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Staring from the kicked rotator as a paradigm for a system exhibiting classical chaos, we discuss the role
of quantum coherence resulting in dynamical localization in the kicked quantum rotator. In this context, the
disorder-induced Anderson localization is also discussed. Localization in interacting, quantum many-body systems
(many-body localization) may also occur in the absence of disorder, and a practical way to identify its occurrence
is demonstrated for an interacting spin chain.

DOI: 10.12693/APhysPolA.135.1155
PACS/topics: chaos, localization, many-body, disorder, fluctuation

1. Hamiltonian chaos vs. random impurities

As put by Edward Lorenz, classical deterministic chaos
is [1]: “when the present determines the future, but the
approximate present does not approximately determine
the future”. The instability of phase trajectories is quan-
tified by the Lyapunov exponent [2, 3]: in phase space,
the state of the N -dimensional dynamical system with
2N degrees of freedom x ≡ (pn, qn), n = 1,...N is
mapped to a single dot and the evolution of the sys-
tem is described by a phase trajectory circumscribed by
the system’s state. Let us track the time evolution of
two different phase trajectories (see Fig. 1) x(t) + δ(t),
x(t) emanated from slightly different initial conditions
x0,x0 + δ0. During the time evolution the distance
between phase trajectories ||δ(t)|| = ||δ(0)|| exp(λt) in-
creases provided that the Lyapunov exponent is positive
(λ > 0). Therefore, arbitrary small uncertainties in the
initial conditions accumulate over a long period to the
substantial error, calling thus for a statistical description
when evaluating observable quantities.

Fig. 1. Time evolution of two different phase tra-
jectories.
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1.1. Model of the minimal D = 3/2 Hamiltonian chaos

The kicked rotator is a prototype of systems exhibiting
chaos. The Hamiltonian of the one-dimensional classical
periodically kicked rotator reads

H
(
t
)

=
p

2
+ k cos θ

∑
n

δ
(
t− n

)
. (1)

Here (p, θ) is the canonical pair of momentum-angle vari-
ables and n specifies the number of kicks. Solution of
the classical kicked rotator problem is described by the
Chirikov map

θn+1 = θn + pn+1,

pn+1 = pn + k sin θn+1. (2)

Fig. 2. The Chirikov map with k = 1.0. The graph was
calculated using Julia programming language [4] with
the DynamicalSystems.jl package.
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The phase space of the Chirikov map consists of regions
of regular and chaotic motions. If the strength of the kick
exceeds the specific value k > 0.97, regular islands dis-
appear, and the chaotic sea covers the whole phase space
(see Fig. 2) leading to a diffusive growth of the momen-
tum in time (in the number of kicks) 〈

(
pn−p0

)2〉 = k2

2 n.
The kicked rotator is realized in a number of different
physical setting. For example, in Ref. [3] the model
was employed to investigate spin systems. Contrary to
the classical case, the quantum counterpart of the model
Eq. (1):

Ĥ
(
t
)

= −1

2

∂2

∂θ2
+ k cos θ

∑
n

δ
(
t− n

)
(3)

shows a suppression of the diffusion due to the destruc-
tive role of quantum coherence [5, 6]. Hence, instead
of the diffusive growth, localization occurs. We note, in
both the classical and the quantum case, the key issue is
the discrete time evolution. The quantum kicked rotator
can be mathematically mapped onto the one-dimensional
Anderson tight-binding model [7]:

TmUm +
∑
r 6=0

WrUm+r = EUm. (4)

Here Wr are the hopping amplitudes, the on-site en-
ergies Tm are uniformly distributed in the interval
Tm ∈ [−Tmax/2, Tmax/2] and mimic the effect of ran-
domly embedded impurities. Localization is indicated by
the absence of mobility of electrons in the localized phase
and the exponential decay of amplitudes of the wave
functions. If the electron is initially localized around
the site nin, the probability to find the electron on the
site m exponentially decays, U (nin)

m ≈ exp(−|nin−m|/lc)
with the distance |nin −m|, and the localization length
is a function of energy lc(E). The Floquet operator
F̂ = exp(− ikV̂ (θ)) exp(− i p̂2/2) describes the evolution
of the kicked rotator during the one period of driving.
The unperturbed Hamiltonian Ĥ0 = p̂2/2 is diagonal
p̂|n〉 = n|n〉 in the eigenbasis |n〉 = 1√

2π
exp(inθ) of

the momentum operator. Therefore, for the wave func-
tions before and after the n-th kick we use the following
ansatz:
|ψ+(t+ 1)〉 = F̂ |ψ+(t)〉,

|ψ−(t)〉 = exp(− iĤ0/~)|ψ+(t− 1)〉. (5)
Here |ψ+(t + 1)〉 and |ψ+(t)〉 are wave functions af-
ter the n + 1-th and n-th kicks, while |ψ−(t)〉 is the
wave function before the n-th kick. For treating the
free and kicked evolution parts, we utilize the following
parametrization:

|ψ±(t)〉 =
∑
n

ψ±n (t)|n〉,

|ψ±(t)〉 =

2π∫
0

dθψ±(θ, t)|θ〉, (6)

leading to the following recurrent relations for the expan-
sion coefficients:

ψ−n (t+ 1) = exp(− in2/2)ψ+
n (t),

ψ+(θ, t) = exp(− ikV̂ (θ))ψ−(θ, t). (7)
Taking into account Eqs. (5)–(7) we deduce the quantum
map for the expansion amplitudes in Eq. (6):

ψ+
m(t+ 1) = 〈m|ψ+(t+ 1)〉 =

〈m| exp(− ikV̂ (θ))ψ−(t+ 1)〉 =∑
n

〈m| exp(− ikV (θ))|n〉 exp(−in2/2)ψ+
n (t). (8)

In the case V̂ = cos θ, the matrix element Jnm =
〈m| exp(− ikV (θ))|n〉 becomes the Bessel functions. To
find the equivalence between the kicked rotator and
the Anderson model (Eq. (4)) we use the eigen-
functions and eigenvalues of the Floquet operator
F̂ |u+〉 = exp(− iφ)|u+〉, and consider the following
identity: u−(θ) = exp(ikV (θ))u+(θ) in the θ repre-
sentation. Taking into account exp(− iφ)F̂ u+(θ) =

exp(− ikV ) exp(i(φ − Ĥ0))u+(θ) = u+(θ) we obtain
u−(θ) = exp(i(φ− Ĥ0))u+(θ) or in the eigenbasis of Ĥ0

u−n = exp(i(φ−n2/2))u+n . Let us introduce the auxiliary
operator Ŵ defined as follows: exp(− ikV̂ ) = 1+iŴ

1− iŴ
=

tan(kV̂2 ) and the vector |u〉 = 1
2 (|u+〉+ |u−〉). Then, with

the identity u(θ) = (1+ iŴ )−1u+(θ) = (1− iŴ )−1u−(θ),
we infer the operator equation:
[1− iŴ (θ)]u(θ) = exp(i(φ− Ĥ0))[1 + iŴ (θ)]u(θ), (9)
or

i
exp(i(φ− Ĥ0))

exp(i(φ+ Ĥ0))
u(θ)− Ŵ (θ)u(θ) = 0. (10)

Introducing the notations Tm = i 1−exp( i (φ−m
2/2))

1+exp( i (φ−m2/2)) =

tan((φ − m2/2)/2), um〈m|u〉, E = −W0, Wr =
〈m|W |m + r〉 we rewrite Eq. (10) in the matrix form

Tmum +
∑
r 6=0

Wrum+r = Eum, (11)

which demonstrates the mapping between the kicked ro-
tator (Eq. (3)) and the Anderson tight-binding model
(Eq. (4)). We note that the Anderson model, as well as
the kicked rotator, describe single particle noninteract-
ing systems. These models do not capture many-body
localization in interacting systems.

1.2. D > 2 classical and quantum chaos,
KAM theorem and random matrix theory

For nonlinear systems with a few degrees of free-
dom the coupling between different variables is decisive.
At certain values of the coupling strength, the inter-
nal resonances overlap, giving rise to Hamiltonian chaos
and new phenomena such as Arnold’s diffusion in phase
space [8]. Let us introduce the canonical pair of action-
angle variables

I =
1

2π

∮
pdq, θ =

∂S(q, I)

∂I
, (12)

and present the Hamiltonian of the system in the form
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H
(
I, θ
)

= H0

(
I
)

+ εV
(
I, θ
)
. (13)

Here H0(I, ), ∀ Ii ≡ I, i ∈ (1, ..N) is the integrable part
of the Hamiltonian and V (I, θ), ∀ θi ≡ I, i ∈ (1, ..N) is
the perturbation. We presume that the Hamiltonian is
not degenerate i.e. the Hessian det| ∂ω∂Ii | = det| ∂

2H0

∂Ii∂Ij
| 6= 0

is not zero.
Following the Kolmogorov–Arnold–Moser (KAM) the-

orem one finds that the motion of an integrable system is
confined to an invariant torus. If the system is subjected
to a weak nonlinear perturbation, some of the invariant
tori are deformed and survive.

The mechanism of Arnold’s diffusion is as follows. In
the region of the destroyed invariant torus, in the vicin-
ity of the internal resonances condition,

∑N
j=1 njωj =

0, ∀ nj ∈ N, a homocyclic structure emerges. The in-
ternal resonance condition determines a family of sur-
faces H0

(
IR
)

= E with corresponding resonant action
variables IR. Nodal crossing points of different reso-
nances construct a stochastic net. The Arnold diffusion
sets in the stochastic net and is a topological general-
ization of classical kicked rotator problem. The Arnold
diffusion was explored for the Heisenberg model, e.g., in
Ref. [9]. The specific energy level statistics character-
ize the quantum counterpart of the classically chaotic
nonlinear D > 2 system (Eq. (13)). Depending on the
symmetry of the Hamiltonian Ĥ, in the region of de-
stroyed phase space the invariant tori, according to the
random matrix theory (RMT) [4] the mean inter-level en-
ergy distance S = 〈En+1−En〉 follows either a Gaussian
orthogonal ensemble (GOE), a Gaussian unitary ensem-
ble (GUE), or a Gaussian symplectic ensemble (GSE),
respectively, i.e.

P (S) =
πS

2
exp

(
− π

4
S2

)
,

P (S) =
32S2

π2
exp

(
− 4S2

π

)
,

P (S) =
218

36π3
S4 exp

(
− 64

9π
S2

)
,

while for the integrable case, the statistics is Poisso-
nian, P (S) = exp(−S). We note that the termination
of the quantum Arnold diffusion for the particle moving
in a quasi-1D waveguide was studied in [10]. The case
D = 3/2 was addressed in Ref. [11]. Classical chaotic
Hamiltonian systems are insensitive to GOE, GUE, and
GSE symmetries.

2. Diagnostic tools of the localized state

Before analyzing MBL in more details, we briefly
review diagnostic tools of a localized state.

2.1. Multifractality of the wave functions
and scaling properties

The inverse participation ratio averages as the fourth
power of the wave function. It is positive for localized

states and vanishes for extended states in the thermo-
dynamic limit. If the wave function |ψi〉 at site i of a
tight-binding model is normalized then partition ratio p̂i
(PR) is given by

p̂i =
1(

N
∑
r
|ψi(r)|4

) . (15)

The inverse participation ratio (IPR) has been defined
as:

P̂i =
∑
r

|ψi(r)|4. (16)

If the wave function spreads over l lattice sites with equal
amplitude |ψi(r)|2 = 1/l and vanishes elsewhere, one can
deduce p̂i = l/N, P̂i = 1/l. As stated by Wegner [12],
PR describes the proportion of the total number of atoms
in a system which contribute effectively to an eigenstate,
whereas IPR is the inverse number of orbitals contribut-
ing effectively to this state. For localized states, IPR
is larger than zero, whereas PR vanishes in the thermo-
dynamic limit. The wave function of the system shows
anomalous scaling properties in the vicinity of the tran-
sition point to the localized phase. In particular, the
ensemble averaged quantity [13]:

P (k)(E) =

〈∑
i,r

|ψi(r)|2kδ(E − ei)/
∑
i

δ(E − ei)
〉
,

P (k) ≈ L−τk , τk = d(k − 1) + ∆k (17)
shows fractal scaling properties with the characteristic
size of the system L and non-integer τk. Here ψi(r) is
the amplitude of the eigenfunction |i〉 with the energy
ei at site r of the particle in a tight binding model and
non-integer ∆k /∈ N.

2.2. RMT beyond quantum chaos. The transfer-matrix
method

Let us consider the simplest formulation of the scat-
tering problem, a scattering of an electron on the δ-like
impurities located at x = x0. The Schrödinger equation

i
∂ψ

∂t
= − 1

2m

(
∂2ψ

∂x2
+ Λδ(x− x0)ψ

)
(18)

admits the solution
ψ(x) = a+ exp(ikx) + a− exp(− ikx), x < x0,

ψ(x) = b+ exp(ikx) + b− exp(− ikx), x > x0. (19)
and the continuity conditions

ψ(x+0 ) = ψ(x−0 ),

∂xψ(x+0 )− ∂xψ(x−0 ) = Λψ(x0) (20)
define the elements of the scattering matrix:

cout =

[
b+

b−

]
=

[
r t́

t ŕ

][
a+

a−

]
= S

[
a+

b−

]
= Scin.

Generally, the channel can be arbitrarily large and the
dimension of the t matrix is equal to the number of scat-
tering channels. The explicit expressions of the t matrix
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elements is obtained after solving Eq. (20) and expressing
the coefficients b+, b− in terms of a+, a−. The Landauer–
Büttiker conductance [14] is given by

G =
2e2

~
∑
n

Tn =
2e2

~
Tr
(
t†t
)
. (21)

We note that: (a) When the system is in the localized
phase, the eigenvalues of the transfer matrix are ran-
dom numbers. However, there is a principle difference
between RMT of quantum transport and chaotic non-
linear systems. The RMT describes quantum transport
in terms of transmission eigenvalues of the open system
(i.e., leads, impurities, etc. ), while RMT is an inter-
nal property of nonlinear non-integrable quantum sys-
tems. The Thouless energy characterizes the energy scale
of disordered conductors and is defined via the formula
ET = ~D/L2, where D is the diffusion constant, and L
is the characteristic size of the system. (b) Altshuler and
Shklovskii [15, 16] showed that for energy separations
greater than the Thouless energy |E′−E| > ET , the cor-
relation function deviates from random-matrix theory. If
the condition |E′−E| < ET holds, the distribution func-
tion of eigenvalues of the transfer matrix read

P (S) = c exp
(
−βTrf(t†t)

)
,

P
(
{Tn}

)
= c

∏
i<j

|Ti − Tj |β

×
∏
k

T
−1+β/2
k exp[−βf(Tk)]. (22)

Here P
(
{Tn}

)
describes the correlated distribution of

eigenvalues, S = 〈En+1 − En〉 is the mean distance be-
tween neighboring eigenvalues, β = 1 for GOE, β = 2
for GUE, and β = 4 for GSE symmetries, respectively,
and the function f(Tk) is determined through the average
spectral density f(Tk) =

∫
dT

′

kσ(T
′

k) ln |Tk − T
′

k|.

3. Energy level statistics for the MBL phase

MBL is a localization phenomenon in interacting sys-
tem [17–26], distinct from the Anderson localization. We
note, in absence of electron–electron interaction in low
dimensional systems d = 1, 2 all states are localized even
in the presence of arbitrary small disorder and the con-
ductivity σd=1,2(T ) = 0. For d = 3 the conductivity
follows the Arrhenius law σd=3(T ) ∼ exp(−Ec/T ). Here
Ec is the distance between the Fermi level and the mo-
bility edge (mobility edge refers to the border between
localized and extended bands). Therefore, for any fi-
nite Ec, the Anderson localization of electronic states
leads to a metal–insulator transition at zero tempera-
ture. The conductivity becomes finite at any finite tem-
perature. MBL can be viewed as Anderson like local-
ization of many-body wave functions. The expectation
value of an arbitrary quantum operator is given by the
formula 〈Ô〉t = 〈ψ(t)|Ô|ψ(t)〉. Taking into account that
|ψ(t)〉 = exp(− iĤt/~)|ψ(0)〉 and utilizing the expansion
over the basis of energy eigenstates |ψ(0)〉 =

∑
α cα|Eα〉

we deduce: 〈Ô〉t =
∑
α,β c

∗
αcβOαβ exp(− i(Eβ−Eα)t/~),

where Oαβ = 〈Eα|Ô|Eβ〉. The eigenstate thermaliza-
tion hypothesis (ETH) states [27–32] that for quantum
ergodic systems, in the long time limit the expecta-
tion value is given by the following formula: 〈Ô〉t→∞t =∑
α |cα|2Oαα. The MBL state violates ETH. Therefore,

MBL can be referred to as a non-ergodic phase. In the
ergodic phase, depending on the symmetry of the Hamil-
tonian Ĥ, the energy level statistics is either GOE, GUE,
or GSE, while in the MBL phase level statistics is Poisso-
nian. The transition from the ergodic phase to the MBL
phase occurs at specific critical strength of disorder. To
infer precisely the MBL transition point, one needs to
obtain and analyze a large number of statistics, i.e., con-
sider different realizations of disorder and take ensemble
average. A key quantity is the disorder average of the
ratio

rn = min (δn, δn−1) /max (δn, δn−1) ,

r =
1

N − 2

N∑
n=3

rn, (23)

where δn = En−En−1 is the distance between two neigh-
boring energy levels labelled by n and N is the num-
ber of eigenstates. In the ergodic phase for the Gaus-
sian orthogonal ensemble GOE, rGOE = 0.5307 is found,
while in the MBL phase, rPoisson = 0.3863. The disorder
strength has a strong influence on the system’s spectral
characteristics. To avoid finite size effects and other nu-
merical artefacts calculations should be done for different
sizes of the system and then the obtained data should be
collapsed into a single universal size-independent result.
The conventional finite-size scaling analysis works as fol-
lows [18]: One selects the middle part of the spectrum
of the system. The level statistics of 〈r〉 as a function of
disorder h are scaled with fL(h) = L1/ν(h − hc), where
ν = 1 was assumed and hc defines the critical strength
of disorder. For best fitting parameter hc, the scaling
procedure admits a minimizing function w(h):

w =
∑
L,L′

h2∫
h1

|〈r〉 (fL(h))− 〈r〉 (fL′(h))| dh, (24)

where h1 and h2 are defined by the common integration
domain h1 = max(L

1
ν
i (a − hc)), h2 = min(L

1
ν
i (b − hc))

where Li denote the system sizes to be analyzed and a,
b are boundaries limits for un-scaled data set.

4. Systems with complex symmetry properties

For systems with a mixed symmetry, Ĥtot = ĤGOE +
λĤGUE, the total Hamiltonian does not belong to a par-
ticular symmetry class. In this case, finite-size scaling
analysis may fail when GOE/GUE statistics show dif-
ferent scaling features. Depending on the value of the
parameter λ, the spectrum of the Hamiltonian Ĥtot =
ĤGOE + λĤGUE displays different features. In the limit
of small λ the level statistics obey GOE, for large λ GUE,
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and interesting, in the transition area, the system shows
qualitatively different properties than ĤGOE and ĤGUE.
We need a new method to explore the MBL phase in
systems with mixed complex symmetries.

In our recent work [33] we observed that in spite of
the difference of the GOE and GUE statistics, the en-
hanced fluctuations at the MBL transition point bear
universal physical character typical for the both GOE
and GUE symmetry. Thus, our method can be imple-
mented for systems with complex symmetry properties
when standard finite-size scaling procedure fails. We ex-
plored the MBL problem Hamiltonian with a dynamical
Dzyaloshinskii–Moriya interaction (DMI) [34, 35]:

Ĥ = J1

L∑
i=1

Ŝi · Ŝi+1 + J2

L∑
i=1

Ŝi · Ŝi+2 (25)

+

L∑
i=1

Bzi Ŝ
z
i +D

L∑
i=1

(
Ŝi × Ŝi+1

)
z
, D = EygME .

Note, in the absence of the DMI term, the Hamiltonian
has GOE symmetry and the symmetry of the DMI term is
GUE. The DMI constantD combines the effect of an elec-
tric field and the magnetoelectric coupling. The nearest
neighbor exchange interaction is ferromagnetic (J1 < 0)
while the next nearest neighbor one is antiferromagnetic
(J2 > 0) leading in general to a frustrated spin order.

Computationally we are able to deal with only small
chains. Experimentally relevant ones are for instance
the Fe chains on the (5 × 1)−Ir(001) surface [36]. Ĥ is
block-diagonal. Each block is identified via the con-
served total spin component Ŝz =

∑L
i=1 Ŝ

z
i . Of a special

interest is the largest subspace of states |Ψn〉 obeying
Ŝz|Ψn〉 = M |Ψn〉 with M = 0 for even L or M = 1 for
odd L, respectively. A uniform magnetic field Bzi = Bz

shifts the eigenvalues equally in each subspace and has no
prominent effect on the interlevel distance rn, while ran-
domness incorporated in the magnetic field Bzi ∈ 〈−h, h〉
can induce a qualitative change of the spectral proper-
ties from the Wigner–Dyson to the Poisson level spacing
statistics. The strength of disorder is measured on a scale
set by J1. In what follows we work with dimensionless
units such that J1 = 1.

To formulate a possibly general criterion for MBL that
is applicable in such cases as well, we analyze the full
statistics for each realization α of the random magnetic
fields r(α). The histograms corresponding to a counting
classification of r(α) for a given disorder strength h is
presented in Fig. 3. As can be inferred, the histograms
are narrow far away from the MBL transition, while the
histograms become particularly broad close to the tran-
sition point mimicking the behavior of fluctuations near
conventional phase transitions. The histograms become
more and more pronounced for increasing L. Figure 4
demonstrates the convergence of the histograms of for
chains with different lengths. As we see already for
L = 14 counts histograms amalgamate underlying that
an analysis of the histograms can serve as a further indi-
cator in addition to finite-size scaling. The convergence

of histograms even for relatively small systems endorses
our method as less computationally demanding which is
a major advantage for exact diagonalization approaches
that are considered as well suited for MBL studies. As
for the histograms of consecutive level spacing, Fig. 3
illustrates the broadening of the histograms when ap-
proaching the transition point between the ergodic and
the MBL phases. As evident, the effect of broadening
is even more prominent for systems with a larger size
(Fig. 3). We note that the observed phenomena are not
related to a particular type of level statistics but it is
rather akin to the transition regime. Away from the tran-
sition point on the ergodic side (GOE statistics), and on
the MBL phase side (the Poisson statistics) the width
of histograms are narrower. The broadening is linked to
the enhanced quantum fluctuations (Fig. 5). This behav-
ior is of a general character and is maintained even after
adding the next nearest neighbor interaction and DMI
terms.

Fig. 3. Histograms of counts for the different strength
of disorder h with J1 = −1 without DMI as a function of
the consecutive level spacing r. Broadening of the his-
togram corresponds to the critical strength of disorder
and to the transition point. The larger is L the peaks
are more distinguished.

Fig. 4. Histograms of counts for a fixed strength of dis-
order h = 5 without DMI as a function of the con-
secutive level spacing r. Convergence is indicated for
L = 14.
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Fig. 5. The fluctuation dependence on system size
without D and J1 = −1. The two datasets marked
by red are the nearest to critical disorder.

Fig. 6. Full width at half maximum σ for the his-
tograms as a function of disorder h. The graphs on
right side are with finite DMI, D = 0.2.

Physically, the broadening of histograms is at-
tributable to the enhanced fluctuations near phase
transitions (cf. Figs. 5, 6). Hence, such broaden-
ing serves as a further indicator for approaching the
MBL phase.

Disorder in the exchange coupling or in D may also
occur. The latter (cf. Eq. (25)) can be viewed as ran-
dom change in E or a random elastic energy change
(E · P = gMEE

∑L
i=1〈ex × (Ŝi × Ŝi+1)〉), and thus,

it is important for spin-phonon-coupled systems at fi-
nite temperatures. Calculations evidence the robust-
ness of the MBL phase against randomizing D within a
physically reasonable range, and an example is depicted
in Fig. 7.

Fig. 7. J1 = −1, D = 0.2, for fixed h = 5. Additional
site-dependent disorder of 10% in D was taken while
different colors and marks refer to various realizations.
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