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STATIONARY DISTRIBUTIONS AND CONDENSATION IN
AUTOCATALYTIC REACTION NETWORKS∗

LINARD HOESSLY† AND CHRISTIAN MAZZA†

Abstract. We investigate a broad family of stochastically modeled reaction networks by look-
ing at their stationary distributions. Most known results on stationary distributions assume weak
reversibility and zero deficiency. We first explicitly give product-form stationary distributions for
a class of mostly non-weakly-reversible autocatalytic reaction networks of arbitrary deficiency. We
provide examples of interest in statistical mechanics (inclusion process), life sciences, and robotics
(collective decision making in ant and robot swarms). The product-form nature of the stationary
distribution then enables the study of condensation in particle systems that are generalizations of
the inclusion process.
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1. Introduction. Understanding the dynamics of reaction networks (CRNs) is
of central importance in a variety of contexts in life sciences and complex systems,
including molecular and cellular systems biology, which are some of the most vital
areas in bioscience. Two approaches are used to model CRN systems, either a deter-
ministic or a stochastic model. The first is realized as a vector with concentrations
of each molecular species as a state space governed by a system of ordinary differen-
tial equations (ODEs), whereas the second is described by a continuous-time Markov
chain acting on discrete molecular counts of each molecular species. Typically the
stochastic model is used for cases with low molecular numbers where stochasticity is
essential for the proper description of the dynamics. Au contraire, the deterministic
model is used for cases with many molecules in each species and where it is assumed
that coupled ODEs well approximate the concentrations.

The study of the dynamics of the deterministic model, mass-action kinetics in
particular with complex balanced states [26, 16], is a well-studied subject going back
more than 100 years [46, 36]. Understanding of such, and more general ODEs, from
chemical reaction network theory developed to more subtle questions, like, e.g., mul-
tistationarity, persistence, etc. [23]. Conversely, the stochastic system is analyzed
via the master equation. No analytic solutions are known for most systems, even
concerning stationary distributions. Consequently simulation methods and approxi-
mation schemes of different exactness, roughness, and rigor were developed in order
to understand such systems [21, 18, 8, 37], making a systematic investigation of fun-
damental effects of noise and statistical inference a demanding job. Our results are
a step towards the rigorous analysis of the product-form stationary distribution of
non-weakly-reversible ergodic stochastic CRNs of arbitrary deficiency. We exhibit
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product-form stationary distributions πN for a large class of autocatalytic mass pre-
serving CRNs, including the models in [43, 40, 6, 5, 33, 34] (which were studied via
simulation and approximations) and generalizing results of [28, 24]. The emerging
infinite family of product-form functions in the stationary distributions (with Poisson
form as a particular case) is also possibly interesting from the view of natural com-
putation, where it extends the range of designable probability distributions of CRNs;
see, e.g., [11, 44]. We illustrate the occurrence of such CRNs in interacting particle
system theory and life sciences for collective decision making processes in ant or robot
swarms.

The relation between the deterministic and the stochastic model as well as their
differences are a focus of current research [6, 5, 28, 43, 40, 10, 3]. Kurtz [35] linked
the short term behavior of the adequately scaled continuous-time Markov chain to
the dynamics of the ODE model. These results are based on the classical mean
field scaling which assumes that the system is well mixed. Then the probability
that a set of molecules meet in a small volume is proportional to the product of the
molecular concentrations xi/V , where xi denotes the absolute number of molecules
of type Si, and where V is the volume which is assumed to be large. Within this
modeling framework, the orbits of the continuous-time Markov chain describing the
stochastic CRNs converges as V → ∞ towards the orbits of the mass-action ODEs.
This convergence was also considered recently from the point of view of large deviation
theory [1]. The insight of the complex balanced deterministic model was recently
transferred to the stochastic model: A deterministic system is complex balanced if
and only if the stochastically modeled system has product-form of Poisson type [3, 10],
where the parameter of the Poisson distributions are given by the stable equilibrium
values of the related deterministic mass-action dynamic.

CRNs with stochastic behavior differing from the behavior of the deterministic
CRN due to molecular discreteness and stochasticity were identified. The mathemat-
ical analysis is based on approximations [43, 40, 6, 5, 33, 34] in the ergodic case, or on
the analysis of absorbing states for absolute concentration robust CRNs [4, 2, 15]. In
the ergodic case such behavior appeared in the literature as noise-induced bi-/multi-
stability [6, 5], small-number effect [43, 40], or noise-induced transitions [27]. Our
setting includes examples from [6, 5, 33] and some examples of [43, 40]. Hence we
shed light on such instances by providing product-form stationary distributions and
enabling exact analysis for the class of autocatalytic CRNs (see Definition 3.1 and
Remark 3.3). We inspect them asymptotically when the total number of molecules N
is large. Taking inspiration from previous works on particle systems [19, 20, 24, 7],
we consider non-mean-field transition mechanisms where particles (or molecules) are
located at the nodes of a graph. Particles located at some node i (or of type Si) can
move to nearest neighbor nodes j. Within this new modeling framework, the rate at
which a particle moves from site i to site j (or that a molecule of type Si is converted
into a molecule of type Sj) is related to the absolute numbers xi and xj of species Si

and Sj . While a classical mean field scaling with V = N would lead to convergence
of πN as N → ∞ towards a point mass centered at the positive equilibrium of the
deterministic mass-action ODE, the new scaling regime leads to the emergence of
condensation: The stationary distribution πN of autocatalytic CRNs can under some
conditions converge towards limiting probability measures with supports located on
the faces of the probability simplex. In other words, the set of molecules concentrates
as N → ∞ on a strict subset of the set of species. We investigate the asymptotic
behavior of the product-form stationary distribution πN , putting emphasis on the
cases of up to molecularity three in our model with respect to three different forms
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of condensation. We observe that monomolecular autocatalytic CRNs (see Definition
3.1 and Remark 3.3) and complex balanced CRNs do not satisfy any form of con-
densation. We generalize a theorem from [24] to allow more general product-form
functions and prove, for the up to bimolecular case, a weak form of condensation and
a weak law of large numbers. In the three-molecular and higher case, we show that
such systems exhibit the strongest form of condensation.

2. Reaction networks. A reaction network is a triple G = (S, C,R), where S
is the set of species S = {S1, . . . , Sn}, C is the set of complexes, and R is the set of
reactions R = {R1, . . . , Rr}.

Complexes are made up of linear combinations of species over Z≥0, identified with
vectors in Z

n
≥0. Reactions consist of ordered tuples (ν, ν′) ∈ R with ν, ν′ ∈ C. Such a

reaction consumes the reactant ν and creates the product ν′. We will typically write
such a reaction in the form ν → ν′. We will often write complexes ν ∈ Z

n
≥0 in the

form ν =
∑n

i=1 νiSi. Accordingly we slightly abuse notation at times for complexes
by identifying ν with

∑n
i=1 νiSi.

We usually describe a reaction network by its reaction graph which is the directed
graph with vertices C and edge set R. A connected component of the reaction graph
of G is termed a linkage class. We say ν ∈ C reacts to ν′ ∈ C if ν → ν′ is a reaction.
A reaction network G is reversible if ν → ν′ ∈ R whenever ν′ → ν ∈ R (different to
reversibility of stochastic processes), and it is weakly reversible if for any reaction ν →
ν′ ∈ R, there is a sequence of directed reactions beginning with ν′ as a source complex
and ending with ν as a product complex. If it is not weakly reversible we say it is non-
weakly-reversible. The molecularity of a reaction ν → ν′ ∈ R is equal to the number
of molecules in the reactant |ν| =

∑
i νi. Correspondingly we call such reactions

unimolecular, bimolecular, three-molecular, or n-molecular reactions. Alternatively
we say a reaction has molecularity one, two, three, or n. The stochiometric subspace
is defined as

T = spanν→ν′∈R{ν − ν′} ⊂ R
n,

and for v ∈ R
n, the sets (v + T ) ∩ R

n
≥0 are stochiometric compatibility classes of G.

The following invariant has proven to be important in the study of complex balanced
CRNs. The deficiency of a reaction network G is defined as

δ = |C| − �− dim(T ),

where � is the number of linkage classes.
For each reaction ν → ν′ we consider a positive rate constant κν→ν′ ; the vector of

reaction weights is defined by κ ∈ R
R
>0 and the CRN with rates is denoted by (G, κ).

For examples of reaction networks see section 3.3

2.1. Deterministic model. Here we review the main notions connected to the
deterministic model. This setting is usually termed deterministic mass-action kinetics.
The system of ODEs associated with the CRN (G, κ) with mass-action kinetics is

d

dt
x(t) =

∑
ν→ν′∈R

κν→ν′x(t)ν(ν′ − ν),

where for a, b ∈ R
n
≥0 we define ab =

∏
Si∈S abii with convention 00 = 1. The system

then follows this ODE started from initial condition x0 = x(0) ∈ R
n and the dynamics

of x(t) ∈ R
n models the vector of concentrations at time t.
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Definition 2.1. A reaction network (G, κ) with deterministic mass-action kinet-
ics is called

1. detailed balanced if and only if there exists a point a ∈ R
n
>0 such that for all

ν → ν′ ∈ R, ν′ → ν ∈ R,

κν→ν′aν = κν′→νa
ν′
;

2. complex balanced if and only if there exists a point a ∈ R
n
>0 such that for all

ν ∈ C, ∑
ν→ν′∈R

κν→ν′aν =
∑

ν′→ν∈R
κν′→νa

ν′
.

Note that if a CRN is detailed balanced or complex balanced, then it is necessarily
weakly reversible. Also deficiency zero weakly reversible CRNs are complex balanced
independent of the rate [17].

2.2. Stochastic model. Here we introduce the main notions connected to the
stochastic model. The setting we focus on is usually termed stochastic mass-action
kinetics. The progression of the species follows the law of a continuous-time Markov
chain on state space Zn

≥0. The state at time t is described by a vector X(t) = x ∈ Z
n
≥0

which can change according to a reaction ν → ν′ by going from x to x+ ν′ − ν with
transition rate λν→ν′(x), corresponding to the consumption of ν and the production
of ν′. The Markov process with intensity functions λν→ν′ : Zn

≥0 → R≥0 can then be
given by

P (X(t+Δt) = x+ ν′ − ν|X(t) = x) = λν→ν′(x)Δt+ o(Δt).

Accordingly, the generator A is given by

Ah(x) =
∑

ν→ν′∈R
λν→ν′(x)(h(x+ ν′ − ν)− h(x))

for h : Zn → R. We focus on the usual choice, stochastic mass-action kinetics, where
the transition intensity associated with the reaction ν → ν′ is

(2.1) λν→ν′(x) = κν→ν′
(x)!

(x− ν)!
1x≥ν (where z! :=

n∏
i=1

zi! for z ∈ Z
n
≥0).

This uniform sampling scheme corresponds to the mean field situation where the
system is well-stirred in the sense that all particles move randomly and uniformly in
the medium. The transition intensities with constants κν→ν′ model the probability
that such molecules meet in a volume element. The study of these models goes back
to [32, 47]. In the following we fix a CRN (G, κ) and introduce the main terminology
from stochastics.

Definition 2.2 (decomposition of state space). We say the following:
- A reaction y → y′ is active on x ∈ Z

n
≥0 if x ≥ y.

- A state u ∈ Z
n
≥0 is accessible from x ∈ Z

n
≥0 if there is a sequence of reactions

(yi → y′i)i∈[p] such that

x+

j∑
i=1

(y′i − yi) ≥ 0 ∀j ∈ [p],

x+

p∑
i=1

(y′i − yi) = u.
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- A nonempty set Γ ⊂ Z
n
≥0 is an irreducible component of G if for all x ∈ Γ and

all u ∈ Z
n
≥0, u is accessible from x if and only if u ∈ Γ.

- G is almost essential if the state space is a union of irreducible components
except for a finite number of states.

2.3. Stationary distribution and product-form stationary distribution.
The stationary distribution πΓ on an irreducible component Γ describes the long-term
behavior of the Markov chain in the positive recurrent case. Then πΓ is unique and
corresponds to the limiting distribution (see [41]). Note that on a finite irreducible
component the stationary distribution always exists.1 Let X(t) denote the underlying
stochastic process associated with a reaction network on a finite irreducible component
Γ. Then given that the stochastic process X(t) starts in Γ, we have

lim
t→∞P (X(t) ∈ A) = πΓ(A) for any A ⊂ Γ.

The stationary distribution is determined by the master equation of the underlying
Markov chain:

(2.2)
∑

ν→ν′∈R
π(x+ ν − ν′)λν→ν′(x+ ν − ν′) = π(x)

∑
ν→ν′∈R

λν→ν′(x)

for all x ∈ Γ. Inserting the rate functions following mass-action kinetics gives

(2.3) λν→ν′(x) = κν→ν′
(x)!

(x− ν)!
1x≥ν ,

(2.4)∑
ν→ν′∈R

π(x+ ν − ν′)κν→ν′
(x− ν′ + ν)!

(x− ν′)!
1x≥ν′ = π(x)

∑
ν→ν′∈R

κν→ν′
(x)!

(x− ν)!
1x≥ν .

Solving (2.2) is in general a challenging task, even for the mass-action case (2.4) stays
difficult. Remark that for mass conserving CRNs, the irreducible components are
finite and the stationary distribution exists always. Some stationary distributions of
weakly reversible reaction networks are well understood. Complex balanced CRNs
have a nice and simple product-form stationary distribution.

Theorem 2.3 (see [3, Theorem 4.1]). Let (G, κ) be a CRN that is complex bal-
anced. Then for any irreducible component Γ, the stochastic system has product-form
stationary distribution of the form

π(x) = MΓ
cx

x!
, x ∈ Γ,

where c ∈ R
n
>0 is a point of complex balance and MΓ is a normalizing constant.

So each deterministic complex balanced CRN has its stochastic counterpart with
product-form stationary distribution of Poisson-type. One can prove (see, e.g., [3])
that, for zero deficiency CRNs, a network is complex balanced if and only if it is weakly
reversible. This explains why most results on product-form distributions assume
zero deficiency. We will go beyond this setting in the forthcoming sections. On
the other hand by [10, Theorem 5.1] any almost essential stochastic reaction network
with product-form stationary distribution of Poisson-type is deterministically complex
balanced. Notice that since complex balanced implies weakly reversible, these results
do not apply to non-weakly-reversible CRNs.

1A finite state irreducible continuous-time Markov chain is positive recurrent, hence, has a sta-
tionary distribution which is the limiting distribution.
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2.4. Reaction vector balance CRNs. The notion of reversibility plays a fun-
damental role in Markov chain theory.

Definition 2.4. A continous-time Markov chain X(t) with transition rates q(x, y)
is reversible with respect to the distribution π if for all x, y in the state space Γ we
have

(2.5) π(x)q(x, y) = π(y)q(y, x).

Note that the notions of reversible and detailed balanced for CRNs are not the
same as the same terms used for Markov chains. A definition similar to detailed
balanced (see Definition 2.1) for the stochastic model of CRNs was recently termed
as reaction vector balanced [9, 30].

Definition 2.5. Let (G, κ) be a CRN. A stationary distribution π on an irre-
ducible component Γ ⊆ Z

n
≥0 is called reaction vector balanced if for every x ∈ Γ and

every a ∈ Z
n

(2.6)
∑

ν→ν′∈R:ν−ν′=a

π(x+ν−ν′)λν→ν′(x+ν−ν′) = π(x)
∑

ν→ν′∈R:ν−ν′=−a

λν→ν′(x).

Rewriting (2.6) as

π(x+ a)q(x+ a, x) = π(x)q(x, x+ a)

for the rates

q(x+ a, x) =
∑

ν→ν′∈R:ν−ν′=a

λν→ν′(x+ a),

we see that π is reaction vector balanced if and only if the Markov chain transition
rates given by q(x + a, x) are reversible. If a CRN is detailed balanced (Definition
2.1), many results are known. Detailed balance implies complex balanced, so the
stochastic model has product-form stationary distribution of Poisson-type. However,
more is known; by [47, Lemma 3.1, p. 157] and [30] for reversible reaction networks
this is the case if and only if the corresponding stochastic model is Whittle stochastic
detailed balanced, which implies its reversibility as a Markov chain.

2.5. Generalized balanced CRNs. In section 4, Remark 4.3 and Example 4.4,
we indicate how to combine complex balanced and autocatalytic CRNs. This context
was not considered before hence we review notions of [9] to adapt and encapsulate it
into our setting.

Definition 2.6. Consider a CRN (G, κ) with stochastic dynamics on Γ and π a
distribution on Γ. We say (G, κ) is generalized balanced for π on Γ if there exists
{(Li, Ri)i∈A}, a set of tuples of subsets of R, with

⋃̇
i∈A

Li =
⋃̇

i∈A
Ri = R

such that for all i ∈ A and all x ∈ Γ we have

(2.7)
∑

ν→ν′∈Li

π(x+ ν − ν′)λν→ν′(x+ ν − ν′) = π(x)
∑

ν→ν′Ri

λν→ν′(x).



STATIONARY DISTRIBUTIONS IN AUTOCATALYTIC CRNs 1179

Remark 2.7. The notion of generalized balanced covers
1. reaction balanced with index given by reactions, i.e., the tuples of subsets are

{(ν → ν′, ν′ → ν)ν→ν′∈R};
2. complex balanced with index given by complexes, i.e., the tuples of subsets

are defined for C ∈ C,

LC = {ν → ν′ ∈ R|ν = C}, RC = {ν → ν′ ∈ R|ν′ = C};

3. reaction vector balanced with index given by a ∈ Z
n, i.e., the tuples of subsets

are defined for a ∈ Z
n,

La = {ν → ν′ ∈ R|ν − ν′ = a}, Ra = {ν → ν′ ∈ R|ν − ν′ = −a}

of [9], including combinations and other possibilities (see, e.g., Remark 4.3).

The following proposition generalizes [9, Theorem 4.3] and follows from the same
principle applied to the system of equations defining the master equation.

Proposition 2.8. If (G, κ) is a CRN with stochastic dynamics on Γ that is gen-
eralized balanced for π, then π is a stationary distribution for (G, κ) on Γ.

Proof. We have to check that the master equation is satisfied for all x ∈ Γ, so
consider a fixed x ∈ Γ. By definition we have a decomposition of the reactions of the
form {(Li, Ri)i∈A} with

⋃̇
i∈ALi =

⋃̇
i∈ARi = R. For a specific i ∈ A we then have∑

ν→ν′∈Li

π(x+ ν − ν′)λν→ν′(x+ ν − ν′) = π(x)
∑

ν→ν′Ri

λν→ν′(x).

Since the original master equation (2.2) is comprised of these equations we conclude
that π is a stationary measure for (G, κ) on Γ.

3. Autocatalytic CRNs. The class of autocatalytic reaction networks we study
is a relatively broad class of mass-preserving non-weakly-reversible CRNs of arbitrary
deficiency. It is inspired by both the inclusion process [24] and the misanthrope
process [14] with nontrivial intersection (also see section 5.1). Therefore it naturally
generalizes both models studied in CRN literature [33, 6, 5, 28, 43, 40] and some mod-
els of homogeneous and inhomogeneous interacting particle systems on finite lattices
[24, 38].

3.1. Notations. All reactions in autocatalytic CRNs will have a net consump-
tion of one Si and a net production of one Sj and will be of the following form:

(3.1) Si + (m− 1)Sj → mSj ,

where m ≥ 1. We use the following notation for the reaction rates for such reactions:

α1
i,j = rate of the reaction Si → Sj ,

αm
i,j = rate of the reaction Si + (m− 1)Sj → mSj .

Summarizing this information with a vector we write

(3.2) αi,j := (α1
i,j , . . . , α

ni,j

i,j ),

where ni,j is the highest integer m with a reaction of the form Si+(m−1)Sj → mSj .
Denote the collection of reactions net consuming one Si and net producing one Sj by

(3.3) Ri,j = R−ei+ej := {ν → ν′ ∈ R : ν′ − ν = ej − ei}.
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3.2. Autocatalytic reaction network.

Definition 3.1. A CRN is said to be autocatalytic (see Remark 3.3) denoted by
(G∗, κ) in what follows, when G∗ = (S, C,R) on the species S = {S1, . . . , Sn} satisfies
the following rules:

1. All reactions are of the form (3.1).
2. If there is a reaction net consuming one Sk and net producing one Sl, then

Sk → Sl, Sl → Sk ∈ R. (mass exchange in both directions, no absorption)
3. There is one monomolecular linkage class.
4. If Sj → Sk ∈ Rj,k ⊂ R and Sl → Sk ∈ Rl,k ⊂ R, then the reactions in

Rj,k and Rl,k contain reactions of the same molecularity such that there is a
c ∈ R>0 with

c · (α1
j,k, . . . , α

nj,k

j,k ) = (α1
l,k, . . . , α

nl,k

l,k ).

Set for convenience nk := nj,k = nl,k, and denote the normalized rates by

(1, β2
k, . . . , β

nk

k ) :=
1

α1
j,k

(α1
j,k, α

2
j,k, . . . , α

nk

j,k),

where nk is the highest integer with a reaction of the form Sj +(nk − 1)Sk →
nkSk.

5. There is a vector λ ∈ R
n
>0, such that λ is a stationary distribution for the

reversible Markov chain of transition kernel Q = (α1
i,j)i 	=j∈S, that is,

λiα
1
i,j = λjα

1
j,i

∀i 
= j with Si → Sj , Sj → Si ∈ R.

Remark 3.2. All autocatalytic CRNs are mass preserving, meaning that every re-
action ν → ν′ of the CRN satisfies

∑
i∈S νi =

∑
i∈S ν′i. Hence the stochastic dynamics

are confined to irreducible components of the form ΓN := {x ∈ Z
n
≥0||x| = N}; sim-

ilarly the deterministic ODE dynamics are restricted to corresponding stochiometric
compatibility classes. Furthermore (1) of Definition 3.1 means that only monomers
are exchanged in a particle system interpretation, while (4) and (5) ascertain that the
CRN has a product-form stationary distribution (see proof of Theorem 4.1).

Remark 3.3. Note that this expression was already used in different contexts. A
definition of autocatalytic CRNs can be found for weakly reversible CRNs in [22]
where it is utilized in the study of persistence and siphons for such CRNs. Other
definitions of autocatalytic reaction and autocatalytic set can be found in numerous
references, most of them focusing on the framework of origin of life (see, e.g., [25, 45]),
whose examination in this context can be traced back to Kauffman [31].

3.3. Examples of autocatalytic reaction networks. Here we introduce the
notions and illustrate applications and the model. For the CRNs here on two species,
conditions (1)–(4) of Definition 3.1 are easily seen to be satisfied, and condition (5)
is trivial. For a frameworks of interest for autocatalytic CRNs with more species we
refer to section 5.1.

All examples (see Table 1) are autocatalytic CRNs (Definition 3.1). Example
(A) is reversible and of deficiency 0 and coincides with motif E of [40]. Example
(B) contains asymmetric transitions, is non-weakly-reversible with deficiency 1, and
corresponds to motif F of [40]. Example (C) is non-weakly-reversible with deficiency
2 and is a generalized model of [6, 33, 43], which also appears as a special case of
motif I of [40].
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Table 1

Some autocatalytic CRNs (Definition 3.1) drawn via reaction graph.

Example (A) Example (B) Example (C) Example (D)

S1 S2

α1
1,2

α1
2,1

S1 S2

mS1 + S2 (m+ 1)S1

α1
1,2

α1
2,1

αm+1
2,1

S1 S2

2S1

S1 + S2

2S2

α1
1,2

α1
2,1

α2
2,1

α2
1,2

S1 S2

2S1 + S2 3S1

S1 + 2S2 3S2

2S1

S1 + S2

2S2

α1
1,2

α1
2,1
α3
2,1

α3
1,2

α2
2,1

α2
1,2

We next remark on some applications of autocatalytic reaction networks. Exam-
ples (C) and (D) have found applications in several interdisciplinary fields. Example
(C) can model a colony of foraging ants collecting food from two sources [5]; it was
exploited for decision-making processes in a swarm of agents [33] and apart from that
corresponds to the Moran model on two competing alleles with bidirectional mutation
[39, 28]. Example (D) was introduced as a high-density model for decision-making
processes in swarms of agents and ants [33]. Then the trimolecular reactions of exam-
ple (D) model the majority rule, where the majority convinces the minority to change
its opinion in collective decision-making systems (or food source in ants). We provide
the stationary distribution in closed form in Theorem 4.1 for all autocatalytic CRNs,
leading to exact known stationary behavior in all examples above.

4. Product-form stationary distributions for autocatalytic CRNs.

4.1. A nonstandard product-form stationary distribution. Here we de-
rive product-form stationary distributions for autocatalytic CRNs (see Definition 3.1).
This class of CRNs and Theorem 4.1 are stimulated both by the inclusion process [24]
and the misanthrope process [14] and contain models studied in the CRN literature
[33, 6, 5, 28, 43, 40] and models of homogeneous and inhomogeneous interacting par-
ticle systems on finite lattices [24, 38]. For a proof in the misanthrope case see,
e.g., [13].

Theorem 4.1. Let (G∗, κ) be an autocatalytic CRN (see Definition 3.1). Then
the associated stochastic CRN has its stochastic dynamics confined to irreducible com-
ponents of the form ΓN := {x ∈ Z

n
≥0||x| = N}, is reversible, and possesses the

product-form stationary distribution

(4.1) π(x) = Z−1
Γ

∏
Si∈S

fi(xi)

with product-form functions

fi(xi) = λxi
i pi(xi),

where

(4.2) pi(m) =
1

m!

m∏
l=1

(
1 +

ni∑
k=2

βk
i

k−1∏
r=1

(l − r)

)
.
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Proof. First remark that condition (5) of Definition 3.1 holds if and only if for
each i, j such that Ri,j 
= 0 (of (3.3)) there exists a c(i, j) > 0 such that

(4.3) α1
i,j =

λj

c(i, j)
, α1

j,i =
λi

c(i, j)
.

We show that π is reaction vector balanced for any irreducible component Γ by sep-
arating the master equation into parts according to reaction vector balance (2.6).
According to conditions (1) and (2) given in Definition 3.1, we can partition the set of
reactions using the various sets Ri,j and Rj,i (of (3.3)) and, hence, subdivide the mas-
ter equation according to this partitioning. Let i, j be such that Si → Sj ∈ Ri,j ⊂ R.

Claim 4.2. π as defined in (4.1) satisfies the respective (2.6) associated with Ri,j

for all x ∈ Γ ⊂ Z
n
≥0.

Proof. In the following we omit the coefficients xl for l 
= i, j in the equation from
π, since the other coordinates are equal and we prove π has product form. We only
get reactions Ri,j on the left side and reactions Rj,i on the right side of (2.6): We
must thus check that the fi solve

(4.4) π(xi + 1, xj − 1)(xi + 1)

(
nj∑
l=1

αl
i,j1{xj≥l}

l−1∏
k=1

(xj − k)

)

= π(xi, xj)xj

(
ni∑
q=1

αq
j,i1{xj≥1,xi≥q−1}

q−1∏
m=1

(xi + 1−m)

)
.

Observe that this equation vanishes on both sides for (xi, xj) = (xi, 0) ∈ Z≥0 × {0},
and that for all (xi, xj) ∈ Z≥0 × Z≥1 we have

1{xj≥l}
l−1∏
k=1

(xj − k) =

l−1∏
k=1

(xj − k),

1{xj≥1,xi≥q−1}
q−1∏
m=1

(xi + 1−m) =

q−1∏
m=1

(xi + 1−m),

where one can reduce the second identity to the first on the domain we consider. Set
(both for i, j)

gi(m) =
1

m!

m∏
l=1

(
ni∑
k=1

αk
j,i

k−1∏
r=1

(l − r)

)
.

Then for (xi, xj) ∈ Z≥0 × Z≥1 we get(
nj∑
l=1

αl
i,j1{xj≥l}

l−1∏
k=1

(xj − k)

)
=

xj · gj(xj)

gj(xj − 1)
,

(
ni∑
q=1

αq
j,i1{xj≥1,xi≥q−1}

q−1∏
m=1

(xi + 1−m)

)
=

(xi + 1) · gi(xi + 1)

gi(xi)
.

Next inserting π(xi, xj) = gi(xi)gj(xj) in (4.4) we obtain

gi(xi + 1)gj(xj − 1)(xi + 1)
xj · gj(xj)

gj(xj − 1)
= gi(xi)gj(xj)xj

(xi + 1) · gi(xi + 1)

gi(xi)
.
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By shortening fractions this is equivalent to

gi(xi + 1) · gj(xj) · (xi + 1) · xj = xj · gj(xj) · (xi + 1) · gi(xi + 1)

so this ansatz solves the equation. Observe that along (4.4) xi + xj is the same on
the left-hand and on the right-hand sides, so any functions

hi(m) = dm · gi(m), hj(m) = dm · gj(m), d > 0,

are also solutions to (4.4). However we have to choose the product-form functions
compatibly taking into account all i, j with Ri,j 
= ∅. Now we shall show that for all
i, j with Ri,j 
= ∅ we find a d(i, j) > 0 such that we arrive at the same product-form
functions and that they correspond to fi.

For this we use (4.3) to set

d(i, j) = c(i, j) =
λj

α1
i,j

=
λi

α1
j,i

.

Then the gi(m) can be written as

gi(m) = (α1
j,i)

mpi(m),

where the pi are defined as

pi(m) =
1

m!

m∏
l=1

(
1 +

ni∑
k=2

βk
i

k−1∏
r=1

(l − r)

)
.

With this we write

(4.5) gi(m) · c(i, j)m =

(
λi

α1
j,i

)m

(α1
j,i)

mpi(m) = λm
i pi(m) := fi(m)

as required. Notice that the fi(m) as the resulting product-form functions are well-
defined and do not depend on specific pairs i, j, using both conditions (4) and (5)
from Definition 3.1.

Hence we conclude that this CRN has a product-form stationary distribution of
the form given above.

Remark 4.3. Notice that autocatalytic CRNs considered in Theorem 4.1 can be
combined with complex balanced CRNs to obtain a bigger class of CRNs for which the
stationary distribution is known and of product form. This is thanks to the product
form and Proposition 2.8. The incoming reactions in the autocatalytic part which are
also part of a complex balanced CRN are, however, restricted to be monomolecular.

We give an example to outline this and indicate the principle.

Example 4.4. In this example the CRN is composed of the upper part which is
reaction vector balanced and corresponds to reactions between S1, S2 and the lower
part which is complex balanced and corresponds to reactions between S1, S3.

S1 S2

S1 + S2 2S2

2S1 2S3

S1 + S3

α1
1,2

α1
2,1

α2
1,2

κ1

κ2κ3



1184 LINARD HOESSLY AND CHRISTIAN MAZZA

The stationary distribution is

π(x1, x2, x3) =
(α1

2,1)
x1

x1!

∏x2

j=1(α
1
1,2 + (j − 1)α2

1,2)

x2!

(c′3)
x3

x3!

on irreducible components of the form

ΓN =

{
x ∈ Z

3
≥0|

3∑
i=1

xi = N

}

with c′3 = c3 · α1
2,1

c1
, where (c1, c3) is a point of complex balance of the lower CRN

(i.e., complex balanced for the CRN that consists only of reactions between S1, S3).
Since the balance equation for the upper CRN is reaction vector balanced, while the
lower is complex balanced, the CRN is, overall, generalized balanced on ΓN , N ≥ 2
(see Definition 2.6).

4.2. Asymptotic behavior of product-form functions of Theorem 4.1.
The product-form functions which appear in Theorem 4.1 are of the form

fi(m) =
λm
i

m!

m∏
l=1

(
1 +

ni∑
k=2

βk
i

k−1∏
r=1

(l − r)

)
.

Here we use of the following notations (for 1-/2-/3-molecular incoming reactions):

1. g(m) = (λi)
m

m!

∏m
l=1(1 + 0) = (λi)

m

m! ,

2. h(m) = (λi)
m

m!

∏m
l=1(1 + β2

i (l − 1)),

3. p(m) = (λi)
m

m!

∏m
l=1(1 + β2

i (l − 1) + β3
i (l − 1)(l − 2)).

We study asymptotic growth behavior and the problem of normalizability of the
different product-form functions. These considerations will be related to condensation
in section 5.2. Identifying the product-form functions with sequences, the latter is
equivalent to the existence of a finite positive radius of convergence of the associated
power series. We say a sequence (an)n ∈ R

N

≥0 is normalizable if there is c > 0 such

that
∑∞

n=0 anc
n < ∞. We omit the proof of the following lemma which is standard.

Lemma 4.5 (asymptotic growth behavior).

1. limn→∞
g(n+1)
g(n) = 0.

2. limn→∞
h(n+1)
h(n) = λiβ

2
i .

3. p(n+1)
p(n) → ∞.

4. The same quotient of product-form functions coming from molecularity higher
than 3 also diverges.

In particular the limits of (1), (3), and (4) do not depend on the parameter λi.

Via a ratio test we get that only the power series of the functions h(n) have a
finite positive radius of convergence (λiβ

2
i )

−1 of the associated power series. g(n) has
an infinite convergence radius and p(n) has a convergence radius of zero.

Lemma 4.6 (normalizability of product-form functions).
1.

∑∞
m=0 φ

mg(m) = eφλi < ∞ for all φ ∈ R.

2.
∑∞

m=0 φ
mh(m) =

∑∞
m=0 φ

m (λiβ
2
i )

m

m!

Γ( 1

β2
i

+m)

Γ( 1

β2
i

)
= (1− λiβ

2
i φ)

− 1

β2
i < ∞

for 0 < φ < (λiβ
2
i )

−1.
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3. (
∑n

m=0 φ
mp(m))n does not converge for any 0 < φ

4. Product-form functions coming from molecularity higher than 3 are also not
normalizable as in 3.

We have three different behaviors with respect to normalizability, g(m)φm can be
normalized for any 0 < φ, h(m)φm can only be normalized up to 0 < φ < 0(λiβ

2
i )

−1,
whereas p(m)φm cannot be normalized independently of the value 0 < φ. Due to
the conservative nature of mass-preserving CRNs or conservative interacting particle
systems (IPS), rescaling all the product-form functions by the same φ does not change
the distribution (for stochastic particle systems this parameter φ is called fugacity
[24, 42]).

4.3. The classical mean field scaling. Denote by |ν| = ∑
Si∈S νi the number

of molecules involved in a reaction, and designate by V the scaling parameter usually
taken to be the volume times Avogadro’s number. Then in some situations it is
reasonable to rescale the transition rates of the stochastic model according to the
volume as

(4.6) λV
ν→ν′(x) =

V κν→ν′

V |ν|
(x)!

(x− ν)!
1x≥ν ,

corresponding to the following change of the reaction rate,

κν→ν′ → κ̃ν→ν′ =
V κν→ν′

V |ν| .

This way of rescaling the transition rates is adopted by considering the probability
that a set of |ν| molecules meet in a small volume element to react [3, 35]. The
above mean field scaling assumes that a particular molecule of type Si will meet a
molecule of type Sj with a probability proportional to the concentration of type Sj

molecules. Kurtz [35] linked the short term behavior of the properly scaled continuous-
time Markov chain to the dynamics of the ODE model. Within the classical scaling
regime, Theorem 4.1 becomes the following.

Theorem 4.7. Let (G∗, κ) be autocatalytic (see Definition 3.1). Then the as-
sociated stochastic CRN, with rate function as in (4.6), possesses the product-form
stationary distribution

(4.7) π(x) = Z−1
Γ

∏
i∈S

fi(xi),

with product-form functions

fi(m) = λm
i

1

m!

m∏
l=1

(
1 +

ni∑
k=2

βk
i

V k−1

k−1∏
r=1

(l − r)

)

with the stochastic dynamics confined to irreducible components Γ as specified in Re-
mark 3.2.

It is then natural to check the large V behavior of the stationary distribution
given in Theorem 4.7. Recently, large deviation theory has been developed for some
class of strongly endotactic mean field CRNs in [1], but these results do not apply
to autocatalytic networks. We will consider a non-mean-field regime in section 5 and
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just illustrate the mean field scaling limit by an application of [12, Theorem 3.1] to
the following example. Consider the autocatalytic CRN,

S1 S2,

2S1 + S2 3S1.

α1
1,2

α1
2,1

α3
2,1

Let V = N be the total number of molecules, and let X(t) be the number of molecules
of type S2 at time t ≥ 0, which is a birth and death process evolving in the set
{0, . . . , N}. It is easy to see that the conditions for application of [12, Theorem 3.1]
are satisfied.

Then the rescaled process YN (t) = X(t)/N approaches the dynamics of the mass-
action ODE dy/dt = F (y), where F (y) = b(y)−d(y) with b(y) = α1

1,2(1−y) and d(y) =
α1
2,1y + α3

2,1y(1 − y)2, y ∈ [0, 1]. Focusing on YN , the stationary distribution given
in Theorem 4.7 translates into a probability measure πN defined on the unit interval
[0, 1], which satisfies a large deviation priciple for this invariant probability measure
[12, Theorem 3.1], where the stationary distribution concentrates exponentially fast
as N → ∞ on the set of minimizers of the free energy function, which are precisely
the linearly stable equilibria of the associated deterministic mass-action dynamic.

One can check that for generic constants α1
1,2, α1

2,1, and α3
2,1 the mass-action

ODE has a single stable equilibrium which is located in the positive orthant; this
follows since it is enough to confirm it for dy/dt = F (y) as above (polynomial in one
variable). Section 5 considers a different scaling regime for autocatalytic processes
in which condensation occurs. In the above example, the stationary distribution
converges to the point mass δ0 centered at y = 0; see Theorem 5.12 and Corollary
5.10.

5. Application: Condensation in particle systems. We investigate the
asymptotic behavior of mass preserving autocatlytic networks when the total number
of molecules N is large. When considering large volume limits, CRN theory usually
considers the classical mean field scaling limit; see section 4.3. We focus on a different
mechanism that leads to a CRN (or a particle system) where molecules do not move
at random in a mean field regime, but are located at the nodes of a graph. Molecules
located at some node i (or of type Si) can move to nearest neighbor sites j. In this
modeling framework the rate at which a molecule of type Si moves to site j (or is
converted into a molecule of type Sj) will be a function of the absolute number of
particles of type Si and Sj , so that the rate constant κν→ν′ will be independent of N .

This will model the autocatalytic effect where the move of a molecule from site i
to site j is a consequence of the attraction of molecules of type j on molecules of type
i. In this setting, a new phenomenon appears: Under some conditions, the molecules
will concentrate on a subset of the set of species, leading thus to condensation on a
subset of the state space. We first illustrate this phenomenon by considering the so-
called inclusion process. We then study condensation by investigating the asymptotic
behavior of the product-form stationary distribution πN , putting emphasis on the
cases of up to molecularity three. We introduce three different forms of condensation
and investigate the limiting distributions for autocatalytic CRNs. We observe that
monomolecular autocatalytic CRNs (see Definition 3.1 and Remark 3.3) and complex
balanced CRNs do not satisfy any form of condensation. We prove for the up to
bimolecular case a weak form of condensation and a weak law of large numbers. In
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the three-molecular and higher cases we show that such systems exhibit the strongest
form of condensation.

5.1. Condensation in inclusion processes. The inclusion process, introduced
in [19, 20], is a particle system which is dual to the Brownian energy model where
every particle of type Si can attract particles from type Sj at rate pji, where the pij
are the transition probabilities of a Markov chain. When pij = pji, one speaks of a
symmetric inclusion process. This particle system evolves in Z

S
≥0, where S is the set

of species. It is defined as a time-continuous Markov chain of generator L of the form

Lh(x) =
∑
i 	=j

pijxi

(m
2

+ xj)(h(x+ ej − ei)− h(x)
)
,

where h denotes any function. In the homogeneous case this is a special case of the
misanthrope process on a finite lattice [14]. The symmetric inclusion process defines
in fact a stochastic reaction network for the set of reactions Rij given by

Si Sj

2Si

Si + Sj

2Sj

α1
i,j

α1
j,i

α2
j,i

α2
i,j

with α1
i,j = pij

m
2 and α2

i,j = pij . Rij is thus a multispecies version of example (C)
of section 3.3. The authors of [24] studied such processes and provided interesting
results on asymmetric CRNs. Notice that such CRNs can be autocatalytic when the
Markov chain of transition probabilites pij is reversible and when conditions (4) and
(5) of Definition 3.1 are satisfied. Such processes are mass conservative. Let N be the
total number of particles, and let πN be the stationary distribution associated with
the process restricted to the irreducible component ΛN = {x ∈ Z

S
≥0;

∑
i∈S xi = N}.

The authors of [24] provide an interesting one dimensional process, called an
asymmetric inclusion process, where pii+1 = p and pii−1 = q on the state space S =
{1, . . . , n} with factorized stationary distributions as in Theorem 4.1 with λi = (p/q)i

of (5) of Definition 3.1.
A new interesing phenomenon appears in such a process: In the limit N → ∞ and

when p > q, the process condensates on the right edge, that is πN (Xn ≤ (1−δ)N) −→
0 for all δ ∈ (0, 1). The authors argued that at first sight one might be tempted to
think that this is just a consequence of the asymmetry p > q, and proved that this
argument is not correct since a CRN having the same coefficient α1

i,j but vanishing

second-order coefficient α2
i,j ≡ 0 would have a Poissonian product-form stationary

distribution and no condensation would occur.
Building on this work, the authors of [7] considered a reversible inclusion process

which is reversible as a Markov chain with λipij ≡ λjpji (as in (5) of Definition 3.1),
where the diffusion constant mN depends on the total number of particles N in such
a way that mN ln(N) −→ 0 as N → ∞. They proved that the process condensates
on the set of species where the stationary distribution λ attains its maximum value.
We will extend these results to autocatalytic CRNs of arbitrary molarity.
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5.2. Condensation in autocatalytic reaction networks. Consider a se-
quence of random vectors (XN )N∈N indexed by N , where XN = (X1, . . . , Xn)N takes
values in

(5.1) ΓN := {x ∈ Z
n
≥0 such that |x| = N}.

Denote the corresponding sequence of discrete probability distributions by πN , i.e.,

(5.2) πN (x) := P (XN = x), x ∈ Z
n
≥0.

We use this setting to first make some general observations and statements. Let [n] :=
{1, . . . , n} and denote the coordinatewise maximum and projection of an element
x ∈ Z

n
≥0 by

M(x) := max
i∈[n]

xi and proji(x) := xi for i ∈ [n].

We allow the following abuse of notation for simplicity, where q : R → R is a function,
and write

πN (Xj ≥ q(N)) := P (projj(XN ) ≥ q(N)) = πN ({x ∈ Z
n
≥0|xj ≥ q(N)}).

Following [24, 42, 7] we introduce three notions for condensation.

Definition 5.1. In the setting of (5.2) we define the following notions of con-
densation:

(C1) limN→∞ πN (M(XN ) = N) = 1.
(C2) limK→∞ limN→∞ πN (M(XN ) ≥ N −K) = 1.
(C3) For all δ ∈ (0, 1) we have limN→∞ πN (M(XN ) ≥ δN) = 1.

Next, we show (C1) is the strongest and (C3) is the weakest notion given in
definition 5.1; the simple proof is omitted.

Lemma 5.2. We have the implications:

(C1) =⇒ (C2) =⇒ (C3).

Notice the following sufficient conditions for forms of condensation of Definition
5.1.

Lemma 5.3. Assume there are k > 0 different coordinates of XN which are de-
noted by the set B ⊆ [n] (with |B| = k), such that one of the following holds:

(1) For all j ∈ B, limN→∞ πN (Xj = N}) = 1
k .

(2) For all j ∈ B, limK→∞ limN→∞ πN (Xj ≥ N −K}) = 1
k .

(3) For all j ∈ B for all δ, where 1 > δ ≥ (n−1)
n , we have

limN→∞ πN (Xj ≥ δN}) = 1
k .

Then if (1) holds this implies (C1); if (2) holds this implies (C2); and if (3) holds this
implies (C3).

Remark 5.4. If a random vector X = (X1, . . . , Xn) takes value in Z
n
≥0, then

conditioning on the sum being N gives a sequence of random variables as in (5.2).

Both inclusion processes on Z
S
≥0(or other conservative IPS) and mass-preserving

CRNs (see Remark 3.2) are continuous-time Markov chains with positive recurrent
stationary stochastic dynamics confined to finite sets of the form (5.1),

ΓN = {x ∈ Z
n
≥0 such that |x| = N},
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indexed by N . We consider this setting as in the beginning of section 5.2 with n = |S|.
We only treat product-form stationary distributions and assume they are given by a
family of (product-form) probability distributions of the form

(5.3) πN (x) =

∏
i∈S μxi

i wi(xi)

ZN
,

along sets (resp., irreducible components for CRNs) of the form (5.1) where for sim-
plicity wi(0) = 1 and μi > 0. For a fixed mass-preserving CRN (G, κ) we denote
the stationary distributions on the irreducible component with total molecule number
equal to N by πG,N (x). If we make a more general statement we stick to the nota-
tion πN (x). Observe also that the definitions of condensation are independent of the
product-form assumption of (5.3). We first check that for Poisson product-form sta-
tionary distributions we have no condensation. One can reduce the statement to two
species using the multinomial theorem, from which it is easy to deduce the conclusion.

Proposition 5.5. Let (G∗, κ) be autocatalytic with only monomolecular reac-
tions, i.e., such that the stationary distribution consists of product-form functions of
Poisson type, denoted g(m) in section 4.2. Then for (G, κ) we have no condensation
of the form (C3) (hence in any of the forms given in Definition 5.1).

Mass-preserving complex balanced CRNs having stationary distributions of the
same product-form functions, the same result holds.

Proposition 5.6. Mass-preserving complex balanced CRNs (G, κ) have no weak
condensation.

Next we introduce a generalization of [24, Theorem 3.1] allowing all product
functions of our model. If monomolecular, three-molecular, or higher reactions of
Theorem 4.1 are included then product-form functions q(m) can in general not be
factorized as q(m) = μmw(m) such that

(5.4) lim
m→∞

w(m+ 1)

w(m)
= c

(only h as denoted in section 4.2 can be manipulated such that c = 1) (see Lemma
4.5), and they are not necessarily normalizable anymore (see Lemma 4.6).

Remark 5.7. Note that the limit of the quotient (5.4) exists for w(m) if and only
if the limit for q(m) exists.

The conditions (1) and (2) of Theorem 5.8 only require the product-function
for coordinate i∗ to dominate the others, which gets rid of the assumption of both
existence of limit (5.4) and normalizability. So for a big class of product-form func-
tion when paired with asymmetric μi the stochastic dynamics show a weak form of
condensation as in Definition 5.1 (C3).

Theorem 5.8. Let

πN (x) = Z−1
N

∏
Si∈S

μxi
i wi(xi)

be a family of probability measures given by product-form functions wi for x ∈ Z
n
≥0, |x| =

N , and where ZN is the normalizing constant defined by

ZN =
∑

x∈Z≥0,|x|=N

∏
Si∈S

μxi
i wi(xi).

Assume there is an S∗
i ∈ S such that
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1. μi∗ > μj when j 
= i∗;
2. for all Sj ∈ S and all α > 0 there is cα,j ∈ R>0 and an Mc ∈ N such that for

any M > Mc and all r ∈ {0, . . . ,M} we have

wj(M − r)wi∗(r) ≤ cα,je
αMwi∗(M).

Then πN condensates on the subset S∗ = {Si∗}, that is, for all δ ∈ (0, 1),

lim
N→∞

πN (Xi∗ ≥ (1− δ)N) = 1,

i.e., we have a weak form of condensation as in Definition 5.1 (C3) and we have a
strong law of large numbers Xi∗

N → 1 a.s. as N → ∞.

Proof. Let δ ∈ (0, 1) be arbitrary; we will show the equivalent statement that
probability of the complement to this set goes to zero. We want to estimate

πN (Xi∗ ≤ (1− δ)N) =

∑
x∈Z≥0,|x|=N,xi∗≤(1−δ)N

∏
Si∈S μxi

i wi(xi)

ZN
.

We first use the inequality ZN ≥ μN
i∗wi∗(N) to get

πN (Xi∗ ≤ (1− δ)N) ≤
∑

x∈Z≥0,|x|=N,xi∗≤(1−δ)N

∏
Si∈S μxi

i wi(xi)

μN
i∗wi∗(N)

.

We assume that μ1 = max
Sj∈S\Si∗

μj . We will recursively apply the second hypothesis of

Theorem 5.8 |S| times with a fixed α > 0 chosen such that

(5.5) eα|S| <
(
μi∗

μ1

)δ

.

Notice that for N−xi∗ ≥ δN big enough, if x ∈ Z
S
≥0 is such that

∑
Si∈S\Si∗

xi = N−
xi∗ , then maxSi∈S\Si∗ xi ≥ N−xi∗

|S| . So we can apply |S| times the second hypothesis

in the form

wj(xj)wi∗(r) ≤ cα,je
α(xj+r)wi∗(xj + r) ≤ cα,je

αNwi∗(xj + r).

We will not write explicit dependence on the constants cα,j (where Sj ∈ S) and just
write c for their assembly, since the results derived are asymptotic and hold up to
multiplication by constants. With this we derive the inequality∏

j∈S
wj(xj) ≤ ceα|S|Nwi∗(N).

Applying this inequality together with∏
j∈S\Si∗

μ
xj

j ≤ μN−xi∗
1

we can estimate ∏
j∈S

μ
xj

j wj(xj) ≤ cμxi∗
i∗ μN−xi∗

1 eα|S|Nwi∗(N).

Then utilizing this inequality at the same time as a rough inequality

| {x ∈ Z
S\Si∗
≥0 | |x|1 = N − xi∗} |≤ N |S|−1
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for the number of integer points on the simplex we get

πN (Xi∗ ≤ (1− δ)N) ≤ c

∑
xi∗≤(1−δ)N μxi∗

i∗ μN−xi∗
1 eα|S|Nwi∗(N)N |S|−1

μN
i∗wi∗(N)

= c
∑

xi∗≤(1−δ)N

(
μ1

μi∗

)N−xi∗

eα|S|NN |S|−1.

We exploit that for xi∗ ≤ (1− δ)N we have

(
μ1

μi∗

)N−xi∗

≤
(

μ1

μi∗

)δN

=

((
μ1

μi∗

)δ
)N

to obtain the following inequality

πN (Xi∗ ≤ (1− δ)N) ≤ c
∑

m≤(1−δ)N

((
μ1

μi∗

)δ
)N

eα|S|NN |S|−1.

Since the terms in the sum do not depend on m we estimate

|{0 ≤ m ≤ (1− δ)N,m ∈ Z≥0}| ≤ N

to upper bound the number of terms in the sum and get

(5.6) πN (Xi∗ ≤ (1− δ)N) ≤ c

((
μ1

μi∗

)δ
)N

eα|S|NN |S| = c

((
μ1

μi∗

)δ

eα|S|
)N

N |S|.

Now observe ( μ1

μi∗
)δeα|S| < 1 by (5.5) and the other factor is a polynomial in N so

that we conclude that this expression goes to zero for N → ∞. Since Xi∗ ≤ N we
use the Borel–Cantelli lemma applied to sums of

πN (Xi∗ ≤ (1− δ)N) = πN

(
|1− Xi∗

N
| > δ

)

and conclude Xi∗
N → 1 a.s. as N → ∞. The finiteness of the series follows by

combination of the direct comparison test and the ratio test for sequences applied to
the final inequality term we derived in (5.6).

Remark 5.9. Let (an)n∈N be a sequence of positive real numbers with

(5.7) lim
m→∞

am+1

am
= b.

If b = 1, then this implies that for all α > 0 there exists cα such that for all m ∈ Z≥0

c−1
α e−αm ≤ am ≤ cαe

αm.

If 0 ≤ b < 1, then this implies that for all α > 0 there exists cα such that for all
m ∈ Z≥0

am ≤ cαe
αm.

These conclusions follow directly from (5.7) by limited growth (arguments, e.g., as
used in the ratio test for series); also see [24, 3.2 Generalizations].
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As an application of Theorem 5.8 and Remark 5.9 we show that some asymmetric
autocatalytic CRNs exhibit condensation as in Definition 5.1 (C3) if they have at least
bimolecular reactions.

Corollary 5.10. Let (G∗, κ) be an autocatalytic CRN with highest molecularity
denoted by n∗. Assume n∗ ≥ 2 and that there is an Si∗ ∈ S with incoming reaction of
molecularity ni∗ = n∗ such that for all other species Sj ∈ S of the same molecularity
nj = n∗ we have

λi∗β
n∗
i∗ > λjβ

n∗
j .

Then (G∗, κ) shows a weak form of condensation as in Definition 5.1 (C3) and we
have a strong law of large numbers Xi∗

N → 1 a.s. as N → ∞.

Proof. By assumption and Theorem 4.1 we have that

πG,N (x) = Z−1
Γ

∏
Si∈S

fi(xi) = Z−1
Γ

∏
Si∈S

λxi
i pi(xi)

for x in the corresponding irreducible component. It is enough to show that we can
find product-form functions μi, wi(m) such that the conditions of Theorem 5.8 are
satisfied with μm

i wi(m) = λm
i pi(m) for all m ∈ N. We distinguish the following cases:

(n∗ = 2) Let λjβ
2
j = max{λiβ

2
i |Si ∈ S \ Si∗}, and we can assume λjβ

2
j 
= 0 since

otherwise the statement is trivial. Then for the species Sk with β2
k 
= 0 we

choose

μk = λkβ
2
k, wk(m) =

pk(m)

(β2
k)

m
=

Γ( 1
β2
k
+m)

m!Γ( 1
β2
k
)

and for species with β2
k = 0 we choose a small ε > 0 such that

μk = λi∗β
2
i∗ − ε, wk(m) =

pk(m)λm
k

μm
k

=
λm
k

m!(λi∗β2
i∗ − ε)m

.

Now we go through the assumptions of Theorem 5.8; (1) follows by definition.
To prove (2) we first recall the asymptotic description of the Gamma function
following Wendel’s inequality from [29]. This gives

Γ(x+ y)

Γ(x)
� xy for y ≥ 0, x → ∞.

Applying this to our product-form functions wk(m) of species with β2
k 
= 0

gives

wk(m) =
Γ( 1

β2
k
+m)

mΓ(m)Γ( 1
β2
k
)
� 1

Γ( 1
β2
k
)
m

1

β2
k

−1
= c ·m

1

β2
k

−1

for a constant c > 0. In particular we have that the limit

lim
m→∞

wk(m+ 1)

wk(m+ 1)
= b

exists in both cases, if β2
k = 0, then b = 0, and if β2

k 
= 0, then b = 1. From
this and Remark 5.9 it is easy to see that (2) is satisfied.

(n∗ > 2) The same principle applies to cases with higher molecularity; condition (2)
is then a special case of Lemma A.2.
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Remark 5.11. Theorem 5.8 also allows an interpretation along remark 5.4 with
a condensation phenomenon for a family of independent random variables Y1, . . . , Yn

with values in Z≥0, as in [24, 3.2 Generalizations] but without assumption of existence
of limit (5.4) and normalizability.

Next we show that the stationary distribution asymptotically concentrates on the
disjoint singleton sets {x ∈ ΓN |xj = N} ⊂ Z

n
≥0, where Sj is a species with maximal

product-form function fj = f (maximal as in the sense below). This confirms the
existence of the strongest version of condensation as in the Definition 5.1 (C1) in the
three- or higher molecular autocatalytic CRN. By Lemma 5.2 this implies all other
forms of condensation. The result is similar to [7, Proposition 2.1], where they studied
a reversible inclusion process whose diffusion constant decreases along irreducible
components. Moreover the proof of [7, Proposition 3.2] follows a similar strategy.

Theorem 5.12. Let (G∗, κ) be an autocatalytic CRN on the set of species S =
{S1, . . . , Sn} with highest molecularity denoted by n∗. Assume n∗ ≥ 3 and that the
first k ≥ 1 species {S1, . . . , Sk} have the same product-form function f (determined
by λ1(1, β

2
1 , . . . , β

n1
1 ); see Definition 3.1, Theorem 4.1) with molecularity n1 = n∗ such

that for any Si ∈ S \ {S1, . . . , Sk} of the same molecularity ni = n∗ we have

λ1β
n1
1 > λiβ

ni
i .

Then the stationary stochastic dynamics satisfies the following for Sj ∈ {S1, . . . , Sk}:

(5.8) lim
N→∞

πG,N (Xj = N) =
1

k
.

This implies condensation as in Definition 5.1 (C1) for (G∗, κ), by Lemma 5.3.

Proof. We will repeatedly use that for Si ∈ S \ {S1, . . . , Sk}
(5.9) fi(N) = o(1)f1(N).

To show (5.8) it is enough to prove that

ZN = (k + o(1))f1(N);

we prove it by induction on the number of species for ZN =
∑

x∈Zn
≥0

,|x|1=N

∏n
i=1 fi(xi).

1. |S| = 2: We write the partition function as

ZN = f1(N) + f2(N) +

N−1∑
i=1

f1(i)f2(N − i) = f1(N)(1 + o(1)) + f2(N).

We are done by combining Lemma A.2 with (5.9) by distinguishing the cases
f = f2 or λ1β

n1
1 > λ2β

n2
i .

2. |S| = n → |S| = n + 1: Assume S \ Sn+1 has j species with product-form
function f . We denote for a subset of species A ⊆ S

ZN,A :=
∑

x∈ZA
≥0

,|x|1=N

∏
Si∈A

fi(xi)

to write the partition function as follows:

ZN =

N∑
i=0

fn+1(i)ZN−i,S\Sn+1

= fn+1(N) + ZN,S\Sn+1
+

N−1∑
i=1

fn+1(i)ZN−i,S\Sn+1
.
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We apply the induction hypothesis on the ZN−i,S\Sn+1
and get

ZN = fn+1(N) + f(N)(j + o(1)) +
N−1∑
i=1

fn+1(i)f(N − i)[j + o(1)].

Factorizing out f(N) we obtain

ZN = fn+1(N) + f(N)

(
j + o(1) +

N−1∑
i=1

fn+1(i)f(N − i)

f(N)
[j + o(1)]

)
.

We apply Lemma A.2 and get

ZN = fn+1(N) + f(N)
(
j + o(1)

)
.

Now if fn+1 is also a maximal product-form function f , we obtain
ZN = f(N)(j + 1 + o(1)), otherwise, using identity 5.9 we stay with ZN =
f(N)(j + o(1)).

Remark 5.13. Both Corollary 5.10 and Theorem 5.12 are based on the asymptotic
analysis of the product-form functions in the stationary distribution. Hence the results
carry over to mass-preserving CRNs which have a complex balanced (hence Poisson
product-form function) and an autocatalytic part (see Remark 4.3, Example 4.4, or
Definition 2.6). The asymptotic analysis of the product-form should also be related
to corresponding open CRNs.

Appendix A. Technical results on product-form functions. We give
two lemmas providing rough estimates for the product-form functions for the three-
molecular or higher case. The proofs are straightforward, the first lemma follows by
inspection of quotients of product-form functions fi of Theorem 4.1.

Lemma A.1. Let fi = f be a product-form function as in section 4 with β3
i > 0.

Then there is a c > 0 and an N0 ∈ N such that for all N > N0 we have the following:

(1) f(N−1)f(1)
f(N) ≤ c 1

N−3 .

(2) f(N−2)f(2)
f(N) ≤ c 1

(N−3)(N−4) .

(3) f(N−3)f(3)
f(N) ≤ c 1

(N−3)(N−4)(N−5) .

(4) For N
2 ≥ i ≥ 3 we have f(N − i)f(i) ≤ f(N − 3)f(3).

Putting the inequalities derived in Lemma A.1 together, we can bound the parti-
tion function of the two species case for maximal molecularity higher than two (i.e.,
β3
i > 0); the simple proof is omitted.

Lemma A.2. Let f1, f2 be product-form functions as in section 4 with n1, n2 as
in (4) of Definition 3.1,

m = n1 ≥ 3, n1 ≥ n2, and λ1β
m
1 > λ2β

m
2 .

Then we have
N−1∑
i=1

f1(i)f2(N − i) ≤ f1(N)o(1),

where o is small o from Bachmann–Landau notation.
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