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Nondiffusive fluxes in a Brownian system with Lorentz force
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The Fokker-Planck equation provides a complete statistical description of a particle undergoing random
motion in a solvent. In the presence of Lorentz force due to an external magnetic field, the Fokker-Planck
equation picks up a tensorial coefficient, which reflects the anisotropy of the particle’s motion. This tensor,
however, cannot be interpreted as a diffusion tensor; there are antisymmetric terms which give rise to fluxes
perpendicular to the density gradients. Here, we show that for an inhomogeneous magnetic field these
nondiffusive fluxes have finite divergence and therefore affect the density evolution of the system. Only in the
special cases of a uniform magnetic field or carefully chosen initial condition with the same full rotational
symmetry as the magnetic field can these fluxes be ignored in the density evolution.
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I. INTRODUCTION

While the effect of the Lorentz force on the properties
of materials has been thoroughly studied in the context of
solid-state physics, much less is known about its influence
on soft-matter systems which are dominated by overdamped
dynamics. This becomes particularly interesting in light of the
recent finding that the Lorentz force induces a particle flux
perpendicular to density gradients, thus preventing a diffusive
description of the dynamics [1,2]. In this paper, we study the
unusual fluxes induced by the Lorentz force and their effect
on the nonequilibrium dynamics of the system.

Consider a single charged Brownian particle in a magnetic
field B(r). Let n be the unit vector in the direction of the mag-
netic field, and B(r) be the magnitude. Due to the magnetic
field, the particle is subjected to the Lorentz force qgv x B(r),
where v is its velocity. The dynamics of the particle are
described by the following Langevin equation [3]:

r(t) = (),
mv(t) = —yv 4+ qv x B(r) + /2ykgT&(t),

where r is the position of the particle, m is the mass of
the particle, ¢ is the charge, y is the friction coefficient, kp
is the Boltzmann constant, T is the temperature, and &(¢)
is Gaussian white noise with zero mean and time correla-
tion (E(t)&7 (¢')) = 18(t — ¢'). One can rewrite the Langevin
equation in terms of the position-dependent matrix I'(r) =
y1+ gB(r)M as

(1

mv(t) = —L(r)v + /2y kgT&(t), 2)
where M is a matrix with elements Mg = —€4p,n,, With

€4pv the totally antisymmetric Levi-Civita symbol in three
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dimensions and n, is the v component of n for the Cartesian
index v.

Often one is interested in the slow degree of freedom,
which in this case is the position of the particle. The timescale
at which velocity correlations decay, T = m/y, is generally
much smaller than the diffusion timescale of the particle.
Since for times ¢ > t the velocity decouples with the posi-
tion, an equation for the position degrees of freedom alone
can be obtained. This equation, referred to as the overdamped
equation, is obtained by taking the small-mass limit of Eq. (1)
[4-7]. Tt has become common practice to start with the
overdamped equation of motion as the model of the system
under study [8—13]. However, the overdamped limit of Eq. (1)
[5,14,15] with Lorentz force is a special case. Although it
describes the position statistics of the particle accurately, it is
not suited for calculating velocity-dependent quantities such
as flux and entropy production [2]. Thus, from a simulations
perspective, even in the small mass limit, one must use Eq. (1)
to calculate position and fluxes.

Whereas the Langevin equations are convenient for simula-
tions, a statistical description is often preferred for theoretical
analysis. To this end one derives the Fokker-Planck equation
for the position degrees of freedom, which for a Brownian
particle subjected to inhomogeneous Lorentz force, is given
as [2,5]

OP(r,1)
ar

where P(r, t) is the probability density and the tensor D(r) is
given as

_ Kz(r) 2\ k(r)
br) = D[<1 + 1+ Kz(r)M ) 1+ /c2(r)Mi|

=Dy(r) + D,(r), )

V- [D@)VP(r,1)], 3)

where D = kgT /y is the coefficient of a freely diffusing
particle and «(r) = gB(r)/y is a parameter quantifying the
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strength of Lorentz force relative to frictional force [16]. Dy
and D, are the symmetric and antisymmetric parts of the
tensor D, which refer to the first and second terms of Eq. (3),
respectively. The flux in the system is [1,2]

J(r,t) = —=D(r)VP(r,1). (5)

The symmetric tensor Dy is the diffusion tensor and gives
rise to the diffusive fluxes J(r,t) = —D(r)VP(r,t) along
the density gradient. It is known that the motion of a Brownian
particle is anisotropic in the presence of magnetic field [17].
The components of Dy along and perpendicular to the field are
D and D/(1 + «?), respectively.

The Fokker-Planck equation (3) is unusual due to the
presence of the antisymmetric tensor D,,. This tensor captures
the physical property of the Lorentz force that it curves the
trajectory of a moving charge without performing work on it.
More precisely, there exist fluxes J,(r,t) = —D,(r)VP(r,t),
which are perpendicular to the density gradient [1,2]. The
presence of these nondiffusive fluxes makes the dynamics
fundamentally different from purely diffusive. In this paper,
we study the effect of these fluxes on the nonequilibrium
dynamics of a system whose probability density evolves
according to Eq. (3). We show that for an inhomogeneous
magnetic field, nondiffusive fluxes can significantly affect
the density evolution. This is the main result of the paper.

J

Only in the special cases of the uniform magnetic field or
carefully chosen initial condition with the same full rotational
symmetry as the magnetic field, can these fluxes be ignored in
the dynamics of the probability distribution.

We take the following approach: We initialize the system
into a nonequilibrium configuration and let it evolve in time
according to Eq. (3). We numerically obtain the total fluxes,
diffusive fluxes, and nondiffusive fluxes. We then only retain
the symmetric part of the tensor D and let the system evolve in
time. Since in the latter the nondiffusive fluxes are ignored, a
comparison of the density evolution provides insight into the
role of these fluxes in the dynamical evolution of the system.

II. NONDIFFUSIVE FLUXES IN MAGNETIC FIELD

Here we consider a system with reflecting boundaries.
The particles cannot escape the confining geometry R, hence
we require n,-J(r,t) =0 for r € §, the boundary of R,
where n;, is normal to S [4]. The magnetic field is applied
in the z direction. Because the Lorentz force does not affect
the motion in the z direction, we restrict our analysis to the
motion in the xy plane. This effectively reduces the problem
to two dimensions. All the results are obtained by numerically
solving the Fokker-Planck equation (3). Using a central dif-
ference method we discretize the Fokker-Planck equation as
follows:

At
P(iAx, jAy;t + At) — P(iAx, jAy;1) = _E{Jx[(i+ DAx, jAy;t] = Jil(i — DAx, jAy; 1]}

At
+ m{fy[iAx, (J+ DAy:t] = J[iAx, (j — DAy}, (6)

where i and j are integers, Ax and Ay are, respectively, the grid sizes in x and y directions, and At is the integration time
step which is fixed to At =5 x 1077 in this paper. Here T = y /kgT, which is the time the particle takes to diffuse over
a unit distance. At the boundaries of the system we use forward and backward differences. Our system is a rectangular box
of size L, x L,, where L, and L, are the lengths in the x and y directions, respectively. Similarly, the fluxes are calculated

numerically as

XX

D
J(iAx, jAy;t) = A

xy

{Pl(G+ DAx, jAy;t] = P[(i — DAx, jAy;1]}

——2{PliAx, (j + 1)Ay;t] — PliAx, (j — 1)Ay; 11}, (7a)
2Ay
D,, ) _ . .
IiAx, jAyit) = =5 Xy {P[(i + DAx, jAy;t] — P[(i — 1)Ax, jAy;t])
—ﬁ{P[mx, (j + DAy;t] — PliAx, (j — DAy;t]}. (7b)
2Ax

Here Dgg is the element of tensor D, where o and B
are x and y components of r. For the numerical calculations
we fix the diffusion coefficient D = 1 and Ax = Ay = 0.01
throughout this paper.

After initializing the system into a nonequilibrium con-
figuration, we let it evolve in time according to Eq. (3)
and numerically obtain the fluxes (i.e., the total fluxes, and
diffusive and nondiffusive fluxes) in the system for the applied
magnetic field. Experimentally realizable magnetic fields are
likely to have more complicated shapes; however, this does
not change the conclusions of this study.

(
A. Constant magnetic field

We first consider a system subjected to a constant magnetic
field. The particles are initially uniformly distributed in a disk
of radius 1 centered at the origin. For a constant magnetic field
only the diffusive fluxes contribute to the time evolution of
the probability density. This is due to the antisymmetry of D,,
which implies that V - J ,(r, 1) = D,V?P(r,t) = 0, that is, the
nondiffusive fluxes have a zero divergence.

Figures 1(a) and 1(b) show, respectively, the results for
the density and fluxes in the system at time ¢ = 1.0. Clearly
the flux has radial and rotational components. The radial
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FIG. 1. Constant magnetic field. (a) Density distribution in the system at time # = 1.0 obtained from Eq. (3) with ¥k = 2. The system size
is 5 x 5. (b) Total fluxes in the system [Eq. (5)]. The decomposition of the total flux into diffusive and nondiffusive components is shown
in (c) and (d), respectively. The nondiffusive fluxes are perpendicular to the density gradients and purely rotational. Since these fluxes are
divergence-free, they do not affect the time evolution of the probability density. The direction of the fluxes is shown by the arrows; the

magnitude is color coded.

component corresponds to the diffusive fluxes in the sys-
tem which exist along the density gradients [see Fig. 1(c)].
The rotational component corresponds to the nondiffusive
fluxes which are perpendicular to the density gradients [see
Fig. 1(d)]. Since these nondiffusive fluxes are divergence-
free, they do not affect the density evolution. This, however,
does not mean that the dynamics of this system are the
same as that of a system with only the symmetric tensor. In
fact, that there are nondiffusive fluxes present in the system,
makes the dynamics distinct from a purely diffusive system.
For the particular case of constant magnetic field, nondiffusive
fluxes can be ignored in studying the density evolution in
the system. This has been previously shown by some of
the coauthors of this study in Ref. [2] by integrating the
Langevin equation (1) with a small mass. Interestingly, the
nondiffusive fluxes are reminiscent of the Corbino effect
in conductors [18] [see Fig. 1(d)]: When a disk carrying
radial current is subjected to magnetic field in the direction
perpendicular to its plane (additional) circular fluxes are gen-
erated. In the Supplemental Material [19] we show a movie
of a system relaxing towards the equilibrium stationary state

with and without Lorentz force. The presence of magnetic
field slows down the relaxation dynamics due to the reduced
diffusivity.

B. Radially symmetric magnetic field

Figure 2 shows the density and fluxes in the system
at time r = 1.0 for a radially symmetric, Gaussian-shaped
magnetic field centered at the origin. The particles are ini-
tially uniformly distributed in a disk of radius 1 centered
at the origin. With this choice, the initial condition and
the magnetic field have the same symmetry. This symmetry
implies that P(r,t) = P(r,t), where r is the distance from
the origin. It then follows that V - J,(r,t) = VD, - VP =0
because VD, (r) is perpendicular to VP(r,t). This means
that despite a spatially inhomogeneous magnetic field, the
nondiffusive fluxes have no contribution to the evolution of the
probability density. In this case, one obtains the same density
distribution in the system if one considers only the symmetric
part of the tensor D. The fluxes, shown in Fig. 2(b) are
decomposed into diffusive and nondiffusive parts in Figs. 2(c)
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where 7 is the distance from the origin. The system size is 5 x 5. (b) Total fluxes in the system [Eq. (5)]. The decomposition of the total flux
into diffusive and nondiffusive components is shown in (c) and (d), respectively. In this special case, the nondiffusive fluxes do not influence
the density evolution. This implies that on retaining only the symmetric part of D in Eq. (3), the same density distribution is obtained as in (a).
The direction of the fluxes is shown by the arrows; the magnitude is color coded.

and 2(d), respectively. In this case the time evolution of
the density distribution is not influenced by the nondiffusive
fluxes.

We now show that on slightly displacing the initial con-
figuration with respect to the magnetic field, the nondiffusive
fluxes affect the time evolution of the density distribution in
the system. Whereas the applied magnetic field is the same
as in the previous case, the center of the (circular) initial
condition is displaced to (—0.3, —0.3). Figures 3(a) and 3(b)
show the density of the system at time r = 4.0 obtained from
solving Eq. (3) with and without the antisymmetric part of
D, respectively. The difference between these two is shown
in Fig. 3(c), which shows that the nondiffusive fluxes affect
the density evolution. The total flux in the system and its de-
composition into diffusive and nondiffusive fluxes are shown
in Figs. 3(d) and 3(e). In the Supplemental Material [19] we
show videos depicting how the system relaxes towards the
equilibrium.

C. Rectangular initial distribution

Until now we have considered an inhomogeneous mag-
netic field with radial symmetry. We showed that with care-
fully chosen initial conditions, one can ignore nondiffusive
fluxes in the density evolution. We now consider the case in
which the magnetic field varies along the y direction x (y) =
—10 sin(%). The particles are initially uniformly distributed
in the rectangular region x € [—1.5,1.5], y e [-1,1] in a
system of size 5 x 4. Figure 4 shows the density and fluxes
at time ¢ = 1.0 obtained from the full dynamics in (a) and
(d)—(f) and from diffusive dynamics in (b), respectively. The
total fluxes shown in Fig. 4(d), obtained from full dynamics,
however, appear to be predominantly nondiffusive in nature.
As can be clearly seen in Fig. 4(e), diffusive fluxes are parallel
to the density gradient. The effect of the nondiffusive fluxes is
strikingly evident in the density distribution [see Fig. 4(c)]: It
becomes distorted under full dynamics in contrast to (b) which
remains rectangular.
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FIG. 3. Radially symmetric magnetic field (same as in Fig. 2) and displaced initial condition. Density and fluxes in the system at time
t = 4.0 obtained from Eq. (3) with k = 4e are shown in (a) and (d)—(f), respectively. The system size is 5 x 5. (b) The density distribution

obtained from dynamics in which only the symmetric part of the te
from the origin (in Fig. 2) to (—0.3, —0.3) here. That the two system

nsor is retained. We have slightly displaced the circular initial condition
s have different density distribution is due to the nondiffusive fluxes. This

difference between the two density distributions is shown in (c). The decomposition of the total flux into diffusive and nondiffusive components
is shown in (e) and (f), respectively. Note that for better visualization, we have chosen a larger time here than the previous case. The direction

of the fluxes is shown by the arrows; the magnitude is color coded.

Note that the equilibrium density distribution of the system
is independent of the applied magnetic field. For any chosen
initial configuration and magnetic field, a uniform probability
distribution is obtained in the long-time limit. We note that
this is valid only for a time-independent magnetic field. A
time varying magnetic field will induce an electric field which
gives rise to (a) dynamics different from the time-independent
fields and (b) a nonequilibrium steady state in the long-time
limit [20,21].

III. DISCUSSION AND CONCLUSION

A charged, Brownian particle, subjected to Lorentz force
due to an external magnetic field performs anisotropic mo-
tion; the rate of diffusion in the plane perpendicular to the

01

magnetic field is reduced, whereas the diffusion along the
direction of the magnetic field is unchanged. On a statistical
level, the anisotropy is encoded in the tensorial coefficient
of the Fokker-Planck equation for the probability density
of the particle. The tensor, however, is not a diffusion ten-
sor due to the presence of antisymmetric terms [1,2]. This
feature, which is unique to Lorentz force, gives rise to un-
usual nondiffusive fluxes in the system. Density gradients
in the system not only result in diffusive fluxes along the
gradient but also fluxes perpendicular to the gradients. In
this paper we studied how these nondiffusive fluxes affect
the dynamics of the system. We showed that these fluxes
make the dynamics distinct from purely diffusive dynamics.
In particular, we showed that for an inhomogeneous mag-
netic field these nondiffusive fluxes have finite divergence
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predominantly nondiffusive. The direction of the fluxes is shown by the arrows; the magnitude is color coded.

and therefore affect the time evolution of the density. Only
in the special cases of a uniform magnetic field or initial
condition with the same full rotational symmetry as the
magnetic field, can these fluxes be ignored in the density
evolution.

There are several interesting directions in which this work
can be extended. The Fokker-Planck approach can be gen-
eralized to a system of interacting particles subjected to an
inhomogeneous magnetic field. It is then straightforward to

derive a coarse-grained equation for the one-body density and
its time evolution within the framework of dynamical density
functional theory [22,23]. It will be interesting to study how
nondiffusive fluxes affect the phase transition dynamics of a
fluid system. It has recently been shown that Lorentz force
can induce an unusual nonequilibrium steady state in a system
of active Brownian particles [16]. It would be interesting to
study the dynamics leading to the nonequilibrium steady state
in such a system.
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