown to regenerate

their hearts after cautery injury, namely the giant danio

(Devario aequipinnatus) and the goldfish (Carassius auratus)
[59,60]. Together with the data from the Characiformes

A. mexicanus, these results could suggest that heart regen-

eration is conserved in Otophysa fishes (Figure 1). More

distantly, CM proliferation has been detected in the

Salmoniformes Salmo salar and Polypteriformes Polypterus
senegalus, but assessing the efficiency of the regenerative

process as a whole will require further analysis in these

species [61,62].
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Conversely, it is not yet known if the absence of heart

regeneration observed in medaka is conserved beyond

the Beloniformes order. To investigate this question, our

laboratory is currently studying heart regeneration in

a species of the related Cyprinidontiformes platyfish

(Xiphophorus maculatus) (Figure 1). Together with studies

in more distant orders, such as Cichliformes or Blenni-

formes, our results could help determine whether a lack of

heart regeneration is common to Ovalentaria fishes. The

examination of representative species of additional

phylogenetic groups will illuminate new factors modulat-

ing heart regeneration.

Conclusions
Understanding the molecular mechanisms underlying CM

proliferation in vertebrates is of major scientific and thera-

peutic interest. Zebrafish is the leading genetic model

organism in this field, and the study of its dramatic regenera-

tive capacities has brought numerous insights into myocar-

dial research. To identify conserved modulators of cardiac

regeneration, zebrafish data are typically compared with

those of non-regenerative species, and of mammals in

particular. However, the distant phylogenetic separation

between these two taxa is linked with major physiological

and anatomical differences potentially unrelated to heart

regeneration. In this context, comparisons between closely

related species with varying degrees of regenerative capacity

are of particular interest. Recent studies have demonstrated

that heart regeneration is variable between fishes from

different taxonomic families, as well as between distinct

morphotypes. The resulting comparative interspecies and

intraspecies analyses suggest that the cardiac restoration is

also regulated by currently undetermined organismal factors

[26]. Sampling of additional fish species will open new

avenues to approach this topic and, in the long term, might

bring clues for novel medical strategies.
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