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Abstract. In search of generalities in biological invasions, it is sometimes forgotten that invader success
can be a function of both the diversity of the invaded community and the relatedness of the invader rela-
tive to community residents. Both qualities are likely to be especially important in stressful ecosystems,
and identifying the species and community attributes that influence biological invasions can help direct
management efforts in a sensitive ecosystem like those in arid regions. Pink Morning Glory, Ipomoea carnea
Jaq. (Family: Convolvulaceae), is an annual vine native to Central and South America and is invasive in
Egypt. We examined the performance of I. carnea at different densities in assembled communities of Egyp-
tian annual native species. The native plant communities were manipulated to represent gradients of spe-
cies richness and phylogenetic diversity and relatedness to I. carnea. We quantified the performance of
I. carnea in these communities and examined the contribution of resident species richness, phylogenetic
diversity, and phylogenetic relatedness to invader resistance. Our findings revealed that there was a posi-
tive relationship between invader performance and its mean phylogenetic distance to the resident species.
Furthermore, species-rich communities with more distantly related species positively contributed to inva-
der performance in contrast to the classic biotic resistance hypothesis. Beyond these positive relationships,
a positive density-dependent effect of I. carnea on its performance was observed. We conclude that facilita-
tive interactions are potentially important drivers promoting the successful invasion of the nonnative spe-
cies I. carnea in water-limited and harsh ecosystems. These results suggest that perhaps contrary to
understanding from temperate systems, communities with a higher diversity of species could be more
likely to be invaded by arid-adapted species that are distantly related to natives. Thus, policy and manage-
ment in arid regions should carefully consider reviewing the importation of nonnative species that are phy-
logenetically distinct and adapted to arid conditions and prioritizing their control once they are
established.
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INTRODUCTION

The invasion of habitats by nonnative species
is a major management priority all over the
world (Pysek et al. 2010, Suetsugu et al. 2012).
Determining the factors that control the invasion
success of nonnative species has considerable
applied significance in habitat restoration and
environmental management. The impact of inva-
sive species on native species is thought to
depend on the performance of invaders (often
construed as fitness) relative to the resident com-
munity, where high-performing invaders likely
outcompete residents if they are competing for
similar resources (MacDougall et al. 2009, Ben-
nett et al. 2014). Thus, understanding the mecha-
nisms by which the invasion success of a
nonnative species is influenced by, as well as
impacts, a resident community is critical for
interpreting and managing the processes and
outcomes of species invasion.

One of the major factors believed to affect
invader performance is the biotic resistance of
the resident community (Elton 1958, Levine and
D’Antonio 1999, Prieur-Richard et al. 2000, Frid-
ley et al. 2007), which refers to the propensity of
resident species in a particular assemblage to
limit the invasion success of nonnative species
(Levine et al. 2004, Catford et al. 2009). The bio-
tic resistance hypothesis has its basis in competi-
tion theory (Case 1990, Shea and Chesson 2002,
MacDougall et al. 2009) and has been supported
by small-scale experiments, particularly those
from plant communities (Kennedy et al. 2002,
Levine et al. 2004, Mwangi et al. 2007). However,
a literature review found that biotic resistance to
invasion was supported in less than 30% of more
than 100 studies (Jeschke et al. 2012), which does
not necessarily undermine biotic resistance as a
mechanism influencing invasion, but rather sig-
nals that there are other factors that also influ-
ence invader success.

Biotic resistance occurs when members of a
resident community occupy the niche of the
invader, reducing its survival and fitness.
Therefore, higher species diversity can reduce
the likelihood of successful invasion (Levine
et al. 2004, Vil�a et al. 2011) by complementing
niche space with diverse resident species that
collectively efficiently utilize local resources

(Elton 1958, Case 1990, Kennedy et al. 2002). It
might also lead to a sampling effect, in which
there is a greater probability of species-rich
communities including residents with strong
competitive effects that repel invader success
(Fargione and Tilman 2005, Hooper and Dukes
2010, Oakley and Knox 2013). Despite the logic
underpinning biotic resistance, the opposite
pattern revealing a positive relationship
between residents and invader species richness
has also been recorded (Robinson et al. 1995,
Palmer and Maurer 1997). Such a pattern
could be attributed to covarying climatic
changes or environmental perturbations (Til-
man 1993, McIntyre and Lavorel 1994, Burke
and Grime 1996, Stohlgren et al. 1999, Naeem
et al. 2000), or perhaps appointed to the prob-
ability of facilitative interactions that increases
with increasing species diversity.
While species richness does explain some of

the effects of biotic resistance, other mechanisms
need to be accounted for as well. The fact is that
invaders are not actually affected by the number
of species per se, but rather by ecological mecha-
nisms modulating their coexistence with resi-
dents such as niche complementary and
competitive interactions. For example, invader
similarity or dissimilarity to the resident species
should be subsequently better measures of the
biotic resistance of the community to the invader
(Laughlin 2014). However, measures of species
similarity or dissimilarity are usually predicated
on indirect measures using species traits (McGill
et al. 2006, Brym et al. 2011), phylogenetic dis-
tances (Li et al. 2015a, Cadotte et al. 2018), or a
combination of the two (Cadotte et al. 2013), of
recipient communities relative to the invading
species.
Resistance to invasion could be a function of

the relatedness of the invader to the community
or the phylogenetic diversity (measured as the
total amount of evolutionary time or phyloge-
netic branches represented by an assemblage) of
the invaded community. Darwin’s naturalization
hypothesis (DNH; Proches� et al. 2008, Li et al.
2015b, Cadotte et al. 2018) states that resident
species that are closely related to the invader
occupy similar niches, reducing the availability
of the resources required for invader establish-
ment and population growth. In addition, resi-
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dent communities with high phylogenetic diver-
sity are thought to decrease invader success
because niche complementarity among residents
is already high and resource use is more com-
plete (Strauss et al. 2006, Diez et al. 2008, Ger-
hold et al. 2011), which is analogous to the
hypothesis that biotic resistance is higher in com-
munities with greater species richness, except
that a phylogeny might provide a more direct
measure of niche diversity than the number of
species.

Invasion studies have often documented nega-
tive relationships between the number of native
species and the number of nonnative species at
fine scales (e.g., from experimental studies
<5 m2; Hodgson et al. 2002, Fridley et al. 2004,
Hulme 2008). However, broadscale studies (e.g.,
observational studies or natural surveys) have
observed the opposite pattern, namely a positive
correlation between native species richness and
nonnative species richness (Stohlgren et al. 1999,
2006, Brooks et al. 2013, Peng et al. 2019). These
contradicting findings constitute what is often
referred to as an “invasion paradox” (Shea and
Chesson 2002, Byers and Noonburg 2003, Fridley
et al. 2004, Davies et al. 2005). Beyond these con-
tradicting invasion patterns, a suite of ecological
mechanisms that are believed to determine inva-
sibility have been shown to be context-depen-
dent and lack generality. For example,
experimental studies often test or infer that niche
partitioning is driving local invasions (Knops
et al. 1999, Hector et al. 2001, Levine et al. 2004,
Fargione and Tilman 2005), which should be par-
ticularly relevant for areas where disturbance
rates are low, shaded, non-successional uplands
or nutrient-poor ecosystems (Cronk and Fuller
1995, Davis et al. 2000, Wardle 2001). By con-
trast, Brown and Peet (2003, see too: Davis et al.
2000, Levine 2000) suggested that positive
native/nonnative richness relationships are
expected in dispersal- or immigration-driven
communities. Additionally, facilitation among
native and nonnative richness might occur in
stressful or highly disturbed areas such as road-
sides or agrarian landscapes and should cause
positive native/nonnative richness correlations.

In parallel, the performance of an invader
might also depend on its own density, relying on
the assumption that there are strong density-de-
pendent effects on plant population performance

(Wills et al. 1997, Li et al. 2015a, 2015b). In other
words, intraspecific plant density might be
important for the success of the colonization pro-
cess for invasive populations and should be con-
sidered to be an indicator for invader
performance (Bazzaz 1986) since large numbers
of plant propagules must be introduced to a new
site before a population becomes established
(Martins and Jain 1979). Growing evidence
reveals that the probability of establishment of
invasive population seems to be conditioned
with whether the invader tends to be more or
less abundant (Bazzaz 1986, Meekins and
McCarthy 2002).
In this study, we experimentally introduce the

Pink Morning Glory, Ipomoea carnea Jaq. (Family:
Convolvulaceae), an annual vine native to Cen-
tral and South America, into communities assem-
bled from a species pool of native Egyptian
annuals where I. carnea is invasive. The commu-
nities were assembled by manipulating species
richness, phylogenetic diversity, and phyloge-
netic relatedness of the residents to I. carnea. We
also manipulated invader density. We focused on
four response traits (plant height, aboveground
biomass, root biomass, and the stomatal conduc-
tance that was used as a proxy of the photosyn-
thetic rate of individual invader plants
transplanted into manipulated communities) that
capture different aspects of the invader perfor-
mance (Primack and Kang 1989). We tested
whether the higher performance of the invader
occurs in assemblages with (1) lower resident
richness, (2) lower phylogenetic diversity of resi-
dent communities, (3) more distant phylogenetic
relatedness between the invader and the resident
species, and (4) lower invader density.

MATERIALS AND METHODS

Study site and species
This experimental study mimicked Egyptian

natural arid systems and was run in the green-
house at the University of Toronto Scarborough
in Ontario, Canada, from fall 2015 to winter 2016.
Temperature and relative humidity (30°C to 35°C,
36%, respectively) were adapted to simulate arid
conditions. A total of 240 seedlings from 16 Egyp-
tian native species belonging to 13 families were
transplanted into 24 pots, each pot had a surface
area of 30 9 30 cm and a soil depth of 30 cm.
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The Egyptian native species used in this experi-
ment were relatively analogous in size and bio-
mass productivity. These native species were as
follows: Trifolium resupinatum L. (Fabaceae),
Melilotus indicus (L.) All. (Fabaceae), Chenopodium
album L. (Chenopodiaceae), Chenopodium ficifolium
Sm. (Chenopodiaceae), Beta vulgaris L. supsp.
maritima (L.) Arcang (Chenopodiaceae), Spergu-
laria marina (L.) Bessler (Caryophyllaceae), Emex
spinosa (L.) Compd. (Polygonaceae), Rumex denta-
tus L. (Polygonaceae), Urospermum picroides (L.)
F.W. Schmidt (Asteraceae), Pluchea dioscoridis (L.)
DC (Asteraceae), Centaurea calcitrapa L. (Aster-
aceae), Apium graveolens L. (Apiaceae), Epilobium
hirsutum L. (Onagraceae), Juncus subulatus Forssk.
(Juncaceae), Polypogon monspeliensis (L.) Desf.
(Poaceae), and Cenchrus echinatus L. (Poaceae).

Phylogenetic data
We constructed a phylogeny of the 16 plant

species using four commonly sequenced genes
available in GenBank (Benson et al. 2006): rbcL,
matK, ITS1, and 5.8s (Appendix S1: Table S1). Of
the 16 species, 15 had at least one gene repre-
sented in GenBank, except for J. subulatus, and so
we used genetic sequences from the congeneric
relative, Juncus acutus L., as a proxy. We also
included the genetic sequences of Amborella tri-
chopoda Baill. (a species that diverged early in
angiosperm evolution) to serve as an outgroup
species. Sequences were aligned for each region
independently using FASconCAT v1.0 (K€uck and
Meusemann 2010) and combined into a single
supermatrix. We then selected best-fit maximum-
likelihood (ML) models of nucleotide substitu-
tion for each gene sequence using jModeltest
(Posada 2008). The ML phylogeny was generated
using the PhyML algorithm with a BIONJ start-
ing tree (Guindon and Gascuel 2003, Anisimova
and Gascuel 2006) to estimate the phylogeny.
Nodal support was estimated using approximate
likelihood-ratio test scores, which have been
shown to correlate with ML bootstrap scores but
require much less computational time (Guindon
and Gascuel 2003). We then used a semiparamet-
ric rate-smoothing method (Sanderson 2002) to
transform the phylogeny to an ultrametric tree
using the R package “ape” (Paradis et al. 2004).
We iterated these functions across a suite of rate-
smoothing parameters and found that the
parameter value that maximized the likelihood

was ʎ = 1. The final ultrametric phylogenetic tree
including 15 native species and the invader is
provided (Fig. 1). This tree was used to quantify
phylogenetic patterns in each treatment pot.

Experimental treatments
Ten individual seedlings were transplanted

into each pot to control for plant density, and to
make all pots have equal density before the inva-
sion regardless of treatment. In total, 24 pots
were treated as invaded polycultures. All pots
were randomly assigned to four treatments:
Treatment A had low species richness with low
phylogenetic distances; treatment B had low spe-
cies richness with high phylogenetic distances;
treatment C had high species richness with low
phylogenetic distances; and treatment D had
high species richness with high phylogenetic dis-
tances. For each treatment, there were three
unique combinations of two or five species fully
crossed with low level or high level of resident
phylogenetic distance drawn randomly from the
species pool. For each unique combination, there
were two levels of invader density: high density
(two stems of I. carnea) and low density (one
stem of I. carnea; Appendix S1: Table S2).

Phylogenetic analysis
We calculated Faith’s phylogenetic diversity

(PD) of all resident species in each pot (not
including the invader) using function PD in R
package “Picante” (version 1.8; Kembel et al.
2010). Phylogenetic relatedness between the
invader and the residents in each recipient com-
munity was calculated using the mean pair-
wise phylogenetic distance (MPD) between the
invader and all resident species in each recipient
community as the average of the mean pairwise
distance between the invader and each resident
species using the cophenetic tree and the MPD
function in Picante (Kembel et al. 2010).

Measuring Ipomoea carnea performance
Starting January 2016, I. carnea individuals

were monitored in all invaded pots. We assessed
invader performance using height from the soil
surface (cm), the number of leaves, and the stom-
atal conductance (mmol of water/(m2�s)) which
we measured using an SC-1 Leaf Porometer
(Decagon Devices, Pullman, Washington, USA).
These performance traits were measured directly
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from the treated pots. All performance measure-
ments were carried out every 15 d until May
2016.

We set additional pots (hereafter biomass pots)
of isolated individuals of I. carnea to calibrate
predictive models of the aboveground and
belowground biomass (in grams). In these pots,
we recorded the same performance measures
that we collected directly from the treatment pots
and harvested 16 plants to measure the above-
and belowground biomass every 15 d. We ended
the experiment in May 2016, when the vegetation
reached peak standing biomass, and we counted
the number of I. carnea stems in each pot. All
I. carnea stems were removed from each pot and
biomass sorted into living aboveground plant
biomass (leaves and stem) and belowground bio-
mass (all rooting material). All samples were
dried in a drying oven (VWR International,

Radnor, Pennsylvania, USA) at 50°C for three
days until constant dry weight was reached, and
then weighed using a Mettler Toledo ML Series
precision balance (XE Analytical Balance; Mettler
Toledo, Columbus, Ohio, USA).
Invader performance of I. carnea was mea-

sured using the five performance traits: height,
number of leaves, photosynthetic rate, and the
aboveground and belowground biomass. First,
we built predictive models to estimate the above-
and belowground biomass using the measured
traits of I. carnea individuals from the destruc-
tively sampled biomass pots. For this purpose,
we built several multiple linear regression mod-
els of aboveground biomass regressed against
height, stem diameter, number of leaves, and the
photosynthetic rate as response variables. We
compared these models using Akaike informa-
tion criterion (AIC) and Akaike weights (AW) in

Fig. 1. The rooted ultrametric phylogenetic tree including the pool of 15 native species, one outgroup species
(in blue), and the target studied invasive plant species (Ipomoea carnea, in red).
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addition to diagnosis plots to infer the best
regression models. We repeated the analysis for
belowground biomass. We used the best model
in each case to predict the above- and below-
ground biomass of I. carnea individuals in the
pot treatments.

Statistical analysis
We constructed a series of mixed linear effect

models including invader performance measures
as response variables. The fixed effects were resi-
dent richness, phylogenetic diversity (PD),
the MPD, and invader abundance interacted
with measurement times (early, middle, late). We
also included pot identity as a random effect
using the “lme4” package (version 1.1-20; Bates
et al. 2015) to capture the ontogenetic changes in
the performance measures of the invader and
plant community. All models were compared
using AIC and AW to infer which model was the
best fit to identify the optimal model that
explains invader growth performance, among a
set of candidate models (Johnson and Omland
2004). We checked diagnostic plots (e.g., residual
vs. fitted plots and observed vs. fitted plots) for
potential outliers, and the residuals were plotted
against fitted values to identify violation of
homogeneity indicated by differences in spread.
To overcome the large spread of fitted values,
phylogenetic measures were log-transformed in
order to improve the normality of the error dis-
tribution (as determined by inspection of the Q-
Q plot), and also we verified normality using
Shapiro–Wilk test (Shapiro and Wilk 1965). All
explanatory variables that characterize the recipi-
ent community included in the model structure
(resident richness, phylogenetic measures, and
invader abundance) were only weakly correlated
with each other (Pearson’s correlations all <0.6),
and so multicollinearity was not an issue. All
analyses were completed using R v.3.3.1 (R Core
Team 2018).

RESULTS

We assessed the influence of species richness
and phylogenetic measures of the resident
community and invader abundance on the
growth performance of the invasive species,
I. carnea. Our measures of invader performance
included height, leaf production, biomass, and

photosynthetic rate were all significantly influ-
enced by at least one measure of community
diversity (Tables 1, 2, Fig. 2). Below, we detail
the effects of specific diversity measures inte-
grated with invader abundance on the invader
performance measures.

Effect of phylogenetic measures on invader
performance
Contrary to our expectation of negative effects

of diversity on invader performance, we found
significant positive relationships between the
invader performance measures and PD as well as
the MPD between the invader and residents
across measurement times. First, invader
biomass production increased significantly in
high phylogenetically diverse (high PD) treat-
ments for aboveground biomass (X2 = 10.54;
P < 0.01) and for belowground biomass
(X2 = 10.65; P < 0.01) as evidenced by top bio-
mass models (AIC = �91.61, AW = 0.52, R2 =
0.81; AIC = �73.76, AW = 0.46, R2 = 0.63) for
above- and belowground biomass, respectively
(Tables 1, 2).
Second, invader height increased significantly

with increasing MPD (X2 = 10.58; P < 0.01) as
evidenced by top height model (AIC = 94.34;
AW = 0.72, R2 = 0.57). The number of leaves
produced by the invader was explained by MPD
(X2 = 19.19; P < 0.0001) and significantly
increased with greater MPD as evidenced by the
leaf production model (AIC = 1224.2,
AW = 0.58, R2 = 0.55). Likewise, photosynthetic
rate was better explained and increased margin-
ally significantly with MPD (X2 = 6.76; P < 0.07)
as evidenced by the top photosynthetic rate
model (AIC = 1271.71, AW = 0.55, R2 = 0.47).
Therefore, I. carnea exhibited higher performance
in pots that had higher phylogenetic diversity
and where I. carnea was more dissimilar to resi-
dents.

Effect of resident richness on invader
performance
Top models of invader performance revealed

positive significant relationships (P < 0.01)
between resident richness and invader height as
well as leaf production in all inoculated pots
(Table 1, Fig. 2). Higher values of height and leaf
production were significantly explained by resi-
dent richness (X2 = 9.28, P < 0.01; X2 = 7.33,
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P < 0.01, respectively) across all measurements.
Therefore, an increase in resident richness led to
an increase in performance measures of the inva-
sive I. carnea.

Effect of invader abundance on its performance
Top invader biomass models exhibited positive

but nonsignificant relationships between bio-
mass and invader abundance in all inoculated
pots (P < 0.4). In these models, we found that the
aboveground biomass and belowground bio-
mass were nonsignificantly correlated with inva-
der abundance (X2 = 2.75, P < 0.4; X2 = 1.77,
P < 0.7, respectively) across all measurements.
However, the photosynthetic rate model
revealed a positive and highly significant effect

of invader abundance (X2 = 12.41, P < 0.006) on
its photosynthetic rate as evidenced by top
model selection (AIC = 1271.71, AW = 0.55,
R2 = 0.47; Fig. 2).

DISCUSSION

The results of this study did not support the
classic biotic resistance hypothesis, which states
that increasing resident diversity decreases the
success of invasive species (Elton 1958). As a gen-
eral pattern, we found that the richness of resi-
dent species had a positive impact on invader
performance and facilitated its establishment
within the community. Furthermore, our five
measures of performance (height, shoot biomass,

Table 1. Results of linear mixed models testing the significance of the effects of resident phylogenetic diversity
(PD), mean pairwise phylogenetic distance (MPD), and invader abundance on the performance measures
(height–leaf production–aboveground biomass–belowground biomass) of the target species Ipomoea carnea.

Fixed effect by response variable df v2 P

Height (cm)
Resident richness 8 9.278 0.0258
Mean pairwise phylogenetic distance (MPD) 8 10.58 0.0142

Aboveground biomass (g)
Resident phylogenetic diversity (PD) 8 10.5448 0.0145
Invader abundance 8 2.75361 0.4312

Leaf production
Resident richness 8 7.3349 0.062
Mean pairwise phylogenetic distance (MPD) 8 19.1948 <0.0001

Belowground biomass (g)
Resident phylogenetic diversity (PD) 8 10.6588 0.013
Invader abundance 8 1.1071 0.775

Photosynthetic rate (mmol/(m2∙s))
Invader abundance 8 12.41 <0.006
Mean pairwise phylogenetic distance (MPD) 8 6.762 0.07

Note: Significant effects (P < 0.05) are in bold.

Table 2. Comparison of linear mixed models for the parameters studied (values for random effects are expressed
as variance/SD).

Model
parameters

Response variables

Height (cm)
Aboveground
biomass (g)

Leaf
production

Belowground
biomass (g)

Photosynthetic rate (mmol/
(m²�s))

Marginal R2 0.324735 0.7783425 0.2845274 0.6041792 0.470697
Conditional R2 0.5789917 0.8163409 0.5625022 0.6255974 0.470697
Random effect
Pot identity 0.04215/

0.2053
0.01668/0.08166 8.252/2.873 0.002145/0.04631 0

Residuals 0.06979/
0.2642

0.032227/0.17952 12.988/3.604 0.037489/0.19362 0.0002
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root biomass, leaf production, and photosyn-
thetic rate) increased with increasing resident
richness, resident phylogenetic diversity of the
recipient community, and the mean phylogenetic
distance between the invader and the resident
species. Our results provide clear evidence that
invaders at high densities exhibit greater perfor-
mance, at least at the scale of this study.

The observation that I. carnea tends to exhibit
high performance in more phylogenetically
diverse communities could be driven either by
the lower niche overlap in the presence of dis-
tantly related species or by the displacement of
competitively inferior native species that are clo-
sely related to the invader I. carnea (MacDougall
et al. 2009, Sol et al. 2014, Cadotte et al. 2018).
Alternatively, this could be evidence that dis-
tantly related residents in a community facilitate

invaders (Hooper et al. 2005, Jeschke et al. 2012,
Valiente-Banuet and Verd�u 2013), at least in
water-limited, arid systems such as ours. Several
studies have reported that invaders with high
performance tend to be more distantly related to
native residents (Strauss et al. 2006, Li et al.
2015b). Consistent with these previous findings,
our results provide an evidence for the negative
effect of closely related resident species on inva-
der performance, a pattern consistent with DNH
(Daehler 2001, Cadotte et al. 2018), even though
these classic theories do not include facilitation
as a potential mechanism.
Indeed, facilitation is more likely to occur

among distantly related species, increasing sur-
vival as well as growth rate (Hierro and Cock
2013) and enhancing the coexistence of nonnative
species within native assemblages (Palmer and

Fig. 2. Showing the response of invader performance measures (height [cm], belowground biomass [g], above-
ground biomass [g], photosynthetic rate [mmol/(m2�s)], leaf production) to diversity measures (resident phyloge-
netic diversity [PD], mean pairwise phylogenetic distance [MPD] between the invader and resident natives,
resident richness). Regression lines are fitted for each diversity measure and invader abundance, and shaded
areas around regression lines indicate upper and lower 95% confidence intervals expected by the model. Black
points show the observed data points.
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Maurer 1997, Richardson et al. 2000, MacDougall
and Turkington 2005, Hacker and Dethier 2006,
Wolkovich et al. 2009, Altieri et al. 2010), a pat-
tern that is consistent with our findings. Like-
wise, facilitation could be a reflection of several
mechanisms including creation of favorable envi-
ronmental conditions such as elevated soil mois-
ture caused by shading, the promotion of
increased nutrient utilization, or improving soil
properties (Filazzola and Lortie 2014, McIntire
and Fajardo 2014). As a result of these condi-
tions, facilitation benefits promote higher diver-
sity and results in more phylogenetically diverse
communities (Valiente-Banuet and Verd�u 2007,
2013) which might further facilitate the invasibil-
ity of diverse plant communities.

In our experiment, the potential mechanisms
linking phylogenetic diversity to invader success
are likely complicated, but we can see a candi-
date mechanism, which requires additional
experimentation. Namely, our experiment mim-
ics a water-limited system, and an assemblage of
distantly related species could result in a greater
utilization of local resources and enhance coexis-
tence and biomass production (Flynn et al. 2011,
Cadotte 2013, 2017). Greater coexistence and bio-
mass production would result in greater light
interception (Hautier et al. 2009) and thus
greater shading. In water-limited, arid environ-
ments, this higher shading is likely to result in
higher soil moisture, and this additional water
availability for plants could enhance reproduc-
tion, survival, growth, and performance of the
invader within the recipient community (Har-
rington 1991, Li and Wilson 1998). Thus, even
though competition occurs in our system, these
negative interactions are outweighed by the posi-
tive effects of greater soil moisture in high diver-
sity assemblages. As a result, our findings are
consistent with current literature suggesting that
facilitative interactions increase with increasing
the stressful conditions in harsh environments
(Holmgren and Scheffer 2010, Pist�on et al. 2016,
Al-Namazi et al. 2017).

Beyond the effect of higher phylogenetic diver-
sity on invader performance, we also observed a
positive density-dependent effect of I. carnea on
its own performance. It is commonly assumed
that the likelihood that the invader is successful
increases proportionally as invader density
increases (Yokomizo et al. 2009, Elgersma and

Ehrenfeld 2011). There is some evidence indicat-
ing that positive density dependence increases
species survival and reproduction (Wills et al.
1997). This positive density dependence can
occur because individuals of the same species
might influence local environmental conditions
that favor its own kind, and could result in com-
petitive superiority over resident species under a
range of environmental conditions (Powell and
Knight 2009, Molina-Montenegro et al. 2012,
Franzese and Ghermandi 2014, �Cuda et al. 2015).
This positive density dependence could be also
attributed to the shape of the density dependence
curve, assuming that successful invasive popula-
tion have more scramble type of density depen-
dence (Aikio et al. 2008). Even though negative
density dependence is frequently observed
(Augspurger 1984, Connell et al. 1984, Condit
et al. 1994, Wills et al. 1997), we believe more
work on invasions in arid environments would
support the observation of positive density
dependence.
Overall, our findings demonstrate the value of

integrating species richness, phylogeny, and den-
sity-dependent effects, which might be used for
developing an action plan to manage invasion in
arid ecosystems. Further studies are needed to
evaluate whether natural arid systems are more
or less susceptible to be invaded by a nonnative
species distantly related to native communities.
Moreover, observational studies on invaded
communities of various successional stages and
across a range of environmental conditions could
go a long way toward determining the generality
of our findings. It is crucial to monitor the inva-
sion stages for each nonnative species, so we can
see at which stage the invader reveals high per-
formance.
Finally, current invasion theory and applied

nonnative species risk assessment focus on the
threat and negative impact from nonnatives that
are either closely related to resident species (Mac-
Dougall et al. 2009) or other successful invaders
(Cadotte and Jin 2014). While such assumptions
would likely prove true in many contexts, we
believe practitioners that assess invasion risk in
arid environments should explicitly consider dis-
tantly related (though correctly preadapted) spe-
cies in their diagnoses. It may be that arid
environments tend to be relatively simple and so
any adequately adapted species could pose a
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threat. More research is needed that is focused
on understanding the potentially greater impacts
of invasion in arid environments in light of glob-
alization and the movement of nonnative plant
species.
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