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Quench dynamics and Hall response of interacting Chern insulators
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We study the coherent nonequilibrium dynamics of interacting two-dimensional systems after a quench from
a trivial to a topological Chern insulator phase. While the many-body wave function is constrained to remain
topologically trivial under local unitary evolution, we find that the Hall response of the system can dynamically
approach a thermal value of the postquench Hamiltonian, even though the efficiency of this thermalization
process is shown to strongly depend on the microscopic form of the interactions. Quite remarkably, the effective
temperature of the steady-state Hall response can be arbitrarily tuned with the quench parameters. Our findings
suggest a way of inducing and observing low-temperature topological phenomena in interacting ultracold atomic
gases, where the considered quench scenario can be realized in current experimental setups.
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Introduction. Recent experimental progress in realizing
topological insulators in a nonequilibrium fashion in ultracold
atomic gases [1–6] and periodically driven solids [7–9] raises
fundamental questions regarding the quench dynamics of
topological phases. Rather than preparing the ground state
of the system of interest, the natural protocol in synthetic
material systems is to start from a trivial initial state, and
quench the (effective) Hamiltonian into a topological phase
before observing the coherent dynamics of the system. In
this scenario topological invariants of the many-body state,
such as the (many-body) Chern number [10,11], are conserved
(remain trivial) [12], as the postquench time evolution repre-
sents a local unitary transformation [13]. Nevertheless, several
observables provide signatures of a change in the topological
properties, including circular dichroism in photoabsorption
[14–18], characteristic edge currents [19], and the nonequilib-
rium Hall effect [20–26]. In quenched noninteracting systems,
the Hall response—as the archetype of a topological response
property—typically exhibits long-lasting oscillations which
may be reduced in certain cases by specifically designed
quench protocols [27]. In open systems, where the aforemen-
tioned constraints on the temporal invariance of topological
properties are absent, the Hall response may equilibrate due
to extrinsic dephasing [23] or dissipation [15,28].

The purpose of this work is to consider the quench dynam-
ics of closed interacting topological two-dimensional (2D)
systems, where the time evolution is still unitary at a global
level, while two-body scattering provides a source of intrinsic
dissipation which may enable thermalization processes. In
this coherent scenario, it is interesting to investigate which
signatures of topology can dynamically equilibrate despite
the manifestly trivial character of the time-evolved many-
body state. Furthermore, thermalization in a closed quantum
system is a complex process, and, depending on the allowed
scattering processes, the system may be trapped in a long-
lived prethermal state [29–33]. For a one-dimensional system

it has recently been shown [34] that the single-particle density
matrix (SPDM) can thermalize toward an equilibrium state of
a topologically nontrivial postquench Hamiltonian. However,
the dynamical equilibration of natural observables for topo-
logical insulators, in particular two-particle quantities such as
the Hall conductivity in 2D systems, has remained a largely
unexplored question.

Below, we investigate the postquench dynamics of the Hall
response in interacting 2D fermionic systems. With fully mi-
croscopic numerical simulations based on the time-dependent
nonequilibrium Green’s functions (NEGF) approach [35,36],
we demonstrate that a dynamical equilibration to a thermal
value of the Hall response is possible, if sufficiently many
scattering channels are available, while thermalization bottle-
necks related to the topological character of the considered
quenches result in slow dynamics (see Fig. 1). Specifically,
when considering a minimal model system for a Chern insu-
lator, nearest-neighbor interactions are necessary to efficiently
thermalize the Hall response, even though on-site interactions
already render the system nonintegrable.

Topological Hubbard model. We study interacting topo-
logical insulator (TI) or Chern insulator models on a 2D
square lattice with unit lattice constant, defined by the generic
Hamiltonian

Ĥ = ĤTI + Ĥint. (1)

We consider two scenarios for the free Hamiltonian ĤTI:
(i) A spinless Chern insulator defined by ĤTI =∑
k ĉ†

kh(k)ĉk with

h(k) = [M − cos(kx ) − cos(ky)]σz + λ sin(kx )σx

+ λ sin(ky)σy. (2)

Here, the ĉ(†)
k = (ĉ(†)

kE , ĉ(†)
kH ) denote the fermionic annihilation

(creation) operators with respect to the underlying two bipar-
tite orbital bands, labeled by E (electronlike) and H (holelike),
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FIG. 1. Thermalization of occupation and Hall response. Up-
per panels: dynamics of the occupation in the upper band of the
postquench Hamiltonian (a) and corresponding dynamical Hall re-
sponse σ̃xy(t ) (b) in the interacting Chern insulator with local inter-
actions only (V = 1). Lower panels: occupation dynamics (c) and
buildup of the Hall response (d) in the Chern insulator including
nonlocal interactions (V0 = 1, V1 = 0.25V0). The results have been
obtained within the GKBA, using a Nk = 220 × 220 grid sampling
of the BZ.

respectively, in analogy to the original Bernevig-Hughes-
Zhang [37] model for HgTe, the σ i are the Pauli matrices in
the orbital pseudospin space, and the lattice momentum k is
defined in the first Brillouin zone (BZ).

(ii) A spinful quantum spin Hall insulator with time-
reversal symmetry defined by [37] ĤTI = ∑

k,σ ĉ†
k,σ

hσ (k)ĉkσ

with h↑(k) = h(k), h↓(k) = [h(−k)]∗. In both cases, the
system is a trivial band insulator for M < −2, while −2 <

M < 0 corresponds to a (spin) Chern insulator with (spin)
Chern number C = 1. In what follows, all energies (times) are
measured in units of the hopping (inverse hopping).

Postquench dynamics with interactions. To gain insights
into the dynamical manifestation of topological properties,
the system is prepared in a low-temperature equilibrium
state in the topologically trivial phase. At times t = 0+, the
mass parameter M is suddenly switched (continuous ramps
of M will be considered further below) to the topological
regime and kept constant for t > 0. To disentangle scattering
processes in the postquench dynamics from the initial state,
Ĥint is also switched on suddenly at t = 0+. This protocol
can be realized experimentally in ultracold atomic gases by
tuning a magnetic field in the vicinity of a Fano-Feshbach
resonance [38,39]. We will consider weak to intermediate
interparticle interactions in this work. There, in the absence of
interaction-driven topological phase transitions [40–43], the
topological character of the system is still determined by ĤTI.
This has been confirmed by inspecting the spectral function
of the interaction system and by checking the quantized Hall
response in equilibrium.

The time-dependent NEGF approach [35,36,44] will be
used to describe the correlated dynamics. This method is
based on solving the Kadanoff-Baym equations (KBEs) for

the single-particle Green’s function, from which the SPDM
ρσ (k; t ) and thus all single-particle observables can be
computed. We employ the second-Born approximation to
the self-energy kernel, which has been shown to provide an
excellent description of the electronic structure and dynamics
for relatively weak interactions [45,46].

Extrapolating to the thermodynamic limit requires a suffi-
ciently large number of points in the discretized BZ. Due to
the substantial numerical effort of solving the full KBEs, this
poses a computational challenge. Invoking the generalized
Kadanoff-Baym ansatz (GKBA) [47] is an additional approx-
imation which reduces the numerical effort significantly. The
GKBA has been shown to yield excellent results in the weak-
coupling regime for single-particle observables [45,48–50].
How well nonequilibrium response properties are captured
is less understood and will be addressed in the context of
the Hall response below. Both the full KBE and the GKBA
treatment conserve the total energy, and thus correctly capture
an essential property of isolated systems. Therefore, compar-
ing the energy of the system after the quench to the thermal
equilibrium energies of the postquench interacting system
allows one to determine the effective temperature Teff and
corresponding thermalized observables.

Chern insulator with local interactions. As the first paradig-
matic example we consider the case where ĤTI defines a
spinless Chern insulator for M < −2. Restricting to local
interactions, we consider the interaction term

Ĥint = V

2

∑
i

∑
α �=α′

n̂i,α n̂i,α′ , (3)

where i runs over all lattice sites, while α, α′ ∈ {E , H}. In the
following, we fix λ = 0.4 and consider the quench of the gap
parameter Mpre → Mpost with Mpre = −3.5 and Mpost = −1.

Without band hybridization (λ = 0), the E and H bands
possess a U (1) symmetry, which results in individually con-
served particle numbers nE and nH . As a result, interorbital
thermalization will be completely suppressed. In the case λ >

0 and C = 1, interorbital scattering in the lower and upper
bands becomes possible, albeit only active close to the avoided
crossings. Furthermore, the nonvanishing Chern number im-
plies that even within the same Bloch band, there are states
with opposite orbital character which are not connected by
the intraorbital interaction. Therefore, thermalization can only
proceed via higher-order scattering processes.

The expectation of slow thermalization is confirmed by
inspecting the time evolution of the occupation in the up-
per band f+(k; t ) = φ†

k,+ρ(k; t )φk,+ with respect to the
postquench free Hamiltonian h(k)φk,± = ε±(k)φk,±, pre-
sented in Fig. 1(a) along the path M-�-X-M in the BZ for
V = 1.0. Initially, the SPDM is prepared as the equilibrium
state of the band insulator with dominant E orbital charac-
ter; quenching M leads to a band inversion with preserved
occupation of the E orbital, which after the quench has
large weight in the upper band near the center of the BZ.
The subsequent relaxation due to particle-particle scattering
reduces the number of excited carriers. Computing the in-
jected energy and comparing to thermal equilibrium yields
the effective temperature Teff . The corresponding equilib-
rium occupation f eq

+ (k; Teff ) is represented by the red line
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FIG. 2. Dynamics of the Hall response and orbital pseudospin
for a Chern insulator with local interactions only [(a)–(d)] and with
nonlocal interactions [(e)–(h)]. The interaction strength is V = 0.65
[(a) and (c)] and V = 1.0 [(b) and (d)] in the local case, while for
the model with nonlocal interactions it is V0 = 0.65 [(e) and (g)] and
V0 = 1.0 [(f) and (h)]. We used the GKBA and show results for Nk =
220 × 220 grid points in the BZ.

in Fig. 1(a). The deviation of f+(k; t ) from f eq
+ (k; Teff ) il-

lustrates the very slow approach to thermal equilibrium after
the quench. Furthermore, the oscillations of the occupation
indicate a coherent superposition of the lower and upper
bands, which is only slowly damped; hence, dephasing is
ineffective.

To probe the dynamical Hall response σ̃xy(t ), we apply a
weak electric field Ey(t ) = F0(1 − e−t/τ ) in the y direction
(F0 = 10−3 and τ = 5). Measuring the induced current in the
x direction Jx(t ) yields the Hall response σ̃xy(t ) = Jx(t )/F0.
Figure 2 shows σ̃xy(t ) for V = 0.65 (a) and V = 1.0 (b) [also
shown in Fig. 1(b)]. For V = 0.65, strong coherent oscil-
lations around a nonthermal value of the Hall conductance
dominate and the relaxation to a steady state σ̃xy(t ) → σxy

(t → ∞) cannot be observed on the accessible timescales.
Note that a nonzero steady-state Hall conductance is a unique
property of a postquench state with nontrivial topology [51].
Increasing the interaction strength to V = 1.0, a steady state
begins to form at times t ≈ 100; however, the Hall conduc-
tance [Fig. 1(b)] does not reach the thermal equilibrium. The
system remains trapped in a nonthermal state on accessible
timescales, as is also evident from the nonthermal distribution
[Fig. 1(a)].

Further insight into the topological properties of the
SPDM can be gained by extracting the pseudospin vector
r(k; t) via the relation ρ(k; t ) = [I − r(k; t) · σ]/2. As long
as r(k; t) �= 0, the SPDM can formally be expressed as
ρ(k; t ) = exp [−haux(k; t )] with a gapped auxiliary Hamil-
tonian haux(k; t ). Closing of the gap of haux(k; t ), known
from open systems as a purity gap closing [52,53], marks
a dynamical topological transition at the critical time tcrit

corresponding to r(�; tcrit ) = 0. The occurrence of the band
inversion indicated by rz(�; t ) passing through zero also
allows one to define a simplified topological index Ct via
(−1)Ct = sgn[rz(�; t )rz(X ; t )]. The index Ct is identical to
the Chern number C of haux in equilibrium. This index is
plotted together with rz(�; t ) in Figs. 2(c) and 2(d). One finds
a purity gap closing at tcrit ≈ 100 for V = 0.65 and tcrit ≈ 56
for V = 1.0. Figure 1(a) shows the distribution f+(k; tcrit ),
which changes its curvature at k = � at t = tcrit , indicating
a band inversion. Further analysis [51] shows a decrease of
tcrit proportional to V −3/2.

The pseudospin structure furthermore allows one to define
the instantaneous Berry curvature

�(k; t ) = −1

2
r̂(k; t ) ·

(
∂ r̂
∂kx

× ∂ r̂
∂ky

)
, (4)

where r̂(k; t ) = r(k; t )/|r(k; t )|. The instantaneous Berry
curvature defines the instantaneous Chern number of the
SPDM Cinst (t ) = (1/2π )

∫
BZ dk �(k; t ) and the instantaneous

Hall conductance σxy,inst (t ) = ∫
BZ dk |r(k; t )|�(k; t ). Impor-

tantly, Cinst (t ) would be pinned to zero in a noninteracting
system. In contrast, Figs. 2(c) and 2(d) show a nonzero instan-
taneous Chern number, which for V = 1.0 becomes almost
identical to Ct [in the thermodynamic limit, Ct (t ) is identical
to Cinst (t )]. The instantaneous Hall conductance exhibits a fast
increase for t < tcrit and a saturation after t > tcrit . However,
σxy,inst (t ) does not coincide with the thermalized Hall conduc-
tance of the interacting system.

Chern insulator with nonlocal interactions. The thermal-
ization process changes substantially if nonlocal interactions
are included. For the purpose of this study, we consider

Ĥint = 1

2

∑
i, j

∑
α,α′

V αα′
i, j n̂i,α n̂ j,α′ . (5)

Here, the interactions are V αα′
i,i = V0(1 − δαα′ ) and V αα′

i, j = V1

if i and j are nearest neighbors. The nonlocal repulsion is fixed
to V1 = 0.25V0.

Figure 1(c) depicts the occupation of the upper band (with
respect to the postquench free Hamiltonian) f+(k; t ) for V0 =
1.0. In contrast to the model with local interactions only,
the nonlocal part of the interaction includes interorbital and
intraorbital scattering, which results in a rapid thermalization
of f+(k; t ) to the equilibrium f eq

+ (k). Furthermore, coherent
oscillations are suppressed, indicating pronounced dephasing.
The nonequilibrium Hall response is shown in Figs. 2(e) and
2(f) for V0 = 0.65 and V0 = 1.0, respectively. In this setup,
σ̃xy(t ) approaches the thermal equilibrium value within the
numerically accessible time window. Furthermore, it shows
a qualitatively very similar behavior as the instantaneous
conductance σxy,inst (t ), indicating strong dephasing. There are
two different regimes: a rapid increase with superimposed os-
cillations for t < tcrit and a smooth saturation for t > tcrit . This
behavior of σxy,inst (t ) is also reflected in σ̃xy(t ). The timescale
of the purity gap closing [Figs. 2(g) and 2(f)] is significantly
shorter as compared to the case with local interactions only:
tcrit ≈ 29 for V0 = 0.65 and tcrit ≈ 15 for V0 = 1.0. The sign
of the curvature of the distribution f+(�; t ) changes at t = tcrit

[Fig. 1(c)]. Again, tcrit scales as V −3/2. Additional calculations
[51] reveal a further speedup of tcrit if more energy is injected
by the quench.

Quantum spin Hall insulator. Including the spin degree of
freedom while requiring time-reversal symmetry gives rise to
a Z2 quantum spin Hall insulator. This is the typical scenario
in materials where the spin-orbit interaction is the mechanism
behind the topological gap opening. In this case, the on-site
Hubbard repulsion (which is excluded by the Pauli principle
in the spinless case) becomes the simplest possible interaction
term [41]. For the sake of consistency with the previous
discussion, we also include a local interorbital coupling and
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FIG. 3. Dynamics of the occupation f+(k; t ) in the upper band of
a quantum spin Hall insulator for (a) U = 1.0, V = 0, and (b) U =
1.5, V = 0. The results have been obtained employing the GKBA.
The lower panels depict the nonequilibrium spin Hall conductance
for (c) U = 1.0, (d) U = 1.5, and (e) U = 2.0.

define the interaction term as

Ĥint = U
∑
i,α

n̂i,α,↑n̂i,α,↓ + V

2

∑
i,σ

∑
α �=α′

n̂i,α,σ n̂i,α′,σ . (6)

We employ the same quench protocol as above and fix Mpre =
−3.5 and Mpost = −1.5.

Inspecting the occupation in the upper band for weak [U =
1.0, Fig. 3(a)] and slightly increased [U = 1.5, Fig. 3(b)]
Hubbard repulsion, one finds rapid dephasing and thermaliza-
tion. Hence, the on-site intraorbital interaction is sufficient to
fully thermalize the system on short timescales (determined
by the interaction strength). Adding the interorbital coupling
V does not change this behavior, albeit the thermalization
becomes slightly slower as Teff is reduced. A detailed analysis
furthermore reveals a pronounced dependence on Mpost [51].

While the total Hall conductance vanishes in the spin
Chern insulator, the spin Hall conductance σ̃ s

xy(t ) = [σ̃ ↑
xy(t ) −

σ̃ ↓
xy(t )]/2 becomes quantized to one at zero temperature, due

to spin rotation symmetry around the z-axis. The spin Hall
conductance is presented in Figs. 3(c)–3(e). Within the GKBA
on a Nk = 220 × 220 grid, which corresponds to the con-
verged thermodynamic limit in all cases, σ̃ s

xy(t ) rises rapidly
and approaches the thermal equilibrium value at the corre-
sponding effective temperature Teff . As for the spin Chern
insulator, the characteristic timescale for the buildup of the
spin Hall effect is the critical time tcrit of the purity gap closing
[also indicated in Figs. 3(a) and 3(b)]. Increasing the strength
of the Hubbard repulsion (while keeping V = 0) leads to
significantly enhanced dephasing, while the steady-state spin
Hall conductance σ s

xy is reduced. This can again be attributed
to the increase of injected energy due to a stronger effective
quench. Including the interorbital interaction V counteracts
this effect and thus results in a larger σ s

xy. Hence, tuning the
interorbital coupling V provides a way of effectively cooling
down the system and thus increasing σ s

xy.

FIG. 4. Steady-state (spin) Hall conductance of (a) the spinless
Chern insulator with nonlocal interactions (V1 = 0.25V0) and (b) the
spinful Z2 insulator as a function of the ramp time. The GKBA has
been used in (a) and (b) for all results, except for U = 2.0, where the
KBE result is shown.

It is interesting to compare the GKBA to the full solution
of the KBEs [darker lines in Figs. 3(c)–3(e)]. Due to the
numerical effort, the KBE simulations are limited to a 32 × 32
cluster here. For U = 1.0, the GKBA and KBE results agree
well up to t ≈ 15; for later times, finite-size effects dominate
the KBE dynamics. Nevertheless, the steady-state σ s

xy agrees
well. For the slightly larger interaction U = 1.5 [Fig. 3(d)],
where dephasing is significantly enhanced and finite-size ef-
fects thus suppressed, the GKBA and KBE dynamics agree
well, as does the steady state. For stronger interactions, how-
ever, small deviations become apparent [Fig. 3(e)]: the GKBA
seems to underestimate the KBE Hall conductance. This
tendency is further investigated in the Supplemental Material
[51]. However, for moderate interaction strength U � 1.5,
the GKBA and KBE treatments agree very well. Since the
exact solution is typically in between [54], this comparison
demonstrates the predictive power of our approach.

Realizing a low-temperature topological state. After the
quench, the (spin) Chern insulator thermalizes to a state with
high Teff . The effective temperature can, however, be lowered
significantly by slowly ramping M. We demonstrate this
behavior by modifying our protocol to (i) preparing the
band-insulating system in equilibrium including Ĥint, and
(ii) modifying the gap according to M(t ) = Mpre + (Mpost −
Mpre ) f (t/tramp), where tramp defines the ramp duration. Here,
f (τ ) parametrizes the quench. For concreteness we choose
the smooth ramp f (τ ) = 10τ 3 − 15τ 4 + 6τ 5 for τ ∈ [0, 1].
Figure 4(a) [Fig. 4(b)] shows the corresponding steady-state
(spin) Hall conductance. As Fig. 4 demonstrates, the
finite-temperature Hall effect can be significantly enhanced
for all interactions by increasing tramp. Slower ramps lead to
an adiabatic time evolution for more and more points in the
BZ except for the region close to the gap closing. Therefore,
the ability of the system to thermalize results in an arbitrarily
low Teff [51] with σxy or σ s

xy approaching the quantized value.
Note that, however, the Hall response never exactly reaches
the quantized value, as the time evolution is nonadiabatic at
the � point regardless of the quench duration.

Conclusions. We have systematically investigated the
postquench dynamics of closed interacting two-dimensional
topological insulators. We showed that the system can dy-
namically approach thermal equilibrium with respect to the
topological properties of the SPDM and the Hall response,
even though the topological invariant of the many-body state
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stays pinned to the trivial value. Thus, our results demonstrate
that the eigenstate thermalization hypothesis also applies to
topologically constrained unitary time evolution. The mi-
croscopic scattering mechanisms play a crucial role: while
the spinless Chern insulator with local interactions only is
nonintegrable, it thermalizes very slowly due to topological
restrictions. In contrast, including intraorbital coupling by
nonlocal interactions or extending to a spinful Z2 topological
insulator accelerates the thermalization on the one- and two-
particle levels. Therefore, switching from the topologically
trivial to the nontrival regime by slow ramps allows one
to realize a low-temperature state with almost integer Hall

conductance, providing a way of dynamically inducing and
observing topological phenomena.
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