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Abstract
We investigate how the selection process of a leader affects team performance with 
respect to social learning. We use a laboratory experiment in which an incentiv-
ized guessing task is repeated in a star network with the leader at the center. Leader 
selection is either based on competence, on self-confidence, or made at random. In 
our setting, teams with random leaders do not underperform. They even outperform 
teams with leaders selected on self-confidence. Hence, self-confidence can be a dan-
gerous proxy for competence of a leader. We show that it is the declaration of the 
selection procedure which makes non-random leaders overly influential. To investi-
gate the opinion dynamics, we set up a horse race between several rational and naïve 
models of social learning. The prevalent conservatism in updating, together with the 
strong influence of the team leader, imply an information loss since the other team 
members’ knowledge is not sufficiently integrated.
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1  Introduction

In our rapidly changing world, most modern organizations are embedded in highly 
dynamic environments. For the management of an organization, the first essential 
step to successful decision-making is the basic task of obtaining an accurate view 
of the environment.1 For instance, this can be the foundation for defining a mission 
statement, as argued, e.g., in Bolton et al. (2013). Recently, there have been a num-
ber of contributions showing that organizations can improve their decision-making 
by harnessing the wisdom of crowds instead of using the expertise of only a sin-
gle individual (e.g., Surowiecki 2004; Mannes 2009; Keuschnigg and Ganser 2017). 
However, this literature has not analyzed whether a team’s ability to learn from each 
other depends on characteristics of the team leader.

Given each team member’s initial level of information, the updated opinions’ 
accuracy depends on the social learning process within the team. Many teams are 
organized such that one person, the team leader, directly communicates with each 
team member, while the other members often communicate only indirectly with 
each other—via the team leader. In this paper, we address the question of how the 
selection of the team leader affects the performance of social learning in the team. 
Is it necessary that the central person is the one with the highest expertise? How 
does self-confidence affect the process of social learning? Should the selection crite-
rion be declared or rather hidden? Answering these questions can be informative for 
the design of successful organizations.

To address these research questions, we set up a laboratory experiment in which 
subjects are asked to answer incentivized estimation questions repeatedly. After 
each round, every team member observes the leader’s guesses, while only the leader 
observes the guesses of all members. We randomly allocate subjects into three treat-
ments, which differ by whether the leader is selected at random, by confidence or by 
expertise. We use real questions, while previous experiments used highly stylized 
tasks such as guessing an average (or its sign) of randomly drawn numbers (Çelen 
et al. 2010; Corazzini et al. 2012) or finding an abstract true state (Choi et al. 2005; 
Brandts et  al. 2015; Chandrasekhar et  al. 2015; Grimm and Mengel 2018). Yet, 
studying real teams has severe endogeneity problems. For these reasons, we explore 
the middle ground between theory-testing experiments and field data. We import 
a method developed outside of economics (Lorenz et al. 2011; Rauhut and Lorenz 
2011), which is increasingly used. Participants are asked to answer knowledge ques-
tions about vaguely known facts for which the true answer is known (and could in 
principle easily be looked up, e.g., on Wikipedia.com). Subjects are paid according 
to their answers’ accuracy and can communicate their confidence levels. The latter 
aspect is missing in most other experiments of social learning because it is simply 

1  Indeed, disastrous decisions can often be traced back to management teams whose members are in 
disagreement, or—what is arguably even worse—who unintendedly agree on a distorted view of reality.
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not necessary to communicate confidence if signal quality is artificially made com-
mon knowledge.2

From a Bayesian perspective, selection of the leader does not matter due to effi-
cient social learning: As it will become clear below, Bayesian learners exchange 
their opinions such that a consensus is reached independent of who is at the center 
of the communication network.3 In contrast, naïve social learning predicts consensus 
over time with a strong “bias” towards the center’s initial opinion.4 Unless the leader 
is much better informed than the other team members, this is suboptimal, giving 
the leader’s opinion too much weight. Hence, any leader characteristic that further 
amplifies the weight of the leader’s opinion undermines performance. As such, we 
study the leader’s self-confidence, as well as the public declaration of why the leader 
was selected.

We assess performance by the proximity of a guess to the correct answer. In par-
ticular, we measure the individual and the collective errors of the team’s guesses, 
and use a measure of the wisdom of the crowds. We show that selection of leaders 
by accuracy or confidence does not outperform random selection. Selection by con-
fidence even undermines performance. Teams with random leaders have the advan-
tage that the non-leaders’ guesses are taken into account more strongly when updat-
ing information, thereby improving the team’s performance. The underlying reason 
is that declaring the leader as somewhat superior, be it in terms of past performance 
or past confidence, induces team members to put more weight on the leader’s opin-
ion, making the team vulnerable to be misled by a single person.

For a deeper understanding of the opinion dynamics, we further develop rational 
and behavioral learning models which we compare to our data. Despite a long tradi-
tion of theoretical insights and a growing body of empirical research, social learning 
is still far from being fully understood. Our comparison between theoretical models 
and empirical data reveals that people adapt their opinions insufficiently—providing 
evidence for what is called conservatism. While conservatism is common in experi-
ments on belief updating,5 our extension of social learning models by conservatism 
is novel. Notice that it is entirely possible that subjects are conservative and at the 
same time pay too much attention to another subject’s opinion. For instance, the 

2  Think about the canonical framework with a binary state space and equally precise, conditionally inde-
pendent signals about the true state. If this is made common knowledge, it is clear how well informed 
each agent is, and there is no need to communicate confidence. Our technology to provide a confidence 
level for each estimate is somewhat similar to the literature that considers “tagging” pieces of informa-
tion with their source (Acemoglu et al. 2014; Mobius et al. 2015).
3  For instance, Gale and Kariv (2003), Rosenberg et  al. (2009), and Mueller-Frank (2013) provide 
frameworks for studying social learning among rational agents who are Bayesian updaters.
4  For instance, DeGroot (1974), Friedkin and Johnsen (1990), DeMarzo et al. (2003), Golub and Jackson 
(2010), and Acemoglu et al. (2010) study social learning among naïve agents.
5  Experiments on belief updating frequently find that real people are more conservative updaters than the 
theoretical model would predict (Möbius et al. 2011; Mannes and Moore 2013; Ambuehl and Li 2018), 
a pattern that has already been summarized in a classic survey (Peterson and Beach 1967): “when sta-
tistical man and subjects start with the same prior probabilities for two population proportions, subjects 
revise their probabilities in the same direction but not as much as statistical man does[.]” In this paper, 
we cannot study the sources of conservative updating, but we can study well the consequences.
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declaration of the leader selected by confidence induces our subjects to put too high 
weights on both, the leader and themselves, at the expense of the weight they can 
put on the other group members.

Our paper entails three contributions. First, we provide empirical evidence for 
advantages of random leader selection (also called sortition, demarchy, allotment, 
or aleatory democracy). Despite a long tradition of discussion (e.g. Zeitoun et  al. 
2014; Frey and Osterloh 2016), empirical evidence is rare and mechanisms are 
unknown.6 We demonstrate that declaration of non-random leader selection ampli-
fies the weight of the leader’s opinion, which may result in a loss because the wis-
dom of the crowds in the group is not harnessed. Second, we show that overpreci-
sion (or judgemental overconfidence), which is the tendency to provide too narrow 
confidence intervals for one’s estimates (e.g., Soll and Klayman 2004; Moore and 
Healy 2008; Herz et al. 2014) is associated with lower team performance. This sug-
gests that either overprecise leaders should be generally avoided or that the trade-
offs between the positive effects of overprecise leaders (e.g., fostering coordination, 
Bolton et al. 2013; or motivating team members, Gervais and Goldstein 2007) and 
their negative impact on social learning should be carefully balanced. Third, our 
paper makes a methodological contribution. By combining experiments on factual 
questions with theories on social learning, we build a bridge between neat theoreti-
cal frameworks and experimental set-ups that are less stylized. This demonstrates 
that the assumption of common knowledge about signal precision is problematic. In 
reality, people do not know the signal precision of their interaction partners, form 
expectations about it and take into account with which confidence others’ opinions 
are communicated. Moreover, behavioral biases such as overprecision, anchoring 
effects, or selection bias in information acquisition can give rise to conservatism in 
updating. When incorporating this idea into both naïve and rational models of social 
learning, we find that each model’s fit to the data increases, although the distances to 
the true answers become larger.

2 � Experimental design

In a nutshell, participants in this experiment were asked to answer the same knowl-
edge questions multiple times in a row. The team leader could observe the previous 
answers of all team members, while the team members could only observe the pre-
vious answer of the team leader. Treatments differed by the selection criterion that 
determined the team leader.

6  One exception is the study by Haslam et  al. (1998), which shows experimentally that randomly 
selected leaders can enhance team performance in a task of deciding upon priorities in a hypothetical 
survival situation (e.g., after a plane crash). The mechanism behind the effect, however, remains largely 
unclear. Interestingly, they also observe that randomly selected leaders are, despite their superior perfor-
mance, often perceived by their team members as less effective than formally selected leaders.
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The experiment was conducted at the University of Hamburg and consisted of 
eleven sessions with a total of 176 subjects.7 In each session, participants were 
randomly allocated into groups of four, which stayed fixed. The basic task was to 
answer a factual question and to provide a level of confidence for the answer. The 
closer the estimate was to the correct answer, the more it was honored by game 
points which were translated into actual payouts, as detailed in Table C.5 of Online 
Appendix C.8 On average, sessions lasted for one hour and participants earned 9.50 
Euros, which was close to the remuneration norm of the lab. The maximum feasible 
payout was 48.20, while the minimum was the show-up fee of 5 Euros. This fact 
was explicitly stated to the participants in order to highlight that the payout strongly 
depended on individual performance. It was pointed out verbally and in the written 
instructions that the use of mobile phones, smart phones, tablets, or similar devices 
would result in expulsion from the experiment and exclusion from all payments.

Each session consisted of two phases: a selection phase (I) and a treatment phase 
(II), as illustrated in Table 1. In phase I, each participant answered a set of eight dif-
ferent factual questions. At the end of the experiment, one of these questions was 
randomly selected to be payoff-relevant. In phase II, there was another set of eight 
questions, each of which was similar to one of the questions of phase I. For instance, 
there was a question about voter turnout in both phases of the experiment; similarly, 
there were two questions about the share of water in certain vegetables. Questions 
were related to diverse topics and each question had already been tested in previous 
experiments (Lorenz et al. 2011; Rauhut and Lorenz 2011; Moussaïd et al. 2013).9

In phase II, each question had to be answered six times in a row, i.e., in six con-
secutive rounds. After each round, participants received feedback about the answers 
and confidence statements provided by their group members according to a star net-
work, but no other feedback. The center of the star network could observe the previ-
ous answers and confidence statements of all four team members; the three pendants 
could only observe the previous answer and confidence of the center, in addition to 
their own. For each question of phase II, only one of the six rounds was selected at 
random by the end of the session to be payoff-relevant. Hence, there was no possi-
bility to “hedge” risk with a portfolio of answers.

The actual treatments differed by the procedure that determined who within a 
group of four became the center of the star network for phase  II. In the baseline 
treatment T0, the center was selected at random. In the accuracy treatment T1, the 
group member whose guess on the similar question in phase I was closest to the cor-
rect answer was put into the central position of the network. In the confidence treat-
ment T2, this position was given to the group member whose level of confidence for 
the guess on the similar question in phase I was highest. Potential ties in accuracy 

7  Participants were mostly undergraduate students from various disciplines; there was no restriction on 
the pool of participants.
8  The chosen payoff function has a convex shape. This provides incentives to report the guess that is 
most likely the correct answer. Theoretically, an agent’s belief is a distribution on an interval and the 
payoff function is designed to elicit the mode of this distribution, as we explain in Sect. B.4.1 of Online 
Appendix B.
9  The full list of questions can be found as Table C.1 in Online Appendix C.
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or confidence were broken at random. For every question there could be a different 
center in a given group even when the selection criterion was the same. Half of all 
groups played the random treatment (T0) for four questions and the accuracy treat-
ment (T1) for the other four questions; the other half played the random treatment 
(T0) for four questions and the confidence treatment (T2) for four questions.10 The 
selection procedure was made transparent to the group members when the network 
for one question was formed, i.e., before the question was answered six times. Dur-
ing phase I, subjects did not know how decisions in phase I could have an influence 
on phase II. Instructions for the first phase simply announced that there would be a 
second phase with another set of instructions. This precluded strategic behavior in 
phase I, e.g., to become the leader or to avoid becoming the leader in phase II. While 
the answers to the questions were strongly incentivized, the confidence statements 
were not directly incentivized. Hence, the statements of confidence in phase II can 
also be considered as a mere communication technology.11

Table 1 gives an overview by showing the timeline and the number of observa-
tions. First, in phase I, each group was confronted with eight questions in random 
order. Then, in phase II, it was confronted with the eight corresponding questions in 
the same order. For the first four questions in phase II, the group was in one treat-
ment, for the latter four in another treatment. In total, this yields 352 unique group-
question pairs, of which 176 are in the random treatment T0, 88 in the accuracy 
treatment T1, and 88 in the confidence treatment T2. Since one group-question pair 
consists of four people who answer six times the same question (in phase  II), our 
total number of single answers is 8,448.

Note that the number of observations in the random treatment T0 was chosen 
larger in order to have a sufficient number of cases in which by chance the center 
happened to be the most accurate or the most confident. These cases enable us to 
disentangle effects of leader selection from effects of declaring of how the leader 
was selected.12

3 � Theoretical background

In this section, we derive theoretical predictions about the behavior in our experi-
ment. The set-up is as follows. Let N = {1, 2, 3, 4} be the agents in one team. 
Let 1 be the center of the star network and 2, 3, 4 the pendants. The basic task in 
our experiment is to provide guesses on a specific question, the answer of which 
is a fraction. Hence, there is an unknown state of the world � ∈ Θ , which is the 

10  The full schedule of which group played which question in which treatment is given by Table C.3 in 
Online Appendix C.
11  As we discuss in the next section, among rational agents there are indeed incentives to communicate 
truthfully the level of confidence in our setting in order to foster optimal learning in the group. However, 
our experimental results will not rely on the assumption that the confidence statements are truthful.
12  A more detailed description of the experimental procedures can be found in Online Appendix C.



1 3

The strength of weak leaders: an experiment on social influence…

correct answer to the question at hand.13 Denote by xi(t) the answer of agent i at 
time t. Denote by ci(t) the confidence statement of agent i at time t. Time is dis-
crete: t = 1, 2,… , T  , with T = 6 in phase II of the experiment. Accurate guesses are 
incentivized by a payoff function �(ei(t)) that is weakly decreasing in the distance 
to the true answer, ei(t) ∶= |� − xi(t)| . One out of six answers is finally drawn as 
payoff-relevant.

To make predictions about the participants’ guesses in phase  II, we use two 
approaches: a rational learning approach and a naïve learning approach.

3.1 � Rational learning approach: Bayesian updating

In the rational learning approach, we assume that agents maximize expected payoffs 
given their beliefs and that beliefs are formed by Bayes rule.

Notice that a belief about the true answer is not a single number, but a prob-
ability distribution over the possible states ( fi(t) ∶ Θ → ℝ ). In the first round of 
guessing, t = 1 , agents are endowed with some private information, i.e., what they 
know about the question at hand before interacting in the team. In the second round, 
each pendant i ≠ 1 has observed the guess x1(1) and the confidence statement c1(1) 
of the center and can use this to update his belief. The center, on the other hand, 
has observed all guesses and confidence levels of the first round to form her belief, 
which is the basis for her second-round guess x1(2).14 If we assume that the guess 
and confidence level are sufficient to reconstruct an agent’s belief and that the 
agents know how their private information is interrelated, then the center is fully 
informed after the first round of guesses. In this case, she can make the optimal 
guess x∗ ∶= argmaxx∈Θ E[�(|� − x|)|f1(1),… , f4(1)] , given the pieces of informa-
tion in the team. Since all agents have the same payoff function and pendants can 
observe the center’s guess x1(2) = x∗ , all agents make the same guess xi(t) = x∗ from 
round 3 on. This observation leads to the following prediction.15

Table 1   Overview of the timeline and number of observations. Each of the 44 groups played one 
sequence

In a sequence, a group answered 8 questions once in phase I and 8 partner questions six times in a row in 
phase II. This yields 176 group-question pairs in the random treatment T0 and 88 group-question pairs in 
each of the two other treatments (T1 and T2)

13  In the experiment, the correct answer is rounded and belongs to the finite set 
Θ = {0, 0.01, 0, 02,… , 0.99, 1} , which we can also model as the interval Θ = [0, 1].
14  For easier readability, we use the female form for the center and the male form for the pendants.
15  A formal statement of this result can be found in Online Appendix B. There we introduce the general 
framework (B.1), prove the proposition (B.2), and provide two specific examples how such a rational 
model unfolds in our setting (B.4.1).
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Prediction 1  (Bayes) In a model with common knowledge of rationality and com-
mon priors, the following holds. If the answer and confidence statement of a linked 
team member in a star network is sufficient to fully represent his private information, 
then the center learns once and the pendants learn twice. (Learning refers here to 
information updates and improvements in expectations.) Moreover, all team mem-
bers will state the optimal answer x∗ in any round t ≥ 3 , independent of who is at the 
center of the star network.

Prediction 1 states that the selection of the team leader does not matter for the 
performance of social learning, apart from the first two rounds (and, in fact, only 
apart from round two). Moreover, it states that every agent provides the payoff-max-
imizing guess, which implies that social learning is “efficient” in the sense of maxi-
mizing the sum of expected payoffs.16 However, several of its underlying assump-
tions deserve further attention.

First, it is explicitly assumed that statements of guesses and confidence levels are 
sufficient to recover beliefs. For this to be satisfied, the agent must know the other’s 
belief up to one or two parameters. This is satisfied, for instance, in models assum-
ing that beliefs follow a beta distribution.17 Bayesian models with weaker assump-
tions could assume that agents also have beliefs about the signal quality of the others 
and imperfectly learn over time both the available private signals as well as their 
quality. Given the result by Aumann (1976), such a model is expected to lead to 
more learning iterations, but to the same outcome in the long run.

Second, how exactly an agent updates depends on his higher order beliefs on how 
private pieces of information are related to each other and how they are related to 
the truth. In theoretical models, it is usually assumed that there is common knowl-
edge about the prior distribution of the true state, and about how private signals 
are drawn. In this experiment, agents are confronted with real questions. Hence, the 
agents’ higher order beliefs about their own and their fellow team members’ exper-
tise can also depend on additional factors, such as the particular question at hand or 
on the treatment. In particular, the accuracy treatment T1, i.e., that the center gave 
the most accurate answer to a similar question, or the confidence treatment T2, i.e., 
that the center was the most confident on a similar question, might reveal something 
about the agent’s ability that could be considered in the updating process. If any-
thing, the declaration of the treatment T1 or T2 can reveal additional information, 
which would lead to better guesses, compared to the random treatment T0. To gen-
erate a prediction that is much more in line with the theoretical models, Prediction 1 
abstracts from this possibility by assuming that there is common knowledge about 
how the private pieces of information are related to each other and to the truth.18

16  Since efficiency here means that not only the sum but also each individual’s expected payoffs are max-
imal, there are no incentives to deviate, e.g., by misrepresenting the own opinion or confidence level.
17  We study such models in Sect. 5. They are formally introduced in Online Appendix B.4.
18  In the experiment, we did not induce a common prior because we used questions of real topics. Never-
theless, we argue that models that assume a common prior and signals can contribute to our understand-
ing of social learning in real settings.
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Third and finally, the assumption of common knowledge of rationality need not 
be satisfied. In sum, it cannot be expected that the requirements of Prediction  1 
above are fully satisfied in the experiment. Still, Prediction 1 gives us a clean base-
line to compare the data to.

3.2 � Naïve learning approach: DeGroot model

Previous experimental research on social learning has not always found strong sup-
port for Bayesian learning, but often suggests that simple rules of updating, such 
as repeatedly taking averages, fit the data well (Corazzini et al. 2012; Battiston and 
Stanca 2015; Chandrasekhar et  al. 2015; Grimm and Mengel 2018). We use their 
common modeling approach, which is often named after Morris DeGroot, to gener-
ate an alternative prediction and to later specify models of more naïve learning. The 
basic aspect of naïveté incorporated in this modeling approach is that agents do not 
sufficiently account for the origin of information such that pieces of information are 
used each time they reach an agent through the network. This behavioral bias is also 
called “persuasion bias” (DeMarzo et al. 2003).

In the DeGroot model, the way people average the former guesses in their net-
work neighborhood is typically constant. In the star network, this means that periph-
eral agents always provide a guess that is a mixture between the center’s and their 
own last guess, with constant weights gi1 and gii on the two, while the center mixes 
all answers with some constant weights g11, g12, g13, g14 , which are also positive 
and sum up to one. Given the weights and the initial answers xi(1) , all consecutive 
answers xi(t) are fully determined. In particular, if G denotes the (row-stochastic) 
4 × 4 matrix consisting of these entries gij and zeros at the remaining entries, the 
agents’ updating can be written in vector and matrix notation as x(t) = Gx(t − 1) . 
Hence, the predicted guesses are x(t) = Gt−1x(1) , for t = 1, 2,… . Each agent thus 
generically changes guesses from round to round. Assuming that averaging weights 
are strictly positive is sufficient for the conclusion that all agent’s guesses xi(t) con-
verge for t → ∞ to the same answer, which we denote by xi(∞) . Given that conver-
gence is fast enough, xi(∞) is also a good prediction for xi(6) . For the star network, 
it can be shown that, for any i,

with c = 1 +
g12

g21
+

g13

g31
+

g14

g41
 . The weights wi =

1

c
⋅

g1i

gi1
 measure long-term influence of 

an agent i, which is called eigenvector centrality in network science since w�G = w� 
(e.g. Friedkin 1991; DeMarzo et  al. 2003; Golub and Jackson 2010). As can be 
directly observed from Equation (1), the center’s influence on the long-term answer 
is different from a pendant i’s influence, as long as g1i

gi1
≠ 1 . In particular, the center 

has a stronger influence if the center’s weight on the pendant g1i is lower than the 
pendant’s weight on the center gi1 . This is a realistic assumption since pendants have 
only the center’s guess to update from, while the center can distribute her weight 
among three pendants.

(1)xi(∞) =
1

c

(
1x1(1) +

g12

g21
x2(1) +

g13

g31
x3(1) +

g14

g41
x4(1)

)
,
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To discuss performance of social learning in this model type, we need to make 
assumptions about the relation between the initial guesses xi(1) and the truth � , e.g., 
that initial guesses are realizations of independent random variables that have the 
truth as expected values. For any such probabilistic model and for any definition of 
the “optimal” guess x̂ given the initial guesses, the approached value x(∞) and the 
optimal guess x̂ will only coincide if by coincidence the averaging weights happen 
to be optimal in that sense. The same holds true for the guesses and optimal guesses 
of early rounds, say round two. Even if the weights gij happen to produce the optimal 
guess x̂ for some agent i in some round t, they will not have this property for every 
agent and for every round. Hence, there is an inherent inefficiency in these naïve 
models of social learning. The reason is that initial guesses of some participants are 
incorporated in the change of answers more frequently than other team members’ 
guesses, while guessing weights are constant. These observations lead to the follow-
ing prediction.19

Prediction 2  (DeGroot) In the naïve model with constant and positive averag-
ing weights, the following holds. In a star network, every agent’s learning heav-
ily depends on the network positions, i.e., on who is the center. In particular, for 
gi1 > g1i , the center has a larger influence on the long-run opinion than team mem-
ber i. Generically, the center updates more than once and the pendants update 
more than twice. Under weak conditions, the first round of updating is learning (the 
expected error decreases), but for every notion of what is the optimal answer, all 
team members will generally state suboptimal answers.

Prediction 2 states that the selection of the team leader heavily affects the per-
formance of social learning, and that social learning is generally “inefficient” in the 
sense of not maximizing any function that is decreasing in the error of an agent’s 
guess. Given the weighting matrix G, the naïve model is fully specified and provides 
a clear-cut prediction about all agents’ guesses in all rounds. Typical specifications 
of G are studied in Sect. 5.1.

Our treatments T1 and T2 mainly affect naïve social learning through the manipu-
lation of the network positions (who is at the center), but potentially also through the 
declaration of the treatments. The second channel would be present if the averaging 
weights gij depended on this declaration. In the empirical analysis, we will disentan-
gle the effects of the manipulation of the center—which does not matter according 
to Prediction 1, but is crucial according to Prediction 2—from potential effects of 
declaration (which can only be helpful in the rational framework of Prediction 1, but 
could also be harmful in the naïve framework of Prediction 2).

19  A formal statement of this result can be found in Online Appendix B. There we introduce a probabil-
istic framework and prove the proposition (B.3); and also provide two specific examples (B.5.1).



1 3

The strength of weak leaders: an experiment on social influence…

4 � Success of social learning

The two theoretical approaches lead to contradicting predictions. Therefore, it 
remains an empirical question whether and how the selection of the leader affects 
the success of social learning.

4.1 � Performance over time

We measure performance both on the individual and on the collective level. 
We define the individual error ei(t) by the absolute distance between answer xi(t) 
and truth � . On the group level, we use two complementary measures. We define 
the collective error by the error of the mean of the four answers in the group 
ce(t) = � 1

4

∑4

i=1
xi(t) − �� . We define the (wisdom of) crowd error by the degree 

as to whether the answers “bracket” the true value (following the spirit of Lorenz 
et al. 2011). Accordingly, we define woce(t) = 0 if at most two answers are strictly 
below or strictly above the correct answer; woce(t) = 1 if three answers are strictly 
below or strictly above the correct answer; and woce(t) = 2 if the correct answer lies 
strictly above or below all four answers in the group.20

Figure 1 depicts the levels of these performance measures over time by the three 
treatments. Panels A-C show that the individual errors are on average between 10 
and 20 percentage points from the true answer and decrease over time. As intended, 
in the accuracy treatment T1, selecting a center who was most accurate in answering 
a similar question (in phase I) leads to centers who are significantly better in esti-
mating the current question in the first round (of phase II), while this is, notably, not 
the case in the confidence treatment T2. The centers’ individual errors reduce sig-
nificantly in the random and confidence treatment, but not in the accuracy treatment. 
By and large, this is consistent with rational learning models (which take guess and 
confidence as a sufficient statistic for someone’s belief), i.e., that pendants learn 
twice and centers once.21 Panels D-F show that collective errors also first decrease 
and then settle.22 Taking these observations together, agents mostly learn in the first 
and second round of updating.23 A similar pattern, albeit with a necessary change of 
sign, can be observed in panels G-I for the crowd error: The crowd error increases 
over time with most of its changes until round t = 3 . Hence, in the final period the 

20  Thus, the crowd error measures whether the correct answer lies within the interval that is spanned 
by the four answers, and if so, whether it also lies within the interval that is spanned by the two answers 
which are contained in the interval of the two other answers. “Bracketing” is important when the deci-
sion maker assumes that the truth lies in the interval spanned by the answers.
21  Recall that we derived the predictions from the Bayesian approach using the assumption that guess 
and confidence taken together are a sufficient statistic for someone’s belief. If this assumption fails, 
higher order beliefs matter and more rounds of learning are expected.
22  The apparent differences between treatments in the first round of the collective error are neither sig-
nificant, nor are they driving the subsequent results, as it can be shown.
23  Learning cannot stem from having more time to think about a question since subjects who are not 
confronted with any information about the guesses and confidence of others did not at all improve over 
time. We tested this possibility with subjects who were randomly drawn from all potential participants in 
sessions whose number of potential participants was not divisible by four, the size of our groups.
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correct answer most frequently lies outside the “bracket” of all provided answers. 
This observation is consistent with findings of Lorenz et al. (2011).

Result 1  Individual and collective errors reduce over time. Centers learn once 
(except in the accuracy treatment T1); pendants learn at least twice. Crowd errors 
increase over time.

Another view on the change of error over time is provided by Fig. 6 in the Appen-
dix. It shows for each question the distribution of the first round and the last round 
answers, indicating a substantial heterogeneity between questions, for which we 
control in the subsequent analysis.

A

D E F

G H I

B C

Fig. 1   Individual, collective, and crowd errors over time by treatments. Panels A, B, C differentiate 
between centers (black) and pendants (gray). All confidence intervals are standard 95% confidence inter-
vals
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4.2 � Treatment effects on performance

To test for treatment effects, we run regressions with the three error measures as the 
dependent variables and with treatment dummies as the independent variables. We 
focus our analysis on investigating the effects of learning on the final period, which 
is period 6. The last period is the most relevant, since it is the last period up to which 
learning can take place. In consecutive robustness analyses, we also analyze perfor-
mance for earlier rounds back to period t = 3 , the first round in which full learning 
can theoretically take place. Notice that the distribution of (individual and collective) 
errors is heavily skewed. Taking the logarithm (e.g., log(ei(t) + 1) ) in the regressions 
of individual and collective errors gives less weight to errors which are far away from 
the truth and more weight to errors close to the true answer, such that the analysis 
will not be driven by a few cases in which errors were huge, say, forty and more. For 
the variable crowd error, which may attain values 0, 1, and 2, we use ordered logit.

Table 2 reports these models when controlling for each treatment T1 and T2 with 
a dummy variable, while T0 is the reference category. We control for possible het-
erogeneity between different questions by using corresponding dummy variables. 
Throughout all analyses, we use robust standard errors. They are clustered for the 
combination of group and question to account for inter-dependencies within a group 
when answering the same question. If selecting the most accurate or the most confi-
dent enhances performance, then we should see a significant negative effect on the 
three errors. As Table 2 reveals, the accuracy treatment T1 and the confidence treat-
ment T2 do not outperform the random treatment T0. The coefficients are mostly 
insignificant and in fact positive. There is even some indication that the confidence 
treatment T2 underperforms compared with the random treatment T0. The latter 
effect is significant at the 5% level for the crowd error, while the null hypothesis can-
not be rejected for collective error ( p = 0.075 ) and individual error ( p = 0.114).24 
To further investigate the potential negative effect of the confidence treatment T2 
on the individual error, we rerun the regression with the expected payoff in EUR as 
the dependent variable (see model (1) of Table 5 in the Appendix). It turns out that 
the effect is significantly negative ( p < 5% ) and can be quantified as follows: Being 
in T2 in comparison to T0 reduces the expected utility for the last round guess for 
every question by 0.17 EUR. This is a decrease of 36% from the reference value 0.48 
EUR (see intercept of model 1 in Table 5).

Result 2  Performance does not improve when the center is known to be the most 
accurate (T1). Performance deteriorates when the center is known to be the most 
confident (T2).

To understand the mechanism behind these treatment effects of selecting the 
most accurate or the most confident agent as a center, we distinguish between two 
aspects of each treatment, the trait of the central agent and the declaration of how 

24  In the regression tables we report the t-statistics, which can be transformed into the p-values. The tests 
are two-sided.
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the central agent was selected.25 By our experimental design we can disentangle the 
two effects, since in the random treatment T0 it frequently happens by chance that 
the most accurate agent was selected as the center without having the declaration of 
her accuracy, as is the case in the T1 treatment. The same applies for confidence; in 
a number of cases, the most confident agent was randomly selected to be the center 
in the random treatment T0.

Table 3 reports the results of the regressions when we control for the trait that the 
center is the most accurate or the most confident in the group, such that the treat-
ment dummies only pick up the declaration effect. When the center happens to be 
the most confident or the most accurate (in the corresponding question of phase I), 
the outcome measures tend to improve, which is indicated by the negative sign of the 
(mostly non-significant) coefficients. When the confidence of the center is declared 
to all group members, however, the performance is significantly reduced. To quan-
tify this effect, we rerun this regression using again the expected payoff in EUR as 
the dependent variable (see model (2) of Table 5 in the Appendix). Declaring that 
the center was the most confident (T2), the expected payoff reduces by 0.26 EUR. 
This is a decrease by 49% from 0.54 EUR in the case of having the most confident in 
the center in the random treatment for the baseline question. The results are qualita-
tively similar for accuracy of the center in the sense that the signs of the coefficients 

Table 2   Treatment effects on final errors: log individual error, log collective error, and wisdom of crowd 
error (in period 6)

Linear regression (models 1 and 2) and ordered logit regression (model 3). The reference category is the 
random treatment T0
Question dummy coefficients for 8 questions not shown
t statistics in parentheses; robust standard errors used; * p < 0.05 , **p < 0.01 , ***p < 0.001

(1) (2) (3)
Individual error (log) Collective error (log) Crowd error

Accuracy treatment (T1) 0.026 0.003 0.106
(0.30) (0.03) (0.39)

Confidence treatment (T2) 0.144 0.179 0.739*
(1.58) (1.78) (2.38)

Intercept 2.164*** 2.149***
(22.65) (18.07)

Intercept cut 1 − 2.555***
(− 6.85)

Intercept cut 2 − 0.830*
(− 2.44)

N 1408 352 352

25  For easier readability, we often only write the most confident or the most accurate center without 
explicitly repeating that this refers to confidence and accuracy in the corresponding question of phase I.



1 3

The strength of weak leaders: an experiment on social influence…

are the same, but we cannot reject the null hypothesis in that case, and the size of the 
effects is also smaller than for confidence.

While Table 3 reports the effects for the final period after all learning has taken 
place, Fig. 2 illustrates robustness analyses of declaration effects when the regres-
sions are run for each period separately. We show periods 3 to 6, since these are the 
periods after which full learning could happen and did take place according to the 
error dynamics (Fig. 1).

The effect of declaring that the center is the most confident consistently increases 
the error measures and thus reduces performance. The declaration of accuracy has 
the same tendency, but the effects are smaller and insignificant.

Result 3  Declaration of confidence undermines performance.

4.3 � Social influence

To analyze why the selection of the center may have a negative impact on perfor-
mance, we study to which extent agents within a group influence each other. For 
this purpose, we regress the answer xi(t) of an agent i at time t ≥ 3 on his initial 
answer xi(1) , as well as on the initial answers of the other group members xj(1) . In 

Table 3   Treatment effects on final errors: log individual error, log collective error, and wisdom of crowd 
error (in period 6)

Linear regression (models 1 and 2) and ordered logit (model 3). The reference category is the random 
treatment T0 restricted to the cases where the center has neither the accuracy-trait nor the confidence-
trait
Question dummy coefficients for 8 questions not shown
t statistics in parentheses; robust standard errors used; * p < 0.05 , ** p < 0.01 , *** p < 0.001

(1) (2) (3)
Individual error (log) Collective error (log) Crowd error

Accuracy-trait − 0.110 − 0.0716 − 0.0477
(− 1.13) (− 0.69) (− 0.15)

Accuracy-declaration (T1) 0.117 0.0790 0.196
(1.01) (0.64) (0.53)

Confidence-trait − 0.106 − 0.231* − 0.474
(− 1.19) (− 2.21) (− 1.74)

Confidence-declaration (T2) 0.218* 0.335** 1.053**
(1.98) (2.66) (2.90)

Intercept 2.221*** 2.241***
(22.42) (18.81)

Intercept cut 1 − 2.735***
(− 7.31)

Intercept cut 2 − 0.999**
(− 2.92)

N 1408 352 352
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particular, a pendant’s answer is regressed on the center’s initial answer, his own 
initial answer, and the mean of the other two pendants’ initial answers. The center’s 
answer is regressed on the average of the pendants’ initial answers.

Tables 6 and 7 in the Appendix report the influence weights on t = 6 when esti-
mating them separately for each treatment. For instance, in the random treatment 
T0, a pendant’s final answer is estimated as the convex combination of his initial 
answer with weight 56.7% , the center’s initial answer with weight 26.7% , and the 
other pendants’ average initial answer with weight 16.6% . There are several interest-
ing observations contained in these tables. First, every agent places much weight on 
his own initial opinion. In the rational model and the random treatment, we would 
expect that on average this weight is 25%.26 Second, the weight individuals place 
on their own initial opinion depends on the treatment. In the random treatment T0, 
pendants place more weight on themselves, while centers place less weight on them-
selves. Finally, the social influence by the other team members heavily depends on 
the treatment. For pendants, the center’s weight was 26.7% in the random treatment 
T0, but 46.9% in the confidence treatment T2; and similarly in the accuracy treat-
ment T1.

The two aspects of a treatment, the trait of the center and the declaration of how 
the center was selected, are then captured by the interaction effects of the corre-
sponding dummy variables with the influence weights in the regressions that pool 
the three treatments. These regressions are reported in Tables 8 and 9 in the Appen-
dix, their effects are illustrated in Fig. 3. A positive effect of a certain dummy vari-
able thereby means that the corresponding influence weight is being increased by 
the corresponding treatment.

When the center happens to be the most accurate or the most confident in phase I, 
but there is no public declaration of this, then the pendants do not strongly respond 
(panel A), while the center places significantly more weight on her own initial opin-
ion and, accordingly, significantly less weight on the pendants’ opinions (panel B). 
In contrast, the declaration that the center is the most confident or accurate does 

A B C

Fig. 2   Treatment effects on errors: log individual error, log collective error, and wisdom of crowd error 
(periods 3–6). Linear regressions, 95% confidence intervals

26  We will return to this observation when extending the social learning models in Sect. 5.
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not affect the center’s weighting (panel D), but there is a strong effect on the pen-
dants (panel C). Declaring that the center is somehow special (the most confident or 
accurate on a similar question) significantly increases the pendants’ weights on the 
center’s initial opinions.

Result 4  The pendants place more weight on a center who is declared to be the 
most confident or most accurate. The center places less weight on the pendants 
when she is the most confident or the most accurate.

This result provides an explanation for the former results. Intuitively, placing 
more weight to a single opinion has a negative effect on performance, except if this 
person is substantially better informed than the others. In the accuracy treatment 
T1, this condition is satisfied to some extent, such that the negative effect of placing 

A B

C D

Fig. 3   Trait and declaration influence for pendants and centers. Gray accuracy, black confidence treat-
ments, 95% confidence intervals. Panels A and C show how a pendant’s answer in late periods is influ-
enced by the center’s initial answer. Panels B and D show how a center’s answer in late periods is influ-
enced by the pendants’ initial answers
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too much weight on a single person and the positive effect of placing more weight 
on a person who is better informed may balance each other. Consequently, the per-
formance in the accuracy treatment T1 need not differ from the random treatment 
T0. In the case of the confidence treatment T2, the center is not substantially bet-
ter informed than the other group members, as can be seen from panel C in Fig. 1. 
Hence, putting more weight on her initial guesses only has the negative effect of 
insufficiently taking into account the information of the others. This may lead to per-
forming worse than under the random treatment T0.

4.4 � Overprecision

It is well-known that many people often suffer from a form of overconfidence called 
overprecision, i.e., they report much too small confidence intervals when asked 
about a region where they expect the true answer with a certain probability (a usual 
way is to ask where they expect the answer in 90% of their guesses; see, e.g., Soll 
and Klayman 2004; Moore and Healy 2008; Herz et  al. 2014). In phase  I of our 
experiment, we asked participants to provide such regions. Therefore, we can com-
pute for every participant the individual overprecision score simply by counting how 
often that person provided a confidence interval that did not contain the true answer. 
Thus, every participant is characterized by an overprecision score in {0, 1,… , 8} . 
As Fig. 4 reveals, many agents are overprecise. Their guess should only lie in 10% 
of the cases outside of their provided 90% confidence interval. However, for most 
agents this happens in more than two out of eight cases. The histogram also docu-
ments that there is substantial heterogeneity in overprecision.

Fig. 4   Histogram of individual overprecision. The value 0 means that a subject has specified for all eight 
knowledge questions a respective 90% confidence interval which encloses the true value. The value 8 
means that a subject has specified for all eight knowledge questions a 90% confidence interval which 
does not contain the true value. All values above 1 indicate overprecision, since more than 10% of esti-
mates fall out of the 90% confidence interval (i.e., 91% of subjects are overprecise)
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In model (3) of Table 5 and in Table 10 in the Appendix, we analyze how the 
center’s overprecision score as well as the average of the pendants’ overprecision 
scores impact the group’s performance (on top of the previously found treatment 
effects). We first find that the formerly discussed effects (in particular, the negative 
declaration effect of T2) remain significant and are hence robust when controlling 
for overprecision. Second, we observe that the center’s and the pendants’ overpreci-
sion coefficients are positive in Table 10 and negative in Table 5. They are signifi-
cant when the dependent variable is the expected payoff (Table 5, model (3)) or the 
crowd error (Table 10, model (3)). For the individual and the collective error, these 
effects are not significant on the 5% level, with p-values that are all between 5% and 
10% (as reported in Table  10). Taken together, we interpret this as sufficient evi-
dence for the following result.

Result 5  Both the center’s and the pendants’ overprecision are associated with 
lower performance.

Tables  5 and 10 additionally indicate that the center’s overprecision score has 
a more deteriorating impact on performance than a pendant’s overprecision score. 
Therefore, ceteris paribus, it is best for the group’s performance if the least over-
precise group member was the center. On the other hand, overprecision is related to 
confidence, and the group member most confident in phase I acting as center might 
improve the group’s performance when she is not declared to be the most confident. 
Indeed, Table  10 shows that, when controlling for overprecision and for the dec-
laration of confidence, the trait of being the most confident significantly increases 
performance with respect to the collective error and the crowd error. However, this 
effect is not significant for the individual error (model (1) in Table 10, p = 0.140 ) 
and the expected payoff (model (3) in Table 5, p = 0.055 ). Thus, we conclude that 
the leader personality that should optimally be selected may well be characterized as 
confident, but not as being overprecise. Hence, all results (Results 1–5) contribute to 
a coherent picture of how the selection of the leader affects social learning.

In the next section, we connect the data more to the theory of social learning. As 
the social influence analysis showed, both pendants and centers generally placed 
much weight on their own initial opinion. When studying the learning behavior in the 
next section, we will incorporate this behavioral aspect and study its consequences.

5 � Learning behavior

5.1 � Specification and extension of learning models

We now study how several model variations of both the rational and the naïve model 
class fit to the data. Table 4 provides an overview of the considered models.27 The 

27  The models are formally defined and characterized in Sects. B.4 and B.5 of Online Appendix B.
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first four models stem from the rational approach to social learning: the Standard 
Model supposes that all agents in a group are equally well informed; the Sophisti-
cated Model supposes that signal precision can be derived from an agent’s guess and 
confidence statement. The next four models stem from the naïve approach to social 
learning: in the DeMarzo et al. Model pendants put equal weight on their own and 
the center’s opinion in any round of updating; in the Corazzini et al. Model they put 
higher weight on the center’s guesses. Each model has a counter-part, in which con-
servatism is introduced, indicated by “Plus”.28 For both model classes, introducing 
conservatism not only reduces the adoption of others’ answers in the early rounds, 
but also alters the prediction that consensus is reached or approached. Conservatism 
leads to the prediction that the agents’ answers are swayed toward their own initial 
opinion. Taking this idea to the extreme, we obtain the Sticking Model, in which 
every agent sticks to his initial guess without changing it, a simple baseline model.

We implement each model such that all periods t ≥ 2 are predicted from values 
at t = 1 . We can not only assess how well these models fit to the data, but also how 
close the model predictions are to the true answers.

5.2 � Comparison of models (horse race)

We assess the fit of each model by measuring the root of the mean squared error 
(RMSE) between the model predictions for t ≥ 2 and the data points, Fig. 5 displays 
the results.

The worst overall model fit is obtained by the baseline model, in which all agents 
stick to their initial guess (Sticking Model). The best model fit is obtained by the 
“Plus” models, which incorporate conservatism. In fact, every model considered has 

Table 4   Overview of model specifications

Model Class Weighting of others Conservatism Consensus

Standard Rational Equal No Reached
Standard Plus Rational Equal Yes No
Sophisticated Rational According to confidence No Reached
Sophisticated Plus Rational According to confidence Yes No
DeMarzo Naïve Equal No Approached
DeMarzo Plus Naïve Equal Yes No
Corazzini Naïve According to degree No Approached
Corazzini Plus Naïve According to degree Yes No
Sticking Both No Totally No

28  In the rational learning models, we derive conservative behavior from the assumption of overprecision 
(cf. Sect. B.4.2 of Online Appendix B). In the naïve learning models, we base conservative behavior on a 
framework from Friedkin and Johnsen (1990) (cf. Sect. B.5.2).
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a larger RMSE than its “Plus” counterpart that incorporates conservatism. Consider-
ing the model fit for each round separately, the conservatism aspect seems particu-
larly helpful in predicting the first updates (round 2), but the effect also persists to 
the latter rounds.

We can also differentiate model fit by treatment and by the role of being a center 
or a pendant (see Figs. 7 and 8 in the Appendix). The most important insight is that 
the “Plus” models always fit better than their counter-parts. The result holds for all 
four considered models, for all three treatments, for all rounds, and, apart from one 
exception, for both centers and pendants.29 Hence, there is overwhelming evidence 
for the first part of our Result 6 below.

There are some additional observations to make in Figs. 7 and 8 in the Appendix. 
The best model fit in the random treatment T0 is obtained for both the DeMarzo 
et al. Plus Model and the Standard-Plus Model with an RMSE of 7.88. Hence, these 
extensions of straightforward specifications of the naïve and the rational approach 
best predict the experimental data in the baseline treatment. The Corazzini et  al. 
Model, which predicts an immense influence of the center, fits better in the accu-
racy T1 and confidence treatment T2 than in the random treatment T0 and it fits 
well for the center, but not for the pendants. The reason is that the center is given 
a high influence weight in the accuracy and confidence treatment, as well as in the 
Corazzini et al. Model specification. Complementarily, the baseline model of stick-
ing to the initial guess fits much better in the random treatment T0 than in the others. 
This is a clear indication that social influence is weakest in the random treatment T0 
and stronger in the accuracy treatment T1 and the confidence treatment T2. Given 
that social influence can undermine the wisdom of crowds (Lorenz et  al. 2011), 

6.94 6.46 6.70 8.88 8.05 8.88 11.82 10.54 8.92

9.01 9.48 9.65
9.81

10.39
10.55

10.43
11.48 13.10

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

Corazzini Plus DeMarzo Plus Standard Plus DeMarzo Sophis�cated Plus Standard Corazzini Sophis�cated S�cking

RMSE by Round

Round 6

Round 5

Round 4

Round 3

Round 2

Fig. 5   Root mean squared errors (RMSE) of social learning models. “Standard” and “Sophisticated” are 
models of rational learning; “DeMarzo” and “Corazzini” are models of naïve learning. “Plus” models 
incorporate conservatism. Lower errors mean better fit between model and data

29  The exception is that the Corazzini et al. Model predicts the center’s guesses better than the Corazzini 
et al. Plus Model. Recall that the center already has a high weight on herself in the Corazzini et al. Model 
model.
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this is an explanation for our result that the crowd error is lowest under the random 
leader T0.

Finally, we can not only assess how these models fit to the data, but also how 
close the model predictions are to the correct answers. Fig. 9 in the Appendix dis-
plays how far the answers based on these models lie from the truth. This overview 
indicates that the introduction of conservatism does not improve the guesses, since 
the “Plus” models are further from the truth than their counterparts. The same obser-
vation holds for all four considered models, for all three treatments, for all rounds, 
and, apart from two exceptions, for both centers and pendants.30 Hence, there are 
two main findings from the horse race as summarized by the following result.

Result 6  Incorporating “conservatism” into both the rational and naïve models of 
social learning increases the fit between theoretical models and empirical data. It, 
however, decreases the fit between the theoretical models and the correct answer.

The first statement strongly indicates that the extension of both the rational and 
the naïve models of social learning by conservatism is not a mere theoretical exer-
cise, but an empirically relevant generalization. The second statement shows that 
conservatism is usually harmful. However, it must be noted for this latter statement 
that conservatism has different effects on different measures of performance. For 
instance, the “Plus” models perform better in terms of the crowd error than their 
counterparts.31

6 � Conclusions

6.1 � Summary and conclusions

An organization’s fit to the environment depends on the management’s ability to 
assess the state of the—usually dynamic—environment and to cope with uncer-
tainty. We measure team performance in this respect by assessing its ability to 
estimate correct answers to factual questions. Having a team leader who is knowl-
edgeable or confident in a given topic can in principle be helpful. However, our 
experimental results show that communicating the leader’s qualities can undermine 
this effect. Stressing the expertise or confidence of the leader triggers other team 

30  These manifold comparisons are not all reported in the paper. The exceptions are the centers in the 
rational models (Standard Model and Sophisticated Model) who are left better off when no group mem-
ber is conservative.
31  This is highly plausible because conservatism leads to less convergence of opinions and can thereby 
help “bracket” the truth. Hence, conservatism harms individual guesses, but works against the negative 
effect of social influence that was uncovered in Lorenz et al. (2011).
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members to put too much weight on the leader’s opinion. This narrows the opinion 
space and diminishes the wisdom of the group substantially. Past accuracy (T1) and 
actual ability are correlated such that there is a positive effect of an accurate leader, 
which, however, is immediately undermined by the effect of declaring it. Past con-
fidence (T2) is only weakly correlated with actual ability such that the net effect is 
negative. In addition, most people suffer from overprecision, a form of overconfi-
dence that leads to conservatism in updating and hence ignorance of the others’ val-
uable opinions. The two effects together imply that the own and the leader’s opinion 
are heavily weighted at the expense of the other group members’ opinions, resulting 
in an information loss.

We investigate the opinion dynamics by looking at different classes of learn-
ing models. In particular, rational learning models in which social learning is effi-
cient, independent of the team leader, fall short of explaining our data. A better fit 
is obtained for naïve learning models, which predict that the leader is more influ-
ential than any other team member. Among those, the model that gives tremendous 
weight to the leader (Corazzini et al. Model) does not fit well in the random treat-
ment T0, but fits particularly well in the treatments T1 and T2, in which the leader is 
not selected at random. Compared to all models, people tend to adapt too little to the 
others’ opinions and are too confident in their own subjective estimates.32 To intro-
duce this pattern in the theory of social learning, we extend both rational and naïve 
models by conservatism. With this twist, the fit of each model to the data increases 
substantially, despite the fact that the model predictions move further away from the 
correct answers.

Given these results, the individually optimal updating rule is a complex matter: 
The optimal weight on the own opinion does not only depend on the distribution of 
expertise in the team, but also on the behavior of the other group members. In par-
ticular, if a team leader adequately aggregates the information of the team, a team 
member’s conservatism prevents him from learning from the others, but if a team 
leader inadequately aggregates the information of the team, for instance because 
she is confident and does not listen to the other team members, then it is very dif-
ficult for a team member to learn from the other team members. We observe that the 
loss in efficiency in the confidence treatment stems from both sources, team leader’s 
behavior and followers’ behavior: Confident team leaders do not sufficiently take 
into account the valuable opinions of others; members of such a team give her a too 
high weight.

32  The substantial amount of conservatism that we find in this paper can be partially due to the more 
realistic setup with the lack of common knowledge about the others’ signal precisions.
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One conclusion is that our paper shows advantageous effects of random leader 
selection (“sortition”). This political power selection rule has its roots in ancient 
Greece and has been discussed by various names such as “demarchy” or “aleatory 
democracy” (Zeitoun et al. 2014; Frey and Osterloh 2016). While there have been 
discussions in the literature about the advantages and disadvantages of aleatory 
democracy, there is hardly empirical evidence. Our empirical results demonstrate 
that random selection may be beneficial compared to selection based on confidence, 
because then, the leader’s guesses get less and other group members’ guesses get 
more weight, taking more advantage of all information available to the team. In real-
ity, competence is often hard to measure. When the selection criterion and compe-
tence are only weakly correlated, the leader’s opinion is likely to be overrated.

6.2 � Limitations

The advantages of our experimental design come at the expense of certain limita-
tions. First, we focus on the ability of participants to learn from each other such 
that they find good answers to estimation questions. However, sometimes it is less 
important to accurately assess the environment, but to converge towards a common 
opinion. This may reduce conflicts and helps to work on the same tasks and to sup-
port each other. For example, it has been shown that a leader’s overprecision, or 
resoluteness, can foster coordination and cohesion (Bolton et al. 2013). Hence, there 
is a trade-off between strong leadership and efficient social learning. Second, our 
experimental design focuses on social learning and does not mix it with the deci-
sion-making process. Adding a decision-making stage (e.g., with a voting proce-
dure), would increase the experiment’s scope but distort measures for social learn-
ing, because participants would anticipate the decision-making stage in the social 
learning stage. Third, by studying star networks, we have not varied the network 
architecture, but only the network positions, which for star networks boils down to 
the question of who is the leader. Follow-up research might include a variety of net-
work architectures and even consider endogenous network formation. Finally, the 
external validity of this type of experiments depends on whether the interaction 
among participants (who were virtually all university students) is sufficiently related 
to the interaction among members of real teams in organizations. We have exog-
enously varied the selection criterion of the leader. This resembles the perspective 
of the top management, deciding about, e.g., the promotion criteria of more or less 
senior employees of the organization.
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6.3 � Practical implications

Despite these limitations of our experiment, our findings do suggest several prac-
tical implications. First, when selecting a leader, self-confidence is a dangerous 
proxy for competence. In fact, real competence might be difficult to measure. What 
could be more easily assessed by some guessing tasks is a candidate’s degree of 
overprecision, which might be more predictive for team learning. Second, the way 
the selection criterion for the leader is communicated to a team heavily affects the 
team’s interaction and performance. In particular, stressing that the team leader was 
selected because of her (alleged) superiority increases her power, which might push 
team learning out of balance. Third, we can validate that communication and social 
influence can be harmful for the wisdom of crowd effect (Lorenz et al. 2011), as the 
crowd error increases over time. However, and importantly, we also show that social 
influence can foster social learning. In particular, the individual error and the collec-
tive error improve over time. Hence, interaction is not generally harmful.

Crucially, the effect of social influence on performance is moderated by the selec-
tion criterion of who is in the powerful position in the communication network, and 
by the declaration of the selection criterion. In conclusion, if teams want to utilize 
the wisdom of crowds within their team, our results suggest that they should admit 
interaction and opinion exchange to counter conservatism, but prevent central indi-
viduals from becoming overly influential.

Appendix

See Figs. 6, 7, 8, 9; Tables 5, 6, 7, 8, 9, 10.
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Table 6   Influence weights on pendants’ final answer, separately estimated for each treatment

Regression of the pendant’s final answer (period 6) on the initial answers (period 1). Coefficients forced 
to sum up to one
t statistics in parentheses; robust standard errors used; * p < 0.05 , **p < 0.01 , ***p < 0.001

(1) (2) (3)
T0 random T1 accuracy T2 confidence

Own weight (pendant) 0.567*** 0.405*** 0.392***
(16.23) (9.90) (9.40)

Center’s weight 0.267*** 0.449*** 0.469***
(7.86) (11.64) (8.10)

Other pendants’ weight 0.166*** 0.146*** 0.139**
(5.37) (3.92) (3.28)

N 528 264 264

Table 7   Influence weights on center’s final answer, separately estimated for each treatment

Regression of the center’s final answer (period 6) on the initial answers (period 1). Coefficients forced to 
sum up to one
t statistics in parentheses; robust standard errors used; * p < 0.05 , **p < 0.01 , ***p < 0.001

(1) (2) (3)
T0 random T1 accuracy T2 confidence

Own weight (center) 0.473*** 0.659*** 0.705***
(9.04) (10.54) (9.23)

Pendants’ weight 0.527*** 0.341*** 0.295***
(10.06) (5.46) (3.86)

N 176 88 88
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Table 8   Influence weights on 
pendant’s final answer

Linear regression of the pendant’s final answer (period 6) on the ini-
tial answers (period 1)
t statistics in parentheses; robust standard errors used; * p < 0.05 , 
**p < 0.01 , ***p < 0.001

(1)
pendant’s 
answer_6 (last 
period)

Own weight (pendant) 0.577***
(13.77)

Center weight 0.244***
(5.51)

Other pendants’ weight 0.198***
(4.78)

Accuracy-trait × own − 0.0234
(− 0.41)

Accuracy-trait × center 0.0693
(1.30)

Accuracy-trait × other pendants − 0.0393
(− 0.82)

Accuracy-declaration (T1) × own − 0.140*
(− 2.04)

Accuracy-declaration (T1) × center 0.120*
(2.02)

Accuracy-declaration (T1) × other pendants 0.0222
(0.38)

Confidence-trait × own − 0.00712
(− 0.12)

Confidence-trait × center 0.0317
(0.68)

Confidence-trait × other pendants − 0.0516
(− 1.04)

Confidence-declaration (T2) × own − 0.152*
(− 2.23)

Confidence-declaration (T2) × center 0.169**
(2.64)

Confidence-declaration (T2) × other pendants 0.0407
(0.70)

N 1056
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Table 9   Influence weights on 
center’s final answer

Linear regression of the center’s final answer (period 6) on the initial 
answers (period 1)
t statistics in parentheses; robust standard errors used; * p < 0.05 , 
**p < 0.01 , ***p < 0.001

(1)
Center’s 
answer_6 (last 
period)

Own weight (center) 0.400***
(6.30)

Pendants weight 0.643***
(9.95)

Accuracy-trait × own 0.158*
(2.17)

Accuracy-trait pendants − 0.147
(− 1.93)

Accuracy-declaration (T1) × own 0.0402
(0.44)

Accuracy-declaration (T1) × pendants − 0.0393
(− 0.38)

Confidence-trait × own 0.139*
(1.97)

Confidence-trait × pendants − 0.189*
(− 2.52)

Confidence-declaration (T2) × own 0.108
(1.28)

Confidence-declaration (T2) × pendants − 0.0353
(− 0.38)

N 352
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