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a b s t r a c t

The eccentricity of a vertex v in a graph G is the maximum distance between v and any
other vertex of G. The diameter of a graph G is the maximum eccentricity of a vertex in G.
The eccentric connectivity index of a connected graph is the sum over all vertices of the
product between eccentricity and degree. Given two integers n and D with D ≤ n−1, we
characterize those graphs which have the largest eccentric connectivity index among all
connected graphs of order n and diameter D. As a corollary, we also characterize those
graphs which have the largest eccentric connectivity index among all connected graphs
of a given order n.

1. Introduction

Let G = (V , E) be a simple connected undirected graph. The distance d(u, v) between two vertices u and v in G is the
number of edges of a shortest path in G connecting u and v. The eccentricity ϵ(v) of a vertex v is the maximum distance
between v and any other vertex, that is max{d(v, w) | w ∈ V }. The diameter of G is the maximum eccentricity among all
vertices of G. The eccentric connectivity index ξ c(G) of G is defined by

ξ c(G) =

∑
v∈V

deg(v)ϵ(v).

This index was introduced by Sharma et al. in [3]. Alternatively, ξ c can be computed by summing the eccentricities of the
extremities of each edge:

ξ c(G) =

∑
vw∈E

(ϵ(v) + ϵ(w)).

We define the weight of a vertex by W(v) = deg(v)ϵ(v), and we thus have ξ c(G) =
∑

v∈V W(v). Morgan et al. [2] gave
the following asymptotic upper bound on ξ c(G) for a graph G of order n and with a given diameter D.

Theorem 1 (Morgan, Mukwembi and Swart, 2011 [2]). Let G be a connected graph of order n and diameter D. Then,

ξ c(G) ≤ D(n − D)2 + O(n2).
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Fig. 1. Graphs H1,H2,H3 , M6 , M7 and E8,4,k (dashed edges depend on k).

In what follows, we write G ≃ H if G and H are two isomorphic graphs, and we let Kn and Pn be the complete graph
and the path of order n, respectively. We refer to Diestel [1] for basic notions of graph theory that are not defined here.
A lollipop Ln,D is a graph obtained from a path PD by joining an end vertex of this path to Kn−D. Morgan et al. [2] stated
that the above asymptotic bound is best possible by showing that ξ c(Ln,D) = D(n − D)2 + O(n2). The aim of this paper is
to give a precise upper bound on ξ c(G) in terms of n and D, and to completely characterize those graphs that attain the
bound. As a result, we will observe that there are graphs G of order n and diameter D such that ξ c(G) is strictly larger
than ξ c(Ln,D).

Morgan et al. [2] also gave an asymptotic upper bound on ξ c(G) for graphs G of order n (but without a fixed diameter),
and showed that this bound is sharp by observing that it is attained by Ln, n3 .

Theorem 2 (Morgan, Mukwembi and Swart, 2011 [2]). Let G be a connected graph of order n. Then,

ξ c(G) ≤
4
27

n3
+ O(n2).

We give a precise upper bound on ξ c(G) for graphs G of order n, and characterize those graphs that reach the bound.
As a corollary, we show that for every lollipop, there is another graph G of same order, but with a strictly larger eccentric
connectivity index.

2. Results for a fixed order and a fixed diameter

The only graph with diameter 1 is the clique, and clearly, ξ c(Kn) = n(n − 1). Also, the only connected graph with
3 vertices and diameter 2 is P3, and ξ c(P3) = ξ c(K3) = 6. The next theorem characterizes the graphs with maximum
eccentric connectivity index among those with n ≥ 4 vertices and diameter 2. Let Mn be the graph obtained from Kn by
removing a maximum matching (i.e., ⌊ n

2⌋ disjoint edges) and, if n is odd, an additional edge adjacent to the unique vertex
that still has degree n−1. In other words, all vertices in Mn have degree n−2, except possibly one that has degree n−3.
For illustration, M6 and M7 are drawn in Fig. 1.

Theorem 3. Let G be a connected graph of order n ≥ 4 and diameter 2. Then,

ξ c(G) ≤ 2n2
− 4n − 2(n mod 2)

with equality if and only if G ≃ Mn or n = 5 and G ≃ H1 (see Fig. 1).

Proof. Let G be a graph of order n and diameter 2, and let x be the number of vertices of degree n − 1 in G. Clearly,
W(v) = n − 1 for all vertices v of degree n − 1, while W(v) ≤ 2(n − 2) for all other vertices v. Note that if n − x is odd,
then at least one vertex in G has degree at most n − 3. Hence,

ξ c(G) ≤ x(n − 1) + 2(n − x)(n − 2) − 2((n − x) mod 2)

= 2n2
− 4n + x(3 − n) − 2((n − x) mod 2).



For n = 4 or n ≥ 6, this value is maximized with x = 0. For n = 5, both x = 1 (i.e., G ≃ H1) and x = 0 (i.e., G ≃ M5) give
the maximum value 28 = 2n2

− 4n + (3 − n) − 2((n − 1) mod 2) = 2n2
− 4n − 2(n mod 2). □

Before giving a similar result for graphs with diameter D ≥ 3, we prove the following useful property.

Lemma 4. Let G be a connected graph of order n ≥ 4 and diameter D ≥ 3. Let P be a shortest path in G between two vertices
at distance D, and assume there is a vertex u on P such that ϵ(u) is strictly larger than the longest distance L from u to an
extremity of P. Finally, let v be a vertex in G such that d(v, u) = ϵ(u) and let v = w1 − w2 − · · · − wϵ(u)+1 = u be a path of
length ϵ(u) linking v to u in G. Then

• vertices w1, . . . , wϵ(u)−L do not belong to P;
• vertex wϵ(u)−L has either no neighbor on P, or its unique neighbor on P is an extremity at distance L from u;
• if ϵ(u) − L > 1 then vertices w1, . . . , wϵ(u)−L−1 have no neighbor on P.

Proof. No vertex wi with 1 ≤ i ≤ ϵ(u) − L is on P , since this would imply d(u, wi) ≤ L, and hence d(u, v) = d(u, w1) ≤

L + i − 1 ≤ ϵ(u) − 1. Similarly, no vertex wi with 1 ≤ i ≤ ϵ(u) − L − 1 has a neighbor on P , since this would imply
d(u, wi) ≤ L + 1, and hence d(u, v) = d(u, w1) ≤ L + 1 + i − 1 ≤ ϵ(u) − 1. If vertex wϵ(u)−L has at least one neighbor on
P , then this neighbor is necessarily an extremity of P at distance L from u, else we would have d(u, wϵ(u)−L) ≤ L, which
would imply d(u, v) = d(u, w1) ≤ L+(ϵ(u)−L−1) = ϵ(u)−1. We conclude the proof by observing that if both extremities
of P are at distance L from u, then wϵ(u)−L is adjacent to at most one of them since D ≥ 3. □

Let n,D and k be integers such that n ≥ 4, 3 ≤ D ≤ n − 1 and 0 ≤ k ≤ n − D − 1, and let En,D,k be the graph (of
order n and diameter D) constructed from a path u0 − u1 − · · · − uD by joining each vertex of a clique Kn−D−1 to u0 and
u1, and k vertices of the clique to u2 (see Fig. 1). Observe that En,D,0 is the lollipop Ln,D and that En,D,n−D−1 can be viewed
as a lollipop with a missing edge between u0 and u2. Also, if D = n − 1, then k = 0 and En,n−1,0 ≃ Pn.

Lemma 5. Let n,D and k be integers such that n ≥ 4, 3 ≤ D ≤ n − 1 and 0 ≤ k ≤ n − D − 1, then

ξ c(En,D,k) = 2
D−1∑
i=0

max{i,D − i} +

(
n − D − 1

)(
2D − 1 + D(n − D)

)
+ k

(
2D − n − 1 + max{2,D − 2}

)
.

Proof. The sum of the weights of the vertices outside P is∑
v∈V\V (P)

W(v) = k (n − D + 1) (D − 1) + (n − D − 1 − k) (n − D)D

= k (2D − n − 1) + (n − D − 1)(n − D)D.

We now consider the weights of the vertices on P . The weight of u0 is D(n − D), the weight of u1 is (D − 1)(n − D + 1),
and the weight of u2 is (k + 2)max{2,D − 2}. The weight of ui for i = 3, . . . ,D − 1 is 2max{i,D − i}, and the weight of
uD is D. Hence, the total weight of the vertices on P is

(n − D)D + (n − D + 1)(D − 1) + (k + 2)max{2,D − 2} + 2
D−1∑
i=3

max{i,D − i} + D

=

(
(n − D − 1)D + D

)
+

(
(n − D − 1)(D − 1) + 2(D − 1)

)
+

(
kmax{2,D − 2} + 2max{2,D − 2}

)
+ 2

D−1∑
i=3

max{i,D − i} + D

= 2
D−1∑
i=0

max{i,D − i} + (n − D − 1)(2D − 1) + kmax{2,D − 2}.

By summing up all weights in G, we obtain the desired result. □

In what follows, we denote f (n,D) = max{ξ c(En,D,k) | 0 ≤ k ≤ n − D − 1}. It follows from the above lemma that

f (n,D) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

14 +

(
n − 4

)(
3n − 4 + max{0, 2D − n + 1}

)
if D = 3;

2
D−1∑
i=0

max{i,D − i}

+

(
n − D − 1

)(
2D − 1 + D(n − D) + max{0, 3D − n − 3}

) if D ≥ 4.

Lemma 5 allows to know for which values of k we have ξ c(En,D,k) = f (n,D).



Corollary 6. Let n and k be integers such that n ≥ 4 and 0 ≤ k ≤ n − 4.
• If n < 7, then ξ c(En,3,k) ≤ f (n, 3) = 2n2

−5n + 2 with equality if and only if k = n − 4.
• If n > 7, then ξ c(En,3,k) ≤ f (n, 3) = 3n2

− 16n + 30 with equality if and only if k = 0.
• If n = 7, then all ξ c(En,3,k) are equal to 65 for k = 0, . . . , n − 4.

Corollary 7. Let n,D and k be integers such that n ≥ 5, 4 ≤ D ≤ n − 1 and 0 ≤ k ≤ n − D − 1.
• If n < 3(D − 1), then ξ c(En,D,k) = f (n,D) if and only if k = n − D − 1.
• If n > 3(D − 1), then ξ c(En,D,k) = f (n,D) if and only if k = 0.
• If n = 3(D − 1), then ξ c(En,D,k) = f (n,D) if and only if k ∈ {0, . . . , n − D − 1}.

The graph H2 of Fig. 1 has 6 vertices, diameter 3, and is not isomorphic to E6,3,k, while ξ c(H2) = f (6, 3) = 44. Similarly,
the graph H3 of Fig. 1 has 7 vertices, diameter 3, and is not isomorphic to E7,3,k, while ξ c(H3) = f (7, 3) = 65. In what
follows, we prove that all graphs G of order n and diameter D ≥ 3 have ξ c(G) ≤ f (n,D). Moreover, we show that if G is
not isomorphic to a En,D,k, then equality can only occur if G ≃ H2 or G ≃ H3. So, for every n ≥ 4 and 3 ≤ D ≤ n − 1, let
us consider the following graph class CD

n :

CD
n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{En,3,n−4} if n = 4, 5 and D = 3;
{En,3,2,H2} if n = 6 and D = 3;
{En,3,0, . . . , En,3,3,H3} if n = 7 and D = 3;
{En,3,0} if n > 7 and D = 3;
{En,D,n−D−1} if n < 3(D − 1) and D ≥ 4;
{En,D,0, . . . , En,D,n−D−1} if n = 3(D − 1) and D ≥ 4;
{En,D,0} if n > 3(D − 1) and D ≥ 4.

Note that while Morgan et al. [2] stated that the lollipops reach the asymptotic upper bound of the eccentric connectivity
index, we will prove that they reach the more precise upper bound only if D = n − 1, D = 3 and n ≥ 7, or D ≥ 4 and
n ≥ 3(D − 1).

Theorem 8. Let G be a connected graph of order n ≥ 4 and diameter 3 ≤ D ≤ n − 1. Then ξ c(G) ≤ f (n,D) with equality if
and only if G belongs to CD

n .

Proof. We have already observed that all graphs G in CD
n have ξ c(G) = f (n,D). So let G be a graph of order n, diameter

D such that ξ c(G) ≥ f (n,D). It remains to prove that G belongs to CD
n .

Let P = u0 − u1 − · · · − uD be a shortest path in G that connects two vertices u0 and uD at distance D from each other.
In what follows, we use the following notations for all i = 0, . . . ,D:

• oi is the number of vertices outside P and adjacent to ui;
• δi = max{i,D − i};
• ri = ϵ(ui) − δi.

Also, let r∗
= max{ri | 1 ≤ i ≤ D − 1}. Note that δi ≥ 2 and ri ≤ ⌊

D
2 ⌋ for all i, and r0 = rD = 0 since

ϵ(u0) = ϵ(uD) = δ0 = δD = D. Since P is a shortest path linking u0 to uD, no vertex outside P can have more than
three neighbors on P . We consider the following partition of the vertices outside P in 4 disjoint sets V0, V1,2, VD−1

3 , VD
3 ,

and denote by n0, n1,2, nD−1
3 , nD

3 their respective size:
• V0 is the set of vertices outside P with no neighbor on P;
• V1,2 is the set of vertices outside P with one or two neighbors on P;
• VD−1

3 is the set of vertices v outside P with three neighbors on P and ϵ(v) ≤ D − 1;
• VD

3 is the set of vertices v outside P with three neighbors on P and ϵ(v) = D.
Clearly, all vertices v outside P can have ϵ(v) = D except those in VD−1

3 . The maximum degree of a vertex in V0 is
n − D − 2, while it is n − D for those in V1,2 and n − D + 1 for those in VD−1

3 ∪ VD
3 . For a vertex v ∈ V1,2 ∪ VD−1

3 ∪ VD
3 , let

ρ(v) = max{ri | ui is adjacent to v},

ρ∗
= max

v∈V1,2∪VD−1
3 ∪VD

3

ρ(v).

Hence, r∗
≥ ρ∗. The rest of the proof is organized as follows. We first give an upper bound on the total weight of the

vertices outside P (Claim 1), which will lead to an upper bound on ξ c(G) (Claim 2). We finally prove that this bound is
attained if and only if G belongs to CD

n .

Claim 1.
∑
v /∈P

W(v) ≤(n − D − 1)D(n − D) + nD−1
3 (2D − n − 1) − DnD

3 − 2Dr∗

+ Dmin{1, ρ∗
} −

∑
v∈V1,2∪VD

3 ∪VD−1
3

(2D − 1)ρ(v).



We first show that the total weight of the vertices in V0 ∪ V1,2 is at most

D(n − D)(n − D − 1 − nD−1
3 − nD

3 ) − 2Dr∗
+ Dmin{1, ρ∗

}.

• If r∗
= 0, then the largest possible weight of the vertices in V0 ∪ V1,2 occurs when all of them have two neighbors

on P (i.e., n0 = 0 and no vertex in V1,2 has one neighbor on P). In such a case, n0 + n1,2 = n − D − 1 − nD−1
3 − nD

3 ,
and all these vertices have degree n − D. Hence, their total weight is at most D(n − D)(n − D − 1 − nD−1

3 − nD
3 ).

• If r∗ > 0 and ρ∗ > 0, then let i be such that ri = r∗. It follows from Lemma 4 that there is a path w1 − · · · − wϵ(ui)+1
such that w1, . . . , wr∗−1 have no neighbor on P and wr∗ has at most one neighbor on P . Hence, the largest possible
weight of the vertices in V0 ∪V1,2 occurs when r∗

−1 vertices have 0 neighbor on P , one vertex has one neighbor on
P , and n−D− 1− nD−1

3 − nD
3 − r∗ vertices have 2 neighbors in P . Hence, the largest possible weight for the vertices

in V0 ∪ V1,2 is

D(n − D − 2)(r∗
− 1) + D(n − D − 1) + D(n − D)(n − D − 1 − nD−1

3 − nD
3 − r∗)

= D(n − D)(n − D − 1 − nD−1
3 − nD

3 ) − 2Dr∗
+ D.

• If r∗ > 0 and ρ∗
= 0, then consider the same path w1 − · · · − wϵ(ui)+1 as in the above case. If wr∗ has no neighbor

on P , then there are at least r∗ vertices with no neighbor on P and the largest possible weight for the vertices in
V0 ∪ V1,2 is

D(n − D − 2)(r∗) + D(n − D)(n − D − 1 − nD−1
3 − nD

3 − r∗)
= D(n − D)(n − D − 1 − nD−1

3 − nD
3 ) − 2Dr∗.

Also, if there are at least two vertices in V1,2 with only one neighbor on P , then the largest possible weight for the
vertices in V0 ∪ V1,2 is

D(n − D − 2)(r∗
− 1) + 2D(n − D − 1) + D(n − D)(n − D − 1 − nD−1

3 − nD
3 − r∗

− 1)
= D(n − D)(n − D − 1 − nD−1

3 − nD
3 ) − 2Dr∗.

So assume wr∗ is the only vertex in V1,2 with only one neighbor on P . We thus have d(ui, wr∗ ) = δi + 1. We now
show that this case is impossible. We know from Lemma 4 that wr∗ is adjacent to u0 or (exclusive) to uD. Since
ρ(v) = 0 for all vertices v outside P , we know that ui has no neighbor outside P . Hence, wϵ(ui) is ui−1 or ui+1, say
ui+1 (the other case is similar). Then wr∗ is not adjacent to u0 else there is j with r∗

+ 1 ≤ j ≤ ϵ(ui)− 1 such that wj
is outside P and has wj+1 as neighbor on P , and since wj must have a second neighbor uℓ on P with ℓ ≥ i + 2, we
would have

i + 2 ≤ ℓ = d(u0, uℓ) ≤ d(wr∗ , wj) + 2 ≤ (d(wr∗ , ui) − 2) + 2 = i + 1.

Hence, wr∗ is adjacent to uD. Then there is also a path linking ui to w1 going through ui−1 else d(u0, w1) =

d(u0, ui) + d(ui, w1) > i + δi ≥ D. Let Q be such a path of minimum length. Clearly, Q has length at least equal
to ϵ(ui). So let w′

1 − · · · − w′

ϵ(ui)+1 be the subpath of Q of length ϵ(ui) and having ui as extremity (i.e., w′

ϵ(ui)
= ui−1

and w′

ϵ(ui)+1 = ui). Applying the same argument to w′

r∗ as was done for wr∗ , we conclude that w′

r∗ has u0 as unique
neighbor on P . We thus have two vertices in V1,2 with a unique neighbor on P , a contradiction.

The total weight of the vertices in VD−1
3 ∪ VD

3 is at most (n − D + 1)
(
(D − 1)nD−1

3 + DnD
3

)
, which gives the following

upper bound B on the total weight of the vertices outside P:

B = D(n − D)(n − D − 1 − nD−1
3 − nD

3 ) + (n − D + 1)
(
(D − 1)nD−1

3 + DnD
3

)
− 2Dr∗

+ Dmin{1, ρ∗
}

= (n − D − 1)D(n − D) + nD−1
3 (2D − n − 1) + DnD

3 − 2Dr∗
+ Dmin{1, ρ∗

}.

This bound can only be reached if all vertices outside P are pairwise adjacent. But Lemma 4 shows that this cannot happen
if ρ∗ > 0. Indeed, consider a vertex v in V1,2 ∪ VD

3 ∪ VD−1
3 with ρ(v) > 0. There is a vertex ui on P adjacent to v such that

ρ(v) = ri = ϵ(ui) − δi > 0. We know from Lemma 4 that there is a shortest path w1 − w2 − · · · − wϵ(ui)+1 = ui linking
ui to a vertex w1 with d(ui, w1) = ϵ(ui) and such that w1, . . . , wρ(v) do not belong to P . In what follows, we denote Q v

such a path. If v is adjacent to a wj with 1 ≤ j ≤ ρ(v), then the path ui − v − wj − · · · − w1 links ui to w1 and has length
at most ρ(v) + 1 < ri + δi = ϵ(ui), a contradiction. Hence v has at least ρ(v) non-neighbors outside P . Also, as shown
in Lemma 4, w1, . . . , wρ(v)−1 belong to V0, while wρ(v) belongs to V0 ∪ V1,2. In the upper bound B, we have assumed that
ϵ(w1) = · · · = ϵ(wρ(v)) = D. Hence, if v ∈ V1,2 ∪ VD

3 , we can gain 2D units on B for every wj, j = 1, . . . , ρ(v) (D for v and
D for wj), while the gain is 2D − 1 (D − 1 for v and D for wj) if v ∈ VD−1

3 .
We can gain an additional 2D for every v ∈ VD

3 . Indeed, consider such a vertex v and let w∗ be a vertex at distance D
from v. Note that w∗ is not on P and has at most one neighbor on P else d(v, w∗) ≤ D − 1. Hence, if ρ(v) = 0, we can
gain 2D (one D for v and one D for w) in the above upper bound. So assume ρ(v) > 0, and consider again the shortest
path Q v

= w1 − w2 − · · · − wϵ(ui)+1 = ui, with ρ(v) = ri. Also, let W = {w1, . . . , wρ(v)}. To gain an additional 2D, it is



sufficient to determine a vertex in (V0 ∪ V1,2) \ W which is not adjacent to v. So assume no such vertex exists, and let
us prove that such a situation cannot occur. Note that w∗ /∈ VD

3 ∪ VD−1
3 (since it has at most one neighbor on P), which

implies w∗
∈ W .

• If a vertex wj ∈ W has a neighbor x ∈ V0 ∪V1,2 outside W , then v is adjacent to x, and the path v − x−wj −· · ·−w∗

has length at most 1 + ρ(v) ≤ 1 + ⌊
D
2 ⌋ < D, a contradiction.

• If a vertex wj ∈ W has a neighbor x ∈ VD
3 ∪ VD−1

3 , then d(ui, w1) ≤ d(ui, x) + d(x, w1) ≤ δi − 1 + ri < ϵ(ui), a
contradiction.

Since G is connected and w1, . . . , wρ(v)−1 have no neighbors outside Q v , we know that wρ(v) is adjacent to the extremity
of P at distance δi from ui (and to no other vertex on P). Hence, the vertices on P and those in W induce a path of length
D + ρ(v) > D in G, a contradiction.

In summary, the following value is a more precise upper bound on the total weight of the vertices outside P , which
proves Claim 1:

B −

∑
v∈V1,2∪VD

3

2Dρ(v) −

∑
v∈VD−1

3

(2D − 1)ρ(v) − 2DnD
3

≤ (n − D − 1)D(n − D) + nD−1
3 (2D − n − 1) − DnD

3 − 2Dr∗
+ Dmin{1, ρ∗

}

−

∑
v∈V1,2∪VD

3 ∪VD−1
3

(2D − 1)ρ(v).

Claim 2. ξ c(G) ≤ (n − D − 1)D(n − D) + nD−1
3 (2D − n − 1) − DnD

3 + 2
D−1∑
i=0

δi +

D∑
i=0

δioi.

We have W(u0) = D(1 + o0), W(uD) = D(1 + oD), and W(ui) = ϵ(ui)(2 + oi) for i = 1, . . . ,D − 1. Since ϵ(ui) = δi + ri,
the total weight of the vertices on P is

2D + D(o0 + oD) +

D−1∑
i=1

(δi + ri)(2 + oi)

= 2
D−1∑
i=0

δi + 2
D−1∑
i=1

ri +
D−1∑
i=1

rioi +
D∑

i=0

δioi.

Each edge that links a vertex v outside P to a vertex ui on P contributes for ri ≤ ρ(v) in the sum
∑D−1

i=1 rioi. Hence,
D−1∑
i=1

rioi ≤

∑
v∈V1,2

2ρ(v) +

∑
v∈VD

3 ∪VD−1
3

3ρ(v) ≤

∑
v∈V1,2∪VD

3 ∪VD
3

3ρ(v).

Since 2
∑D−1

i=1 ri ≤ 2r∗(D − 1), we get the following valid upper bound on the total weight of the vertices on P:

2
D−1∑
i=0

δi +

D∑
i=0

δioi + 2r∗(D − 1) +

∑
v∈V1,2∪VD

3 ∪VD
3

3ρ(v).

Summing up the bounds for the vertices outside P with those on P , we get from Claim 1 the following upper bound for
the total weight of the vertices in G:

(n − D − 1)D(n − D) + nD−1
3 (2D − n − 1) − DnD

3 + 2
D−1∑
i=0

δi +

D∑
i=0

δioi

−

∑
v∈V1,2∪VD

3 ∪VD−1
3

(2D − 4)ρ(v) − 2r∗
+ Dmin{1, ρ∗

}.

Let us decompose this bound into two parts A1 + A2 with A1 being equal to the sum of the first terms of the above upper
bound, and A2 being equal to the sum of the last ones:

A1 = (n − D − 1)D(n − D) + nD−1
3 (2D − n − 1) − DnD

3 + 2
D−1∑
i=0

δi +

D∑
i=0

δioi,

A2 = −

∑
v∈V1,2∪VD

3 ∪VD−1
3

(2D − 4)ρ(v) − 2r∗
+ Dmin{1, ρ∗

}.



• If r∗
= 0, then A2 = 0, which implies A1 + A2 = A1.

• If ρ∗ > 0, then A2 ≤ 4 − 2D − 2r∗
+ D = 4 − D − 2r∗ < 0, which implies A1 + A2 < A1.

• If r∗ > 0 and ρ∗
= 0, then A2 = −2r∗ < 0, which implies A1 + A2 < A1.

In summary, the best possible upper bound is A1, which proves Claim 2.
It follows from Claim 2 that A1 is the best possible upper bound on ξ c(G), and this bound is attained only if the upper

bound in Claim 1 is reached with r∗
= 0 (and hence ρ∗

= 0). As shown in the proof of Claim 1, this implies n0 = 0,
ϵ(v) = D for all vertices in V1,2, ϵ(v) = D− 1 for all vertices in VD−1

3 , and all vertices in V1,2 ∪ VD−1
3 are pairwise adjacent.

It remains to prove that A1 = f (n,D) and that the graphs G with ξ c(G) = A1 = f (n,D) are exactly those in
CD
n . Let us start with D = 3. In that case, we have f (n, 3) = 14 + (n − 4)(3n − 4 + max{0, 7 − n}), while A1 =

(n − 4)3(n − 3) + n2
3(5 − n) − 3n3

3 + 14 +
∑3

i=0 δioi. Hence, the difference is :

f (n, 3) − A1 = (n − 4)(5 + max{0, 7 − n}) − n2
3(5 − n) + 3n3

3 −

3∑
i=0

δioi.

We have
3∑

i=0

oi ≤ 3(n2
3 + n3

3) + 2(n − 4 − n2
3 − n3

3) = 2(n − 4) + n2
3 + n3

3.

Since o0 + o3 ≤ n − 4 to avoid a path of length 2 joining u0 to u3, we have
3∑

i=0

δioi ≤ 3(n − 4) + 2(n − 4 + n2
3 + n3

3).

Hence,

f (n, 3) − A1 ≥ (n − 4)max{0, 7 − n} − n2
3(7 − n) + n3

3.

This difference is minimized if and only if n3
3 = 0, while n2

3 = 0 if n > 7, n2
3 = 0, 1, 2 or 3 if n = 7, and n2

3 = n − 4 if
n < 7. In all such cases, we get f (n, 3) − A1 = 0.

• If n = 4, there is no vertex outside P , and G ≃ E4,3,0 which is the unique graph in C3
4 .

• If n = 5, n2
3 = 1, which means that the unique vertex outside P is adjacent to 3 consecutive vertices on P . Hence,

G ≃ E5,3,1 which is the unique graph in C3
5 .

• If n = 6, n2
3 = 2, which means that both vertices outside P are adjacent to 3 consecutive vertices on P . If one of them

is adjacent to u0, u1, u2, while the other is adjacent to u1, u2, u3, we have G ≃ H2. Otherwise, we have G ≃ E6,3,2.
• If n = 7, n2

3 ∈ {0, 1, 2, 3} and n1,2 = 3− n2
3. If n1,2 > 0 then the vertices in V1,2 are all adjacent to u0 and u1 or all to

u2 and u3, since they are pairwise adjacent, and they all have eccentricity 3. So assume without loss of generality,
they are all adjacent to u0 and u1. Then the vertices in V 2

3 are all adjacent to u0, u1, u2, else the vertices in V1,2 would
have eccentricity 2. But G is then equal to E7,3,0, E7,3,1 or E7,3,2. If n1,2 = 0, then the three vertices outside P are all
adjacent to three consecutive vertices on P . If they are all adjacent to u0, u1, u2, or all to u1, u2, u3, then G ≃ E7,3,3,
else G ≃ H3.

• If n > 7, all vertices outside P are adjacent to u0, u1, or to u2, u3 (so that they all have eccentricity 3). Hence,
G ≃ En,3,0.

Assume now D ≥ 4. We have

f (n,D) = 2
D−1∑
i=0

δi +

(
n − D − 1

)(
2D − 1 + D(n − D) + max{0, 3D − n − 3}

)
and

A1 = 2
D−1∑
i=0

δi + (n − D − 1)D(n − D) + nD−1
3 (2D − n − 1) − DnD

3 +

D∑
i=0

δioi.

Hence, the difference is:

f (n,D) − A1 = (n − D − 1)(2D − 1 + max{0, 3D − n − 3}) − nD−1
3 (2D − n − 1) + DnD

3 −

D∑
i=0

δioi.

We have
D∑

i=0

oi ≤ 3(nD−1
3 + nD

3 ) + 2(n − D − 1 − nD−1
3 − nD

3 ) = 2(n − D − 1) + nD−1
3 + nD

3 .

Let p be the number of vertices linked to both u1 and uD−1.



• If D ≥ 5, then p = 0, else d(u0, uD) ≤ 4 < D.
• If D = 4, then no vertex outside P linked to u1 and uD−1 can also be linked to u0 or to uD since d(u0, uD) would

be strictly smaller than 4. Since no vertex outside P can be linked to both u0 and uD (else d(u0, uD) < 3) we have
o0 + oD ≤ n − D − 1 − p and o1 + oD−1 ≤ n − D − 1 + p. Hence, o2 ≤ nD−1

3 + nD
3 . So,

D∑
i=0

δioi ≤ D(n − D − 1 − p) + (D − 1)(n − D − 1 + p) + (D − 2)(nD−1
3 + nD

3 )

= (n − D − 1)(2D − 1) + (D − 2)(nD−1
3 + nD

3 ) − p.

This value is maximized for p = 0.

Hence, in all cases, we have
D∑

i=0

δioi ≤ (n − D − 1)(2D − 1) + (D − 2)(nD−1
3 + nD

3 ).

Hence,

f (n,D) − A1 ≥ (n − D − 1)max{0, 3D − n − 3} − nD−1
3 (3D − n − 3) + 2nD

3 .

This difference is minimized if and only if nD
3 = 0, while nD−1

3 = 0 if n > 3(D−1), nD−1
3 ∈ {0, . . . , n−D−1} if n = 3(D−1),

and nD−1
3 = n − D − 1 if n < 3(D − 1). In all such cases, we get f (n,D) − A1 = 0.

• If n < 3(D − 1), then all vertices outside P are adjacent to 3 consecutive vertices on P . They are all adjacent to
u0, u1, u2, or all adjacent to uD−2, uD−1, uD, else d(u0, uD) ≤ 3 < D. Hence, we have G ≃ En,D,n−D−1.

• If n = 3(D − 1), nD−1
3 ∈ {0, . . . , n − D − 1} and n1,2 = 2D − 2 − nD−1

3 . If n1,2 > 0 then the vertices in V1,2 are all
adjacent to u0 and u1 or all to uD−1 and uD, since they are pairwise adjacent, and they all have eccentricity D. So
assume without loss of generality, they are all adjacent to u0 and u1. Then the vertices in VD−1

3 are all adjacent to
u0, u1, u2, else d(u0, uD) ≤ 3 < D. But G is then equal to En,D,nD3

. If n1,2 = 0, then all vertices outside P are adjacent
to u0, u1, u2, or all of them are adjacent to uD−2, uD−1, uD, else d(u0, uD) ≤ 3 < D. Hence, G ≃ En,D,n−D−1.

• If n > 3(D− 1), all vertices outside P are adjacent to u0, u1, or to u2, u3 (so that they all have eccentricity D). Hence,
G ≃ En,D,0. □

3. Results for a fixed order and no fixed diameter

We now determine the connected graphs that maximize the eccentric connectivity index when the order n of the
graph is given, while there is no fixed diameter.

Theorem 9. Let ξ c
n

∗ be the largest eccentric connectivity index among all graphs of order n. The only graphs that attain ξ c
n

∗

are the following:

n ξ c
n

∗ optimal graphs
3 6 K3 and P3
4 16 M4
5 30 M5 and H1
6 48 M6
7 68 M7
8 96 M8 and E8,4,3
≥ 9 g(n) E

n,
⌈
n+1
3

⌉
+1,n−

⌈
n+1
3

⌉
−2

.

Proof. Clearly, K3 and P3 are the only connected graphs of order n = 3 and ξ c(K3) = ξ c(P3) = 6. For n > 3,
ξ c(Mn) = 2n2

− 4n − 2(n mod 2) > n2
− n = ξ c(Kn), which means that the optimal diameter is not D = 1.

• If n = 4, f (4, 3) = 14 < ξ c(M4) = 16, which means that M4 has maximum eccentric connectivity among all
connected graphs with 4 vertices.

• If n = 5, f (5, 3) = 27, f (5, 4) = 24 and ξ c(M5) = 30, which means that M5 and H1 have maximum eccentric
connectivity index among all connected graphs with 5 vertices.

• If n = 6, f (6, 3) = 44, f (6, 4) = 42, f (6, 5) = 38 and ξ c(M6) = 48, which means that M6 has maximum eccentric
connectivity index among all connected graphs with 6 vertices.

Assume now n ≥ 7. We first show that lollipops are not optimal. Indeed, consider a lollipop En,D,0 of order n and
diameter D.



• If D = n − 1, then G ≃ Pn which implies

ξ c(En,n−1,0) =

D−1∑
i=1

2max{i,D − i} + 2D =
3D2

+ D mod 2
2

≤
3D2

+ 1
2

=
3n2

2
− 3n + 2 < 2n2

− 4n − 2 ≤ ξ c(Mn).

• If D < n−1 then either n < 3(D−1), and we know from Corollary 7 that ξ c(En,D,n−D−1) > ξ c(En,D,0), or n ≥ 3(D−1),
in which case we show that ξ c(En,D+1,n−D−2) > ξ c(En,D,0). Since 2

∑D−1
i=0 max{i,D − i} =

3D2
+D mod 2

2 , we know from
Lemma 5 that

ξ c(En,D+1,n−D−2) = 2
D∑

i=0

max{i,D + 1 − i}

+

(
n − D − 2

)(
2(D + 1) − 1 + (D + 1)(n − D − 1)

)
+

(
n − D − 2

)(
2(D + 1) − n − 1 + (D + 1) − 2

)
=

3(D + 1)2 + (D + 1) mod 2
2

+

(
n − D − 2

)(
3D + D(n − D)

)
and

ξ c(En,D,0) = 2
D−1∑
i=0

max{i,D − i} +

(
n − D − 1

)(
2D − 1 + D(n − D)

)
=

3D2
+ D mod 2

2
+

(
n − D − 1

)(
2D − 1 + D(n − D)

)
.

Simple calculations lead to

ξ c(En,D+1,n−D−2) − ξ c(En,D,0) = n − 2D + (D − 1) mod 2 ≥ n − 2
(n
3

+ 1
)

=
n
3

− 2 > 0.

Hence, the remaining candidates to maximize the eccentric connectivity index when n ≥ 7 are Mn and En,D,n−D−1. Let

g(n) =
n−D−1
max

D=⌈ n
3 +2⌉

ξ c(En,D,n−D−1).

We can rewrite ξ c(En,D,n−D−1) as follows:

ξ c(En,D,n−D−1) = D3
− D2(n +

5
2
) + D(n2

+ 5n − 1) − n2
− 3n + 4 + D mod 2.

It is then not difficult to show that g(n) = ξ c(En,D∗,n−D∗−1) with D∗
= ⌈

n+1
3 ⌉ + 1, and simple calculations lead to

g(n) =
1
54

(8n3
+ 21n2

− 36n +

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 if n mod 6 = 0
6n + 1 if n mod 6 = 1
32 if n mod 6 = 2
27 if n mod 6 = 3
6n + 28 if n mod 6 = 4
59 if n mod 6 = 5

).

We then have g(7) = 66 < 68 = ξ c(M7), which means that M7 has the largest eccentric connectivity among all graphs
with 7 vertices. Also, g(8) = 96 = ξ c(M8), which means that both E8,4,3 and M8 have the largest eccentric connectivity
index among all graphs with 8 vertices. For graphs of order n ≥ 9, we have 8n3+21n2−36n

54 > 2n2
− 4n, which means that

En,D∗,n−D∗−1 is the unique graph with largest eccentric connectivity index among all graphs with n vertices. □

Note that Tavakoli et al. [4] stated that g(n) = ξ c(En,D,n−D−1) with D = ⌈
n
3⌉ + 1 while we have shown that the best

diameter for a given n is D = ⌈
n+1
3 ⌉ + 1. Hence for all n ≥ 9 with n mod 3 = 0, we get a better result. For example, for

n = 9, they consider E9,4,4 which has an eccentric connectivity index equal to 132 while g(9)=134.

4. Conclusion

We have characterized the graphs with largest eccentric connectivity index among those of fixed order n and fixed or
non-fixed diameter D. It would also be interesting to get such a characterization for graphs with a given order n and a
given size m. We propose the following conjecture which is more precise than the one proposed in [5]



Conjecture. Let n and m be two integers such that n ≥ 4 and m ≤
(n−1

2

)
. Also, let

D =

⌊
2n + 1 −

√
17 + 8(m − n)
2

⌋
and k = m −

(
n − D + 1

2

)
− D + 1.

Then, the largest eccentric connectivity index among all graphs of order n and size m is attained with En,D,k. Moreover,

• if D > 3, then ξ c(G) < ξ c(En,D,k) for all other graphs G of order n and size m.
• if D = 3 and k = n − 4, then the only other graphs G with ξ c(G) = ξ c(En,D,k) are those obtained by considering a path

u0 − u1 − u2 − u3, and by joining 1 ≤ i ≤ n − 3 vertices of a clique Kn−4 to u0, u1, u2 and the n − 4 − i other vertices
of Kn−4 to u1, u2, u3.
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