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Interacting with each other, individuals in a population form various social network
topologies. Models of evolutionary games on networks provide insight into how the
collective behaviors of structured populations are influenced by individual decision
making and network topologies. In a hierarchical society, many social resources are
allocated according to certain social rankings, such as class, social status, and social
hierarchy. In this context, to climb the social ladder, individuals will try to improve
their social ranking among the population. It is essential to understand the impact that
changes in social ranking have on decision making, which very few literature discuss.
To capture this social nature, a ranking game model on networks was introduced in this
study. Three decision-making strategies – random, follow, and centrality-based – are
introduced. Systematic numerical simulations of the different strategies are conducted
on three social network topologies: random, small-world, and scale-free networks. The
results reveal that the rankings of the whole population evolve differently with various
dynamics in network topologies and social liquidities. The centrality strategy leads
to relatively larger than average centrality, while the follow strategy tends to form
networks with significantly larger edge density, indicating overall improvements for
the whole population. Notably, the centrality strategy results in the least similarity,
lowest survival rate, and highest liquidity, showing that this strategy allows larger social-
structure changes with relatively better social mobility. In contrast, for the random
and follow strategies, the social network becomes more rigid. However, in all cases,
individuals are observed to appear in different ranking positions. This ranking game
model could serve as a basis for further sophisticated ranking-related evolutionary
games on social networks, with implications for policymaking in ranked social scenarios.
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1. Introduction

In a structured social system or organization, individual players dynamically interact with each other to form an
evolving social network [1,2] in order to exchange knowledge and diffuse innovations [3–6]. By establishing new
connections or canceling existing ones between players, the network topology changes constantly to demonstrate
collective dynamics [7–10]. In turn, the evolving environment drives individuals to adapt to the surroundings. In the
context of a network environment, evolutionary game theory is married with social network theory, which has recently
provided insight into agent–action–network evolutions [11–17]. In this series of studies on spatial evolutionary games, a
variety of games have been tested on social networks, including prisoner’s dilemma (PD) [18–23], snowdrift [24], public
goods [25], and minority games [26–28].

Cooperation is an important concept in social network studies, and is usually explored as a property of a given social
network [29,30]. However, in studies of evolutionary games on networks, the cooperation among players is not only
a result of evolution, but also a driving force of it. These studies shed light on understanding behaviors in networked
populations or organizations, particularly on cooperation evolution [2,12–14,19,31–36]. In most models, players are
placed in a network and play iterative rounds of games against each other to maximize their utilities by accumulating
game rewards. In other cases, the utilities are represented by network properties like centrality [37,38]. Centrality is a
measurement of network importance in the structured population [38–42]. In certain cases, players try to reach better
social positions with larger centralities. While some models keep the networks unchanged [32], in realistic dynamic
network evolution, it is possible for a corresponding edge to be established or canceled when bilateral cooperation is
reached or discharged [13]. Though existing models provide insight into the underlying behaviors, the aims or motivations
for game players are the values of rewards, which are independent of the rankings. In other words, the utilities are
absolute continuous values. However, the motivations or incentives behind individual decision making might vary in
different scenarios. In many real-life situations, individuals are only concerned with the relative discrete rankings rather
than the utility values. In these scenarios, the overall aim of an individual is to secure a relative position in the population,
regardless of the distance between themselves and the individuals in the adjacent rankings. For instance, a candidate only
needs to take the lead to win an election, but the leading margin does not alter the result. In a ranked evaluation system,
the ranking is more important than anything else to the players.

To investigate the dynamics of networks in which the game players are concerned with their ranking, we introduce a
ranking game (RG) on social networks. In this model, an individual establishes or cancels edges based on the topology with
the deliberate aim of increasing their ranking position among the population. The ranking is determined by the topology
of the networked society, indicated by network centrality. Centralities of both local degree and global betweenness are
considered. In each round, players make decisions to climb the social rankings. Each of them chooses the best candidate
with whom to establish a new edge or cancel an existing edge to deliver the best outcome, in the hope of achieving the
highest possible rank. The ranking game model is simulated on three networks: a random network (ER), a small-world
network (SW), and a scale-free network (SF), generated from corresponding models [7,8]. Three decision making strategies
of random Sr , follow Sf , and centrality Sc are considered for comparison. We observe the dynamics of network evolution
as well as changes in the social rankings.

The main contributions of this work are threefold. First, we formalize social ranking dynamics as a ranking game.
Proposed as a new evolutionary game on networks, the model is simple and vividly captures the competition dynamics
in a hierarchical population, whereas social status is quantified as network centralities. Second, the results show that the
centrality strategy introduces more mobility to a structured population, while the random and follow strategies result
in lower mobilities, with possibilities for individuals to change ranking positions still remaining. Identical evolutionary
patterns are observed in all three types of network. This study provides new insight into the evolutionary dynamics
concerning the mobility of a structured population. Third, this work contributes to the collection of literature on
evolutionary games on networks by expanding the studies into the domain of social rankings in network-structured
populations. This work also provides new research directions to related objectives from the widely used absolute payoffs
in existing evolutionary game studies. We hope this ranking game model can stimulate studies on ranking behaviors
of social systems, and provide new evidence and implications to policymakers on issues of social hierarchy, mobility,
inequality, and governance.

The rest of this paper is organized as follows: Section 2 presents a discussion on evolutionary games played on
networks, with literature reviews. In Section 3, the ranking game model is introduced. Subsequently, detailed numerical
simulations and results are presented in Section 4. Finally, Section 5 concludes the study and provides discussion.

2. Background

Human society and the business world are typical hierarchical systems in which players are ranked in classes according
to certain measurements like social status, wealth, resources, influences, and authorities in the population. Those in
higher-ranked positions usually enjoy social advantages compared to those with poor rankings. The social competition
drives low-ranked players to climb the social ladder [37] in the hopes of reaching a better rank, while the top-ranked try
to maintain their leading positions.

In ranked situations, a relative competitive advantage, rather than an absolute advantage, matters the most for players
to reach better ranking positions. For example, in the case of an oligopoly, firms try to be ranked high enough to be
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accepted into the dominating group and enjoy the market shares and pricing. In a tiered education system, schools are
ranked in groups according to their performance and are granted different levels of financing. In these cases, capability
drives the competition for higher ranking.

Without loss of generality, we shall indicate the top-ranked players as the rich and the low-ranked players as the poor.
Here, players might be ranked according to the wealth for individuals, competitiveness for firms, trading power for states,
etc. In a society, the interactions among players involve cooperation and defection. Cooperation usually benefits the two
sides bilaterally, while defection harms both. This makes the ranking competition complicated. The rich might tend to be
reluctant to establish cooperation with the poor because helping the poor might threaten their high positions. In contrast,
the poor are not willing to defect from existing partnerships for fear of losing social status. It would be interesting to
investigate how a hierarchical population might evolve in ranking competitions. Since ranked hierarchical structures are
common in human society, the understanding of social phenomena like inequity, mobility, and class solidification are
critical for social regulation and governance [43]. Will the rich stay in top-ranking positions? Do the poor have a chance
to become rich? Will the social ranking maintain rigidity or show mobility? Overall, how does the social ranking change
in ranking games?

Emerging studies on evolutionary games have provided insight into how social systems evolve [15]. Without con-
sidering a game played by a structured population, the hierarchy and network structures have been compared in the
context of organization coordination [44], and the cost factor of network structures on organizational level change has
been investigated [45]. More recently, there has been a new series of studies on spatial games played on networks that
appeared as extensions to traditional games [12,46–48], which greatly advanced our understanding on the origin of
cooperation and defection [11]. In these evolutionary games on networks, topologies were taken into consideration to
study how the decision making of structured individuals emerged as collective behaviors and in turn influenced network
topologies [19]. In a network, players have different levels of influence due to their heterogeneous topological properties.
The dynamics of influence was investigated in hierarchical populations [5]. In another study, influential invaders were
identified in a structured evolutionary population [17]. Most models for evolutionary games on networks simply consider
a single network. However, some efforts have been made to understand how cooperation is determined in multiplex
networks, and how evolutionary games are played on multilayer networks [6,14,16].

Prisoner’s dilemma (PD) games are well explored in game theories. With the development of network science, PD
games have been incorporated into social networks to study cooperation behaviors [19,20,22,23,32,49]. The payoff is
awarded to two game players according to their choices to either cooperate or defect. For a networked population, coop-
eration is achievable through PD games [13]. Unlike the regularities of periodic lattice networks, heterogeneous networks
are more suitable for modeling social systems in which local connectivities vary throughout the population [50,51]. The
topologies of networks have significant influence on the results of games.

Understanding the cooperation among players is the central objective of evolutionary games on networks [33–36]. PD
games in heterogeneous networks do not necessarily reach cooperation [18], nor do they reach direct reciprocity [52].
However, cooperation is promoted on networks [53,54]. Neighborhood diversity in local interactions has been found to
promote cooperation [54]. Moreover, a structured population tends to favor cooperation if the benefit-to-cost ratio is large
enough [55]. The SF network structure is found to be helpful in enhancing cooperation [56], while for PD games played on
SW networks, a certain degree of heterogeneity plays an influential role in promoting cooperation [22]. In a similar study,
at a certain average degree, the cooperation level reaches a peak [34]. The influence of network properties like the average
degree, variance in degree distribution, clustering coefficient, and assortativity on the cooperation level is investigated in
a comparative study [33]. Meanwhile, for snowdrift games, cooperation is reduced if the cost of cooperative behavior
is high [24,57]. From the perspective of information, another study investigates the emergence of cooperation within
groups of individuals in the evolutionary dynamics of public goods games played on structured networks. The results
show that if the mesoscopic information about the structure of the real groups is available for players, cooperation is
enhanced [25]. Nevertheless, maintaining cooperation in a structured population is difficult [58]. When the fitness of a
player is determined by their own payoff and the average payoff of all direct neighbors, the player adopts the strategy
from one neighbor with probability in proportion to the difference in fitness [59]. This model captures asymmetric finesses
and enhances cooperation levels. If the player has a heterogeneous strategy adoption between the best performer and a
random candidate, it has been found that following the best performer can promote the cooperation level [53]. Most
networks considered in the study of evolutionary games on networks are single-layer networks. However, it is worth
exploring interdependent multilayer networks. In a study, players played a PD game on one layer, while other players
played a snowdrift game on another layer. The strategy information sharing between layers enhanced the cooperation [6].

Some experiments are performed with human players. The games played by humans on networks promote coop-
eration [60]. In a mixed setup of bots and humans, the noises introduced by bots contributed to the improvement of
coordination [61]. Unlike most models where game players have no memory, a model considers the neighbor’s past
actions [62]. This reputation information has effects on high cooperation, while social knowledge does not. Another human
experiment, in which subjects were arranged on networks, reveals that strategy updating impacts strategy-imitation
dynamics [63]. Statistical physics provides valuable approaches to modeling social inequality [43]. The visibility of subjects
is found to influence the outcome of wealth distribution in a network and leads to severe inequality [46]. By extending
the resolution of standard PD games from a binary strategy space to a continuous space, the cooperation level can be
amplified with strategy resolutions [64]. However, if players have multiple strategy choices rather than binary choices in
standard PD games, the population tends to reach a lower cooperation level [65].
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The study of networked evolutionary games has rich implications for management. Recently, a series of studies on
alliance networks demonstrated that topologies have fundamental influences over the dynamics of alliance portfolio
formation in structured social networks [66,67]. In the context of innovation networks [3], complementary knowledge
is considered the driving force in forming an alliance [68]. In the formation of inter-firm alliances in fields like
nanotechnology, alliance-making is not only influenced by technological uncertainty, but also by the given network
positions [69]. Investigations of the alliance portfolios of software firms reveal that micro dynamics have an influence
on decisions regarding alliance formation [70], and that the performances and value creation of software firms are closely
related to alliance portfolios [71]. Environmental change impacts steel industry alliances, in which entrepreneurial firms
benefit while the prominent firms suffer [72]. For the network topologies to play the games, most literature adopts
homogeneous ER networks while some adopt heterogeneous SF networks [18,56,73].

Though there are studies on how actors optimize network structure and centrality measures [42,74,75], among these
studies of emerging network structures and evolutionary games on networks, many discuss games with a focus on the
dynamics of cooperation formation and player motivations. The games are played pair-wisely, and a binary strategy is
chosen either completely randomly or by following the neighbors with best performances. In this context, the social
hierarchy has not been thoroughly investigated and a link has not been established between game payoff and player
ranking, thereby limiting information about the players’ motivations to change position. Moreover, the payoffs are
continuous values rather than discrete ranking positions. Furthermore, the topological centrality of a player is considered
in decision making.

Structural centrality is a measure indicating the importance of a player in the population, and is reliant on the network
topology [38,41]. Degree centrality indicates the number of connections between one player and their neighbors, and is
therefore a local property. To indicate the importance of a player among the structured population, the betweenness
centrality is introduced as the number of all shortest paths passing through the player, indicating that betweenness
centrality is a global property. Players with high centralities are considered important players. In the existing literature,
there is still a lack of discussion on the centrality properties in games on networks. In the investigation of social hierarchy,
a social climbing game is proposed, as agents try to become more central in social networks [37]. They find that the
hierarchy can be reinforced with reduced social mobility [40], and report that the nestedness property emerges when
players try to maximize their centrality values, though this is not dependent on the types of centralities. To overcome the
difficulty of missing data, a confidence-level measurement is introduced to describe the central player in a network [39],
which is a good supplement to the above centrality statistics. While degree centrality describes the local importance of a
node and betweenness centrality describes its global importance, eigenvector centrality treats edges differently according
to the scores of connected nodes. PageRank is a variant of eigenvector centrality. Compared to the degree and betweenness
centralities, eigenvector centrality is especially suitable for directed networks in which incoming and outgoing connections
are treated differently. The entropy-based centrality introduced is derived from a transfer entropy matrix [76]. The transfer
entropy was originally introduced to describe how stocks influence each other using historical information [76]. In other
words, the entropy quantifies how the history of one node can be used to predict the future of another. Since it is a
nonlinear version of the Granger causality [76], it is suitable for describing directed networks, and the importance of
nodes is evaluated as a prediction power to other nodes. Other entropy-based centralities might focus on the path-transfer
flow [77,78]. In the former [78], the entropy concept is built upon the probability or likelihood that a path through which
information flows passes a given vertex. Based on this [78], the entropy concept is further developed [77]; however, it still
concerns the centrality based on a discrete Markovian transfer process. However, our present ranking game concerns the
centrality solely based on the topologies of the networks and not a Markovian transfer process. Furthermore, we consider
undirected networks in this work, and introduce a hybrid centrality combining degree and betweenness centralities to
consider the local and global importance simultaneously.

To study how the hierarchical social structure changes from individual behaviors, investigates the social mobility in
structured population settings in networks, and captures the network evolution of players with upward ranking mobility,
we examine a ranking game on networks in this study. The ranking is based on centralities determined by topological
position. In this game, a player seeks a counterpart from the structured population, attempting to reach a better ranking
position by establishing a new edge or canceling an existing edge. The ranking game on networks serves as a contribution
to existing literature on evolutionary games on networks by expanding the scope from existing non-ranking games to
ranking games, with focus on social hierarchy, social mobility, and centrality-based social advantages.

3. Ranking game model

In a ranking game, we consider a structured population with N players on a network G(V , E), where V is the vertices
set and E is the edges set. If two players vi and vj are directly connected, then the edge eij = 1, otherwise eij = 0.
The connected players form a neighbor set, Γ t

i = {
vj

∣∣eij = 1
}
. The non-neighbors are denoted as Ht

i = {
vj

∣∣eij = 0
}
.

Three different network models are considered, i.e. Erdős–Rényi network Ger with edge probability per , small-world network
Gsw generated from initial Γsw neighbors with rewiring probability psw , and scale-free network Gsf with lsf preferential
attached edges. Using these generative models and parameters, we can set up the initial networks for the games. SW and
SF networks are two widely observed topological structures in social systems [79,80], while the random Erdős–Rényi
network is included for comparison. We conducted multiple rounds of iterative ranking games on each of the three
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networks to investigate how the initial network structure evolves and influences the dynamics. For a given network,
players are allocated to the vertices V , and the network size |V | is equal to the population size N . In each round, each
player adopts the same strategy to establish a new edge to one non-neighbor player or cancel an existing edge with one
neighbor player. We introduced three strategies, random strategy Sr , follow strategy Sf , and centrality strategy Sc . In Sr , the
players all randomly choose whether to establish or cancel an edge with a random counterpart player in the population.
This random strategy mimics purely irrational decision making. In the opposite extreme case, a follow strategy is adopted
by the population. In Sf , a player chooses to establish or cancel according to their ranking position. If the player chooses
to establish, he/she establishes an edge to the player with the highest centrality among all non-neighbors. If the player
chooses to cancel, he/she cancels the edge to the player with the lowest centrality value. In other words, players are
purely rational in following the best and avoiding the worst choices in the population.

In centrality strategy Sc , all players are ranked in a ranking Rt in descending order of centrality value. The socially leading
players with larger centrality values occupy the top-ranking positions. In contrast, the socially disadvantaged players with
small centrality values stay in the bottom-ranking positions. Considering that the centralities can be based on degree and
betweenness, we use a hybrid form:

cti = αk̂ti + (1 − α)b̂ti , (1)

where 0 ≤ α ≤ 1 is the weight parameter to adjust contributions of normalized degree centrality k̂ti and normalized

betweenness centrality b̂ti . For vi, degree centrality kti indicates the local importance, while betweenness centrality bti
indicates the global importance. We normalize the original centralities to fit them into the same ranges between 0 and
1, i.e.: {

k̂ti = (
kti − ktmin

)
/
(
ktmax − ktmin

)
,

b̂ti = (
bti − btmin

)
/
(
btmax − btmin

)
.

(2)

In a ranking Rt , larger rti indicates larger centrality cti , and vice versa. R
t is available to all players as public information

for decision making. A ranking game is like the process of climbing a social ladder. The mission of a player is to climb
the ladder to achieve a higher ranking position; in other words, to be relatively better than the rest of the population.
Normally, a player with a better ranking position has less motivation to establish an edge and more motivation to cancel
an established edge with another player, while a player in a poor ranking position has a strong motivation to establish an
edge and a weak motivation to cancel an established edge. At time t , a player vi first chooses to establish or cancel based
on their ranking position rti on the ranking Rt of the whole population. A bottom-ranked player tends to establish a new
edge rather than cancel an existing one in an attempt to improve their ranking position, while a selfish top-ranked player
is more likely to cancel rather than establish an edge because connecting with others will benefit others and threaten
their own position. Thus, starting from the bottom part of the social ladder, a player vi has a bigger p

t
i to establish an edge,

and when vi reaches the upper part of the ladder, it has a smaller p
t
i and is more likely to cancel. Disadvantaged players

want to benefit from establishing edges with other players to gain larger centrality from climbing up the ladder, while
advantaged players are more likely to cancel with other players to discourage the latter from climbing the ladder, and in
this way maintain their relatively better ranking positions. To capture this, player vi chooses to establish with probability
pti defined as

pti = N − rti
N − 1

, (3)

where rti is the centrality rank of vi among the population of size N = |V |. Meanwhile, vi chooses to cancel with a
probability 1 − pti . If vi chooses to establish, then vi considers each non-neighbor player vj ∈ Ht

i , and calculates the
possible rank r̂i. Then, all possible ranks are evaluated to choose the best candidate player vj, allowing the best ranking
position for vi, that is,

argmax
vj∈Ht

i

(
r̂i

∣∣Gt + eij
)
. (4)

Afterwards, an edge is established between vi and vj, making eij = 1. Similarly, when vi chooses to cancel, vi evaluates all
candidates among neighbors Γ t

i and chooses the vj of

argmax
vj∈Γ t

i

(
r̂i

∣∣Gt − eij
)
. (5)

Then, the edge eij is canceled. Each time, all players conduct decision making and edges are established or canceled, thus
the network is updated from Gt → Gt+1.

To investigate how the ranked social hierarchy changes, we introduce three properties to quantify the dynamics of
rankings. For two given times t1 and t2, the ranking evolves from Rt1 to Rt2 . Spearman correlation ρta,tb is used to describe
the ranking similarity between Rta and Rtb . If the two rankings are similar, ρta,tb tends towards 1; conversely, dissimilarity
produces a negative value tending towards –1. ρt−1,t is calculated for two sequential times t−1 and t , while ρt0,t indicates
how the ranking at time t is different to the initial ranking at t = 0. Survival rate ςt1,t2 is introduced to indicate how players’

5

ht
tp
://
do
c.
re
ro
.c
h



ranking positions remain unchanged. If rt−1
i = rti , then vi survives from t − 1 to t , i.e., ς

t1,t2
i = 1. Again, survival rates

between the last time and the initial time are calculated. For the whole population, the survival rate is normalized as

ςt1,t2 =
∑

vi∈V ς
t1,t2
i

N
. (6)

Similarly, both ρt−1,t and ρt0,t are considered. Rank liquidity μt1,t2 is used to quantify the ranking position changes. To
normalize the changes, we divide the total position changes by the maximum possible changes as follows:

μt1,t2 =

⎧⎪⎨
⎪⎩

2
∑

i

∣∣∣rt1i −r
t2
i

∣∣∣
N2 if N is even,

2
∑

i

∣∣∣rt1i −r
t2
i

∣∣∣
(N−1)(N+1)

if N is odd.

(7)

Thus, μt1,t2 is kept as a value between 0 and 1. Again, both μt−1,t and μt0,t2 are calculated.
For a given network, average centrality

〈
Ct

〉 = ∑
i c

t
i /N measures the averaged importance of the whole population.

Network density is the ratio of existing edges to possible edges, i.e. Dt = 2 |E|/(N (N − 1)). The average clustering
coefficient

〈
CCt

〉 = ∑
i cc

t
i /N measures the tendency of the players to connect in clusters. Average assortativity

〈
At

〉 =∑
i a

t
i /N is introduced to measure the likelihood of players connecting to other players with similar degrees. A larger

〈
At

〉
indicates that top-ranked players tend to connect with other top-ranked players, while a smaller

〈
At

〉
indicates that low-

ranked players try to connect with top-ranked players. To investigate the properties of the networks, these coefficients
are calculated.

Our ranking model is significantly different from other models [37,40] in several aspects. First, in the social climbing
model [37], a player tries to maximize their utility solely based on the degrees of direct neighbors in a distance of one, and
neighbors of neighbors in a distance of two, which is a local degree measurement. The considered strategy for a player
is to rewire a randomly selected edge from a direct neighbor to a neighbor’s neighbor with a probability based on the
possible increase in utility. Thus, the player tries to maximize the local degree value. Obviously, in this model, the edge
numbers and edge density remain unchanged. However, in the ranking game, the ranking of the combined centrality of
both degree and betweenness matters. In other words, both local and global importance are taken into consideration.
Meanwhile, in ranking games, three strategies are considered. In the centrality strategy Sc and follow strategy Sf , the
decision to establish or cancel is dependent on one’s ranking position. The target for choosing counterpart players is also
to achieve a better ranking position. Moreover, in a ranking game, the edge number changes throughout the game instead
of remaining fixed. Similar to the follow strategy Sf in our ranking game, a player chooses to establish or cancel an edge in a
probabilistic approach [40]. However, the probability is kept unchanged and has nothing to do with the network topology.
In our ranking game, the probability is directly based on the centrality and ranking position. In this model, the decision
making in choosing the counterpart player is solely based on the centrality value, in that it will simply establish with
the player with the highest centrality value or cancel with the one with the lowest centrality value [40]. This approach
resembles the follow strategy Sf in our ranking game. However, the initial network is kept as an empty network, and the
model focuses on the growth [40]. In our ranking game, we start with different topological networks with different edge
distributions to see how the initial network topology evolves in the game. Furthermore, we introduce measurements of
ranking dynamics such as ranking similarity ρt1,t2 , ranking survival rate ςt1,t2 , and ranking liquidity μt1,t2 , and we also
systematically investigate the network properties to see how the network topology changes. Based on this ranking game
model framework, extensions to other relatively complex centralities like eigenvector, closeness, and PageRank are also
possible and straightforward.

4. Results

We conducted numerical simulations to study how the ranking game evolves on networks with various configurations.
Erdős–Rényi networks, Ger , are generated with different per . Small-world networks, Gsw , are generated with different
rewiring probabilities psw and initial number of neighbors nk [8]. Scale-free networks, Gsf , are generated with different
preferential attached edges lsf [7]. Thus, we consider homogeneous ER networks Ger as well as heterogeneous Gsw and Gsf

in our simulations. For each generated network, all three strategies, random strategy Sr , follow strategy Sf , and centrality
strategy Sc , are played independently. Different values of α are used for different combinations of degree and betweenness
centralities. In a single simulation round, we let the agents play 100 sequential games. For each game, the network
properties are calculated to see how the network topologies change throughout the games. Meanwhile, the rankings and
corresponding Spearman correlation ρ, survival rate ς , and rank liquidity μ are calculated to investigate how the rankings
evolve. We have conducted simulations in a large number of initial configurations, and we find that patterns remain
largely unchanged. In the following discussion, we present the results of networks with a population of size N = 50,
per = 0.1, psw = 0.1,

∣∣Γ 0
sw

∣∣ = 4, lsf = 4, 0 ≤ α ≤ 1, and 100 rounds.

Fig. 1 shows that the average centralities
〈
Ct

〉
for all three strategies. In the ER network and SF network, Sr and Sc

evolve similarly with significantly larger
〈
Ct

〉
and fluctuations compared to Sf , which remains largely stable in all rounds.

In the SW network, Sr remains outstanding compared to the other two strategies, and Sc drops to a similar level to Sf .
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Fig. 1. Average centrality
〈
Ct

〉
for the ER network (a), SW network (b), and SF network (c). In each network, three strategies, Sr , Sf , and Sc , are

plotted. Sr and Sc evolve similarly with significantly larger
〈
Ct

〉
and fluctuations compared to Sf .
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For the SF network,
〈
Ct

〉
increases for Sr and Sc , indicating that the networked population as a whole is improving with

growing
〈
Ct

〉
in these cases.

Normally, connected groups form an ecosystem with better collective social welfare, such as shared resources and
knowledge, than an isolated society. It will be interesting to investigate the tendency of players in a structured population
to cluster together. A larger clustering coefficient

〈
CCt

〉
indicates the existences of highly connected subgroups in

which participants are socially connected. Fig. 2(a) shows that
〈
CCt

〉
behaves similarly in different networks. Strategy

Sf significantly outperforms both Sr and Sc in all networks with growing
〈
CCt

〉
, while it remains largely stable around the

initial value for the other two strategies. This shows that participants tend to form clusters when adopting strategy Sf
and the random strategy Sr , but the centrality strategy Sc does not encourage the formation of clusters. For a structured
population, the edge density Dt can be seen as a measure that indicates the cooperation level [13]. A highly connected
network has more edges and normally enjoys better global benefits such as resilience to risks, smaller network diameter,
lower synchronization costs, and more efficient information spreading. The results show that all strategies improve Dt for
all networks. As shown in Fig. 2(b), the follow strategy Sf increases the density by more than the other two strategies in
all networks. In the ER network, the centrality strategy Sc outperforms the random strategy Sr , while in the SW and SF
networks, the two strategies perform similarly. Furthermore, the density grows at first but becomes stable at relatively
small values in the SW and SF networks. This result demonstrates that a simple follow strategy can better enhance
the formation of edges to increase the density Dt and encourage cooperation. However, the other two strategies poorly
encourage cooperation with random and competitive establishing or canceling decision making. In the centrality strategy
Sc in particular, players in better ranking positions are less likely to establish edges to others and tend to cancel existing
edges. The results hint that if the aims for players are to achieve better ranking positions rather than promote collective
global cooperation, the population improves poorly. From another perspective, social networks usually exhibit a tendency
in which participants with similar centrality are more likely to be connected [81]. In a society, the rich are more likely
to connect with other rich people, leaving the poor to only be connected with the poor. In a rigidly stratified society,
the assortativity coefficient

〈
At

〉
is large and positive. As illustrated in Fig. 2(c), for all networks, starting from neutral

situations, i.e.,
〈
At

〉 = 0, the follow strategy Sf and random strategy Sr demonstrate slight fluctuations around the initial
value. In other words, the network neither becomes assortative nor disassortative. It is interesting to observe that the
centrality strategy Sf decreases

〈
At

〉
dramatically from the beginning in all networks to larger, negative values. This means

the networks become much more disassortative and exhibit more opportunities for connection between the rich and the
poor. In Sc , to climb the social ranking ladder, the poor have relatively better chances to connect with the rich than in Sf .

To quantify the changes in rankings with time, we introduce and calculate the values of similarity ρ, survival rate
ς , and liquidity μ. As defined previously in Section 3, for two rankings at different times, similarity ρ describes how
similar the rankings are to each other. In Fig. 3(a), Sf and Sr show large values of similarity ρ, while Sc has relatively
small values. Sf and Sr gradually reach stable situations with ρ close to 1. The consequences of high similarities imply
that stable rankings are reached. For Sc in the SF network, ρ fluctuates around zero. However, the high similarity for the
overall ranking still allows individuals to change their ranking positions. To further evaluate the stability of the ranking,
the ratio of unchanged players in two sets of rankings is defined as survival ratio ς . A small value of ς indicates that most
players experience ranking position changes. As shown in Fig. 3(b), the values of ς fluctuate dramatically for Sf while Sr
and Sc remain largely unchanged in a small range just above zero for all networks. Similar patterns are observed in all
networks. This shows that the follow strategy Sf has a larger survival rate compared to the other two strategies, indicating
less mobility for individuals in Sf . To investigate the mobility, we plot the curves of liquidity μ for all networks in Fig. 3(c).
As shown, the centrality strategy Sc has the highest liquidity in all networks, followed by the random strategy Sr , while Sf
has the lowest liquidity. The liquidity μ demonstrates larger fluctuations in the centrality strategy Sc , but remains stable
in the other two strategies Sr and Sf . In the SF network, the liquidity μ increases gradually for Sc , while it drops to near
zero for Sf . This again verifies that Sf leads to a less liquid ranking regarding position changes.

In a comparison of the changes of the above coefficients, the centrality strategy Sc has the least similarity ρ, smallest
survival rate ς , and highest liquidity μ. Conversely, Sf has the largest similarity ρ and survival rate ς , and almost zero
liquidity μ. Sr generally lies between the two. The results also indicate that the ER and SW networks show similar
dynamics for all strategies, while the SF network has particular effects on Sc where the similarity ρ significantly declines
to a low level and the liquidity μ increases with time. In other words, in Sf , a population in which individuals are trying to
climb the social ranking ladder by blindly following the best results reinforces the social hierarchy with growing similarity
ρ and survival rate ς , as well as declining liquidity μ. In this case, the overall chance for social mobility decays and the
ranking becomes even more rigid. In contrast, for Sc , rational decision making to optimize one’s social ranking allows
the population to demonstrate better mobility, in which individuals enjoy more chances. This implies that if individuals
are motivated to change their own positions in a structured population instead of following the best results, it results in
better social mobility and higher chances for social-structure changes.

We have presented the average results for the whole population. It is also interesting to look into how individual
players might change ranking positions. In Fig. 4, we present the results for both top-ranked and bottom-ranked players
for the three strategies. As plotted, the rankings for the players appear more scattered for Sc and Sr , demonstrating higher
mobility and randomness. In other words, the top-ranked players might quickly drop from the top-ranked positions,
while the bottom-ranked players might quickly escape from the bottom positions. In both cases, regardless of their initial
positions, players can appear in all possible positions in the rankings. It is surely beneficial for certain disadvantaged
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Fig. 2. Topological properties of clustering coefficient
〈
CCt

〉
(a), edge density Dt (b), and degree assortativity

〈
At

〉
(c) for all strategies played on

different networks. This shows that participants tend to tie in clusters when adopting strategy Sf and the random strategy Sr , but the centrality
strategy Sc does not encourage the formation of clusters. The follow strategy Sf can better enhance the formation of edges to increase the density
Dt and encourage cooperation. In Sr and Sc , to climb the social ranking ladder, the poor have relatively better chances to connect with the rich than
in Sf .
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Fig. 3. Evolutions of similarity ρ (a), survival ratio ς (b), and liquidity μ (c) for all strategies in ER, SW, and SF networks. The consequences of high
similarities imply that stable rankings are reached. The follow strategy Sf has a larger survival rate compared to the other two strategies, indicating
poor mobility for individuals in Sf . Sc has the largest liquidity, while Sf leads to a less liquid ranking regarding position changes.
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Fig. 4. Ranking changes for top-ranked (top) and bottom-ranked (bottom) players in Sc (a), Sf (b), and Sr (c). Again, the results show that Sf makes
the population less mobile than Sc and Sr .
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players to have the possibility of reaching better ranking positions, and vice versa, as some top-ranked players do not
always remain unchanged but slide down the social ladder. However, for the follow strategy Sf , the randomness is very
limited. Top-ranked players are observed to lose their positions after the beginning and regain them slowly, or drop to the
bottom permanently. For bottom-ranked players, they might remain unchanged at the bottom, but also have the chance
to climb slowly. Due to the limited mobility brought by Sf , players tend to stay in a relatively stable state and either
change slowly with less randomness or remain trapped in certain positions. This again shows that unlike the strategies Sr
and Sc , strategy Sf makes the population less mobile, with the social hierarchy solidified with less opportunity for players
to move.

The average centrality
〈
Ct

〉
curves for all strategies (Sc , Sf , and Sr ) are plotted in Figs. 5(a), 5(b), and 5(c), respectively.

Different α values of 0.1, 0.5, and 0.9 are used. Since cti = αk̂ti + (1 − α)b̂ti , the value of α adjusts the contributions from

local degree k̂ti and global betweenness b̂
t
i . As shown in the results, curves with larger α stay above others with smaller α.

This indicates that the larger the weight for local centrality k̂ti , the higher centrality it has. In other words, the local degree

k̂ti is the major factor in the centrality. This is more obvious for the centrality strategy Sc shown in Fig. 5(a). Additionally,
as shown in the figures,

〈
Ct

〉
for all three strategies on all networks remains predominantly at small values.

In Fig. 6, we further investigate the influence of α values on the ranking properties of similarity ρ, survival rate ς ,
and liquidity μ for all situations. For combinations of networks and strategies, as α increases, all the properties of ρ
also increase to relatively high values, indicating the networks are becoming jammed with higher ρ due to increasing
weights on degree centrality. With small α, the ranking is less influenced by local degree centralities and is more reliant on
global betweenness centralities. The results show that focusing on local centrality tends to enhance the ranking similarity.
Additionally, the survival rates ς fluctuate at small values, indicating that changes happen for the individuals with only
a small portion of players remaining exactly unchanged. Meanwhile, liquidity μ declines significantly in Sf , showing that
the overall averaged abilities for players to change decays slowly, leading to fixed rankings, while liquidity μ remains
largely unchanged for Sr and Sc in all situations.

5. Conclusions

The study of spatial evolutionary games played on networks gives insight into understanding the collective behaviors
of a structured population. Most literature focuses on using traditional games to explore how network structures influence
the outcomes of iterative games. In those models, players aim to optimize their payoffs from games played with neighbors.
The ranking information of the hierarchical population is not taken into consideration in decision making. However,
in many realistic social situations, individuals are at times motivated to climb a certain social ladder with the aim of
achieving a better ranking position in the population. In these scenarios, individuals optimize relative advantages among
the population to occupy relatively better ranking positions. To capture this ranking nature in a structured population, we
proposed a simple stylized ranking game on networks to study the relationships of behaviors and network topologies. We
consider three different ranking decision making strategies for players to adopt: random, follow, and centrality strategies.
In addition, random ER networks, heterogeneous SW networks, and SF networks are considered. A systematic numerical
simulation is performed in various combinations. The network and ranking properties are calculated. The results indicate
that for the follow strategy, networks tend to be less liquid, while the random and centrality strategies remain at a
higher mobility, allowing players to change ranking positions. In summary, this research contributes to the literature
of evolutionary games on networks by introducing a ranking game model. Our numerical simulations introduce new
thoughts on the ranked social phenomenon and implications for regulators to reconsider the dynamics behind the ranked
social ladder for a structured population.

The proposed ranking game model is oversimplified in focusing on the essentials, but it serves as a starting point.
Further extensions would not only be of interest, but also quite straightforward and intuitive with the introduction
of more complicated considerations, such as social wealth distribution, cooperation promotion, and alliance formation.
Furthermore, it is worth investigating ranking games on networks with other models of statistical physics. Spin-
glasses [82] are classical models with adoptions in social network studies. For example, a player on a network with two
action options or states can be treated as a spin. The dynamics of the whole network might be modeled as a spin network.
This allows spin-glass models to be adopted to study certain social phenomena. One aspect we might consider introducing
in further research is the phase transition [32]. For our case in particular, it is worth investigating whether a phase
transition is possible for the rankings, network topologies, and critical conditions. The percolation theory has been applied
in social network studies of network robustness and fragility [83], and epidemic spreading over networks [84]. Percolation
theory is mainly used to study how signals, opinions, or diseases spread over a social network. With percolation theory, it
might be possible to further investigate how a ranking might evolve in a social network in which dynamics are modeled
as percolation. For example, given certain opinions spreading over a network, one might be interested to study how the
rankings of the opinion leaders in the network might evolve. In this study, we focus on the degree and betweenness
centralities. It is possible to consider other centrality measurements like eigenvector and entropy-based centralities.
However, this might require a change from undirected networks to directed networks and bringing the predictions among
players into consideration. This work is a theoretical evolutionary game model and is not meant to provide predictability
of social norms. However, it is worth exploring the possibilities for these kinds of models to be utilized to predict certain
social norms in future studies.
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Fig. 5. Three strategies played on ER, SW, and SF networks in different α. Larger local-degree centrality weights contribute to the higher average
centralities, especially for Sf .
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Fig. 6. Similarity ρ, survival rate ς , and liquidity μ for Sc (a, b, c), Sf (d, e, f), and Sr (g, h, i) played on ER, SW, and SF networks with different α.
Sf again leads to poor mobility.

We hope this work can stimulate and inspire further studies in evolutionary games on networks to understand how a
population and individuals behave in ranked social structures. After all, in-depth understanding of evolutionary dynamics
is essential to regulate a strictly hierarchical and ranked society hoping to achieve social equality with opportunities for
all.
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