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Abstract

Accurate prediction of permeability evolution is essential for forecasting the long-term per-

formance and lifetime of hydrothermal reservoirs, an important goal in the geothermal, 

ore, and petroleum industries. Erol et  al. (Transp Porous Media 120(2):327–358, 2017. 

https ://doi.org/10.1007/s1124 2-017-0923-z) introduced a general (non-empirical) analyti-

cal Kozeny–Carman type equation for predicting matrix and fracture permeability during 

single-phase, non-reactive flow. Here we incorporate the equation into an algorithm for 

addressing the influence on porous and fractured media permeability of the transient reac-

tive processes of mineral dissolution and precipitation. Analytical algorithm predictions 

are identical to permeability values measured during fluid circulation through limestone 

and dolomite core samples from the Campine Basin deep geothermal system in Belgium. 

Benchmarking used identical values for initial hydraulic aperture dimension and porosity, 

measured during fluid circulation based on nondestructive micro-CT imaging. Analytical 

algorithm predictions of reactive surface area and fracture porosity are similar to results 

based on the TOUGHREACT reactive transport code. TOUGHREACT implements sev-

eral well-established power-law models for predicting permeability, notably Civan (AIChE 

J 47(2):1167–1197, 2001. https ://doi.org/10.1002/aic.69047 0206) and Verma and Pruess (J 

Geophys Res Solid Earth 93:1159–1173, 1988. https ://doi.org/10.1029/jb093 ib02p 01159 ). 

However, these models rely on specification of empirical exponents, which are not straight-

forward to measure. Our results suggest that a more general, computationally inexpensive 

analytical method can lead to accurate permeability calculation.
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a  Pore radius (m)

A  Cross-sectional area  (m2)

Dfm  Fractal dimension of pore size distribution (–)
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Dff  Fractal dimension of fracture network distribution (–)

DR  Real dimension (–)

h  Height of a hydraulic aperture (m)

ki25  Kinetic rate constant at 25 °C (mol m−2  s−1)

n  Power-law empirical exponent (–)

p  Empirical constant (–)

P  Pressure (Pa)

R  Mineral dissolution/precipitation rate (mol m−3  s−1)

RSA  Reactive surface area  (m2  kg−1)

q  Empirical constant (–)

r  Crystal radius (m)

S  Specific surface area  (m−1)

SA  Surface area  (m2)

t  Time (s)

TR  TOUGHREACT 

v  Mineral molar volume  (m3  mol−1)

Vf  Volume fraction (–)

w  Hydraulic aperture width (m)

Greek Symbols

κ  Permeability  (m2)

λ  Surface roughness factor (–)

μ  Fluid dynamic viscosity (Pa s)

ρ  Fluid density (kg m−3)

τ  Tortuosity (–)

ϕm  Matrix porosity (–)

ϕf  Fracture porosity (–)

Ω  Mineral saturation index (–)

Subscripts

0  Initial

c  Critical

f  Fracture

geo  Geometric

i  ith mineral

m  Matrix

min  Variable minimum

max  Variable maximum

TOT  Total

1 Introduction

Government climate and energy policies increasingly emphasize development of renewable 

energy resources (EGEC 2018). Heat stored and generated within the Earth (geothermal 

energy) shows high potential in this regard as it is stable on human timescales, accessible 

from any country—even where there is no volcanic or hydrothermal activity, and suffi-

cient to meet worldwide energy demands. The total heat flux through the Earth’s surface 
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is 44 TW, equivalent to ~ 1.400 EJ per year. This is approximately three times greater than 

annual worldwide energy usage (British Petroleum Global 2015). Another advantage is 

low greenhouse gas emissions (Antics and Sanner 2007; Gallup 2009). Economic feasibil-

ity poses a barrier to further development, however. It is possible to generate electricity 

from fluid extracted at temperatures as low as 75–130  °C, associated with reservoirs at 

depths of approximately 2500–4000 m under an ambient geothermal gradient of 0.033 °C 

 m−1 (Idaho National Laboratory 1174), but cheaper and more efficient where fluid tem-

peratures are higher. New drilling projects increasingly use techniques such as laser-jet 

drilling and electro-impulse technology (Richter 2017) to target depths of ≥ 3000 m with 

the goal of accessing higher temperatures. However, the cost of drilling and reservoir con-

struction at greater depth (higher temperature) is high. The first commercial-scale test of a 

deep geothermal system is in progress at Soultz-sous-Forêts, France. As fluid introduced 

at the surface circulates through artificially fractured granite at depths of 3500–5000 m, 

its temperature increases to ~ 155  °C. The heated fluid feeds an Organic Rankine Cycle 

installation with a net electric output of 1.5 MW and is subsequently injected back into the 

reservoir at a temperature of ~ 60  °C. Such a deep reservoir (Balmatt) has recently been 

constructed within the Carboniferous Limestone Group near the town of Mol in the Cam-

pine area of Belgium. The production well, MOL-GT-01, reaches the reservoir at a depth 

of 3610 m; the injection well, MOL-GT-02, achieves a depth of 4600 m. Measured pro-

duction temperatures are sufficient to match local heat and power demand. Expected gross 

power output is up to 48 MW by 2020 with a flow rate of 140 m3  h−1 (Laenen et al. 2014). 

In addition to cost, another major concern for these and other such reservoirs relates to the 

long-term stability of production, which is not guaranteed. Porosity–permeability evolution 

over time within geothermal reservoirs and in installations can have a significant impact 

on system sustainability. Porosity and permeability changes arise from gradients in tem-

perature, pressure, and composition that drive reactions associated with mineral dissolution 

or precipitation (Satman et al. 1999; Şimşek et al. 2005; Thorhallsson 2005; Akın 2012). 

Permeability controls the duration and location of fluid flow, thereby determining fluid pro-

duction and temperature at the surface. However, characterizing permeability evolution is 

not straightforward.

This study presents a predictive analytical algorithm of dual porosity coupled with min-

eral precipitation and dissolution. Mineral saturation indices, kinetic rate laws, and conse-

quently, permeability, evolve during fluid–rock interaction. An application case uses min-

eral saturation indices from TOUGHREACT, a widely used reactive transport code (Xu 

et al. 2011). The dissolution rate constants are taken from Palandri and Kharaka (2004). 

Fitting of the novel algorithm is based on comparison of algorithm predictions with results 

from laboratory flow-through experiments, where permeability was measured following 

fluid circulation through natural rock samples. In the experiments, fluid and rock tempera-

tures varied from 40 to 100 °C, pressure ranged from 5 to 30 MPa, fluid was saline (ionic 

strength, 3 mol kg−1) and  CO2-bearing (0.2 mol kg−1), and lithologies included limestone 

and dolomite, relevant to the Campine Basin, Belgium. Porosity, hydraulic aperture dimen-

sions, and permeability were measured using in  situ X-ray micro-computer tomography 

(CT) during flow. Evolving fluid chemistry was measured during flow via inductively cou-

pled plasma–optical emission spectrometry (ICP–OES). The samples represent drill cores 

of carboniferous limestone and dolomite from the Turnhout and Halen geothermal wells. 

The wells exploit an identical geothermal reservoir in the Campine Basin, Belgium (Petit-

clerc et  al. 2016). Understanding permeability evolution during fluid circulation at these 

wells will be useful for predicting their future performance and that of the nearby, recently 

drilled Balmatt reservoir.
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Next is a comparison of porosity, permeability, and reactive surface area predictions 

based on the novel algorithm with output from TOUGHREACT simulations. TOUGH-

REACT simulations, consisting of small-scale flow and mineral dissolution/precipitation, 

were performed via the PetraSIM interface (PetraSIM 2017). All simulations used geo-

chemical data from the Balmatt reservoir and the experimental measurements of reactive 

surface area, matrix, and fracture porosity. The power-law (Civan 2001), Kozeny–Carman 

(Carman 1939), and Verma and Pruess (1988) equations are available for predicting per-

meability in TOUGHREACT. These methods use empirical exponents that are not tied to 

the system of interest because they require existing data from the literature for definition. 

Our opinion is that our approach uses parameters that are more straightforward to meas-

ure. In some situations, it may provide an advantage in terms of computation time com-

pared to existing numerical techniques implemented in TOUGHREACT and other reactive 

transport codes, such as OpenGeoSys (Kolditz et al. 2012) and HydroGeoChem (Yeh et al. 

2004).

We also compared algorithm results with laboratory data (reactive surface area, poros-

ity, and permeability measurements) from Smith et al. (2013, 2017), obtained from flow-

through experiments designed to simulate fluid circulation and interaction with surround-

ing rocks within a reservoir. The comparison is favorable.

1.1  Challenges of Characterizing Permeability Evolution

Reactive transport models are increasingly popular for predicting the long-term evolution, 

performance, and lifetimes of geothermal reservoirs (Steefel and Van Cappellen 1990; 

Appelo and Postma 2005; Steefel et  al. 2005; Xu et  al. 2014; Menke et  al. 2016; Wang 

et  al. 2016). However, they rely on published thermodynamic and kinetic databases that 

span limited ranges of temperature, pressure, and composition compared to natural sys-

tems. A particular challenge with regard to deep geothermal systems is that fluid is often 

saline (NaCl > 3 mol kg−1) with high dissolved gas concentrations (> 0.1 mol kg−1 of  CO2, 

 N2, and  CH4). Rocks can consist of various mineral types, including solid solutions. This 

compositional diversity can influence the nature and rates of mineral dissolution and pre-

cipitation reactions. Also, the data generally correspond to average values measured over 

rock volumes, which may not accurately reflect pore scale processes (Gouze and Luquot 

2011; Menke et al. 2015; Noiriel and Daval 2017). Noiriel et al. (2009) made an interest-

ing contribution in this regard. They evaluated competing representations of pore reactive 

surface area on permeability evolution during dissolution: a grain–pore model based on 

both spherical grains and pores that decrease in size versus a sugar-lump model in which 

the porous medium comprises a cluster of spherical grains that dissociate as dissolution 

of each grain progresses (similar to sugar dissolving in a cup of coffee). The sugar-lump 

model provided the best fit to reactive surface area data measured from laboratory flow-

through experiments and a natural system. However, the model used predefined empirical 

coefficients similar to the power-law permeability models. This issue is discussed further 

below.

TOUGHREACT is one of the most widely used reactive transport models (Xu et  al. 

2008, 2011). It uses the MINC (Multiple Interacting Continua) approach for modeling flow 

in fractured and porous media. MINC is a generalization of the classic double-porosity 

concept developed by Warren and Root (1963). There are several options for defining rock 

matrix/fracture connections. Matrix  sub-gridding is used  to resolve property gradients. 
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There are  a number of permeability models, such as Kozeny–Carman (Carman 1939), 

Verma and Pruess (1988), and the cubic law (Steefel et al. 2005; Xu et al. 2008).

The cubic-law is essentially the power-law equation of Civan (2001) with an empirical 

exponent, n, fixed at “3” (Xu et al. 2008).

Here, κ0 is the initial permeability, ϕ0 is the initial fracture porosity, and ϕ is the porosity 

as a function of time, t. The power-law equation has been applied to calculate fracture per-

meability based on evolving porosity. Advantages include accounting for porosity change 

due to reactive flow and description of the dynamic variation of fracture permeability due 

to temperature. The value of n corresponds to the slope of plotted logarithmic porosity 

versus permeability data. Permeability calculation based on the power-law equation there-

fore requires an a priori assumption about permeability in the rock type of interest. Values 

for n are generally taken from published data—results from laboratory porosity measure-

ments and permeability estimates based on flow-through experiments and X-ray micro-CT 

(Luhmann et al. 2014; Menke et al. 2016). The majority of such experiments have been 

performed on sedimentary rock types (e.g., limestone, dolomite, and sandstone). Several 

authors have proposed that—consistent with TOUGHREACT—n is constant for particular 

rock types, such as limestone and dolomite (Luquot and Gouze 2009; Gouze and Luquot 

2011; Luquot et al. 2014). However, Smith et al. (2013, 2017) disagree. They performed 

flow-through experiments that used various types of limestone and dolostone to evaluate 

n. They found that n varies from 6 to 8 for heterogeneous limestone, 1.6–3.3 for hetero-

geneous dolostone, and 2.5–8 for homogeneous dolostone. These values differ from the 

value of 3 assigned in TOUGHREACT. Also, several authors have observed that n can also 

be a function of fluid composition. For example,  CO2 can influence fluid–rock interaction 

within limestone, dolomite, and sandstone systems, either where added alone (Noiriel et al. 

2004; Luhmann et  al. 2012, 2014; Hao et  al. 2013; Tutolo et  al. 2014, 2015; Huq et  al. 

2015; Soong et al. 2016; Smith et al. 2017) or as  CO2-saturated brine (Kong et al. 2016; 

Wang et al. 2016; Orywall et al. 2017).

The simplified Kozeny–Carman equation (Carman 1939; Bear 1972) is mostly used to 

evaluate matrix permeability.

The power-law and Kozeny–Carman equations do not address pore/fracture size or geo-

metric variations, pore connectivity, or tortuosity. Natural pore channels may vary in diam-

eter, important because of a potential impact on flow. Mineral precipitation or dissolution 

may change pore size and clog or widen pore throats, leading to changes in porosity or 

pore connectivity (Verma and Pruess 1988). Even modest variations in porosity can impact 

permeability significantly (Vaughan 1987; Pape et al. 1999). Verma and Pruess (1988) for-

mulated a porosity–permeability model aimed at a more sensitive coupling of permeability 

to porosity, where a “critical” porosity is associated with zero permeability. The critical 

porosity is a percolation threshold value below which the pore network is unconnected at 

the scale of the sample.

(1)𝜅(t) = 𝜅0

(
𝜙(t)

𝜙0

)n

→ cubic-law = 𝜅(t) = 𝜅0

(
𝜙(t)

𝜙0

)3

(2)𝜅(t) = 𝜅0

(
1 − 𝜙0

)2
(1 − 𝜙(t))2

(
𝜙(t)

𝜙0

)3
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Here, ϕc is the critical porosity and n is a power-law exponent that is subject to the same 

limitations discussed above in relation to the cubic-law/power-law equation implemented 

in TOUGHREACT. The parameters are both medium-dependent.

2  Flow-Through Laboratory Experiments

Flow-through laboratory experiments were performed at Geothermal International Cen-

tre (GZB) in Bochum, Germany. The flow-through apparatus consisted of three pumps, 

an autoclave that contained the rock plugs, a heating jacket, and one reactor connected 

both to the  CO2 gas tank and to the pumps (Fig.  1a). We used a CT scanner manufac-

tured by ProCon X-ray based on their CT-Alpha model (Fig.  1b) to image at very fine 

scale (i.e., 8–12  μm) the internal structure of rock samples in three dimensions during 

flow. This micro-CT imaging was performed under various confining pressures, Pcon , dur-

ing fluid circulation to determine the hydraulic aperture heights and fracture porosities of 

rock samples. We sampled reactive fluid during the flow-through tests. Each fluid sample 

was diluted with nitric acid  (HNO3) to stabilize the fluid against mineral precipitation. We 

used an ICP–OES Optima 8300 (PerkinElmer 2010; Stefan and Neubauer 2014) to meas-

ure the chemistry (element compositions) of the reactive fluid. These data were used in 

(3)𝜅(t) = 𝜅0

(
𝜙(t) − 𝜙c

𝜙0 − 𝜙c

)n

Fig. 1  a The flow-through experimental apparatus (cross section). Fluid enters at the bottom of the tube and 

flows upwards. Flow rate was measured with a TELEDYNE ISCO D-series device. b Micro-CT scanning 

during flow-through experiments to measure hydraulic fracture size under confining pressure corresponding 

to 5–30 MPa
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benchmarking our reactive transport simulations. Details of the experimental setup are fur-

ther explained in “Appendix A.”

2.1  Sample Selection and Core Preparation

The flow-through experiments used dolomite and limestone from the Halen and Turnhout 

boreholes (Fig. 2a), respectively, within the Campine Basin, Belgium. The limestone and 

dolomite are similar to those from the nearby Balmatt reservoir in terms of major element 

chemistry, mineral types, and their  relative proportions (Laenen 2003). Dolomite was 

collected at depths of 1200  m, 1313  m, 1365  m, and 1366  m. Limestone was obtained 

at depths of 2188  m, 2189  m, and 2355  m. Brine was obtained from the Balmatt well 

(Fig. 2b).

Limestone in the Turnhout area is crystalline, bioclastic, and of Late Visian age. It 

formed on a shallow shelf during slow subsidence (Muchez et  al. 1991). Most samples 

have minor fissures and veins filled with calcite that likely acts to impede fluid flow. Over-

all, connected porosity is less than 1%. Dolomite has organic-rich intervals and silicified 

levels in the Halen area (Laenen 2003). Micro-CT images demonstrate the existence of 

large, unconnected pores.

The mineralogical composition of the samples were determined by X-ray diffraction 

(XRD). The details of XRD measurements can be found in Appendix A. For the Halen 

samples, only dolomite was detected. The limestone samples obtained from the Turnhout 

borehole are composed of 97% calcite and < 3% dolomite and quartz (the sum of the meas-

ured components is 100%). Thin section analysis shows that the studied  limestone sam-

ple mostly consists of a cemented packstone-grainstone with bioclast fragments (Fig. 3c).

The samples were fractured via application of uniaxial force, and the broken pieces 

were then glued together (Fig.  3a). Six smaller cores of limestone and six of dolomite, 

each 2.3 cm long and 1.0 cm in diameter, were then drilled to preserve the aperture and 

polished. After polishing, the samples were submerged in acetone for 1 day to dissolve the 

glue in the aperture.

Fig. 2  a Location of the Campine Basin and Halen and Turnhout  boreholes in northern Belgium (modi-

fied after Muchez et al. 1991). b Geological setting of the geothermal reservoir with the location of the first 

well at the Balmatt site (Laenen et al. 2014). The vertical red lines depict faults
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2.2  Natural Brine

Two pressurized brine samples were extracted at depths of 3280 m and 3400 m from well 

Mol-GT-01. Gas and chemical aqueous species were determined in the laboratory (Seibt 

2016). The two brines had nearly identical compositions (Table 1). Measured pH was ~ 5.4 

and the amount of dissolved  CO2 was ~ 0.2 mol kg−1 at 120 °C under 35 MPa confining 

pressure.

Sr2+ and  Ba2+ can typically substitute into carbonate lattices, but have minor impact 

on mineral volumes and therefore have minimal influence porosity and permeability. We 

Fig. 3  Preparation of dolomite and limestone samples where each sample had low matrix permeability and 

was bisected by an aperture to simulate fracturing. a Glued and drilled dolomite sample (Halen, 1200 m 

depth). b Prepared limestone sample showing a roughly horizontal aperture in the middle (Turnhout 

2188 m). c Thin section of the Turnhout limestone sample

Table 1  Composition of the 

brine collected from the Balmatt 

reservoir

Chemical species Concentration (mol kg−1)

(3400 m) (3280 m)

Cations
Sodium  (Na+) 2.1652 2.1565

Potassium  (K+) 0.071 0.0736

Calcium  (Ca2+) 0.229 0.2283

Magnesium  (Mg2+) 0.0229 0.023

Strontium  (Sr2+) 0.0045 0.0046

Barium  (Ba2+) 1.2234 × 10−4 1.2015 × 10−4

Iron  (Fe2+) 0.0145 0.0144

Manganese  (Mn2+) 2.54 × 10−4 2.476 × 10−4

Ammonium  (NH4+) 0.0148 0.0139

Anions
Chloride  (Cl−) 2.767 2.8263

Hydrogen carbonate  (HCO3
−) 0.0183 0.0185

Sulfate  (SO4
2−) 0.0034 0.004

Bromide  (Br−) 0.0019 0.0017

Other parameters
Silicon (Si) 0.0017 0.0017

SiO2 0.0017 0.0017

H2SiO3 0.0017 0.0017
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observed few silica-bearing minerals and no iron-bearing minerals in the limestone and 

dolomite samples. On this basis, the flow-through experiments used a synthetic brine that 

excluded minor species  (Fe2+,  SiO2,  Sr2+, Br −,  Ba2+, and  NH4+) and gas (methane and 

nitrogen). Simplification of the chemical system allowed us to focus on the bulk of the sys-

tem and dominant reactions.

3  Analytical Algorithm for Reactive Transport Modeling to Evaluate 
Dual Porosity and Permeability

Here, we describe an algorithm that extends the existing analytical model of Erol et  al. 

(2017) for calculating porosity–permeability in porous and fractured media to reactive 

(transient) conditions. Published kinetic rate laws (Lasaga 1984) provide rates of change 

for mineral volume fraction, porosity, crystal radius, and hydraulic aperture dimension dur-

ing reaction. We estimate the specific surface areas of fracture and porous matrix pore con-

nections based on a fractal approach. Evaluation of permeability and porosity variation is 

based on an iterative calculation. Figure 4 illustrates the workflow. The mathematical deri-

vations presented below are elucidated in Appendix B.

The first step (i) is calculation of the fractal dimensions of porous and fractured media. 

Next (ii) is calculation of the specific surface areas of rock constituent minerals with regard 

to their volume fractions. This is for the purpose of describing pore and fracture network 

distributions. The third step (iii) involves calculation of the kinetic rates of dissolution/

precipitation for each mineral with respect to mineral saturation indices obtained from 

TOUGHREACT. As the reaction rates are calculated, the volume fractions of minerals 

(and therefore porosity) change. Changes in crystal radii and hydraulic aperture heights are 

also evaluated. These calculation steps are carried out iteratively for each mineral at a par-

ticular time step. The final task at a given time step is calculation of permeability with 

respect to the rate of change in fracture and matrix porosity, hydraulic aperture height, and 

pore radius.

The analytical algorithm presented step-by-step below relates to Fig. 4. The subscripts 

f and m denote the fracture, and the matrix, respectively; i refers to an individual mineral.

(i) Calculation of the fractal dimension of matrix blocks is based on Yu and Li (2001)

where Dfm is the fractal dimension of the matrix blocks. The fractal dimension is a dimen-

sionless parameter used to express the complexity of pore or fracture distribution in a 

medium. DR is the problem dimension, taken as 3 (i.e., three-dimensional), ϕm0 is the ini-

tial matrix porosity, and amin and amax are the minimum and maximum pore radii. Estima-

tion of pore radius based on porosity and crystal diameter is outlined in Appendix B.

(ii) The specific surface area of each constituent mineral of rock in matrix blocks is 

calculated with regard to its volume fraction (Vfmi) and the surface roughness factor (λm) as

(4)Dfm = DR − ln

⎛
⎜
⎜
⎝

𝜙m0
amin

amax

⎞
⎟
⎟
⎠

(5)Smi(t) = 𝜆m

3
(

r3
i_min

r
Dfm

i_max
− r

Dfm

i_min
r3

i_max

)(
Dfm − 4

)
(

r4
i_min

r
Dfm

i_max
− r

Dfm

i_min
r4

i_max

)(
Dfm − 3

) Vfmi(t)
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where λm is the surface roughness factor and rmin and rmax are the minimum and maximum 

crystal radii. The mean value of the cumulative distribution can be set as the maximum 

value of a crystal radius. The surface roughness factor is the ratio between the total surface 

area and the geometric surface area. It has an impact on mineral dissolution rates because it 

influences flow and transport rates and masses (Noiriel et al. 2012). Since the flow regime 

is laminar for our reactive transport simulations, the surface roughness factor is set to one 

(Deng et al. 2018).

The reactive surface area can then be calculated for each mineral as shown in the 

TOUGHREACT v1.2 manual (Xu et al. 2008) for mass-based units of  m2  kg−1

Fig. 4  Analytical model application workflow
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where ρw is pure water density (1000 kg m−3) at 4 °C and ϕm0 is the initial matrix porosity.

(iii) The kinetic rates of dissolution/precipitation for each mineral are calculated with 

respect to mineral saturation indices, , taken from TOUGHREACT. The kinetic rate 

equation that governs matrix pore radii for dissolution or precipitation is given by Lasaga 

(1984) as follows

in which Smi is the specific surface area of the total pore space in the domain, ki25 is the 

kinetic rate constant of each mineral at 25 °C, IAP is the ion activity product, and K is the 

equilibrium constant. IAP = K implies equilibrium of a mineral phase, IAP < K implies dis-

solution, and IAP > K indicates precipitation. The ratio of IAP to K is the saturation index 

of a mineral. The parameters p and q are empirical and dimensionless constants related to 

dissolution/precipitation and are generally designated as one for limestone and dolomite 

dissolution (Palandri and Kharaka 2004).

As reaction rates are calculated, the volume fraction change in each mineral is also cal-

culated. The volume fractions are then summed to yield the total porosity change (Emma-

nuel and Berkowitz 2007)

where vi is the molar volume of each mineral. The ± relates to dissolution or precipitation 

and Vfmi0 is the initial volume fraction.

in which n is the number of minerals (e.g., three minerals, calcite, dolomite, and quartz), 

Vfmi is the volume fraction of mineral, and Vfmnon is the volume fraction of non-reactive 

rock.

The rate of change in crystal radius due to reaction can be calculated as

ri_geo corresponds to the geometric radii of minerals changing over time.

Changes in crystal radius for each mineral can be calculated with respect to mineral 

volume fraction Vfmi(t) as

(6)RSAmi(t) =
Smi(t)

𝜌w𝜙m0

(7)Rmi(t) = Smi(t)ki25 exp

(
−Ei_a0

Rgas

[
1

T
−

1

298.15

])||||||||||
1 −

𝛺
⏞⏞⏞(

IAP

K

)
p||||||||||

q

(8)Vfmi(t) = Vfmi0 ± viRmi(t)t

(9)𝜙m(t) = 1 −

n∑

i=1

Vfmi(t) − Vfmnon

(10)ri_geo(t) =
𝜙m0

Smi(t)

(11)Δri(t) =
Vfmi(t) − Vfmi0

Vfmi0

ri_geo(t)

(12)ri_min(t) = ri_min0 ± Δri(t)
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The pore cross-sectional area of each mineral can be calculated with respect to the cor-

responding crystal radius from minimum to maximum and multiplied with the volume 

fraction of each mineral Vfmi in the matrix domain

The total pore cross-sectional area can be calculated by summing the cross-sectional 

areas of each adjacent mineral as

Following an iterative calculation of the matrix block parameters over time, the  next 

step calculates the fracture domain parameters based on a similar algorithm.

The fractal dimension of the fracture network can be estimated from Erol et al. (2017) as 

where Dff is the fractal dimension of the fracture network, DR is the problem dimension, 

again, taken as 3 (i.e., three-dimensional), ϕf0 is the initial fracture porosity, and hmin, hmax 

wmin, and wmax are the minimum and maximum hydraulic aperture heights and widths, 

respectively.

The specific surface area of each constituent mineral in the fracture network of the rock 

can be approximated as

where λf is the surface roughness factor in the fractures, set to one again with respect to the 

flow regime, Vffi0 is the volume fraction of each mineral in the fracture domain, assumed 

identical to the matrix blocks. The mathematical derivation of Eq.  17 can be found in 

Appendix B.

The reactive surface areas can again be calculated for each mineral in the fracture 

domain as shown in the TOUGHREACT v1.2 manual in units of  m2  kg−1

(13)ri_max(t) = ri_max0 ± Δri(t)

(14)Ami(t) =
𝜋a

DE−Dfm−1

min
(t)a

−DE

max (t)
(

a3
min
(t)a

Dfm

max(t) − a
Dfm

min
(t)a3

max
(t)
)(

Dfm − 1
)

(
Dfm − 3

)
𝜙m(t)

Vfmi(t)

(15)Am_TOT(t) =

n∑

i=1

Ami(t)

(16)Dff = DR − ln

⎛
⎜
⎜
⎝

𝜙f0

wminhmin

wmaxhmax

⎞
⎟
⎟
⎠

(17)

Sfi(t) = 𝜆f

2

[
−wmin

(
wmax

wmin

)Dff
h2
max

+ hmin

(
−w2

max
+ wmin

(
wmax

wmin

)Dff(
wmin + hmin

))( hmax

hmin

)Dff
]

(
w2
max

− w2
min

(
wmax

wmin

)Dff
)(

h2
max

− h2
min

(
hmax

hmin

)Dff
)

×

(
Dff − 2

)
(
Dff − 1

)Vffi(t)

(18)RSAfi(t) =
Sfi(t)

𝜌w𝜙f0
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where ϕf0 is the initial fracture porosity.

In the following step, the kinetic rate equation for dissolution or precipitation is calcu-

lated for the fracture network as

in which Sfi is the specific surface area of each mineral in the fracture network and ki25 is 

the kinetic rate constant of each mineral at 25 °C.

As the reaction rates are calculated, the volume fraction change in each mineral is simi-

lar to Eq. 8 (Emmanuel and Berkowitz 2007)

where vi is the molar volume of each mineral, subtraction or addition of the second term on 

the right-hand side is determined, respectively, by dissolution or precipitation, and Vffi0 is 

the initial volume fraction.

The total fracture porosity change is based on summation over all minerals. In the sum 

function, again, dissolution is associated with a minus sign and precipitation with a posi-

tive sign.

where n is the number of minerals, Vffi is the volume fraction of a mineral of interest, and 

Vffnon is the volume fraction of non-reactive rock.

The rate of change in the height of a hydraulic aperture is (Xu et al. 2008)

The cross-sectional area of fractures of each mineral can be predicted with respect to 

minimum and maximum of the hydraulic aperture heights and widths as

where Vffi is the volume fraction of each mineral in the fracture domain. The total fracture 

network can be calculated as a sum of the cross-sectional areas of each mineral as

At a last step, permeability is calculated with respect to the rate of change in porosity as 

in Erol et al. (2017)

(19)Rfi(t) = Sfi(t)ki25 exp

(
−Ei_a0

Rgas

[
1

T
−

1

298.15

])|1 − (𝛺)p|q

(20)Vffi(t) = Vffi0 ± viRfi(t)t

(21)𝜙f(t) = 1 −

n∑

i=1

Vffi(t) − Vffnon

(22)hi_geo(t) =
𝜙fi0

Sfi(t)

(23)Δhi(t) =
Vffi(t) − Vffi0

Vffi0
hi_geo(t) → hi_min∕max(t) = hi_min0∕max0 ± Δhi(t)

(24)

Afi(t) =

(
𝜙fi(t)

𝜙fi0

)
(

w2
min
(t) − w2

max
(t)
(

wmax(t)

wmin(t)

)−Dff

)(
h2

min
(t) − h2

max
(t)
(

hmax(t)

hmin(t)

)−Dff

)(
Dff − 1

)2

wmin(t)hmin(t)
(
Dff − 2

)2
Vffi(t)

(25)Af _TOT (t) =

n∑

i=1

Afi(t)
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in which τf is the tortuosity of the fracture network and χ denotes a constant that can be 

estimated approximately as χ = wmin/hmin.

4  Fitting

The main aim of the flow-through experiments is to determine initial values of reactive 

surface area, hydraulic aperture dimension, and porosity of natural samples under in situ 

conditions. In order to test and demonstrate the analytical algorithm, we compare results 

from it with those from permeability equations used in TOUGHREACT. We have defined 

five distinct scenarios (Table 2) for initial application of Eq. 26, where the goal is to eval-

uate the effect on permeability of interaction between highly saline artificial brine–CO2 

and dolomite as well as limestone at distinct temperature and pressure conditions within a 

reservoir.

Our ultimate aim is to compare the fit of results from the numerical and analytical mod-

els with permeability measurements. Therefore, we have set a constant pressure gradient 

with respect to the height of the hydraulic aperture in the numerical and analytical models. 

Hydraulic aperture heights are slightly distinct for each laboratory experiment, meaning 

that flow rates and pressure gradients are also distinct (due mainly to the short lengths of 

the samples, flow does not become fully developed). The lower the pressure gradient, the 

more challenging it is to estimate permeability, which we calculate based on Darcy’s law. 

We have investigated a range of temperatures and confining pressures for limestone and 

dolomite.

5  TOUGHREACT Benchmark

5.1  Model Setup

For the TOUGHREACT calculations, we configured a model domain similar to the labo-

ratory experiments (Fig. 5). For the calculation of ion activities of minerals, we used the 

Pitzer model, appropriate for saline fluid (> 2 mol kg−1 ionic strength). The spatial mesh 

discretization in the model is of 400 cells over a length of 10 cm. Flow velocity is set con-

stant at 1.33 × 10−6 kg s−1.

5.2  Geochemical Input Parameters

Chemical interactions between fluid and surrounding rock can lead to changes in fluid 

chemistry and mineral dissolution and precipitation. In order to determine an initial con-

centration for individual primary species, required for TOUGHREACT, we calculated the 

evolution of brine geochemistry due to interaction of brine–CO2 gas (e.g., 0.2 mol kg−1) 

with natural limestone and dolomite based on PHREEQC (Parkhurst and Appelo 2013). 

The primary species determined with PHREEQC are shown in Table 3 and were provided 

(26)𝜅mf(t) =
𝜙f(t)

𝜏f

⎛
⎜
⎜
⎝

Af_TOT(t)

𝜒
+ 24Am_TOT(t)

24

⎞
⎟
⎟
⎠
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as input in TOUGHREACT. As an input of a known pH value in TOUGHREACT, one can 

set CTOT = 10−pH for  H+ activity and  H2O to 1 L (CTOT = 1).

We estimated the initial volume fractions of limestone and dolomite from XRD quan-

titative data (Sect. 2.1). Regarding the XRD measurements, the mineral proportions were 

approximated with respect to the total sample volume for the calculation both in the ana-

lytical algorithm and TOUGHREACT simulation. The limestone sample (Turnhout) 

dominantly consists of calcite and small amount of dolomite and quartz. Therefore, we set 

the volume fraction of calcite at ~ 90%. Dolomite and quartz in limestone were set at 2% 

(Table 4). The dolomite (Halen) sample is pure (99% dolomite endmember). The crystal 

Fig. 5  Illustration of flow-through simulation in TOUGHREACT to serve as a basis of comparison with 

results from the novel analytical algorithm (1D constant flow in cross section)

Table 3  Chemical components 

of the brine–CO2 with limestone 

interaction at 25 °C

The calculated ionic strength of the brine is ~ 3 mol kg−1. CGUESS is 

an initial guess for the concentration of the individual primary species; 

CTOT is total moles of aqueous species

Species CGUESS (mol kg−1) CTOT (mol kg−1)

Ca2+ 0.2196 0.229

CO2 0.1606 0.2347

H+ (activity) 6.0 × 10−5 (pH ~ 5.4) 6.231 × 10−5 (pH ~ 5.4)

H2O 1.0 (L) 1.0 (L)

HCO3
− 0.001253 0.018306

Cl− 2.76 2.767

K+ 0.07 0.071

Na+ 2.157 2.165

Mg2+ 0.0175 0.0229

O2(aq) 1.0 × 10−6 1.0 × 10−6

Table 4  Approximated volume 

fractions of minerals in rocks for 

TOUGHREACT and analytical 

algorithm calculations

Total porosity both in limestone and dolomite samples is 6%

Sample Mineral Vol. fraction

Calcite 0.90

Limestone (turnhout borehole) Dolomite 0.02

Quartz 0.02

Dolomite (Halen borehole) Dolomite 0.86
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diameters of minerals were set to 2 μm in TOUGHREACT which also assumes a spherical 

geometry for the crystals.

The kinetic rate parameters of minerals were taken from a USGS Report by Palandri 

and Kharaka (2004) and are listed in Table 5. The kinetic rate of reactions over time was 

calculated as in Eq. 7 or 19.

5.3  Initial and Boundary Conditions

For the TOUGHREACT reactive transport simulation, we used the EOS 1 module (sin-

gle-phase flow). The simulation time was 30 years, a typical lifetime of a fluid extraction 

system. We used the default Newton–Raphson scheme with a  relative error criterion for 

convergence of 1 × 10−5. The time step was adaptive, with the maximum time step set to 

86,400 s (1 day).

6  Results

6.1  Initial Measurements

Several initial laboratory tests were conducted to determine the initial permeability and the 

related hydraulic aperture heights of dolomite and limestone samples. We scanned a single 

sample of limestone and dolomite at various confining pressures (e.g., 5 MPa to 30 MPa) 

with micro-CT during flow-through experiments performed with water at 20 °C.

According to the initial measurements, the height of fracture hydraulic apertures in the 

dolomite and limestone samples varies from 4 × 10−6 m to 8 × 10−6 m as can be seen in 

Table  6. Despite minor changes in the measured fracture permeabilities with increasing 

pressure load, we were able to quantify large changes in open void volume for these frac-

ture systems by using X-ray micro-CT. The dolomitic sample represents a fracture with 

a few large contact areas. In contrast, the limestone is characterized by smaller and more 

equally distributed contact areas (Fig. 6).

Regarding the initial tests, we set the initial values of hydraulic aperture height as hmin 

4 × 10−6 m and hmax 8 × 10−6 m for the analytical model predictions. The crystal diameters 

Table 5  Dissolution and 

precipitation data for minerals

a The initial volume fraction (Vmineral/Vsolid) is assumed for calculating 

initial effective surface area if a mineral is not present at the start of a 

simulation but precipitates as a new reaction product. If zero, the ini-

tial volume fraction is assumed to be  10−5

b Used both for dissolution and precipitation of minerals

Mineral Initial vol. 

 fractiona 

(Vmineral/Vsolid)

Activation 

energy Ea 
b

Rate constant  k298K b

Calcite 1.0 × 10−6 23.5 1.5 × 10−6

Dolomite 1.0 × 10−6 52.2 2.6 × 10−8

Quartz 1.0 × 10−6 87.7 3 × 10−14

Aragonite 1.0 × 10−6 23.5 1.5 × 10−6

Halite 1.0 × 10−6 7.4 0.8106

Magnesite 1.0 × 10−6 23.5 6.5 × 10−10
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were set as dmin 2 × 10−6 m and dmax 100 × 10−6 m from thin section observations. These 

values provide similar initial permeability and porosity predictions compared to meas-

urements. The measurements can be viewed as fitting of parameters within the analytical 

model to reproduce the permeability of experimental results. The measured initial perme-

ability and fracture porosity of all limestone and dolomite samples range  from 1 × 10−15 

to 5 × 10−16  m2 and 5%, respectively. TOUGHREACT requires specification of initial 

permeability and porosity. The initial fracture permeability in TOUGHREACT was set 

as the mean measured values (i.e., 2 × 10−16  m2). In contrast, the analytical model pre-

dicts the permeability depending on the height of hydraulic aperture size estimated from 

flow-through experiment. Since the aperture width of the numerical model is 5  cm, we 

set an identical value for the calculation of the analytical algorithm for all scenarios (i.e., 

wmin = 0.05 m, wmax = 0.0501 m).

6.2  Application Case Results

All flow-through experiments attained the target temperature within 1–2  h. The evalua-

tion of fracture permeability was calculated based on the temperature-dependent dynamic 

viscosity, taken from the reference tables according to salinity, temperature, and confin-

ing pressure (Phillips et al. 1980). During all flow-through experiments, the measured pH 

value did not change significantly over time. The measured pH value of the brine–CO2 

fluid was approximately 5.2–5. This pH value is slightly lower than the initially measured 

pH value (5.4 pH). The reason was that reactive fluid flowed only through the large single 

fracture, likely localizing interaction between the brine–CO2–rock and decreasing the satu-

ration degree of the fluid.

For all TOUGHREACT simulations, the changes in porosity were not identical along 

the model domain (400 cells) and the rate of change in porosity was larger near the inlet. 

According to Noiriel et al. (2009), at a constant flow rate, the saturation index and the pH 

increase in fluid as reaction advances toward equilibrium and the dissolution rate of calcite 

constantly decreases along the flow path. This is why porosity change was larger close to 

the inlet. We compared the TOUGHREACT results at the inlet of the model (the saturation 

Fig. 6  3-D view of segmented fracture zone of a dolomite and b limestone at 5 MPa confining pressure. 

Red colors indicate open pore space usable for fluid flow, while white colors represent contact areas
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indices of minerals correspond to the first cell encountered by fluid during flow). The root 

mean square errors (RMSE) are given in figure captions for each comparison.

In Fig. 7, dolomite permeability measurements at 40 °C and 60 °C do not match cal-

culations. The measurements demonstrate oscillations at the beginning of the laboratory 

experiment. Based on observations made after conclusion of the experiment, the oscilla-

tions happened due to the effect on the flow field of broken dolomite particles within the 

fracture. According to Luhmann et al. (2014) and Luquot et al. (2014), fine particle migra-

tion and clogging can lead to permeability reduction during experiments. At the beginning 

of the experiments, the replacement of reactive fluid (brine–CO2) with saline fluid (only 

brine) and temperature and pressure equilibrium in the autoclave may also influence flow 

velocity. The system reached the target temperatures after approximately 3 h. On reaching 

equilibrium between brine–CO2 and dolomite, the permeability patterns stopped changing 

over time. According to the literature, dolomite reactivity is 10–100 times slower than for 

calcite (Nogues et al. 2013). Therefore, more time is needed for the dolomite samples to 

stabilize the measurement.

The analytical algorithm at both temperatures shown in Fig. 7 slightly underestimates 

the permeability of dolomite compared to the cubic-law prediction in TOUGHREACT. If 

we examine further the results shown in Figs. 8 and 9, the comparison between the specific 

surface areas, kinetic rates, and fracture porosity estimations agree with analytical predic-

tions. As we expressed in Sect. 1.1, in TOUGHREACT the empirical exponent is set to 

3 in the power-law equation, and this likely yields an underestimation or overestimation 

of permeability. According to Smith et  al. (2017), a wide range of dissolution front fea-

tures are related to  reactive fluid flow through  well-sorted pore distributions or through 

cemented fossil fragments. These can enhance interaction between reactive fluid and crys-

tals. In this way, the empirical exponent value of n = 3 (cubic-law) or a higher value can be 

obtained. In contrast, if the reactive fluid flows through large fracture pathways, the interac-

tion decreases and the result is a more acidic pH. The lower interaction restricts mineral 

dissolution and localizes dissolution along single fractured regions. 

The analytical predictions agree well with TOUGHREACT as can be seen in Figs. 8 

and 9. In particular, the fracture porosity matches well with results from TOUGHREACT. 

It can be again noted that the TOUGHREACT PetraSIM interface does not demonstrate 

the results of matrix block parameters (e.g., matrix porosity, matrix reaction surface area). 

Fig. 7  Fracture permeability results of Halen borehole (76-E-243) dolomite samples: a Scenario 1, 1366 m 

at 40  °C; b Scenario 2, 1200  m at 60  °C. TR: TOUGHREACT. RMSE between analytical versus flow-

through measurements and between analytical versus TOUGHREACT, respectively; for Scenario 1 at 

40 °C: 0.68, 0.40; for Scenario 2 at 60 °C: 0.99, 0.16

20

ht
tp
://
do
c.
re
ro
.c
h



Therefore, we only show analytical calculation results. The initial values of the specific 

surface areas were first calculated analytically with Eqs. 5 and/or 17 set to the TOUGH-

REACT simulator for all scenarios. In addition, TOUGHREACT requires specification of 

either the fracture or the matrix reactive surface areas of each mineral or the total surface 

areas of both fracture and matrix blocks because the simulator does not take into account 

separate fracture and matrix surface areas. Reactive surface areas of minerals on fracture 

walls are calculated from the fracture–matrix interface area/volume ratio (Xu et al. 2008). 

We discuss TOUGHREACT calculation methods further in Sect. 8.

In Figs. 8 and 9, the reaction rate of dolomite slightly decreases and changes in the reac-

tive surface are small. However, porosity increases more than two times its  initial value. 

These results indicate that the reactive fluid–rock interface area barely changes over time 

and the dissolution kinetics of dolomite mostly drives the porosity change.

Limestone experimental permeability measurements again do not match calculations 

but provide an approximate initial permeability value for benchmarking the models. The 

measurements at 40  °C and 60  °C shown in Fig.  10 have relatively stable permeability 

patterns over time. In contrast, the permeability for the limestone sample at 100 °C was 

more erratic during the experiment. It decreased approximately one order of magnitude 

Fig. 8  Halen borehole (76-E-243) dolomite samples, Scenario 1, 1366 m at 40 °C. a Fracture and matrix 

porosity over time. b Reaction rates (R) and fracture reactive surface areas (RSA) over time. Color code: 

red—dolomite. TR: TOUGHREACT. Calculated pH with TR is 5.49 and constant over time

Fig. 9  Halen borehole (76-E-243) dolomite samples, Scenario 2, 1200 m at 60 °C. a Fracture and matrix 

porosity over time. b Reaction rates (R) and fracture reactive surface areas (RSA) over time. Color code: 

red—dolomite. Calculated pH with TR is 5.36 and constant over time
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within the first 4 h, and there is a second decreasing trend after 7 h. Luhmann et al. (2012) 

observed similar fluctuations at 100 °C and indicated that during reactive fluid flow, accu-

mulations of  CO2 generated pressure pulsations due to temporary obstructions by exso-

lution and re-dissolution of  CO2. Fluid flow at higher temperatures and  higher driving 

pressure can avert exsolution of  CO2 gas dissolved in brine (e.g., partial pressure of  CO2 

of 4.5–5.5 MPa at 100 °C; Duan and Sun 2003; Duan et al. 2006). Due to high pressures, 

mineral precipitation in this sample is unlikely to be due to  CO2 exsolution. Observation of 

the limestone experiment at 100 °C after the flow-through performance demonstrates that 

precipitation of some secondary aqueous species in brine (NaCl or CaCl) occurred through 

the stainless steel and iron pipe connections in contact with brine–CO2 led to corrosion and 

plugged the plastic filter at the bottom of the sample prior to interaction of fluid with the 

sample. This shows that the high salinity of brine interaction with the stainless steel pipe 

connections has a significant impact on experiments.

The results for the limestone experiment shown in Fig. 10 demonstrate that the analyti-

cal algorithm slightly underestimates permeability at 40 °C and 60 °C and matches fairly 

at 100 °C.

When we analyze again the other parameters of the simulations such as the frac-

ture porosity, the reaction surface areas and the kinetic rates, we see a good agreement 

between the TOUGHREACT results and the analytical algorithm predictions (details of 

Fig. 10  Fracture permeability results for the Turnhout borehole (17-E-225) limestone samples: a Scenario 

3, 2188.5 m, sample 3 at 40 °C; b Scenario 4, 2188.5 m, sample 1 at 60 °C; c Scenario 5, 2188.5 m, sample 

2 at 100 °C. RMSE between analytical versus flow-through measurements and between analytical versus 

TOUGHREACT, respectively; for Scenario 3 at 40 °C: 0.15, 0.87; for Scenario 4 at 60 °C: 0.12, 0.75; Sce-

nario 5 at 100 °C: 0.99, 0.21
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the results can be found in Appendix C). The reactive surface area of the calcite mineral 

decreases over time and the dissolved calcium ions interact with magnesium and  HCO3
− 

aqueous species, resulting in dolomite. However, it is still not clear why the perme-

ability comparisons vary depending on the temperature, the type of rock, and the other 

characteristics.

6.3  Comparison with the Reference Experimental Data

Smith et al. (2017) performed flow-through experiments on dolomite and limestone sam-

ples at 60 °C to determine the exponent empirical value of “n” for reactive transport simu-

lations. As can be seen in Table 7, they proved in detail some of the measurement param-

eters of dolostone samples and limestones. In order to investigate further the impact of 

matrix porosity on the permeability and to verify our non-empirical solution, we calculated 

permeability with the TOUGHREACT simulator based on the values provided by Smith 

et al. (2017) for dolostone samples (e.g., A1520A, A1520B and A1444) in Fig. 12 and for 

limestone samples in Fig. 11 (e.g., V-1 and V-3). 

In Fig. 11, the analytical solution predicts larger permeability change over time com-

pared to the cubic law approach obtained with TOUGHREACT. On the other hand, the 

analytical solution agrees well with the Verma and Pruess (1988) equation if the empirical 

exponent is set to n = 6 for the V-1 sample and n = 8 for the V-3 sample. The calcite is com-

pletely dissolved in V-3 between 50 and 55 h and this led to a steep trend as can be seen 

in Fig. 11b for the analytical calculation. This empirical exponent value is nearly in agree-

ment with what Smith et  al. (2013, 2017) suggest for limestone (e.g., n = 6–8, Table 7). 

According to the results demonstrated in Fig. 10, the larger pore and fracture connections 

of limestone likely augment the reactive surface area and increase the interaction between 

the reactive fluid and minerals, resulting in a larger amount of dissolution. Thus, the empir-

ical exponent value becomes larger.

The comparison depicted in Fig. 12 demonstrates that the novel algorithm agrees well 

with the measurements of Smith et al. (2017) and the empirical exponent values (Table 7). 

Only the permeability result of A1520A calculated with the novel algorithm corresponds 

to a slight underestimation compared to the measured value of Smith et  al. (2017). The 

crystal sizes and the height of the hydraulic apertures that we predicted may have an influ-

ence on these results, since these parameters are not precisely provided. The variation of 

empirical values between A1520A and A1520B can be accounted for via  the the reac-

tion rate of dolomite, which is approximately two orders of magnitude larger for A1520B 

(Table 7). Although sample A1520B has larger reaction rate for dolomite, the impact of 

dolomite dissolution on permeability is lower in contrast to the result of A1520A. The flow 

paths of A1520A are possibly longer that yield stronger dolomite dissolution and the per-

meability change is larger compared to A1520B. This indicates that empirical value mainly 

corresponds to the pore-fracture geometry.

In Figs.  13 and 14, the reactive surface areas  and the kinetic rates of A-1520A and 

A-1520B do not undergo any major changes over time, but the volume ratio of the dolo-

mite slightly declines. This may indicate that dolomite dissolves while the surface area of 

the pore–mineral interface hardly alters. Dissolution is likely restricted in localized flow 

paths. Therefore, predicted permeability has an empirical exponent value of less than 3. 

Figure 15 shows dimensionless analyses of the distinct permeability models, and it can 

be seen that the cubic-law approach (Eq. 1) agrees well with the Kozeny–Carman (Carman 

1939) (Eq. 2) and Verma and Pruess (1988) (Eq. 3) models when the matrix porosity is 
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1%. In contrast, the cubic-law and the Kozeny–Carman equations underestimate the per-

meability compared to the Verma and Pruess (1988) equation if the matrix porosity is 10%. 

In both cases, the analytical algorithm results match results from the reference equation of 

Verma and Pruess (1988) with larger n value.

Fig. 11  Comparison of permeability models for limestone with measurements of Smith et al. (2013, 2017): 

a V-1 sample. b V-3 sample. TR: TOUGHREACT. RMSE between analytical versus Verma and Pruess 

(1988) with TR; for V-1: 0.60, for V-3: 0.95

Fig. 12  Comparison of permeability models and measurements of Smith et  al. (2017): a Dolostone 

A1520A sample at 60 °C. b Dolostone A1520B sample at 60 °C. c Dolostone A1444 sample at 60 °C. TR: 

TOUGHREACT. RMSE between analytical versus Verma and Pruess (1988) with TR; for A1520A: 0.60, 

for A1520B: 0.32, for A1444; 0.13
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Published permeability data from existing studies based on flow-through experiments 

are shown in Table  8. They generally demonstrate a one- or two-order of magnitude 

increase due to dissolution of calcite or dolomite. Compared to our experiments, the pub-

lished experiments used brine at a lower ionic strength (< 2 mol kg−1 of NaCl) and with 

two to three times higher dissolved  CO2. In contrast to the previous studies, the amount of 

dissolved  CO2 is lower and salinity is higher in our experiments. Therefore, we may expect 

a  lower impact of dissolution on the permeability over time compared to other previous 

studies with lower salinity and higher  CO2 contents.

Fig. 13  Comparison of results of TOUGHREACT (circles) and novel algorithm predictions (lines) for the 

dolostone sample A1520A. The values given by Smith et  al. (2017) as triangle symbols can be found in 

Table 7. a Fracture and matrix porosity over time. b Reaction rates (R, plain symbols, and solid lines) and 

fracture reactive surface areas (RSA, empty symbols, and dash-dot lines) over time. Color code: red—dolo-

mite, black—quartz. Calculated pH with TOUGHREACT is 4.93 and constant over time. According to 

Smith et al. (2017), the measured pH is around 4.6

Fig. 14  Comparison of TOUHGREACT (circles) and analytical predictions (lines) for the dolostone sample 

A1520B. The values given by Smith et al. (2017) (triangle symbols) can be found in Table 7. a Fracture and 

matrix porosity over time. b Reaction rates (R, plain symbols, and solid lines) and fracture reactive surface 

areas (RSA, empty symbols, and dash-dot lines) over time. Color code: red—dolomite, black—quartz. Cal-

culated pH with TR is 4.06 and constant over time. According to Smith et al. (2017), the measured pH is 

around 4.3
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6.4  Chemical Concentration Results

The brine  Na+,  K+,  Mg2+,  Ca2+ concentrations shown in Fig.  16 are compared 

with  ICP–OES measurements following limestone–brine interaction at various tempera-

tures with TOUGHREACT calculation results for scenarios 3–5 (Table  2). The reactive 

fluid was sampled during the flow-through experiments from the outlet of the autoclave 

apparatus, and the TOUGHREACT results were taken from the last cell (i.e., at the outlet).

Measured and calculated (TOUGHREACT) species concentrations remained stable over 

time and in agreement for  K+,  Mg2+,  Ca2+, which have lower concentrations in the brine 

following rock–fluid interaction. On the other hand, while Na provided by TOUGHREACT 

results matches measured values at lower temperature, there is a mismatch at higher tem-

perature (Table 9). There are  three possible  reasons. (i) ICP–OES species measurements 

took place at room temperature. (ii) The measurements of  Na+ based on a radial wavelength 

of 589.592 nm may have had an impact on the results (Table 2A). We examined the chemi-

cal interactions between brine–CO2 and limestone using PHREEQC with the Pitzer model 

for the same ionic strength during 1D fluid flow (ionic strength 3 mol kg−1). TOUGHRE-

ACT and PHREEQC results are identical. (iii) ICP–OES outputs the total amount of Na, 

including the species NaCl(aq), NaHCO3, and NaOH, whereas the TOUGHREACT–Pet-

raSIM provides only the amount of  Na+.

We investigated the influence of non-saline  CO2 fluid circulation on permeability by 

conducting flow-through experiments based on distilled water–CO2  (CO2 ~ 0.2 mol kg−1). 

The non-saline fluids participate in dissolution that involves greater ion-exchange for both 

limestone and dolomite. The permeability of the samples increases by approximately one 

order of magnitude under distilled water–CO2 conditions at 60  °C over 9  h. A  similar 

impact can be seen in Table  8;  the change in permeability at  lower fluid  ionic strength 

(~ 1 mol  kg−1) is larger than for fluid at  higher ionic strength (~ 3 mol  kg−1). ICP–OES 

analyses of fluid samples from the distilled water–CO2 experiments show that the cation 

changes in fluid, particularly the measured concentrations of  Ca2+ and  Mg2+ species, dem-

onstrate constant dissolution over time (dissolution amount  Ca2+ ~ 4.5 × 10−4 mol kg−1 and 

 Mg2+ ~ 3.3 × 10−4 mol kg−1).

Fig. 15  Comparison ratios of distinct models for limestone with a matrix porosity of 1% and 10%. Fracture 

porosity set constant to 5%. TR: TOUGHREACT 
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6.5  Comparison of Calculation Runtime with TOUGHREACT 

The novel analytical algorithm clearly has an advantage in terms of computation runt-

ime compared to TOUGHREACT (Table 10). However, the analytical algorithm provides 

results based on local saturation index data whereas TOUGHREACT performs thermody-

namic equilibration for each of the 400 cells in the domain. The measurements of Noiriel 

et al. (2009) indicate that thermodynamic equilibrium changes along the length of the sam-

ple in the flow direction (i.e., from inlet to outlet). Mesh size and time step specifications 

are important considerations. In general, both should be reduced until further reduction 

leads to minimal variation in the results. Finer meshes and smaller time steps are generally 

correlated with longer simulation times. An appropriate time marching method must be 

Fig. 16  Brine cation concentrations over time from reactive fluid flow-through experiments on Turnhout 

borehole (17-E-225) limestone samples (Table 2): a Scenario 3 at 40 °C. b Scenario 4 at 60 °C. c Scenario 

5 at 100 °C. Circles are ICP–OES measurements, lines are TOUGHREACT results (symbology common to 

all three subplots)

Table 9  Root mean square 

errors of concentrations 

between TOUGHREACT and 

measurements

Temperature 

(°C)

Ca2+ K+ Mg2+ Na+

40 0.004 0.120 0.010 0.313

60 0.048 0.130 0.009 0.369

100 0.034 0.127 0.011 0.483
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selected. The analytical algorithm yields exact results that can serve as a basis for compari-

son with numerical solutions.

7  Discussion

The flow-through experiments were restricted to durations of 12–14  h due to both the 

restricted volume capacity of the 500D syringe pumps and laboratory regulations that pro-

hibited nighttime use of facilities. In addition, the literature does not provide such data 

for reactive transport in fractured media, with the exception of Smith et  al. (2017), who 

reported permeability measurements based on micro-fractured carbonate samples under 

reactive conditions. We otherwise present the first permeability measurements of fractured 

carbonate rock cores under reactive flow conditions suitable for initial model validation. 

A valuable contribution from a future study would involve experimental observation over 

much longer timescales—a couple of weeks or months. We expect that at such timescales, 

mineral dissolution and precipitation effects would be more obvious. The current capacity 

of the syringe pumps is not sufficient for circulating fluid through core samples over weeks 

or days. Therefore, we are at present restricted to what is presented here. Nevertheless, we 

made permeability evolution observations sufficient to obtain initial values and fitting for 

the analytical model and TOUGHREACT. The most important parameters governing cal-

culation of mineral precipitation and dissolution are the kinetic rate constant and mineral 

saturation indices. The dolomite precipitation rate was slower than that of limestone pre-

cipitation, which affected its permeability relative to that of limestone.

Permeability predictions based on the analytical algorithm differ significantly from 

those calculated from the cubic-law equation (Civan 2001) implemented in TOUGHRE-

ACT due to the influence of the empirical constant (n = 3). RMSE based on the analytical 

(Eq. 26) and cubic law (Eq. 1) results increases as temperature rises. In contrast, RMSE 

based on flow-through measurements and the results of Eq. 26, decreases as temperature 

rises. The reason was a constant value for n (i.e., that implies a fixed relationship between 

porosity and permeability); however, Figs. 11 and 12 show that n values may in fact vary 

significantly with respect to pore–fracture geometry. As the fluid flow path is longer, the 

interaction between minerals and reactive fluid flow increases and leads to larger amount of 

mineral dissolution (Smith et al. 2017).

Mineral-specific surface area is another important source of difference between the 

permeability predictions. Noiriel et al. (2009) suggested the sugar-lump model to predict 

the reactive surface area for reactive transport models. In theory, the assumption of the 

sugar-lump model is similar to our fractal approach. However, the advantage of our fractal 

approach for predicting reactive surface area is that an empirical constant is not required. 

For dealing with fractures in TOUGHREACT, the areas are calculated with respect to 

Table 10  Comparison of the 

calculation runtimes between 

TOUGHREACT and the novel 

analytical algorithm

a Hardware specifications: Intel i5-6200U Dual-Core 2.5 GHz proces-

sor with 8 GB of RAM

Model Runtime (s)a

Analytical algorithm for reactive transport 3.5

TOUGHREACT (400 cells) Scenario 1-Dolomite 1625

TOUGHREACT (400 cells) Scenario 2-Limestone 1620
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fracture density, fracture porosity, and mean fracture diameter calculated based on the frac-

ture spacing parameters defined in the MINC solver. The wall of a fracture is treated as a 

surface covered by mineral grains in the form of uniform hemispheres. The dual porosity 

model in MINC assumes homogeneous distribution of matrix blocks, but fracture sizes and 

therefore, reactive surface areas, may vary. The fractal distribution is based on the cumula-

tive power-law function, which is easy to upscale. We note that Wei and Xia (2017) pro-

pose that the length distribution of fractures and fracture networks may not always follow 

the fractal law—that the fractal network may be multifractal or non-fractal. Further atten-

tion to fractal approaches for characterizing complex fracture networks is an important 

focus for future work. Nevertheless, the novel analytical algorithm provides an alternative 

approach far as describing the cumulative distributions of fracture and crystal sizes used 

for predicting the specific surface areas and permeability.

8  Conclusion

We have developed a predictive non-empirical analytical algorithm of dual porosity cou-

pled with kinetic rate laws and mineral dissolution/precipitation for use in examining the 

impact of surface-controlled reactions on permeability. Here we have used the algorithm to 

calculate evolving system permeability during fluid circulation and fluid–rock interaction 

within systems relevant to deep geothermal energy exploitation, where temperature and 

pressure may be elevated and fluid may be saline and  CO2-bearing.

From comparison of results based on the novel algorithm with those based on perme-

ability models implemented in the well-known reactive transport code TOUGHREACT 

v1.2, the analytical model may have an advantage compared to the cubic-law approach 

(Civan 2001), the Verma and Pruess (1988) equation, and the simplified Kozeny–Carman 

equation (Carman 1939). The cubic-law approach incorporates a fixed empirical exponent 

for all fracture–pore geometries and therefore may underestimate or overestimate the per-

meability. The equation by Verma and Pruess (1988) also uses an empirical exponent but 

may provide an improved porosity–permeability relationship. Where the empirical expo-

nent is fixed at values taken from Smith et al. (2017) for dolomite and limestone at 60 °C, 

it leads to permeability values that compare well with those based on the novel algorithm. 

The use of empirical exponents relies on the literature data and mostly the exponent value 

is restricted for a specific system not linked to the system of interest. We have demon-

strated that the empirical exponent mainly relates to pore–fracture geometry, which influ-

ences the amount of mineral dissolution rather than kinetic rates of dissolution. We believe 

that the parameters used in our algorithm are considerably easier to measure compared to 

the specific exponent values. The novel algorithm may therefore be a favorable option.

TOUGHREACT-based simulation of reactive surface area and matrix and fracture 

porosity matches well with analytical algorithm-based descriptions of observations on 

limestone and dolomite samples. The prediction of reactive surface area based on the 

cumulative distribution of hydraulic aperture and crystal radii of rocks may yield a con-

venient alternative approach to existing methods because the fractal approach provides a 

diverse range of reactive surface areas in natural systems. The new analytical algorithm 

may allow efficient reactive transport reservoir-scale simulation because the equations 

are derived from the fractal distributions of pores and fractures. In addition, the analyti-

cal algorithm may also provide an advantage in terms of computation time. The algorithm 

can be applied to evaluate quantitative relationships between porosity and permeability and 
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reactive surface areas of sedimentary rocks and may be of particular use for reactive trans-

port modeling in reservoir studies.
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Appendix A

The autoclave, a specially designed X-ray transparent core holder, consisted of aluminum. 

The cylindrical samples were placed in a Viton sleeve, which was attached to porous spac-

ers of metal at both sides of the sample. The confining pressure was controlled by the pres-

sure of water surrounding the sample in an annulus between the sleeve and the aluminum 

tube. The applied stress acted in the perpendicular direction to the vertical specimen axis 

representing a normal loading condition. The samples were constrained in axial direction 

by gripped clamping of the core holder.

The pumps and heating jackets (up to 200 °C) were controlled by syringe pumps (Tel-

edyne ISCO, Lincoln NE, USA). Pump A and pump B were used for closed circulation to 

control upstream and downstream flow, where each pump had a capacity of 500 mL (500D 

syringe pump). Pump C was used to control confining pressure with a capacity of 260 mL 

(260D syringe pump). The reactor was used to mix brine and any  CO2 gas and was only used 

for the experiments conducted with  CO2 (Table  3). Experiments were limited to approxi-

mately 12 h, mainly due to the restricted volume capacity of the 500D syringe pumps.

The core holder was placed on the rotational stage of the micro-CT apparatus as illus-

trated in Fig. 1b. The Volex 6 reconstruction software package (Fraunhofer-Allianz Vision 

2012) was used to reconstruct of the conical X-ray beam. Upon their exit from the sample, 

attenuated X-rays were converted to a gray-value image. This used a reconstruction algo-

rithm based on the Radon transform (Feldkamp et al. 1984). The gray values corresponded 

to measured X-ray intensities. Segmentation of the reconstructed gray-value images corre-

sponded to the identification and separation of phases of interest (e.g., pores or grains and 

subsequent labeling process to create binary images). These binary images are usable for 

the evaluation of fractures within the examined limestone and dolomite samples.

The influence of different X-ray tube parameters was tested, and the best parameters 

were obtained for high-power application on the X-Ray transmission tube (Table 11).

The software package Avizo Fire, version 9.1.1© (FEI Visualization Sciences Group 

2016) was used for segmentation purposes. The total fracture porosity of the sample, ϕf, is 

the ratio of the pore space to the total number of voxels (Noiriel et al. 2009).

For the XRD measurements, the samples were manually crushed using a mortar and 

sieved below 500 microns and further reduced to submicron sizes using a McCrone Micro-

nizing Mill with corundum crushing pellets. The sample powder was spiked with a reference 

of 0.3 g of zinc oxide added to 2.7 g of the samples as the internal standard technique, and for 

quantification a Rietveld-based refinement was used. The precision of measurement is ~ 1%.

We used ICP–OES data to estimate the chemistry of synthetic brine sample and to 

collect the amount of cation data for validating TOUGHREACT results. Stefan and Neu-

bauer (2014) provide technical information regarding the ICP–OES device. The accuracy 

and precision of the measured mass of the cations are limited by several factors, such as 
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sensitivity drift, elemental/isotopic fractionation, matrix effects, interferences, and the lack 

of sufficiently matrix-matched reference materials (Lin et al. 2016). Therefore, to provide 

the analysis with appropriate calibration and correction, the fluctuations of the measure-

ments must be normalized (De Ridder et al. 2002). The intensity of the energy emitted at 

the chosen wavelength is proportional to the concentration of that element in the analyzed 

sample. We determined the optimal normalization factor via software program WinLab 32 

(PerkinElmer 2010) for the synthetic brine based on the following procedure. First we pre-

pared mixtures of pure distilled water and synthetic brine at respective ratios of 1:10, 1:50, 

1:100 and 1:1000. In addition, we used another calibration data from a test in which is 

conducted with a standard solution of 5 elements (e.g.,  Al3+,  Ca2+,  K+,  Mg2+, and  Na+). 

The standard solutions contain 1000 mg  l−1 of each element, and dilutions are prepared 

with the identical ratios as described above for the first case. Mixing was achieved via an 

auto-machine to avoid contamination. Measurement and calibration results are compared 

with initial species concentrations in the synthetic brine in Table 12. The best match cor-

responds to a ratio of 1:1000 distilled water–synthetic brine.

Appendix B

The derivations of equations depicted in Sect. 3 are demonstrated here. The cross section 

areas and specific surface areas of pore space in matrix blocks and in the fracture network 

are derived based on the complimentary cumulative power function.

The particular expressions for power-law cumulative distribution function (CDF) is 

given as follows

N is the cumulative number of parameter, X is the integrated random variable (x), and 

α is the likelihood estimation parameter. The parameter α can be replace with the fractal 

dimension Df which is the slope of the best fit line on a logarithmic plot of the number 

(1B)N(X ≥ x) =
𝛼 − 1

x−𝛼+1
min

∫
∞

x

X−𝛼dX =

(
x

xmin

)−𝛼+1

Table 12  The comparison of ICP–OES measurements and the expected concentration in brine composition 

at the ratio of 1:1000

Cation wavelengths (nm)

Concentration measured with ICP-OES
mol kg-1 (ratio 1:1000)

Concentration of the initial values of the 
synthetic brine when it is prepared mol 
kg-1 (ratio 1:1000)

Na+ (589.592)    0.0023
0.0021Na+ (330.237)    0.0023

Na+ (589.592rad) 0.0022
K+ (766.490)     3.703 / 9.49×10-5

8.2×10-5K+ (404.721)     -0.235 --
K+ (766.490rad)  8.88×10-5

K+ (404.721rad)  4.59×10-5

Mg2+ (285.213)    2.86×10-5

2.1×10-5Mg2+ (279.077)    2.19×10-5

Mg2+ (285.213rad) 2.3×10-5

Mg2+ (279.077rad) 2.15×10-5

Ca2+ (317.933)    2.07×10-4

1.88×10-4Ca2+ (315.887)    2.09×10-4

Ca2+ (317.933rad) 2×10-4

Ca2+ (315.887rad) 2×10-4

The best correlations are highlighted in red-color font
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of parameter versus the size of the parameter, a description of the complexity of fractal 

patterns.

The derivation of Eq. 1B yields the probability density of variable x as

Differentiating both sides with respect to x yields the number of variable as

This CDF method can be applied for both cumulative pore and fracture distribution in a 

rock. Furthermore, it can be implemented in a reactive transport code to evaluate the rate 

of change in pores and in fractures.

The pore radii can be estimated as

where amin and amax are the minimum and maximum pore radii, rmin and rmax are the mini-

mum and maximum crystal radii, and ϕm is the matrix porosity. The maximum value of a 

crystal radius can be the mean value of the cumulative distribution.

The pore radii as a function of fractal dimension and porosity is given as

The cross section area of pore space in a rock matrix block can be estimated with the 

combination of Eq. 3B and 5B as

where Dfm is the fractal dimension of the matrix domain.

The integration of Eq. 6B and alteration of pore radii due to reactive transport

in which Vfm is the volume fraction of a mineral.

The specific surface area of porous medium can be estimated as

(2B)N =

(
x

xmin

)−Df+1
𝜕

𝜕x

(3B)
−dN1 =

Df − 1

xmin

(
x

xmin

)Df

dx

(4B)amin∕max =
2rmin∕max√

2

(
arctan

(√
𝜙m(

1 − 𝜙m

)
)

+
(
𝜙m − 1

)(√
𝜙m(

1 − 𝜙m

)
))

(5B)a
−Dfm

min
=
a
DR−Dfm

max 𝜙m

a
DR

min

(6B)
Am =

n∑

j=1

𝜋a2
j
=∫

amax

amin

𝜋a2
(
−dN1

)
= ∫

amax

amin

𝜋a2
Dfm − 1

aminaDfm
a

DR−Dfm
max 𝜙m

a
DR
min

da

(7B)Ami(t) =
𝜋a

DE−Dfm−1

min
(t)a

−DE

max (t)
(

a3
min
(t)a

Dfm

max(t) − a
Dfm

min
(t)a3

max
(t)
)(

Dfm − 1
)

(
Dfm − 3

)
𝜙m(t)

Vfmi(t)
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λm is the surface roughness in matrix domain, SAm is the total surface area of a mineral in a 

matrix block, and Vm is the total volume of pore spaces in a matrix domain. After the inte-

grations the specific surface is

In a similar manner, the cross section area of fracture network and the specific surface 

area can be estimated as

The specific surface area of fracture surface can be calculated as

where λf is the surface roughness in fracture domain Vff is the volume fraction of a mineral, 

SAf is the total surface area of a mineral in matrix block, and Vf is the total volume of the 

fractures.

(8B)Sm = 𝜆m

SAm

Vm

Vfm = 𝜆m

4𝜋
∑2

j=1
r2

j

4𝜋

3

∑n

j=1
r3

j

Vfm = 𝜆m

4𝜋 ∫ rmax

rmin
r2 Df −1

rminrDfm
r
DR−Dfm
max 𝜙m

r
DR
min

dr

4𝜋

3
∫ rmax

rmin
r3 Df−1

rminrDfm
r
DR−Dfm
max 𝜙m

r
DR
min

dr
Vfm

(9B)Sm(t) = 𝜆m

3
(

r3
min

r
Dfm

max − r
Dfm

min
r3

max

)(
Dfm − 4

)
(

r4
min

r
Dfm

max − r
Dfm

min
r4

max

)(
Dfm − 3

) Vfm(t)

(10B)Af =

n∑

k=1

m∑

j=1

wkhj =

wmax

∫
wmin

hmax

∫
hmin

wh
(
−dN1

)(
−dN2

)

(11B)

Afi(t) =

(
𝜙fi(t)

𝜙fi0

)
(

w2
min
(t) − w2

max
(t)
(

wmax(t)

wmin(t)

)−Dff

)(
h2

min
(t) − h2

max
(t)
(

hmax(t)

hmin(t)

)−Dff

)(
Dff − 1

)2

wmin(t)hmin(t)
(
Dff − 2

)2
Vffi(t)

(12B)Sf = 𝜆f

SAf

Vf

Vff =

2
z∑
s=1

ls

(
n∑
k=1

wk +
m∑
j=1

hj

)

z∑
s=1

n∑
k=1

m∑
j=1

lswkhj

=

2

(
wmax∫
wmin

w
(
−dN2

)
+

hmax∫
hmin

h
(
−dN1

))

wmax∫
wmin

hmax∫
hmin

wh
(
−dN1

)(
−dN2

)

(13B)

Sfi(t) = 𝜆f

2

[
−wmin

(
wmax

wmin

)Dff
h2
max

+ hmin

(
−w2

max
+ wmin

(
wmax

wmin

)Dff(
wmin + hmin

))( hmax

hmin

)Dff
]

(
w2
max

− w2
min

(
wmax

wmin

)Dff
)(

h2
max

− h2
min

(
hmax

hmin

)Dff
)

×

(
Dff − 2

)
(
Dff − 1

)Vffi(t)
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Appendix C

The benchmarking results shown in Figs. 17, 18, and 19 are obtained at 40 °C, 60 °C, and 

100 °C temperatures for the limestone samples (Scenario 3–5; Table 2). The permeability 

comparison of these scenarios can be found in Fig. 10. The comparison results agree here 

well in common for the parameters of fracture porosity, reaction rate, volume ratio of min-

erals, and reaction surface area. In contrast to these parameter results which are in-line with 

the TOUGHREACT, the permeability results in Fig. 10 do not match due to the cubic-law 

(Eq. 1) prediction based on the fixed empirical exponent value.

Fig. 17  Comparison results of TOUHGREACT (circles) and analytical predictions (lines) for the Turnhout 

borehole (17-E-225) limestone sample: Scenario 3, 2188.5 m, sample 3 at 40  °C. a Fracture and matrix 

porosity over time. b Reaction rates (R, plain symbols, and solid lines) and fracture reactive surface areas 

(RSA, empty symbols, and dash-dot lines) over time. Color code: blue—calcite, red—dolomite, black—

quartz. TR: TOUGHREACT. Calculated pH with TR is 5.56 and constant over time

Fig. 18  Comparison results of TOUHGREACT (circles) and analytical predictions (lines) for the Turnhout 

borehole (17-E-225) limestone samples: Scenario 4, 2188.5 m, sample 1 at 60 °C. a Fracture and matrix 

porosity over time. b Reaction rates (R, plain symbols, and solid lines) and fracture reactive surface areas 

(RSA, empty symbols, and dash-dot lines) over time. Color code: blue—calcite, red—dolomite, black—

quartz. Calculated pH with TR is 5.44 and constant over time
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