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SUMMARY

Quantitative estimation of pore fractions filled with liquid water, ice and air is crucial for
a process-based understanding of permafrost and its hazard potential upon climate-induced
degradation. Geophysical methods offer opportunities to image distributions of permafrost
constituents in a non-invasive manner. We present a method to jointly estimate the volumetric
fractions of liquid water, ice, air and the rock matrix from seismic refraction and electrical
resistivity data. Existing approaches rely on conventional inversions of both data sets and
a suitable a priori estimate of the porosity distribution to transform velocity and resistivity
models into estimates for the four-phase system, often leading to non-physical results. Based
on two synthetic experiments and a field data set from an Alpine permafrost site (Schilthorn,
Bernese Alps and Switzerland), it is demonstrated that the developed petrophysical joint inver-
sion provides physically plausible solutions, even in the absence of prior porosity estimates.
An assessment of the model covariance matrix for the coupled inverse problem reveals re-
maining petrophysical ambiguities, in particular between ice and rock matrix. Incorporation
of petrophysical a priori information is demonstrated by penalizing ice occurrence within the
first two meters of the subsurface where the measured borehole temperatures are positive. Joint
inversion of the field data set reveals a shallow air-rich layer with high porosity on top of a
lower-porosity subsurface with laterally varying ice and liquid water contents. Non-physical
values (e.g. negative saturations) do not occur and estimated ice saturations of 0—50 per cent
as well as liquid water saturations of 15—75 per cent are in agreement with the relatively
warm borehole temperatures between —0.5 and 3 ° C. The presented method helps to improve
quantification of water, ice and air from geophysical observations.

Key words: Hydrogeophysics; Electrical resistivity tomography (ERT); Inverse theory; Joint
inversion; Seismic tomography.

1 INTRODUCTION

Climate-induced degradation of permafrost can release substantial
amounts of soil organic carbon into the atmosphere (e.g. Schuur
et al. 2015) and increase the probability of slope failures in Alpine
regions (e.g. Huggel et al. 2012). Understanding hydrological pro-
cesses in permafrost systems is crucial to parametrize numerical
models that simulate the evolution and potential carbon feedback
of terrestrial permafrost as well as to assess the hazard potential of
permafrost degradation on a physical basis.

While borehole information is expensive and limited to discrete
locations, geophysical imaging offers opportunities to derive quanti-
tative and non-invasive insights on permafrost characteristics at high

spatial and temporal resolution. Electrical resistivity and acoustic
velocity of a medium are sensitive to the phase change of water
between its liquid, frozen, and gaseous states. Electrical resistivity
tomography (ERT) and refraction seismic tomography (RST) are
thus widely used in cryospheric geophysical applications (Hauck &
Kneisel 2008).

Hilbich et al. (2008) analysed a 7-yr-long ERT and borehole
temperature monitoring data set at the Schilthorn, Swiss Alps and
characterized both short-term (e.g. seasonal active layer dynamics)
and long-term effects (e.g. ground ice degradation as a consequence
of the extraordinary hot European summer in 2003). Dafflon et al.
(2016) combined ERT with frequency-domain electromagnetic in-
duction data, core analysis, and digital surface models to estimate
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the spatial distribution of shallow permafrost in an Alaskan tundra
environment. Oldenborger & LeBlanc (2018) imaged changes in
unfrozen water content in accordance with temperature measure-
ments alongside airport infrastructure.

While ERT is highly sensitive to unfrozen water content, quanti-
tative estimates of ice from electrical data alone are impeded since
ice and air are practically electrical insulators and may not be distin-
guished from a resistive rock matrix. Fortunately, air and ice usually
differ by an order of magnitude in their acoustic velocities, in ad-
dition to velocity changes of up to 2000 ms™' between frozen and
unfrozen water (Hilbich 2010), making RST a valuable additional
method in cryospheric geophysics (e.g. Harris & Cook 1986; Kraut-
blatter & Draebing 2014; Steiner ef al. 2019). For example, Dou &
Ajo-Franklin (2014) performed seismic measurements in the arctic
permafrost region and identified a low velocity zone, which is likely
related to partially thawn saline permafrost and in agreement with
ERT measurements by Hubbard et al. (2013). Merz et al. (2016)
used ERT and RST measurements together with other geophysical
as well as geotechnical data for a multidisciplinary characterization
of an Alpine rock glacier. The authors combined the insights ob-
tained from the different methods in a qualitative interpretation and
concluded that joint inversions of different geophysical data sets
offer opportunities for the quantification of permafrost composition
in future studies.

To take advantage of the complementary sensitivities of ERT and
RST for the quantification of permafrost constituents, Hauck et al.
(2011) presented a petrophysical four-phase model (4PM) incor-
porating estimates of liquid water, ice and air contents for given
separate inversions of electrical and seismic refraction data sets and
a pre-existing porosity estimate. Mewes et al. (2017) assessed the
resolution capacity of the 4PM, which depends on the individual
resolution capacities of ERT and RST, with regard to the estimation
of liquid water and ice contents for typical processes in the context
of permafrost degradation. The authors emphasized that artifacts
in the individual inversions can impair the physical plausibility of
the estimated constituents and potentially lead to misinterpretation.
They further found that smoothness regularization applied to the
individual inversions can underestimate the magnitude of changes.
Pellet et al. (2016) improved the 4PM through soil moisture cali-
bration. Instead of prescribing the porosity, the authors developed
an estimate of its distribution based on a three-phase model in the
unfrozen part of the subsurface. They found that one remaining chal-
lenge in the application of the 4PM is the possibility of simulated ice
occurrence even in regions where it is highly unlikely, highlighting
the need for means to impose physical constraints during inversion.
To this end, we present an approach that uses apparent resistiv-
ities and seismic traveltimes simultaneously in a petrophysically
coupled joint inversion to improve the quantification of permafrost
constituents from geophysical observations.

2 THEORY AND METHOD
2.1 Acoustic and electrical properties of partially frozen
ground

Following Hauck et al. (2011), it is assumed that permafrost systems
comprise the volumetric fractions of the solid rock matrix (f;) and
a pore-filling mixture of liquid water (fy,), ice (f;) and air (f;)

S+t fot+ fit fa=1 (M
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The volumetric fractions of the solid rock matrix, liquid water,
frozen water and gaseous water or air, are herein referred to as
rock, water, ice and air content, respectively. This terminology is
chosen for the sole reason of brevity noting that both ice and air
can represent different physical states of water, whereas the term
rock is commonly used for the bulk medium. We emphasize that
treatment of the rock content as a single phase is a simplification
particularly favorable for Alpine permafrost, where the fraction of
hard rock is much higher compared to shallow arctic permafrost for
example. The latter may exhibit a pronounced and potentially clay-
rich soil layer with very different acoustic and electrical properties
than competent porous materials at larger depths.

The seismic slowness (s) of the four-phase system, that is, the
reciprocal of the seismic P-wave velocity (v), is described by a time-
averaging equation that sums up the slownesses of the individual
components weighted by their respective volumetric fractions (e.g.
Timur 1968)
s=l=&+£+£+£. 2)
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Eq. (2) assumes that the medium is isotropic, has a single homo-
geneous mineralogy, and is at high effective pressure (e.g. Mavko
et al. 2009). References to alternative approaches better suited for
the characterization of permafrost in unconsolidated materials are
provided in the discussion.

Under the assumption that electrolytic conduction dominates,
a modification of Archie’s second law (Archie 1942) is used to
describe the electrical resistivity of the bulk medium. As in Hauck
et al. (2011), the porosity ¢ in the original form of Archie’s second
law is expressed in terms of the rock content, that is, ¢ = 1 — f;,
while the liquid water saturation is replaced by the ratio of water
content and porosity:

_ _ —m f w >—”
p=pw(l—f) <l—ﬁ . 3)
Assuming prior estimates of porosity, the Archie parameters (ce-
mentation exponent m and saturation exponent n), pore water resis-
tivity py, and the velocities of the four constituents, Hauck et al.
(2011) used eqgs (1), (2) and (3) to derive expressions for water, ice
and air contents. These are then used to transform tomograms of
p and s, obtained through individual inversions of ERT and RST
data sets, into estimates of liquid water, ice, and air (Fig. 1a). The
obtained estimates and their physical plausibility depend on the
two tomograms and cannot be constrained directly. In the follow-
ing, we describe a petrophysically coupled joint inversion approach,
which uses both data sets to directly estimate the constituents of the
four-phase system (Fig. 1b).

2.2 Petrophysical joint inversion for permafrost
constituents

The parameter vector p consists of the volumetric fractions of water,
ice, air and rock for each model cell

p=[fufifu 1] )

Theoretically one could only invert for three phases and obtain the
fourth one by subtraction from unity, but this would not safeguard
against negative values in the fourth phase. Furthermore, having
all four phases in the parameter vector enables flexible incorpora-
tion of prior information. During inversion, a transformed model
vector m is used, where each entry in p is constrained to vary be-
tween zero and one by making use of logarithmic barriers such that
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Figure 1. Schematic on the estimation of water, ice and air from ERT and RST data. (a) Conventional inversion of both data sets with subsequent petrophysical
transformation. (b) Petrophysical joint inversion honoring both data sets and petrophysical relations during parameter estimation.

= log(pf.) — log(1 — pj?) after Kim & Kim (2011). The use of
logarithmic barriers keeps each volumetric fraction within physi-
cal limits (i.e. 0 < £y, fi, fa, fr < 1) while simultaneously reducing
the ill-posedness of the inverse problem. Here, the indices j and &
refer to spatial model cells and type of volumetric pore fraction, re-
spectively. Traveltimes and logarithmized apparent resistivities are

concatenated in the data vector

T
d = [t,log(p,)] - (5)
We minimize the following objective function:

[ Wa(d — F(m))|l5 + || Wnml|5
+ B p — 12 6)
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The first term quantifies the misfit between observed data d and
the model response F(m) incorporating the reciprocals of the in-
dividual data errors on the diagonal of data weighting matrix W .
Note that the model response JF(m) contains petrophysical trans-
formation according to eqs (2) and (3) followed by independent
solutions of the RST and ERT forward problems. The second term
represents a smoothness regularization applied to the model vector
m, where W, is a block matrix holding four first-order roughness
operators on its diagonal to promote smoothness in the distribu-
tion of each constituent of the four-phase system. The third term is
an additional regularization term to fulfill the volume conservation
constraint in eq. (1). Here, W' is a block matrix of four adja-
cent identity matrices acting on the untransformed petrophysical
parameter vector p to penalize solutions for which the sum of the
four volumetric fractions deviates from unity. The fourth term rep-
resents a damping regularization and allows to incorporate a priori
information on the petrophysical target parameters by penalizing
deviations from a given reference model p,. Here, W, is a square
matrix with either zeros or ones along its diagonal depending on
which model parameters are sought to stay close to the reference
model p,. The fourth term is optional. For example, we discuss joint
inversion results with and without a prescribed porosity distribution
throughout this paper. The former uses y = 0, whereas the latter
uses y = B and W, = diag([0, 0, 0, I]) to penalize solutions for
which the rock content distribution deviates from its prior estimate.
The dimensionless factors « and B scale the influence of the regu-
larization terms. 8 is chosen large enough to prohibit non-physical
solutions, while « is chosen to fit the data within error bounds.

To minimize the objective function (eq. 6), the following aug-
mented system of normal equations is solved for the model param-
eter update Am in a least-squares sense using the LSQR algorithm
by Paige & Saunders (1982):

WeJ Wo(d — F(m))
aW, —aW.m
A sum Am = ~ sum . (7)
BW, B — W, m)
YW,y y(po — Wom)

Due to the use of logarithmic barriers, the transformed parame-
ters m are non-linear functions of the petrophysical target param-
eters p. Since the volume conservation and damping constraints
are acting on the latter, the model weighting matrices W;”m and
W, have to be scaled with the reciprocals of the partial deriva-
tive of m with respect to p at each iteration before multiplication
with the model update Am, that is W, = W, diag(dm/dp)~" an

~ sum

W, = W™ diag(dm/ dp)~". Similarly, the Jacobian matrix J is

recomputed ateach iteration J = J diag(dm /9p)~", where J holds
the changes in traveltime and logarithmic apparent resistivity with
respect to changes in the petrophysical target parameters:

at ot ot ot

_ 0fw of; af, af;
T =\ 91oglp,) dloglp,) dloglp,) dloglpy) |° ®)
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The individual matrix entries are obtained by appropriate scaling of
the common Jacobian entries of both methods. Scaling factors are
dependent on the underlying petrophysical model (here eq. 2 and
eq. 3) and detailed in Appendix A.

3 SYNTHETIC EXAMPLES

3.1 Synthetic model and data

To evaluate the performance of the joint inversion approach, a three-
layer model is considered (Fig. 2a). Parameters are defined in terms
of water, ice, air and rock contents and subsequently transformed
into velocity and resistivity distributions for the generation of syn-
thetic data. The model represents a typical layered scenario encoun-
tered in Alpine periglacial environments comprising a 5 -m-thick,
unfrozen active layer (i.e. the seasonal thaw layer), a 10 -m-thick
partially thawn layer with laterally changing ice and liquid water
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Figure 2. (a) True model, (b) conventional inversion results and (c) joint inversion results with a priori knowledge of the porosity distribution. All models are
cut off below the lowermost ray path and in regions where the respective volumetric fraction is negative. Sensors are marked as black semicircles. Note that the
electrical resistivity (second row) is displayed on a logarithmic colour scale. If not otherwise indicated in the lower left of each panel, the distributions shown
in (b) and (c) directly result from the respective inversions. The annotation 7ransformed means that the respective quantity is obtained through transformation

of the actual inversion results using petrophysical equations.

Table 1. Petrophysical parameters used in eq. (3) (left) and constituent
velocities used in eq. (2) (right) for the synthetic examples. All parameters
are assumed to be spatially constant.

Archie parameters Constituent velocities

Parameter Value Unit Parameter Value Unit
Pw 150 Qm Ve 1500 ms!
n 2 - v 3500 ms!
13 - Va 330 ms!

Ve 5500 ms!

contents, and a frozen bedrock underneath. The porosity is de-
creasing from 40 to 20 per cent layer-wise with depth. Velocity and
electrical resistivity are calculated according to eqs (2) and (3) with
the parameters listed in Table 1 and generally increase with depth
due to the decreases in liquid water and air contents, combined with
increases in ice and rock contents.

While the acoustic velocities of water, ice, and air are agreed upon
in the literature, v, is strongly dependent on the type of rock (or soil).
The chosen value of 5500 m s~ may represent a metamorphic rock
such as a pyritic paragneiss (e.g. Draebing & Krautblatter 2012).
Common literature values are used for the Archie parameters (m and
n), whereas the pore water resistivity p,, was chosen on the basis
of laboratory measurements in an Alpine permafrost context (e.g.

Hauck & Kneisel 2008). All parameters in Table 1 are chosen to
be constant throughout the model domain and not estimated during
inversion. We refer to Hauck ef al. (2011) for a sensitivity analysis
of v, p,,, m and n in the context of ice estimation.

Synthetic traveltime data are generated assuming 53 geophones
spaced by 2.5m and collocated shot positions resulting in 2756
shot-receiver pairs. Ray tracing utilizes the shortest path method
with three additional nodes on each edge of a triangular model cell
to increase the ray path accuracy following the approach outlined
by Giroux & Larouche (2013). Traveltime noise was added as ad-
ditive Gaussian white noise (AGWN) with a standard deviation of
0.5ms.

Electrode positions coincide with geophone locations. A dipole—
dipole data set with dipole lengths of one, two and four unit electrode
spacings is simulated neglecting absolute geometric factors above
5000 m resulting in 1414 apparent resistivities. Forward modelling
employs quadratic shape functions, an enlarged forward model-
ing domain to avoid boundary effects, and is detailed by Riicker
et al. (2006). A normally distributed relative error of 5 per cent
was added to the simulated apparent resistivities. All conventional
and joint inversion results presented in the following use four times
larger smoothing in the horizontal direction to promote the expected
layered structure and describe the synthetic data sets within their
respective error bounds.



1870  EM. Wagner et al.

3.2 Inversion with correct porosity estimate

Conventional inversion results of traveltimes and apparent resis-
tivities (Fig. 2b) are obtained using a Gauss—Newton scheme with
smoothness regularization as detailed in Riicker ef al. (2017). Ve-
locity and electrical resistivity tomograms are transformed into dis-
tributions of water, ice and air using the 4PM and assuming that the
porosity structure is known.

The different volumetric fractions are qualitatively and quanti-
tatively in good agreement with the true model. Solely in the con-
ductive and low velocity top layer, where the individual inversions
exhibit small-scale variability close to the sensors, the 4PM pro-
duces small regions of negative ice content down to —6 per cent and
overestimates the water content by up to 9 per cent.

Fig. 2(c) shows the results obtained with the developed petro-
physical joint inversion approach. The quantitative agreement to
the true model (Fig. 2a) is slightly better in comparison to the con-
ventional inversion and the layer boundaries are more pronounced.
Moreover, non-physical values do not occur close to the sensors.

3.3 Inversion with incorrect porosity estimate

We evaluate the inversion performance without detailed knowl-
edge of the porosity distribution, as common for field applications
(Fig. 3). Note that the true model has not changed, that is Figs 2(a)
and 3(a) show identical distributions. For the conventional inver-
sion, a homogeneous rock matrix content of 70 per cent (i.e. ¢ =
0.3) is assumed (lowermost panel in Fig. 3b). This estimate is cor-
rect for the middle layer, but under- and overestimates the porosities
of the top and bottom layer by 10 per cent, respectively, leading to
non-physical ice content estimations in the top layer (reaching —
14 per cent). In turn, ice contents in the bottom layer are strongly
overestimated. This overestimation stems from the assumption of
homogeneous porosity, as the high velocity below 15 m depth can
no longer be explained by a porosity decrease and is compensated
by additional ice. Furthermore, the air content in this region is
non-physical (i.e. slightly below zero).

In the corresponding joint inversions, homogeneous rock con-
tent was only used as the starting model for f; and allowed to vary
by £15 per cent during the inversion. Estimates of water, ice and
air contents are significantly improved through the joint inversion
approach and do not exhibit any non-physical values (Fig. 3c).
Moreover, the inversion indicates a porosity decrease with depth
revealing that the measured data cannot be explained with the ho-
mogeneous starting model of f;. The high ice content in the centre
of the model cannot be reconstructed and is compensated by an
increase in rock content.

3.4 Model parameter interdependency

To quantify the interdependency of water, ice, air and rock content,
we consider the model covariance matrix of the coupled inverse
problem. The model covariance elucidates how errors in the data
are propagated into errors of the estimated model parameters. Diag-
onal elements represent variances of the corresponding parameters,
while off-diagonal values indicate correlations between pairs of
model parameters (e.g. Aster et al. 2012). For better illustration,
the parameters are grouped into five discrete blocks as outlined in
Fig. 3(a).

To highlight the need for petrophysical constraints, we compare
the covariances of the coupled inverse problem without (Fig. 4a) and
with volume conservation constraints (Fig. 4b). In the unconstrained

covariance matrix, the air content has the lowest diagonal values,
partly due to generally small air contents in the model. In addition,
the velocity of air differs significantly from the other constituent ve-
locities (Table 1) leading to its generally good discriminability. For
the remaining fractions, strong off-diagonal elements appear par-
ticularly in regions where the amount of unfrozen water is relatively
high (parameters i, ii and iv). In comparison, the covariances are
considerably lower in regions where the water content is low and no
air exists (parameters iii and v). Covariances within one parameter
group and between parameter groups are drastically reduced after
applying volume conservation constraints in eq. (1) (Fig. 4b). Sig-
nificant variances remain in the upper unfrozen part of the model
(parameter i), where sensitivities are generally higher, indicating
that errors in the data are more strongly reflected in errors in the
model. In addition, strong variances are visible between ice and
rock contents for the other parameters, that is, at greater depth.

4 FIELD DATA EXAMPLE

To demonstrate the applicability of the developed joint inversion ap-
proach to a real permafrost scenario, we consider a data set acquired
at the Schilthorn site located in the Bernese Alps in Switzerland.
The lithology of the Schilthorn massif mainly consists of ferrugi-
nous sandstone schists (Imhof et al. 2000). The bedrock weather-
ing produced a fine-grained surface debris layer with a thickness
up to 5 m (Hilbich ef al. 2008). As part of the PACE project, a
drilling campaign and first RST and ERT measurements were per-
formed in 1998 to assess the presence of permafrost (Vonder Miihll
et al. 2000). Borehole temperature measurements revealed warm
permafrost, that is, near subzero temperature, where the liquid wa-
ter content can be relatively high. The Schilthorn site became a
reference monitoring site of PERMOS (Swiss Permafrost Monitor-
ing Network, PERMOS 2016) including numerous measurements
of temperature in three boreholes, ground surface temperature, soil
moisture, ERT, RST, snow thickness, wind speed and direction, as
well as solar radiation.

An ERT monitoring profile was initiated in 1999, automatized
in 2009, extended in 2012 and is still maintained and functional
(for data acquisition and preprocessing details see Hilbich et al.
2008, 2011; Mollaret er al. 2018). The ERT acquisition system
is composed of 49 fixed electrodes spaced by 2m connected to a
GeoTom device (GEOLOG, Germany) used with a Wenner config-
uration. We only consider the first half of this permanent profile,
where collocated geophone positions exist to ensure equal lateral
coverage of both methods. The seismic signal is generated by a
sledge hammer striking a steel plate at 25 shot positions located
in between each geophone and recorded through a Geode device
(Geometrics, USA). First breaks were manually picked and seismic
traveltime errors were estimated to range between 0.1 and 0.5 ms
(Hilbich 2010). We use 0.3 ms as an error estimate for the RST
data and 3 per cent relative error for the ERT data. Similarly as for
the inversion of synthetic data, all conventional and joint inversion
results use four times larger smoothing in the horizontal direction
to promote layered subsurface structures.

We consider a data set measured on 19 August 2014 presented
by Pellet ef al. (2016). On that day, the thaw layer depth in the two
boreholes available along the profile was observed around 2.1 m
depth. In warm recent years, maximum thaw depths at the end
of summer reached 9—10m indicative of considerable permafrost
degradation (PERMOS 2019). Fig. 5(a) shows the conventional
inversion results with a subsequent application of the 4PM using
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Figure 4. Model covariance matrix for the petrophysical joint inversion. Red
and black indicate strong positive and negative parameter covariance, white
indicates no correlation. The Roman numbering of the model parameters is
depicted in Fig. 3(a).

the parameters from Pellet et al. (2016) as listed in Table 2 and
a constant porosity of 53 per cent based on in sifu measurements
performed by (Scherler 2006). To allow comparability with previous
Schilthorn studies (e.g. Hilbich ef al. 2008; Pellet et al. 2016), water,
ice and air contents are displayed as saturations, that is divided by
porosity.

With a prescribed and constant porosity, the conventional ap-
proach can only satisfy the low velocities near the surface with
non-physical values for ice and air saturations reaching —142 and
4207 per cent, respectively (Fig. 5a). In contrast, non-physical
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values do not occur in the petrophysical joint inversion results,
as lower porosities near the surface (Fig. 5b) are allowed during
parameter estimation.

Since the joint inversion is formulated in terms of the petrophys-
ical target parameters, it becomes possible to include prior infor-
mation, for example, constraints on water content based on soil
moisture measurements or temperature-dependent constraints on
ice occurrence. Here, we demonstrate the latter by constraining ice
contents to zero, where the measured borehole temperatures (shown
in Figs 6a and 7a) are positive. This is achieved by creating a box
with a radius of 2 m around the corresponding depth interval of the
borehole (as indicated for ice saturation in Fig. 5¢) and adding cells
in this box to the damping constraint in eq. (6). To allow for sharp
transitions in the vertical direction across the known thaw depth,
we disable smoothing regularization across the lower boundary of
this box (by setting the corresponding entries of W, to zero). A
similar approach has been used by Wunderlich et al. (2018) to con-
strain ERT inversion results to direct push electrical conductivity
logs.

While generally comparable to the unconstrained version
(Fig. 5b), no ice appears in the upper 2 m around the boreholes
in the joint inversion result with borehole constraints (Fig. 5¢). The
decrease in ice also affects deeper parts of the model and is com-
pensated by an increase in rock content (i.e. a decrease in porosity),
which in turn leads to higher water saturations. The air saturation
in all three approaches is high in the thawed part of the model and
quickly approaches zero at larger depths.



1872 EM. Wagner et al.

(a) Conventional inversion and 4PM (b)

—_

Depth (m)

-

-

Depth (m)

—_

Depth (m)

—_

Depth (m)

_ —_
o o1 owm o o0 oo O o oo O o1 oW o oo oo O o O

—_

-

Depth (m)

min: -0.06 | max: 2.07

—_

< SCH_5000

—_

Depth (m)

min: 0.47 | max: 0.47
0 10 20 30 40 50 0 10 20

15 TSI

x (m) x (m)

Petrophysical joint inversion (c)

min: 0.04 | max: 0.55

min: 0.05 | max: 0.85

min: 0.17 | max: 0.75

Petrophysical joint inversion
with borehole constraints

min: 589 | max: 7891

min: 0.15 | max: 0.77

min: 0.01 | max: 0.49

min: 0.07 | max: 0.86
o 1 bt A

min: 0.18 | max: 0.79

40 5 0 10 20 30 40 50
x (m)

Figure 5. Tomograms of the Schilthorn field data sets obtained through (a) conventional inversion, (b) joint inversion and (c) joint inversion with borehole
constraints. If not otherwise indicated in the lower left of each panel, the shown distributions directly result from the respective inversions. All models are cut
off below the lowermost ray path and in regions where the respective saturation is negative or exceeds one. Sensors are marked as black circles. Note that the
electrical resistivity (second row) is displayed on a logarithmic colour scale. Boreholes and associated thaw depths are marked as vertical and horizontal lines,
respectively. The black boxes superimposed on the ice saturation in (c) mark the regions where the ice content has been constrained to zero.

Table 2. Petrophysical parameters used in eq. (3) (left) and constituent
velocities used in eq. (2) (right) for the field data example taken from Pellet
et al. (2016). All parameters are assumed to be spatially constant.

Archie parameters Constituent velocities
Parameter Value Unit Parameter Value Unit
Pw 60 Qm Ve 1500 ms!
n 24 - v 3500 ms!
1.4 - Va 300 ms™!
Vi 6000 ms!

To highlight quantitative differences between the different inver-
sion approaches, Figs 6 and 7 show the measured borehole tem-
peratures with depth together with the inversion results shown in
Fig. 5 extracted at the borehole locations. The effect of logarithmic
barriers can be seen in Fig. 6(c) for instance, where in contrast to
the conventional approach, joint inversion results do not cross the
zero line.

While the conventional inversion and joint inversion without
borehole constraints show smooth transitions of ice saturation in
the upper few meters for example, the added borehole constraints
result in sharp transitions, that is, a better delineation of the thawn
layer (e.g. Fig. 7c). Again, it can be seen how the decrease in ice
(e.g. Fig. 7¢c) is causing an increase in rock content (e.g. Fig. 7e),
which in turn increases water saturation (e.g. Fig. 7b).

5 DISCUSSION

Transformation of conventionally inverted velocity and resistivity
tomograms into estimates of water, ice and air can lead to non-
physical results in the presence of data errors and incorrect porosity
estimates. For the Schilthorn case, this was also found by Pellet
et al. (2016), who then derived porosity in the unfrozen part from
a three-phase model calibrated to shallow soil moisture measure-
ments and assumed a gradient porosity in the deeper part. With
the assumption of porosity decrease with depth and soil moisture
measurements, Pellet ef al. (2016) obtained tomograms comparable
to our results from the petrophysical joint inversion, which used no
prior information on porosity.

Petrophysical joint inversion combines the information of RST
and ERT measurements and leads to quantitatively improved im-
ages by honoring petrophysical relations and volume conservation
during parameter estimation. Inversion of synthetic data without a
porosity estimate (Fig. 3¢) and analysis of the model covariances
has revealed a strong ambiguity between ice and rock contents. This
ambiguity also became apparent in the application to field data and
is in agreement with the findings by Hauck e al. (2011). The authors
analytically explored the range of possible values for ice, water, air,
and rock contents for a given pair of resistivity and velocity values.
By comparing the spread of solutions, it was found that air and
water content can be discriminated quite well even if porosity is
unknown, while there is a strong ambiguity between ice and rock
contents.
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Figure 6. (a) Temperature measured on 19 August 2014 in borehole SCH_5198 and (b—e) corresponding four-phase constituents derived from conventional
inversion and petrophysical joint inversion without and with borehole constraints. The horizontal and vertical grey lines mark the thaw depth and zero line,

respectively. The borehole location is depicted in the lower left panel of Fig. 5.
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Figure 7. (a) Temperature measured on 19 August 2014 in borehole SCH_5000 and (b—e) corresponding four-phase constituents derived from conventional
inversion and petrophysical joint inversion without and with borehole constraints. The horizontal and vertical grey lines mark the thaw depth and zero line,
respectively. The borehole location is depicted in the lower left panel of Fig. 5.

The discriminability between ice and rock matrix could be im-
proved by incorporation of additional freeze—thaw sensitive data
sets such as complex electrical resistivity measurements. Results of
first laboratory (Wu et al. 2013; Kemna et al. 2014) and field studies
(Grimm & Stillman 2015; Mudler ef al. 2019) hold promise for ice
quantification, as the spectral response of frozen ground is strongly
affected by the electrical polarization characteristics of ice. Ambi-
guity could further be reduced in a monitoring context, where the
porosity can be assumed to be constant within the observed period
(Hauck et al. 2017). Inclusion of multiple timesteps into a time-
lapse joint inversion therefore represents a promising extension to
this work.

The approach presented is not restricted to the empirical model
by Archie (1942) and the time-averaging equation by Timur (1968)
and does not attempt to address their general shortcomings. For
example, a general and often overlooked problem is that the empiri-
cal factors (e.g. the saturation exponent) are commonly assumed to

be spatially constant in field applications. Future extensions of our
work could incorporate advanced petrophysical formulations more
representative for the studied field sites.

For the case of saline permafrost for example, Wu et al.
(2017) presented a modified formulation, which takes structural
soil changes as well as temperature-dependent salinity changes (i.e.
electrical conductivity changes) of unfrozen water during freeze-
thaw transitions into account. Based on a field survey on a rock
glacier and associated laboratory measurements, Duvillard et al.
(2018) emphasized that surface conduction can be significant and
has to be taken into account when estimating liquid water content
in environments where electrolytic conduction is not dominating
the bulk electrical conductivity. For the case of low-porosity hard
rocks, Draebing & Krautblatter (2012) presented a modified Timur
equation that accounts for changes in matrix velocity due to ice
pressure. Dou et al. (2017) presented a two-end-member mixing ap-
proach accounting for the coexistence of frame-strengthening and
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pore-filling ice to describe the P-wave velocity in saturated, uncon-
solidated saline permafrost, where conventional slowness averaging
would be inadequate.

6 CONCLUSIONS

We have developed a petrophysical joint inversion approach that
uses seismic traveltimes and apparent resistivities to image dis-
tributions of water, ice, air and rock content. Since petrophysical
relations and volume conservation are honored during parameter
estimation, our approach produces physically meaningful results,
even in the absence of correct porosity estimates, and thereby out-
performs post-inversion transformation of conventional tomograms.
A significant advantage is that the inversion constraints can be for-
mulated in terms of the petrophysical target parameters facilitating
the flexible use of a priori information and direct incorporation
of non-geophysical data, for example, constraints on water content
inferred from soil moisture measurements, into the inversion.

An application to a field data set from the Schilthorn, Swiss
Alps, has revealed physically plausible tomograms in agreement
with previous studies without relying on suitable a priori porosity
estimates. We conclude that our method contributes to improved
quantification of water, ice and air from geophysical observations
and will therefore be of direct use for researchers and practitioners
in cryogeophysical and hydrogeophysical applications.

Yet joint inversion alone is not able to overcome the inherent
petrophysical ambiguities between ice and rock matrix, which re-
main to be addressed in future studies through additional (non-
)geophysical observations, advanced petrophysical formulations
and monitoring applications. To facilitate adoption and further de-
velopment of the method, we made the algorithm available under a
permissive BSD license. It is based on the open-source modeling
and inversion library pyGIMLi (Riicker et al. 2017). The implemen-
tation as well as scripts to reproduce results and figures of this paper
can be found at https://github.com/florian-wagner/four-phase-inv
ersion.
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APPENDIX A: PETROPHYSICALLY
TRANSFORMED JACOBIAN

Changes in traveltime and apparent resistivity with respect to
changes in the petrophysical target parameters are obtained by chain
rule splitting, where the outer derivative represents the common Ja-
cobian entries of both methods, that is, d#/ds and dlog (p,)/dlog (p),
whereas the inner derivative applies appropriate petrophysical scal-
ing according to eqs (2) and (3). Additional multiplication with p/p,
accounts for the logarithmic transform used in the Jacobian entries
of the conventional geoelectrical inverse problem.
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