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I. THEORETICAL METHODS

A. Time-dependent nonequilibrium Green’s function
approach

The time-dependent nonequilibrium Green’s function (TD-
NEGF) method is based on solving the Kadanoff-Baym equa-
tions (KBEs) for the single-particle Green’s function (SPGF):
(

i)t − h(k; t)
)

G(k; t, t′) = �(t, t′) + ∫
dt̄�(k; t, t̄)G(k; t̄, t′) .

(1)
The time arguments of the SPGFG(k; t, t′) lie on the L-shaped
Kadanoff-Baym contour . In practice, we solve this equation
by introducing a set of two-time correlators [1]. The resulting
KBEs are
i)tG>(k; t, t′) = h(k; t)G>(k; t, t′) + [�(k) ∗ G(k)]> (t, t′) ,(2a)
− i)tG<(k; t′, t) = G>(k; t′, t)h(k; t) + [G(k) ∗ �(k)]< (t′, t) ,(2b)
i)tG⌉(k; t, �) = h(k; t)G⌉(k; t, �) + [�(k) ∗ G(k)]⌉ (t, �) .

(2c)
Here, the standard Langreth rules [1] define the convolution

[A(k) ∗ B(k)]≷ (t, t′) = ∫

t

0
dt̄AR(k; t, t̄)B≷(k; t̄, t′)

+ ∫

t′

0
dt̄A≷(k; t, t̄)BA(k; t̄, t′)

− i∫

�

0
d� A⌉(k; t, �)B⌈(k; �, t′)

and

[A(k) ∗ B(k)]⌉ (t, �) = ∫

t

0
dt̄AR(k; t, t̄)B⌉(k; t̄, �)

+ ∫

�

0
d�′ A⌉(k; t, �′)BM(k; �′ − �) .

For a given choice of themany-body self-energy�(k), one first
obtains the Matsubara SPGF GM(k; �) which captures initial
correlations. With the initial conditions thus determined, the
KBEs (2) govern the real-time evolution.
For the quench setup employed the in the main text, the

KBEs (2) simplify due to the lack of initial correlations, lead-
ing to �⌉(k; t, �) = 0. In this scenario, the initial conditions

(keeping track of orbital and spin indices) are determined by
G<��′�(k; 0, 0) = i�̃��′�(k) ,
G>��′�(k; 0, 0) = −i(���′ − �̃��′�(k)) , (3)

where �̃��′�(k) is the density matrix corresponding to the (un-
correlated) pre-quench equilibrium state.
In either setup, the KBEs (2) are solved with an in-house

massively-parallel computer code (used also in Ref. [2]) based
on a fifth-order predictor-corrector scheme. An equidistant
time step of Δt = 0.05 was used, ensuring the convergence
of all observables.

B. Generalized Kadanoff-Baym ansatz

The generalized Kadanoff-Baym ansatz (GKBA) [3] re-
duces the KBEs (2) to an equation of motion for the density
matrix

d
dt
�(k; t) = −i

[

hMF(t),�(k; t)
]

− I(k, t) , (4)

where the collision term I(k, t) is defined by
I(k, t) = [�(k) ∗ G(k)]<(t, t) + h. c. . (5)

The time off-diagonal SPGF required for computing the colli-
sion integral (5) are reconstructed by the GKBA

−iG≷(k; t, t′) = GR(k; t, t′)G≷(k; t, t′)
−G≷(k; t, t′)GA(k; t, t′) . (6)

We employ the Hatree-Fock (HF) approximation to the re-
tarded SPGF:

GR(k; t, t′) = −i�(t − t′) exp
(

∫

t

t′
dt̄hHF(k; t̄)

)

≡ −i�(t − t′)U(k; t, t′), (7)
where hHF(k; t̄) denotes the mean-field HFHamiltonian, while
 stands for the time-ordering symbol. The time-evolution op-
eratorU(k; t, t′) defined by Eq. (7) is computed using the semi-
group property U(k; tn + Δt, tj) = U(k; tn + Δt, tn)U(k; tn, tj)on a uniform mesh of time points tn = nΔt. The prop-
agator U(k; tn + Δt, tn) is computed using the fourth-order
commutator-free matrix-exponential method [4]. The GKBA
equation (6) is solved using an in-house highly accurate com-
puter code. A fixed time step Δt = 0.05 was used in all calcu-
lations.
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FIG. 1. Feynmann diagrams representing the second-Born approx-
imation, consisting of the Hatree-Fock (first two diagrams), direct
(third diagram) and exchange (last diagram) contribution.
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FIG. 2. Hall conductance of the spinfullℤ2 insulator in thermal equi-
librium as a function of the inverse temperature � for different values
of the local interaction parameters U and V . For the KBE calcula-
tions the system size isNk = 32×32, while we usedNk = 128×128for the GKBA. In both cases the convergence towards the thermody-
namic limit has been checked.

C. Self-energy: second-Born approximation

All results in the main text have been obtained within the
second-Born approximation (2BA). The corresponding dia-
grammatic representation is shown in Fig. 1.

Using the standard Feynmann rules [1], the diagrams for
the 2BA have been cast into mathematical expressions on the
Kadanoff-Baym contour and implemented in our computer
codes. A general explicit expression in the Wannier represen-
tation can be found, for instance, in Ref. [5].

For nonlocal interactions, however, the large computational
effort to treat the exchange diagram prevents us from employ-
ing the full 2BA in this case. Therefore, we have omitted Σ(2x)
in the treatment of the Chern insulators with nonlocal inter-
actions. For all other cases, we have confirmed that not in-
cluding the exchange diagrams leads to very small quantitative
changes. Hence, all statements in the main text on thermaliza-
tion still remain valid. Note that even without including the
exchange diagram, the resulting 2BA is still energy conserv-
ing.

II. CALCULATION OF THE EQUILIBRIUM HALL
CONDUCTANCE

In order to investigate if the steady-state Hall conductance
discussed in the main text corresponds to thermal equilibrium,
we computed the equilibrium Hall conductance as a function
of temperature. Following Ref. [6], we have prepared the ini-
tial density matrix ��(k, t = 0) with respect to the topolog-
ically nontrival post-quench Hamiltonian including interac-
tions on the mean-field level. Propagating using the GKBA
while adiabatically switching on the 2BA self-energy yields
a correlated initial state ��(k, tswitch). Applying the probe
electric field Ey(t) = F0(1 − e−(t−tswitch)∕�0 ) (Ey(t) = 0 for
t < tswitch) after the interactions are switched on then yields
the equilibrium Hall conductance via �xy = limt→∞ Jx(t)∕F0.This procedure is performed for a set of inverse temperatures
�. Repeating the adiabatic switching procedure without probe
field leads to a constant total energy Etot , which yields the
temperature dependence of Etot . The function Etot(�) is thenused to determine the effective temperature Teff . The adiabaticswitchingwas realized using the double-exponential switch-on
function from Ref. [5], using a time interval of tswitch = 40.Within the full KBE treatment, on the other hand, the prepa-
ration of a correlated initial state in thermal equilibrium is ac-
complished by solving the Dyson equation for the Matsubara
SPGF GM(k; �). The total energy Etot(�) is computed via the
Galitskii-Migdal formula [1]. The time evolution in the pres-
ence of the probe field Ey(t) = F0(1−e−(t∕�0 ) is then obtainedby solving the full set of the KBEs (2).
Figure 2 shows the spin Hall conductance of the ℤ2 insu-lator in thermal equilibrium, comparing the full KBE and the

GKBA treatment. The agreement is very good for smaller �
(higher temperature, that is) and weaker interactions, while de-
viations become apparent for low temperature and stronger in-
teraction. In particular, the full KBE treatment recovers the
limit �sxy → e2∕ℎ for � → ∞. This is consistent with the
fact that the topological properties cannot be altered by (weak)
electron-electron interactions. In contrast, the GKBA does not
reproduce this limit correctly. Nevertheless, since the effective
temperatures in the quench setup studied in the main text are
quite high (typically � ∼ 1 to � ∼ 2), the GKBA provides an
accurate description.

III. DEPENDENCE ON PRE- AND POST-QUENCH STATE

In this section we map out the unique features of the
nonequilibrium phase transition from the trivial band insula-
tor (BI) to the topological insulator (TI).Wewill show that this
transition is determined by (i) the build-up of a significant Hall
response which approaches the quantized value in the limit of a
slow quench, and (ii) the purity gap closing marking the topo-
logical transition of the single-particle density matrix, indi-
cated by the pseudospin rz(k; t) crossing zero at the Γ point.
To illustrate how the aforementioned properties are capable of
distinguishing different quench setups, we have performed ad-
ditional simulations for all possible combinations of pre- and
post-quench phases. The parameters are analogous to those
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FIG. 3. Upper panels: Nonequilibrium Hall response for quenches
from BI to BI (upper left), BI to TI (upper right) , TI to BI (lower
left), and TI to TI (lower right). The red-dashed lines correspond
to thermal equilibrium Hall conductance. Lower panels: pseudospin
component rz at the Γ point for the same set-up. Calculations have
been performed using the GKBA on aNk = 220 × 220 cluster.

in the main text: we consider the spinfull ℤ2 insulator with
U = 1.5 and V = 0. The results are shown in Fig. 3.
In particular, considering the quench from a BI with mass

parameter Mpre = −4.0 to a BI with Mpost = −3.5, we
observe a dominantly oscillatory (spin) Hall response �̃sxy(t)induced by an electric probe field implemented as described
in the main text. As t → ∞ (�̃sxy(t → ∞) corresponds to
the static Hall effect), the Hall response vanishes. However,
note that the BI thermalizes very slowly due to the large band
gap, which suppresses inter-band relaxation. Therefore, the
complete thermalization is beyond the accessible time win-
dow. Nevertheless, Fig. 3 shows that no constant steady-state
Hall conductance is reached. Similarly, the pseudospin rz(Γ; t)does not undergo a sign change – hence, the gap of the single-
particle density matrix does not close and no topological phase
transition occurs. After complete thermalization, the system
relaxes to the BI governed byMpost (and the mean-field con-
tributions) with an effective temperature Teff .
This is in contrast to the quench BI → TI, where the purity

gap closes (indicated by rz(Γ; t) changing sign from negative
to positive) and a constant Hall response is established in the
equilibrated state.

It is also interesting to analyze the transition TI→BI. In this
case, rz(Γ; t) changes sign from positive to negative, indicat-

ing the topological phase transition from topological to trivial
on the level of the density matrix. In accordance with this be-
havior, the steady-state Hall response approaches zero. Again,
we remark that the thermalization in the BI is very slow due
to the large band gap, which suppresses inter-band scattering.
Therefore, the full thermalization of the Hall response and the
purity gap closing occur on a time scale which is longer than
what is computationally accessible.
For the transition TI (Mpre = −1.5) → TI (Mpre = −1.0),

Fig. 3 shows – as expected – the build-up of a Hall response ap-
proaching the thermal equilibrium value. Because the system
is excited, the steady state yields a Hall conductance smaller
than one. The pseudospin marker rz(Γ; t) stays positive for alltimes.

IV. EFFECTIVE TEMPERATURE

The effective temperature used to compute equilibrium
properties in the main text is governed by two factors:

1. The energy injected into the system by the quench. It is
defined asΔE = Equench−E0, whereE0 is the energy ofthe post-quench Hamiltonian at zero temperature, while
Equench is the energy right after the quench.

2. The dependence of the total energy Epost(�) of the post-quench system in thermal equilibrium on the inverse
temperature �. The effective (inverse) temperature �effis determined by Equench = Epost(�eff ).

A. Sudden quench

In the scenario of a sudden quench of the gap parameter
Mpre → Mpost , as studied in the main text, the effective tem-
perature is predominantly determined by the post-quenchmass
parameter Mpost . To illustrate this behavior, we have com-
puted the injected energy and the effective inverse tempera-
ture for the spin Chern insulator for U = 1.5 and V = 0. The
findings are, however, generic.

The first row in Fig. 4 shows the dependence of the injected
energy ΔE on Mpre (Mpost) for fixed Mpost (Mpre), see left
(right) panel. As can be infered from Fig. 4, ΔE varies only
very little withMpre. This can be understood by the fact that
the Bloch wave-functions for the BI are almost completely
composed of pure E or H bands. Hence, the initial occupa-
tion after the quench – which is determined by the pre-quench
density matrix – depends only weakly on Mpre. In contrast,
the post-quench gap parameterMpost plays a decisive role: thesmallerMpost , the less energy is injected. Comparing Equenchto the temperature dependent Epost(�) allows to determine the
effective inverse temperature �eff (middle panels in Fig. 4).
The electron distribution f eq+ (k) shown in Fig. 1 and Fig. 3

in the main text is computed at the thus determined �eff andcompared to the time-dependent occupation f+(k; t). The time
evolution of f+(k; t) approaches the thermal distribution for
all cases, except for the case of the Chern insulator with local
interactions only.
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FIG. 4. Quench-injected energy ΔE, effective inverse temperature
after thermalization, and critical time for gap closure tcrit as a functionof the pre-quench mass parameter Mpre at fixed Mpost (plots on the
left-hand side), and as a function ofMpost for fixedMpre (right-handside). Calculations have been performed using the GKBA on aNk =
220 × 220 cluster.

In accordance with the behavior ofΔE, the effective inverse
temperature is almost independent of the pre-quench state,
while aMpost closer to the phase boundaryMcrit = −2 leadsto a larger �eff and thus lower Teff = 1∕�eff . This picture isalso consistent with Fig. 4 in the supplemental material, where
we have investigated the Hall response for the same parame-
ters. Similarly, we find that the steady-state Hall response is
the largest for Mpost as close to Mcrit as possible. The pre-
quench configuration, on the other hand, has only a very small
influence.

One can also work out the dependence of ΔE on the inter-
actions. Right after the quench (at t = 0), the total energy is
given by

Equench =
1
Nk

∑

k
Tr [�(k; t = 0)h(k)]

+ 1
2Nk

∑

k
Tr

[

�(k; t = 0)vMF(k)
]

,

where vMF(k) is the mean-field term, which depends on the
density matrix itself. At t = 0, �(k; t = 0) describes a trivial
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FIG. 5. Nonequilibrium (spin) Hall conductance of the spinfull ℤ2insulator for the same setup as in the main text. In the upper panel,
Mpre = −3.5, while Mpost = −1.5 for the lower panel. The red-
dashed lines indicate the corresponding thermal equilibrium. Calcu-
lations have been performed using the GKBA on a Nk = 220 × 220cluster.

state and can thus be approximated as

�(k; t = 0) ≈
(

1 0
0 0

)

,

i. e. theE band is fully occupied (nE ≈ 1), while theH band is
empty (nH ≈ 0). Explict checks support this picture. Inserting
the explicit form the of mean-field Hamiltonian (taken from
the supplemental material), one obtains

Equench ≈Mpost +
U
2
. (8)

In conclusion, the onsite-repulsion U increases Meff
post , effec-tively shiftingMpost to the right in Fig. 4, thus giving rise to

lower �eff and larger Teff .The steady-state Hall response – determined by Teff – fol-
lows the same trend, as demonstrated by Fig. 5. This indicates
that the gap size of the pre-quench band insulator plays only
a minor role, while the dependence on the post-quench gap
parameterMpost is much more pronounced. One finds an in-
creasing Hall conductance withMpost approaching the phase
boundaryMpost = −2. Furthermore, Fig. 5 demonstrates that
the system builds up a steady-state Hall response correspond-
ing to thermal equilibrium for any quench from the trivial to
the topological regime.
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FIG. 6. Effective temperature Teff after thermalization for the Chern
insulator with nonlocal interactions (left-hand side) and the ℤ2 insu-lator (right-hand side). The color scheme is consistent with Fig. 4
in the main text. For the Chern insulator and the ℤ2 insulator with
U = 1.0, we used the GKBA on aNk = 128 × 128 cluster, while thelarger interaction U = 2.0 has been treated using the full KBEs on a
Nk = 32 × 32 cluster.

The second, albeit less pronounced aspect determining �effis the �-dependence ofEpost(�) for the interacting post-quenchsystem. Here we find that with increasing inter-orbital cou-
pling V , the same amount of total energy leads to a lower ef-
fective temperature. Note that for the spinless Chern insulator,
the Hubbard repulsion U is missing. Therefore, ΔE is smaller
than for the spinfull model, leading to a lower effective tem-
perature and larger steady-state Hall response.

B. Slow ramps

The injected energy ΔE can be controlled by ramping the
gap parameter instead of a sudden quench. This leads to the
steady-state (spin) Hall response approaching the quantized
value in Fig. 4 in themain text. Figure 6 shows the correspond-
ing dependence of Teff = 1∕�eff . In the limit of infinitely slow
ramps (tramp → ∞), the injected energy ΔE tends to zero, as
all transitions induced by the ramp become adiabatic. The only
exception is the Γ point (where the gap closing occurs) – tran-
sitions there are never adiabatic since the gap passes through
zero. Therefore, the occupation in the upper band f+(k) isexponentially small, except for f+(k ≈ Γ). The number of
carriers in the upper band N+ = 1∕Nk

∑

k f+(k), however,becomes arbitrarily small with increasing tramp. Hence, the
system thermalizes at an arbitrarily low Teff . The exponentialdecrease of Teff as a function of tramp is demonstrated in Fig. 6.

V. SCALING OF PURITY GAP CLOSING

In the main text, we have discussed the purity gap closing
characterized by the critical time tcrit . In order to investigate
the dependence on the interaction, we have computed tcrit foradditional values of the interaction strength for both the Chern
insulator with local interactions only and including nonlocal
interactions. The result is presented in Fig. 7.
Linear regression of log(tcrit) as a function of log(V ) showsthat in the scenario with or without nonlocal interactions the

critical time approximately scales as ∼ V −3∕2. Interstingly,
the long-time relaxation times scale as ∼ V −2; hence, the time
scale of the purity gap closing is different from thermalization
and more related to dephasing effects.
Furthermore, we have analyzed the dependence of tcrit on

Mpre andMpost . The result is shown in the bottom panels of
Fig. 4. Again, we find that there is almost no dependence on
Mpre, while increasingMpost leads to significantly faster tcrit .In comparison to the upper panels in Fig. 4, one finds that in-
jecting more energy into the system accelerates the purity gap
closing. This is expected, as particle-particle scattering is en-
hanced if more excited carriers are present in the conduction
band. Therefore, the dephasing time scale and thus tcrit be-come faster. In terms of a fast topological phase transition, in-
jecting a larger amount of energy is favourable; however, the
steady-state Hall response becomes smaller.
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FIG. 7. Double-logarithmic plot of the critical time of the purity gap
closing as a function of the interaction strength.
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