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We study the dynamics of charge transfer insulators after photoexcitation using the three-band Emery model
and a nonequilibrium extension of Hartree-Fock + EDMFT (extended dynamical mean field theory) and GW +
EDMEFT. While the equilibrium properties are accurately reproduced by the Hartree-Fock treatment of the ligand
bands, dynamical correlations are essential for a proper description of the photodoped state. Photodoping leads
to a renormalization of the charge transfer gap and to a substantial broadening of the bands. We calculate the
time-resolved photoemission spectrum and optical conductivity and find qualitative agreement with experiments.
Our formalism enables the realistic description of nonequilibrium phenomena in materials with ligand bands. It
provides a tool to explore the optical manipulation of interaction and correlation effects, including insulator-metal

and magnetic transitions.
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The ability to engineer the microscopic parameters of cor-
related electron materials is important for the understanding of
their complex properties and for technological applications.
An example is the control of superconductivity by pressure,
doping, or strain [1-3] under equilibrium conditions. Recent
progress in ultrafast laser techniques motivates new strategies
which involve nonthermal states. Experiments have demon-
strated, e.g., the switching to a hidden metallic state in 1T-
TaS; [4], or light-induced enhancements of superconductivity
[5,6] and excitonic order [7]. Related are theoretical proposals
to modify the band structure [8,9] or interactions by electronic
excitations [10-12] or phonon driving [13-19].

A simple way to change the properties of correlated mate-
rials is the photoexcitation of charge carriers across a Mott or
charge transfer (CT) gap. Most previous theoretical nonequi-
librium studies of Mott insulators have focused on single-band
models [20-27], which miss important aspects of the physics
of CT insulators with p and d bands. In these compounds,
photoexcitation results in doublon and holon charge carriers
of a qualitatively different nature, and depending on the
excitation energy one may selectively excite electrons from
occupied p or d states. Photodoping also provides a means to
change the relative position of the p and d bands (band-gap
renormalization). Since the charge transfer gap affects the
insulating and magnetic properties of these materials, this
offers a playground for photomanipulation of these phases.

A paradigmatic class of CT insulators are the cuprates.
The equilibrium properties of cuprates have been investigated
with a broad range of methods including exact diagonalization
[28,29], dynamical mean field theory (DMFT) [30-32], and
its cluster extensions [33]. These studies emphasized the
importance of a multiband description including p orbitals
[34-36] and the role of spin [33] and charge fluctuations
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[37,38]. While in equilibrium the correlation effects in the full
ligand bands are weak, photodoping induces charge carriers
and nontrivial correlations. In fact, pump-probe studies on
cuprate superconductors have detected photoinduced band
shifts and modifications in effective masses [39-44], as well
as a redistribution of spectral weight between different char-
acteristic energy scales [45,46].

In this work, we consider the two-dimensional three-band
Emery model [47] describing the Cu d,>_,> (denoted d) and
O p. and p, orbitals, where the O orbitals lie between Cu
ions forming a square lattice with lattice constant a. The three
terms of the Hamiltonian H = H, 4+ Hy;, + Hjy are
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with V2¥ = Uggifi= jande = B = d,and V¥ = 1U,, for
nearest-neighbor d and p orbitals. The crystal field splitting
Ag), determines the difference between the on-site energy for
the d orbital, €4, and that for the p orbitals, €; + Ag,. We
denote the nearest-neighbor hopping between the d and p;,
py orbitals by 197 and between the p, and py orbitals by 1P,
while —#* = u is the chemical potential.

We solve this lattice problem using the fully self-
consistent GW + EDMFT [11,48-50] and Hartree-Fock
(HF) + EDMFT methods, which are based on extended dy-
namical mean field theory (EDMFT) [10,49-51], and a non-
crossing approximation impurity solver [10]. Since the local
interactions in the d orbital are stronger than in the p orbitals,
we restrict the EDMFT treatment to the d orbital, while the p
orbitals are treated at the HF or GW level.
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FIG. 1. Orbitally resolved spectral function obtained in the
GW + EDMFT (black) and HF 4+ EDMFT (red) approximation for
the CT (a) and LCO (b) setups. The full (dashed) lines represent the
d (p, and p,) orbitals.

The dynamics is described in terms of the momentum
and orbital-resolved electronic Green’s function GZf @, t) =
—i{T¢Chas (t)czﬁa (t')) and the charge correlation function
x‘j‘ﬂ(t, 1') = —i(Tefige (t)ii—gp(t')), which determines the in-
verse of the orbital-resolved dielectric function [eq’l] =1+

Vg * X4 and the screened interaction W, = [sq_'] * Uy, Where
v, is the Fourier transform of the bare interaction. The
mapping of the lattice problem to an impurity problem and
the downfolding procedure lead to a retarded density-density
interaction U/ (¢, t') on the impurity (d orbital), which is related
to the screened interaction by W4 = U + U * Ximp * U.

The electromagnetic field leads to an acceleration of the
charge carriers as well as dipolar transitions. The gauge
invariant description of both effects is given by the modified

hopping term [52,53]

Hin= Y (i +E-Di)e ¢, cipo. M
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where ¢;; = e/h f}ii dFA(F, 1) is the Peierls phase and AR, 1)
is the vector potential, which is related to the electric field
by E(7,t) = —8,A(p, t). We assume that A(r) and E(¢) are
homogeneous in space. For a quantitative description of the
photoexcitation in multiband materials the dipolar matrix ele-
ments have to be obtained from ab initio calculations. In the

following simulations, we use nearest neighbor d to p dipolar

1 J— pxd — pyd —
matrix elements D = D(i,{O,O})(i,{a/Z,O}) = D(i,{O,O})([,{a/Z,O}) =

0.16ea [54].

We will study two characteristic setups previously consid-
ered in the literature: (i) a charge transfer insulator close to
the atomic limit, where a strong Coulomb repulsion opens
a large Mott gap and narrow p bands lie well separated
between the lower and the upper Hubbard bands (“CT case”),
and (ii) the parameter regime relevant for La,CuQy, as ob-
tained from local density approximation (LDA) calculations
and parametrized by a tight-binding Hamiltonian (LCO case)
following Refs. [37] and [34]. In this setup the p bands lie in
the same energy range as the lower Hubbard band.

In Fig. 1 we present the orbitally resolved local spectral
functions A, (w) = —%Im[Gﬁ)’C"‘(w)], for @ =d, py, py. In all

calculations we set the inverse temperature to § =5.0 eVl
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FIG. 2. Dynamics after photoexcitation for the CT (top panels)
and LCO (bottom panels) setups. The left panels show the change
in the occupancy of the d orbitals. The change in the p orbital
occupation is given by An, = —%And. The right panel shows the
change in the density of d holes Ah, in the lower Hubbard band.
The hole density on the p orbital can be estimated as Ak, = 1 Any
and is shown by the dashed lines in the time interval [8:13] for clarity.

which is above the Néel temperature. In the CT case
[Fig. 1(a)], with parameters Uzs = 8.0eV, U, = 2.0€V,
tip =04eV, 150 = —-0.1eV,t,, =0.15eV, A,y = =2.0eV,
the lower Hubbard band is well separated from the p bands. In
the example relevant for La,CuOy [Fig. 1(b)], with parameters
Ujg =50eV, Udp =2.0¢eV, tap = 0.5eV, tjg=—-0.1¢eV,
t,p =0.15eV, A,; = —3.5¢V, the spectral function below
the Fermi level is split into three distinct peaks: a peak at w =
—3.3eV of predominantly p-orbital character, the antibonding
band corresponding to the Zhang-Rice singlet (ZR) around
w = —1.6eV [32,33,55], and the bonding band pushed to
lower energy, with a center at @ = —4.9¢eV. In equilibrium,
the GW + EDMFT and HF 4+ EDMFT spectra are almost
indistinguishable, which shows that static correlations are
sufficient for the treatment of the fully occupied p orbitals.
In a chemically doped system this is not any more the case
and we expect nonlocal fluctuations to become important. We
also note that the gap reduces the effect of screening on the
local interaction due to a suppression of charge fluctuations
[56]. As a result, the effective static interaction is only slightly
lower than the bare interaction: U (w = 0) — Uyy = —0.03eV
for the CT and —0.05 eV for the LCO setup.

We now turn to the photoexcitation and the subsequent re-
laxation. Due to the Mott physics, the equilibrium occupation
of the d band is half-filled, while the p bands are completely
filled. A short pulse E(r) = Ege+00=100/15 §in[Q(t — t)] po-
larized along the (11) direction transfers charge from p to d
(see Fig. 2). The width of the pulse ty = 27n/Q2 is chosen
such that the envelope accommodates n = 2 cycles. Due to
the mixed nature of the states below the Fermi level one may
expect that the ratio between the excited electrons originating
from the p or d orbital depends on the frequency of the pulse.
In the following we will choose frequencies corresponding
to a photoexcitation from the characteristic features in the
occupied part of the spectrum to the upper Hubbard band. The
excitation strength Ej at each given frequency is adjusted
such that the density of photodoped doublons and holons
is approximately 5%. Due to the large gap size this
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density changes only very slowly after the photoexcitation
[24,27,57,58].

In Fig. 2(a) we present the time-dependent change in the
d orbital occupancy n; for the CT setup and two differ-
ent frequencies corresponding to the transitions from the p
band (2 =6eV, Ey =0.37 eV/a) and the lower Hubbard
band (2 = 9eV, Ey = 0.87 eV/a) to the upper Hubbard band.
While the change in the double occupancy d,.. corresponds
to the total amount of charge transferred across the gap,
the change in the density of holes in the lower Hubbard
band corresponds to Ahy = Ado.. — Ang, which is plotted in
Fig. 2(b). The final occupations are remarkably independent
of the pulse frequency. The spectrally resolved occupation
(not shown) indicates that after an ultrafast redistribution of
occupation between the region of the lower Hubbard band
and the p band the holes predominantly reside in the p
band. This rapid interband decay is only observed within the
GW + DMFT formalism and not in HF 4+ DMFT, so that its
likely origin is the strong coupling of electrons to charge
fluctuations [11].

In the LCO case we excite electrons to the upper Hubbard
band either from the ZR singlet (2 =4, Ey = 0.54 eV/a)
or from the band with dominant p character (2 = 6.0, Ey =
0.31 eV/a). Due to the smaller gap size, impact-ionization
processes become important and lead to a more rapid increase
of the double occupancy after the photoexcitation [59]. For
a fixed number of doubly occupied sites there is a larger
percentage of holes in the d orbitals than for the CT insulator
[see Figs. 2(b) and 2(d)]. The holes predominantly occupy the
ZR band as seen in the greater component of the orbitally re-
solved spectral function (not shown). Apart from strong initial
oscillations due to the p-d hybridization the final occupation
is again rather weakly dependent on 2.

We next discuss the time evolution of the spectrum after
the photoexcitation by analyzing the partial Fourier trans-
form of the orbitally resolved spectral function A,(w,t) =
—(1/m)Im[ [T dr' e =DGR(¢', )], with 1o = 8 and & €
{d, px, py}. Again we will compare the GW + EDMFT and
HF + EDMFT approximations in order to address the role of
nonlocal charge fluctuations. Due to the Coulomb interaction
U, between the holes in the p orbitals and the doublons in
the d orbital there is an almost instantaneous reduction of the
gap between the p band and the upper Hubbard band (see
Fig. 3). It originates from the static Hartree-Fock attraction
and is determined by the change in the local orbital occupancy
AZH = (Ugq — 2Uqp)Any [44,60,61]. The contribution of
this effect to the shrinking gap is indicated in Fig. 3 by
the vertical red line, AX!, = —0.15 (=0.17)eV for the CT
(LCO) case.

Going beyond the HF description, the inclusion of nonlocal
charge fluctuations leads to (a) a further reduction of the gap
size due to an additional band shift, and (b) a substantial
broadening of the spectra (in particular for the d orbitals)
due to a strong electron-plasmon coupling (see Fig. 3). Both
effects are a consequence of the photoinduced changes in the
screening. The additional gap shrinking can be quantified by
the reduced static interaction, U(w = 0) — Uyy =~ —0.14eV
for both setups, which is indicated by the green vertical
line in Fig. 3. One can see that the full reduction of the
gap cannot be described by these static contributions alone
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FIG. 3. Time evolution of the spectral function A, (w, t) within
HF + EDMEFT [(a) and (b)] and GW + EDMFT [(c) and (d)] for the
CT (left panels) and LCO (right panels) setups, both excited with the
pulse frequency 2 = 6.0eV. The black lines show the equilibrium
spectra. Thick shaded (thin) lines represent the d (p, and py) orbitals.
The black vertical line and the arrow mark the peak position of
the upper Hubbard band in equilibrium, the red ones indicate the
Hartree shift, and the green ones correspond to the combined effect of
Hartree shift and static reduction of the effective impurity interaction
U(w = 0).

and must be attributed to dynamical screening and doping
effects. Comparing Fig. 3 with Fig. 1 we conclude that the
treatment of both dynamic screening and the feedback of
the nonlocal charge fluctuations is qualitatively important for
the description of the photoexcited state, while these effects
are negligible in equilibrium [62].

The dynamics of the p band exhibits a remarkable resem-
blance with recent time-resolved angle-resolved photoemis-
sion spectroscopy data, which for optimally doped Y-Bi2212
show a nonthermal broadening of the 2p, band at momentum
(m, ) [44]. The interpretation of Ref. [44], which attributed
the nonthermal changes in the experimental spectra mainly to
nonlocal charge fluctuations on top of a minor static Hartree
shift, is fully consistent with our results.

The information about the time-dependent changes in the
screening properties of the d orbital is contained in the
screened interaction Wy (w, t) (see Fig. 4). The equilibrium
screening modes for the charge transfer insulator include (i)
a peak at wcr & 6eV corresponding to particle-hole exci-
tations from the p band to the upper Hubbard band, and
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FIG. 4. Time evolution of the screened interaction W, (¢, w) for
the CT (a) and LCO (b) setups, both excited with frequency Q2 =
6.0eV. The black shaded line represents the equilibrium spectrum.
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(ii) a peak at wy ~ 8.5eV matching the excitations from
the lower to the upper Hubbard band, and higher order
excitations [see also Fig. 1(a)]. After the photoexcitation
these features are smeared out and a continuum of screening
modes appears at low energies. These are associated with
charge excitations within the photodoped bands and result
in an additional screening [10]. Note that this is a unique
nonequilibrium feature of the electron-plasmon dynamics and
does not have a counterpart in couplings to other bosonic
degrees of freedom, like phonons. Within EDMFT one can
define an effective coupling of the electrons and the charge
fluctuations from the integral over Imlf(w)/w [or, equiva-
lently, the reduction of Rel/(w = 0)] [10,11,49]. The cou-
pling strength to the photoinduced charge fluctuations at w <
6eV, Aing = 2f06 do(—Im[U(w)]/w) =~ 0.16, corresponds to
arather strong coupling, which explains the substantial broad-
ening of the spectra in Fig. 3. The dynamics of W, (¢, w) in
the LCO case is qualitatively similar except for an additional
peak at w =~ 3.5, which originates from the charge excitations
between the Zhang-Rice singlet and the lower edge of the
upper Hubbard band. The effective electron-plasmon coupling
Aind & 0.17 is comparable to the CT case.

Finally, we discuss the signature of the band-gap renor-
malization in the optical conductivity. We explicitly simulate
a probe pulse and extract the photoinduced current as the
difference in the current with and without a probe pulse,
Jprobe = Jpump+probe — Jpump- FOr a weak probe pulse the op-
tical conductivity can be evaluated as the ratio o(w,1,) =
Jj(@,1,)/E(w, 1,), where X (w,1,) = [ dsX(t + s)e™ is
the Fourier transform of X = j, E, and ¢, is the center of
the probe pulse. This procedure avoids the calculation of the
current-current correlation function including vertex correc-
tions. We apply both the pump and probe pulses in the (11)
direction.

The optical conductivity in equilibrium (black lines) and
for t, = 7 fs after the pump pulse is presented in Figs. 5(a)
and 5(c). The equilibrium optical conductivity for both cases
exhibits a main peak corresponding to excitations from the
p band to the upper Hubbard band. In the LCO case [see
Fig. 5(c)] the small peak at w = 4.4 eV corresponds to excita-
tions from the ZR singlet to the upper Hubbard band.

After the photoexcitation the optical conductivity shows
a clear shift toward lower energies, originating from the HF
shift and the enhanced screening. In order to highlight this
evolution we also plot the change of the optical conductivity
from the equilibrium value [Fig. 5(b)] as is usually done
in the experimental literature [43]. Indeed, a characteristic
shift of the excitation gap to lower energies (redshift) has
been reported in a number of pump-probe experiments on
cuprates and other charge transfer insulators (see, for instance,
Refs. [40-43,63]). The comparison of the shift to the static
screening contribution [line labeled “Stat” in Fig. 5(d)] shows
that more than 50% of the gap renormalization is due to
dynamical effects.
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FIG. 5. Time-dependent optical conductivity in the (11) direction
o(w, t,) for the CT (a) and LCO (c) setups. The black lines represent
the equilibrium data. (b) The difference from the equilibrium result
Ao (ty, w) =0 (t,, w) — 0°(w) for the delayed probe pulse at ¢, =
7 fs in both setups. (d) The gap size renormalization in the optical
conductivity (Dyn) as a function of the photoexcited doublons and
comparison with the static shift (Stat) £y + U(w = 0).

A recent experimental study of photodoped La,CuQy4 [43]
reports an even somewhat larger shift than predicted by the
line labeled “Dyn” in Fig. 5(d). This suggests that dynamical
effects, captured by the GW + EDMFT method, are essential
for a quantitative description of photodoped cuprates.

In conclusion, we have studied the pump-probe dynamics
of the three-band Emery model, relevant for a large family
of charge transfer insulators. The electric field pulse transfers
charge from the p bands to the upper Hubbard band, which
results in relative band shifts. Similar band shifts have been
observed in a recent time-dependent density functional theory
(TDDFT)+-U study of NiO [12], while the present study
shows that charge fluctuations strongly enhance this effect.
The strong plasmon coupling in the photodoped state leads
to a substantial broadening of the d and p bands, which
implies that dynamical correlation effects (beyond HF) are
essential for the description of the ligand bands, in contrast
to equilibrium.

Our work represents a crucial step toward the ab initio
description of strongly correlated systems out of equilibrium,
where the material-specific input is obtained via a multitier
approach analogous to the scheme recently demonstrated for
equilibrium systems in Refs. [37,64,65].
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