Published in "Discrete Applied Mathematics 268 (2019) 102-111" which should be cited to refer to this work.

Maximum eccentric connectivity index for graphs with given diameter

Pierre Hauweele^a, Alain Hertz^{b,*}, Hadrien Mélot^a, Bernard Ries^c, Gauvain Devillez^a

^a Computer Science Department - Algorithms Lab, University of Mons, Mons, Belgium

^b Department of Mathematics and Industrial Engineering, École Polytechnique - Gerad, Montréal, Canada

^c Department of Informatics, University of Fribourg, Fribourg, Switzerland

ABSTRACT

The eccentricity of a vertex v in a graph G is the maximum distance between v and any other vertex of G. The diameter of a graph G is the maximum eccentricity of a vertex in G. The eccentric connectivity index of a connected graph is the sum over all vertices of the product between eccentricity and degree. Given two integers n and D with $D \le n-1$, we characterize those graphs which have the largest eccentric connectivity index among all connected graphs of order n and diameter D. As a corollary, we also characterize those graphs which have the largest eccentric trivity index among all connected graphs of a given order n.

Keywords: Extremal graph theory Eccentric connectivity index

1. Introduction

Let G = (V, E) be a simple connected undirected graph. The *distance* d(u, v) between two vertices u and v in G is the number of edges of a shortest path in G connecting u and v. The *eccentricity* $\epsilon(v)$ of a vertex v is the maximum distance between v and any other vertex, that is max{ $d(v, w) | w \in V$ }. The *diameter* of G is the maximum eccentricity among all vertices of G. The *eccentric connectivity index* $\xi^c(G)$ of G is defined by

$$\xi^{c}(G) = \sum_{v \in V} \deg(v) \epsilon(v).$$

This index was introduced by Sharma et al. in [3]. Alternatively, ξ^c can be computed by summing the eccentricities of the extremities of each edge:

$$\xi^{c}(G) = \sum_{vw \in E} (\epsilon(v) + \epsilon(w)).$$

We define the weight of a vertex by $W(v) = deg(v)\epsilon(v)$, and we thus have $\xi^c(G) = \sum_{v \in V} W(v)$. Morgan et al. [2] gave the following asymptotic upper bound on $\xi^c(G)$ for a graph *G* of order *n* and with a given diameter *D*.

Theorem 1 (Morgan, Mukwembi and Swart, 2011 [2]). Let G be a connected graph of order n and diameter D. Then,

$$\xi^{c}(G) \leq D(n-D)^{2} + \mathcal{O}(n^{2}).$$

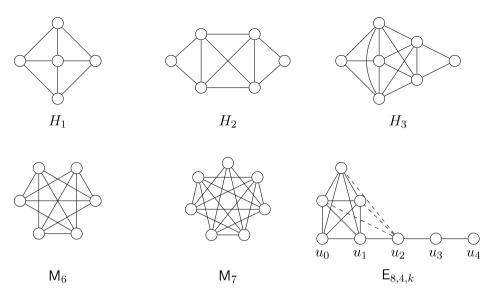


Fig. 1. Graphs H_1 , H_2 , H_3 , M_6 , M_7 and $E_{8,4,k}$ (dashed edges depend on k).

In what follows, we write $G \simeq H$ if G and H are two isomorphic graphs, and we let K_n and P_n be the *complete graph* and the *path* of order n, respectively. We refer to Diestel [1] for basic notions of graph theory that are not defined here. A *lollipop* $L_{n,D}$ is a graph obtained from a path P_D by joining an end vertex of this path to K_{n-D} . Morgan et al. [2] stated that the above asymptotic bound is best possible by showing that $\xi^c(L_{n,D}) = D(n - D)^2 + O(n^2)$. The aim of this paper is to give a precise upper bound on $\xi^c(G)$ in terms of n and D, and to completely characterize those graphs that attain the bound. As a result, we will observe that there are graphs G of order n and diameter D such that $\xi^c(G)$ is strictly larger than $\xi^c(L_{n,D})$.

Morgan et al. [2] also gave an asymptotic upper bound on $\xi^c(G)$ for graphs *G* of order *n* (but without a fixed diameter), and showed that this bound is sharp by observing that it is attained by $L_{n,\frac{n}{2}}$.

Theorem 2 (Morgan, Mukwembi and Swart, 2011 [2]). Let G be a connected graph of order n. Then,

$$\xi^{c}(G) \leq \frac{4}{27}n^{3} + \mathcal{O}(n^{2}).$$

We give a precise upper bound on $\xi^c(G)$ for graphs *G* of order *n*, and characterize those graphs that reach the bound. As a corollary, we show that for every lollipop, there is another graph *G* of same order, but with a strictly larger eccentric connectivity index.

2. Results for a fixed order and a fixed diameter

The only graph with diameter 1 is the clique, and clearly, $\xi^c(K_n) = n(n-1)$. Also, the only connected graph with 3 vertices and diameter 2 is P₃, and $\xi^c(P_3) = \xi^c(K_3) = 6$. The next theorem characterizes the graphs with maximum eccentric connectivity index among those with $n \ge 4$ vertices and diameter 2. Let M_n be the graph obtained from K_n by removing a maximum matching (*i.e.*, $\lfloor \frac{n}{2} \rfloor$ disjoint edges) and, if *n* is odd, an additional edge adjacent to the unique vertex that still has degree n - 1. In other words, all vertices in M_n have degree n - 2, except possibly one that has degree n - 3. For illustration, M_6 and M_7 are drawn in Fig. 1.

Theorem 3. Let *G* be a connected graph of order $n \ge 4$ and diameter 2. Then,

 $\xi^{c}(G) \leq 2n^{2} - 4n - 2(n \mod 2)$

with equality if and only if $G \simeq M_n$ or n = 5 and $G \simeq H_1$ (see Fig. 1).

Proof. Let *G* be a graph of order *n* and diameter 2, and let *x* be the number of vertices of degree n - 1 in *G*. Clearly, W(v) = n - 1 for all vertices *v* of degree n - 1, while $W(v) \le 2(n - 2)$ for all other vertices *v*. Note that if n - x is odd, then at least one vertex in *G* has degree at most n - 3. Hence,

$$\xi^{c}(G) \le x(n-1) + 2(n-x)(n-2) - 2((n-x) \mod 2)$$

= 2n² - 4n + x(3 - n) - 2((n - x) \mod 2).

For n = 4 or $n \ge 6$, this value is maximized with x = 0. For n = 5, both x = 1 (*i.e.*, $G \simeq H_1$) and x = 0 (*i.e.*, $G \simeq M_5$) give the maximum value $28 = 2n^2 - 4n + (3 - n) - 2((n - 1) \mod 2) = 2n^2 - 4n - 2(n \mod 2)$.

Before giving a similar result for graphs with diameter $D \ge 3$, we prove the following useful property.

Lemma 4. Let *G* be a connected graph of order $n \ge 4$ and diameter $D \ge 3$. Let *P* be a shortest path in *G* between two vertices at distance *D*, and assume there is a vertex *u* on *P* such that $\epsilon(u)$ is strictly larger than the longest distance *L* from *u* to an extremity of *P*. Finally, let *v* be a vertex in *G* such that $d(v, u) = \epsilon(u)$ and let $v = w_1 - w_2 - \cdots - w_{\epsilon(u)+1} = u$ be a path of length $\epsilon(u)$ linking *v* to *u* in *G*. Then

- vertices $w_1, \ldots, w_{\epsilon(u)-L}$ do not belong to P;
- vertex $w_{\epsilon(u)-L}$ has either no neighbor on P, or its unique neighbor on P is an extremity at distance L from u;
- if $\epsilon(u) L > 1$ then vertices $w_1, \ldots, w_{\epsilon(u)-L-1}$ have no neighbor on P.

Proof. No vertex w_i with $1 \le i \le \epsilon(u) - L$ is on *P*, since this would imply $d(u, w_i) \le L$, and hence $d(u, v) = d(u, w_1) \le L + i - 1 \le \epsilon(u) - 1$. Similarly, no vertex w_i with $1 \le i \le \epsilon(u) - L - 1$ has a neighbor on *P*, since this would imply $d(u, w_i) \le L + 1$, and hence $d(u, v) = d(u, w_1) \le L + 1 + i - 1 \le \epsilon(u) - 1$. If vertex $w_{\epsilon(u)-L}$ has at least one neighbor on *P*, then this neighbor is necessarily an extremity of *P* at distance *L* from *u*, else we would have $d(u, w_{\epsilon(u)-L}) \le L$, which would imply $d(u, v) = d(u, w_1) \le L + (\epsilon(u) - L - 1) = \epsilon(u) - 1$. We conclude the proof by observing that if both extremities of *P* are at distance *L* from *u*, then $w_{\epsilon(u)-L}$ is adjacent to at most one of them since $D \ge 3$. \Box

Let n, D and k be integers such that $n \ge 4$, $3 \le D \le n - 1$ and $0 \le k \le n - D - 1$, and let $E_{n,D,k}$ be the graph (of order n and diameter D) constructed from a path $u_0 - u_1 - \cdots - u_D$ by joining each vertex of a clique K_{n-D-1} to u_0 and u_1 , and k vertices of the clique to u_2 (see Fig. 1). Observe that $E_{n,D,0}$ is the lollipop $L_{n,D}$ and that $E_{n,D,n-D-1}$ can be viewed as a lollipop with a missing edge between u_0 and u_2 . Also, if D = n - 1, then k = 0 and $E_{n,n-1,0} \simeq P_n$.

Lemma 5. Let n, D and k be integers such that $n \ge 4$, $3 \le D \le n-1$ and $0 \le k \le n-D-1$, then

$$\xi^{c}(\mathsf{E}_{n,D,k}) = 2\sum_{i=0}^{D-1} \max\{i, D-i\} + (n-D-1)(2D-1+D(n-D)) + k(2D-n-1+\max\{2, D-2\}).$$

Proof. The sum of the weights of the vertices outside *P* is

$$\sum_{v \in V \setminus V(P)} W(v) = k (n - D + 1) (D - 1) + (n - D - 1 - k) (n - D) D$$
$$= k (2D - n - 1) + (n - D - 1)(n - D)D.$$

We now consider the weights of the vertices on *P*. The weight of u_0 is D(n - D), the weight of u_1 is (D - 1)(n - D + 1), and the weight of u_2 is $(k + 2) \max\{2, D - 2\}$. The weight of u_i for i = 3, ..., D - 1 is $2 \max\{i, D - i\}$, and the weight of u_D is *D*. Hence, the total weight of the vertices on *P* is

$$(n-D)D + (n-D+1)(D-1) + (k+2)\max\{2, D-2\} + 2\sum_{i=3}^{D-1}\max\{i, D-i\} + D$$

= $((n-D-1)D+D) + ((n-D-1)(D-1) + 2(D-1))$
+ $(k\max\{2, D-2\} + 2\max\{2, D-2\}) + 2\sum_{i=3}^{D-1}\max\{i, D-i\} + D$
= $2\sum_{i=0}^{D-1}\max\{i, D-i\} + (n-D-1)(2D-1) + k\max\{2, D-2\}.$

By summing up all weights in G, we obtain the desired result. \Box

In what follows, we denote $f(n, D) = \max\{\xi^c(\mathsf{E}_{n,D,k}) \mid 0 \le k \le n - D - 1\}$. It follows from the above lemma that

$$f(n, D) = \begin{cases} 14 + (n-4)(3n-4 + \max\{0, 2D-n+1\}) & \text{if } D = 3; \\ 2\sum_{i=0}^{D-1} \max\{i, D-i\} & \text{if } D \ge 4. \\ + (n-D-1)(2D-1 + D(n-D) + \max\{0, 3D-n-3\}) & \text{if } D \ge 4. \end{cases}$$

Lemma 5 allows to know for which values of *k* we have $\xi^{c}(\mathsf{E}_{n,D,k}) = f(n, D)$.

Corollary 6. Let *n* and *k* be integers such that $n \ge 4$ and $0 \le k \le n - 4$.

- If n < 7, then $\xi^{c}(\mathsf{E}_{n,3,k}) \le f(n,3) = 2n^{2} 5n + 2$ with equality if and only if k = n 4.
- If n > 7, then $\xi^{c}(\mathsf{E}_{n,3,k}) \le f(n,3) = 3n^{2} 16n + 30$ with equality if and only if k = 0.
- If n = 7, then all $\xi^{c}(E_{n,3,k})$ are equal to 65 for k = 0, ..., n 4.

Corollary 7. Let n, D and k be integers such that $n \ge 5$, $4 \le D \le n - 1$ and $0 \le k \le n - D - 1$.

- If n < 3(D-1), then $\xi^{c}(\mathsf{E}_{n,D,k}) = f(n, D)$ if and only if k = n D 1.
- If n > 3(D-1), then $\xi^{c}(\mathsf{E}_{n,D,k}) = f(n, D)$ if and only if k = 0.
- If n = 3(D-1), then $\xi^{c}(\mathsf{E}_{n,D,k}) = f(n, D)$ if and only if $k \in \{0, ..., n-D-1\}$.

The graph H_2 of Fig. 1 has 6 vertices, diameter 3, and is not isomorphic to $E_{6,3,k}$, while $\xi^c(H_2) = f(6,3) = 44$. Similarly, the graph H_3 of Fig. 1 has 7 vertices, diameter 3, and is not isomorphic to $E_{7,3,k}$, while $\xi^c(H_3) = f(7,3) = 65$. In what follows, we prove that all graphs *G* of order *n* and diameter $D \ge 3$ have $\xi^c(G) \le f(n, D)$. Moreover, we show that if *G* is not isomorphic to a $E_{n,D,k}$, then equality can only occur if $G \simeq H_2$ or $G \simeq H_3$. So, for every $n \ge 4$ and $3 \le D \le n-1$, let us consider the following graph class C_n^p :

$$\mathcal{C}_{n}^{D} = \begin{cases} \{\mathsf{E}_{n,3,n-4}\} & \text{if } n = 4, 5 \text{ and } D = 3; \\ \{\mathsf{E}_{n,3,2}, H_2\} & \text{if } n = 6 \text{ and } D = 3; \\ \{\mathsf{E}_{n,3,0}, \dots, \mathsf{E}_{n,3,3}, H_3\} & \text{if } n = 7 \text{ and } D = 3; \\ \{\mathsf{E}_{n,3,0}\} & \text{if } n > 7 \text{ and } D = 3; \\ \{\mathsf{E}_{n,0,0}\} & \text{if } n < 3(D-1) \text{ and } D \ge 4; \\ \{\mathsf{E}_{n,D,0}, \dots, \mathsf{E}_{n,D,n-D-1}\} & \text{if } n = 3(D-1) \text{ and } D \ge 4; \\ \{\mathsf{E}_{n,D,0}\} & \text{if } n > 3(D-1) \text{ and } D \ge 4. \end{cases}$$

Note that while Morgan et al. [2] stated that the lollipops reach the asymptotic upper bound of the eccentric connectivity index, we will prove that they reach the more precise upper bound only if D = n - 1, D = 3 and $n \ge 7$, or $D \ge 4$ and $n \ge 3(D - 1)$.

Theorem 8. Let G be a connected graph of order $n \ge 4$ and diameter $3 \le D \le n - 1$. Then $\xi^c(G) \le f(n, D)$ with equality if and only if G belongs to C_n^D .

Proof. We have already observed that all graphs *G* in C_n^D have $\xi^c(G) = f(n, D)$. So let *G* be a graph of order *n*, diameter *D* such that $\xi^c(G) \ge f(n, D)$. It remains to prove that *G* belongs to C_n^D .

Let $P = u_0 - u_1 - \dots - u_D$ be a shortest path in *G* that connects two vertices u_0 and u_D at distance *D* from each other. In what follows, we use the following notations for all $i = 0, \dots, D$:

- o_i is the number of vertices outside P and adjacent to u_i ;
- $\delta_i = \max\{i, D i\};$
- $r_i = \epsilon(u_i) \delta_i$.

Also, let $r^* = \max\{r_i \mid 1 \le i \le D-1\}$. Note that $\delta_i \ge 2$ and $r_i \le \lfloor \frac{D}{2} \rfloor$ for all *i*, and $r_0 = r_D = 0$ since $\epsilon(u_0) = \epsilon(u_D) = \delta_0 = \delta_D = D$. Since *P* is a shortest path linking u_0 to u_D , no vertex outside *P* can have more than three neighbors on *P*. We consider the following partition of the vertices outside *P* in 4 disjoint sets $V_0, V_{1,2}, V_3^{D-1}, V_3^D$, and denote by $n_0, n_{1,2}, n_3^{D-1}, n_3^D$ their respective size:

- V_0 is the set of vertices outside *P* with no neighbor on *P*;
- $V_{1,2}$ is the set of vertices outside *P* with one or two neighbors on *P*;
- V_3^{D-1} is the set of vertices v outside P with three neighbors on P and $\epsilon(v) \leq D 1$;
- V_3^D is the set of vertices v outside P with three neighbors on P and $\epsilon(v) = D$.

Clearly, all vertices v outside P can have $\epsilon(v) = D$ except those in V_3^{D-1} . The maximum degree of a vertex in V_0 is n - D - 2, while it is n - D for those in $V_{1,2}$ and n - D + 1 for those in $V_3^{D-1} \cup V_3^D$. For a vertex $v \in V_{1,2} \cup V_3^{D-1} \cup V_3^D$, let

$$\rho(v) = \max\{r_i \mid u_i \text{ is adjacent to } v\},\$$
$$\rho^* = \max_{v \in V_{1,2} \cup V_2^{D-1} \cup V_2^D} \rho(v).$$

Hence, $r^* \ge \rho^*$. The rest of the proof is organized as follows. We first give an upper bound on the total weight of the vertices outside *P* (Claim 1), which will lead to an upper bound on $\xi^c(G)$ (Claim 2). We finally prove that this bound is attained if and only if *G* belongs to C_n^p .

Claim 1.
$$\sum_{v \notin P} W(v) \le (n - D - 1)D(n - D) + n_3^{D-1}(2D - n - 1) - Dn_3^D - 2Dr^* + D\min\{1, \rho^*\} - \sum_{v \in V_{1,2} \cup V_3^D \cup V_3^{D-1}} (2D - 1)\rho(v).$$

We first show that the total weight of the vertices in $V_0 \cup V_{1,2}$ is at most

 $D(n-D)(n-D-1-n_3^{D-1}-n_3^D)-2Dr^*+D\min\{1,\rho^*\}.$

- If $r^* = 0$, then the largest possible weight of the vertices in $V_0 \cup V_{1,2}$ occurs when all of them have two neighbors on P (i.e., $n_0 = 0$ and no vertex in $V_{1,2}$ has one neighbor on P). In such a case, $n_0 + n_{1,2} = n D 1 n_3^{D-1} n_3^D$, and all these vertices have degree n D. Hence, their total weight is at most $D(n D)(n D 1 n_3^{D-1} n_3^D)$.
- If $r^* > 0$ and $\rho^* > 0$, then let *i* be such that $r_i = r^*$. It follows from Lemma 4 that there is a path $w_1 \cdots w_{\epsilon(u_i)+1}$ such that w_1, \ldots, w_{r^*-1} have no neighbor on *P* and w_{r^*} has at most one neighbor on *P*. Hence, the largest possible weight of the vertices in $V_0 \cup V_{1,2}$ occurs when $r^* 1$ vertices have 0 neighbor on *P*, one vertex has one neighbor on *P*, and $n D 1 n_3^{D-1} n_3^D r^*$ vertices have 2 neighbors in *P*. Hence, the largest possible weight for the vertices in $V_0 \cup V_{1,2}$ is

$$D(n - D - 2)(r^* - 1) + D(n - D - 1) + D(n - D)(n - D - 1 - n_3^{D-1} - n_3^D - r^*)$$

= $D(n - D)(n - D - 1 - n_3^{D-1} - n_3^D) - 2Dr^* + D.$

• If $r^* > 0$ and $\rho^* = 0$, then consider the same path $w_1 - \cdots - w_{\epsilon(u_i)+1}$ as in the above case. If w_{r^*} has no neighbor on P, then there are at least r^* vertices with no neighbor on P and the largest possible weight for the vertices in $V_0 \cup V_{1,2}$ is

$$D(n - D - 2)(r^*) + D(n - D)(n - D - 1 - n_3^{D-1} - n_3^D - r^*)$$

= $D(n - D)(n - D - 1 - n_3^{D-1} - n_3^D) - 2Dr^*.$

Also, if there are at least two vertices in $V_{1,2}$ with only one neighbor on P, then the largest possible weight for the vertices in $V_0 \cup V_{1,2}$ is

$$D(n-D-2)(r^*-1) + 2D(n-D-1) + D(n-D)(n-D-1-n_3^{D-1}-n_3^D-r^*-1) = D(n-D)(n-D-1-n_3^{D-1}-n_2^D) - 2Dr^*.$$

So assume w_{r^*} is the only vertex in $V_{1,2}$ with only one neighbor on P. We thus have $d(u_i, w_{r^*}) = \delta_i + 1$. We now show that this case is impossible. We know from Lemma 4 that w_{r^*} is adjacent to u_0 or (exclusive) to u_D . Since $\rho(v) = 0$ for all vertices v outside P, we know that u_i has no neighbor outside P. Hence, $w_{\epsilon(u_i)}$ is u_{i-1} or u_{i+1} , say u_{i+1} (the other case is similar). Then w_{r^*} is not adjacent to u_0 else there is j with $r^* + 1 \le j \le \epsilon(u_i) - 1$ such that w_j is outside P and has w_{j+1} as neighbor on P, and since w_j must have a second neighbor u_ℓ on P with $\ell \ge i + 2$, we would have

$$i + 2 \le \ell = d(u_0, u_\ell) \le d(w_{r^*}, w_i) + 2 \le (d(w_{r^*}, u_i) - 2) + 2 = i + 1.$$

Hence, w_{r^*} is adjacent to u_D . Then there is also a path linking u_i to w_1 going through u_{i-1} else $d(u_0, w_1) = d(u_0, u_i) + d(u_i, w_1) > i + \delta_i \ge D$. Let Q be such a path of minimum length. Clearly, Q has length at least equal to $\epsilon(u_i)$. So let $w'_1 - \cdots - w'_{\epsilon(u_i)+1}$ be the subpath of Q of length $\epsilon(u_i)$ and having u_i as extremity (i.e., $w'_{\epsilon(u_i)} = u_{i-1}$ and $w'_{\epsilon(u_i)+1} = u_i$). Applying the same argument to w'_{r^*} as was done for w_{r^*} , we conclude that w'_{r^*} has u_0 as unique neighbor on P. We thus have two vertices in $V_{1,2}$ with a unique neighbor on P, a contradiction.

The total weight of the vertices in $V_3^{D-1} \cup V_3^D$ is at most $(n - D + 1)((D - 1)n_3^{D-1} + Dn_3^D)$, which gives the following upper bound *B* on the total weight of the vertices outside *P*:

$$B = D(n - D)(n - D - 1 - n_3^{D-1} - n_3^D) + (n - D + 1)((D - 1)n_3^{D-1} + Dn_3^D) - 2Dr^* + D\min\{1, \rho^*\} = (n - D - 1)D(n - D) + n_3^{D-1}(2D - n - 1) + Dn_3^D - 2Dr^* + D\min\{1, \rho^*\}.$$

This bound can only be reached if all vertices outside *P* are pairwise adjacent. But Lemma 4 shows that this cannot happen if $\rho^* > 0$. Indeed, consider a vertex v in $V_{1,2} \cup V_3^D \cup V_3^{D-1}$ with $\rho(v) > 0$. There is a vertex u_i on *P* adjacent to v such that $\rho(v) = r_i = \epsilon(u_i) - \delta_i > 0$. We know from Lemma 4 that there is a shortest path $w_1 - w_2 - \cdots - w_{\epsilon(u_i)+1} = u_i$ linking u_i to a vertex w_1 with $d(u_i, w_1) = \epsilon(u_i)$ and such that $w_1, \ldots, w_{\rho(v)}$ do not belong to *P*. In what follows, we denote Q^v such a path. If v is adjacent to a w_j with $1 \le j \le \rho(v)$, then the path $u_i - v - w_j - \cdots - w_1$ links u_i to w_1 and has length at most $\rho(v) + 1 < r_i + \delta_i = \epsilon(u_i)$, a contradiction. Hence v has at least $\rho(v)$ non-neighbors outside *P*. Also, as shown in Lemma 4, $w_1, \ldots, w_{\rho(v)-1}$ belong to V_0 , while $w_{\rho(v)}$ belongs to $V_0 \cup V_{1,2}$. In the upper bound *B*, we have assumed that $\epsilon(w_1) = \cdots = \epsilon(w_{\rho(v)}) = D$. Hence, if $v \in V_{1,2} \cup V_3^D$, we can gain 2D units on *B* for every $w_j, j = 1, \ldots, \rho(v)$ (*D* for v and *D* for w_j), while the gain is 2D - 1 (D - 1 for v and *D* for w_j) if $v \in V_3^{D-1}$.

We can gain an additional 2D for every $v \in V_3^D$. Indeed, consider such a vertex v and let w^* be a vertex at distance D from v. Note that w^* is not on P and has at most one neighbor on P else $d(v, w^*) \leq D - 1$. Hence, if $\rho(v) = 0$, we can gain 2D (one D for v and one D for w) in the above upper bound. So assume $\rho(v) > 0$, and consider again the shortest path $Q^v = w_1 - w_2 - \cdots - w_{\epsilon(u_i)+1} = u_i$, with $\rho(v) = r_i$. Also, let $W = \{w_1, \ldots, w_{\rho(v)}\}$. To gain an additional 2D, it is

sufficient to determine a vertex in $(V_0 \cup V_{1,2}) \setminus W$ which is not adjacent to v. So assume no such vertex exists, and let us prove that such a situation cannot occur. Note that $w^* \notin V_3^D \cup V_3^{D-1}$ (since it has at most one neighbor on P), which implies $w^* \in W$.

- If a vertex w_j ∈ W has a neighbor x ∈ V₀ ∪ V_{1,2} outside W, then v is adjacent to x, and the path v − x − w_j − · · · − w^{*} has length at most 1 + ρ(v) ≤ 1 + L^D/₂ | < D, a contradiction.
 If a vertex w_j ∈ W has a neighbor x ∈ V^D₃ ∪ V^{D−1}₃, then d(u_i, w₁) ≤ d(u_i, x) + d(x, w₁) ≤ δ_i − 1 + r_i < ε(u_i), a
- contradiction.

Since *G* is connected and $w_1, \ldots, w_{\rho(v)-1}$ have no neighbors outside Q^v , we know that $w_{\rho(v)}$ is adjacent to the extremity of *P* at distance δ_i from u_i (and to no other vertex on *P*). Hence, the vertices on *P* and those in *W* induce a path of length $D + \rho(v) > D$ in G, a contradiction.

In summary, the following value is a more precise upper bound on the total weight of the vertices outside P, which proves Claim 1:

$$B - \sum_{v \in V_{1,2} \cup V_3^D} 2D\rho(v) - \sum_{v \in V_3^{D-1}} (2D - 1)\rho(v) - 2Dn_3^D$$

$$\leq (n - D - 1)D(n - D) + n_3^{D-1}(2D - n - 1) - Dn_3^D - 2Dr^* + D\min\{1, \rho^*\}$$

$$- \sum_{v \in V_{1,2} \cup V_3^D \cup V_3^{D-1}} (2D - 1)\rho(v).$$

Claim 2. $\xi^{c}(G) \leq (n-D-1)D(n-D) + n_{3}^{D-1}(2D-n-1) - Dn_{3}^{D} + 2\sum_{i=0}^{D-1} \delta_{i} + \sum_{i=0}^{D} \delta_{i}o_{i}.$

We have $W(u_0) = D(1 + o_0)$, $W(u_D) = D(1 + o_D)$, and $W(u_i) = \epsilon(u_i)(2 + o_i)$ for i = 1, ..., D - 1. Since $\epsilon(u_i) = \delta_i + r_i$, the total weight of the vertices on *P* is

$$2D + D(o_0 + o_D) + \sum_{i=1}^{D-1} (\delta_i + r_i)(2 + o_i)$$

= $2\sum_{i=0}^{D-1} \delta_i + 2\sum_{i=1}^{D-1} r_i + \sum_{i=1}^{D-1} r_i o_i + \sum_{i=0}^{D} \delta_i o_i.$

Each edge that links a vertex v outside P to a vertex u_i on P contributes for $r_i \leq \rho(v)$ in the sum $\sum_{i=1}^{D-1} r_i o_i$. Hence,

$$\sum_{i=1}^{D-1} r_i o_i \leq \sum_{v \in V_{1,2}} 2\rho(v) + \sum_{v \in V_3^D \cup V_3^{D-1}} 3\rho(v) \leq \sum_{v \in V_{1,2} \cup V_3^D \cup V_3^D} 3\rho(v).$$

Since $2\sum_{i=1}^{D-1} r_i \le 2r^*(D-1)$, we get the following valid upper bound on the total weight of the vertices on *P*:

$$2\sum_{i=0}^{D-1}\delta_i + \sum_{i=0}^{D}\delta_i o_i + 2r^*(D-1) + \sum_{v \in V_{1,2} \cup V_3^D \cup V_3^D} 3\rho(v).$$

Summing up the bounds for the vertices outside P with those on P, we get from Claim 1 the following upper bound for the total weight of the vertices in G:

$$(n - D - 1)D(n - D) + n_3^{D-1}(2D - n - 1) - Dn_3^D + 2\sum_{i=0}^{D-1} \delta_i + \sum_{i=0}^D \delta_i o_i$$
$$-\sum_{v \in V_{1,2} \cup V_3^D \cup V_3^{D-1}} (2D - 4)\rho(v) - 2r^* + D\min\{1, \rho^*\}.$$

Let us decompose this bound into two parts $A_1 + A_2$ with A_1 being equal to the sum of the first terms of the above upper bound, and A_2 being equal to the sum of the last ones:

$$A_{1} = (n - D - 1)D(n - D) + n_{3}^{D-1}(2D - n - 1) - Dn_{3}^{D} + 2\sum_{i=0}^{D-1} \delta_{i} + \sum_{i=0}^{D} \delta_{i}o_{i},$$

$$A_{2} = -\sum_{v \in V_{1,2} \cup V_{3}^{D} \cup V_{3}^{D-1}} (2D - 4)\rho(v) - 2r^{*} + D\min\{1, \rho^{*}\}.$$

- If $r^* = 0$, then $A_2 = 0$, which implies $A_1 + A_2 = A_1$.
- If $\rho^* > 0$, then $A_2 \le 4 2D 2r^* + D = 4 D 2r^* < 0$, which implies $A_1 + A_2 < A_1$.
- If $r^* > 0$ and $\rho^* = 0$, then $A_2 = -2r^* < 0$, which implies $A_1 + A_2 < A_1$.
- In summary, the best possible upper bound is A_1 , which proves Claim 2.

It follows from Claim 2 that A_1 is the best possible upper bound on $\xi^c(G)$, and this bound is attained only if the upper bound in Claim 1 is reached with $r^* = 0$ (and hence $\rho^* = 0$). As shown in the proof of Claim 1, this implies $n_0 = 0$, $\epsilon(v) = D$ for all vertices in $V_{1,2}$, $\epsilon(v) = D - 1$ for all vertices in V_3^{D-1} , and all vertices in $V_{1,2} \cup V_3^{D-1}$ are pairwise adjacent. It remains to prove that $A_1 = f(n, D)$ and that the graphs G with $\xi^c(G) = A_1 = f(n, D)$ are exactly those in C_n^D . Let us start with D = 3. In that case, we have $f(n, 3) = 14 + (n - 4)(3n - 4 + \max\{0, 7 - n\})$, while $A_1 = (n - 4)3(n - 3) + n_3^2(5 - n) - 3n_3^3 + 14 + \sum_{i=0}^3 \delta_i o_i$. Hence, the difference is :

$$f(n, 3) - A_1 = (n - 4)(5 + \max\{0, 7 - n\}) - n_3^2(5 - n) + 3n_3^3 - \sum_{i=0}^{3} \delta_i o_i.$$

We have

$$\sum_{i=0}^{3} o_i \le 3(n_3^2 + n_3^3) + 2(n - 4 - n_3^2 - n_3^3) = 2(n - 4) + n_3^2 + n_3^3.$$

Since $o_0 + o_3 \le n - 4$ to avoid a path of length 2 joining u_0 to u_3 , we have

$$\sum_{i=0}^{3} \delta_i o_i \leq 3(n-4) + 2(n-4+n_3^2+n_3^3).$$

Hence,

$$f(n, 3) - A_1 \ge (n - 4) \max\{0, 7 - n\} - n_3^2(7 - n) + n_3^3$$

This difference is minimized if and only if $n_3^3 = 0$, while $n_3^2 = 0$ if n > 7, $n_3^2 = 0$, 1, 2 or 3 if n = 7, and $n_3^2 = n - 4$ if n < 7. In all such cases, we get $f(n, 3) - A_1 = 0$.

- If n = 4, there is no vertex outside *P*, and $G \simeq E_{4,3,0}$ which is the unique graph in C_4^3 .
- If n = 5, $n_3^2 = 1$, which means that the unique vertex outside *P* is adjacent to 3 consecutive vertices on *P*. Hence, $G \simeq E_{5,3,1}$ which is the unique graph in C_5^3 .
- If n = 6, $n_3^2 = 2$, which means that both vertices outside *P* are adjacent to 3 consecutive vertices on *P*. If one of them is adjacent to u_0, u_1, u_2 , while the other is adjacent to u_1, u_2, u_3 , we have $G \simeq H_2$. Otherwise, we have $G \simeq E_{6,3,2}$.
- If n = 7, $n_3^2 \in \{0, 1, 2, 3\}$ and $n_{1,2} = 3 n_3^2$. If $n_{1,2} > 0$ then the vertices in $V_{1,2}$ are all adjacent to u_0 and u_1 or all to u_2 and u_3 , since they are pairwise adjacent, and they all have eccentricity 3. So assume without loss of generality, they are all adjacent to u_0 and u_1 . Then the vertices in V_3^2 are all adjacent to u_0 , u_1 , u_2 , else the vertices in $V_{1,2}$ would have eccentricity 2. But *G* is then equal to $E_{7,3,0}$, $E_{7,3,1}$ or $E_{7,3,2}$. If $n_{1,2} = 0$, then the three vertices outside *P* are all adjacent to three consecutive vertices on *P*. If they are all adjacent to u_0 , u_1 , u_2 , or all to u_1 , u_2 , u_3 , then $G \simeq E_{7,3,3}$, else $G \simeq H_3$.
- If n > 7, all vertices outside P are adjacent to u_0, u_1 , or to u_2, u_3 (so that they all have eccentricity 3). Hence, $G \simeq \mathsf{E}_{n,3,0}$.

D

Assume now $D \ge 4$. We have

$$f(n, D) = 2\sum_{i=0}^{D-1} \delta_i + (n - D - 1)(2D - 1 + D(n - D) + \max\{0, 3D - n - 3\})$$

and

$$A_1 = 2\sum_{i=0}^{D-1} \delta_i + (n-D-1)D(n-D) + n_3^{D-1}(2D-n-1) - Dn_3^D + \sum_{i=0}^{D} \delta_i o_i.$$

Hence, the difference is:

$$f(n, D) - A_1 = (n - D - 1)(2D - 1 + \max\{0, 3D - n - 3\}) - n_3^{D-1}(2D - n - 1) + Dn_3^D - \sum_{i=0}^{n} \delta_i o_i.$$

We have

$$\sum_{i=0}^{D} o_i \leq 3(n_3^{D-1} + n_3^D) + 2(n - D - 1 - n_3^{D-1} - n_3^D) = 2(n - D - 1) + n_3^{D-1} + n_3^D.$$

Let *p* be the number of vertices linked to both u_1 and u_{D-1} .

- If $D \ge 5$, then p = 0, else $d(u_0, u_D) \le 4 < D$.
- If D = 4, then no vertex outside P linked to u_1 and u_{D-1} can also be linked to u_0 or to u_D since $d(u_0, u_D)$ would be strictly smaller than 4. Since no vertex outside P can be linked to both u_0 and u_D (else $d(u_0, u_D) < 3$) we have $o_0 + o_D \leq n - D - 1 - p$ and $o_1 + o_{D-1} \leq n - D - 1 + p$. Hence, $o_2 \leq n_3^{D-1} + n_3^D$. So,

$$\sum_{i=0}^{D} \delta_i o_i \le D(n-D-1-p) + (D-1)(n-D-1+p) + (D-2)(n_3^{D-1}+n_3^D)$$
$$= (n-D-1)(2D-1) + (D-2)(n_3^{D-1}+n_3^D) - p.$$

This value is maximized for p = 0.

Hence, in all cases, we have

$$\sum_{i=0}^{D} \delta_i o_i \le (n-D-1)(2D-1) + (D-2)(n_3^{D-1} + n_3^{D}).$$

Hence.

$$f(n, D) - A_1 \ge (n - D - 1) \max\{0, 3D - n - 3\} - n_3^{D-1}(3D - n - 3) + 2n_3^D.$$

This difference is minimized if and only if $n_3^D = 0$, while $n_3^{D-1} = 0$ if n > 3(D-1), $n_3^{D-1} \in \{0, ..., n-D-1\}$ if n = 3(D-1), and $n_3^{D-1} = n - D - 1$ if n < 3(D-1). In all such cases, we get $f(n, D) - A_1 = 0$.

- If n < 3(D-1), then all vertices outside P are adjacent to 3 consecutive vertices on P. They are all adjacent to
- If n = 3(D 1), $n_3^{D-1} \in \{0, \dots, n D 1\}$ and $n_{1,2} = 2D 2 n_3^{D-1}$. If $n_{1,2} > 0$ then the vertices in $V_{1,2}$ are all adjacent to u_0 and u_1 or all to u_{D-1} and u_D , since they are pairwise adjacent, and they all have eccentricity D. So assume without loss of generality, they are all adjacent to u_0 and u_1 . Then the vertices in V_3^{D-1} are all adjacent to u_0, u_1, u_2 , else $d(u_0, u_D) \le 3 < D$. But G is then equal to E_{n,D,n_2^D} . If $n_{1,2} = 0$, then all vertices outside P are adjacent to u_0, u_1, u_2 , or all of them are adjacent to u_{D-2}, u_{D-1}, u_D , else $d(u_0, u_D) \leq 3 < D$. Hence, $G \simeq \mathsf{E}_{n,D,n-D-1}$.
- If n > 3(D-1), all vertices outside P are adjacent to u_0, u_1 , or to u_2, u_3 (so that they all have eccentricity D). Hence, $G \simeq \mathsf{E}_{n,D,0}$. \Box

3. Results for a fixed order and no fixed diameter

We now determine the connected graphs that maximize the eccentric connectivity index when the order n of the graph is given, while there is no fixed diameter.

Theorem 9. Let ξ_n^{c*} be the largest eccentric connectivity index among all graphs of order n. The only graphs that attain ξ_n^{c*} are the following:

п	ξ_n^{c*}	optimal graphs
3	6	K_3 and P_3
4	16	M_4
5	30	M_5 and H_1
6	48	M ₆
7	68	M ₇
8	96	M_8 and $E_{8,4,3}$
≥ 9	g(<i>n</i>)	$E_{n,\left\lceil \frac{n+1}{3}\right\rceil + 1, n - \left\lceil \frac{n+1}{3}\right\rceil - 2}.$

Proof. Clearly, K₃ and P₃ are the only connected graphs of order n = 3 and $\xi^c(K_3) = \xi^c(P_3) = 6$. For n > 3, $\xi^{c}(M_{n}) = 2n^{2} - 4n - 2(n \mod 2) > n^{2} - n = \xi^{c}(K_{n})$, which means that the optimal diameter is not D = 1.

- If n = 4, $f(4, 3) = 14 < \xi^{c}(M_{4}) = 16$, which means that M_{4} has maximum eccentric connectivity among all connected graphs with 4 vertices.
- If n = 5, f(5, 3) = 27, f(5, 4) = 24 and $\xi^{c}(M_{5}) = 30$, which means that M_{5} and H_{1} have maximum eccentric connectivity index among all connected graphs with 5 vertices.
- If n = 6, f(6, 3) = 44, f(6, 4) = 42, f(6, 5) = 38 and $\xi^{c}(M_{6}) = 48$, which means that M_{6} has maximum eccentric connectivity index among all connected graphs with 6 vertices.

Assume now $n \ge 7$. We first show that lollipops are not optimal. Indeed, consider a lollipop $E_{n,D,0}$ of order n and diameter D.

• If D = n - 1, then $G \simeq P_n$ which implies

$$\xi^{c}(\mathsf{E}_{n,n-1,0}) = \sum_{i=1}^{D-1} 2\max\{i, D-i\} + 2D = \frac{3D^{2} + D \mod 2}{2}$$
$$\leq \frac{3D^{2} + 1}{2} = \frac{3n^{2}}{2} - 3n + 2 < 2n^{2} - 4n - 2 \leq \xi^{c}(\mathsf{M}_{n}).$$

• If D < n-1 then either n < 3(D-1), and we know from Corollary 7 that $\xi^c(\mathsf{E}_{n,D,n-D-1}) > \xi^c(\mathsf{E}_{n,D,0})$, or $n \ge 3(D-1)$, in which case we show that $\xi^c(\mathsf{E}_{n,D+1,n-D-2}) > \xi^c(\mathsf{E}_{n,D,0})$. Since $2\sum_{i=0}^{D-1} \max\{i, D-i\} = \frac{3D^2+D \mod 2}{2}$, we know from Lemma 5 that

$$\xi^{c}(\mathsf{E}_{n,D+1,n-D-2}) = 2\sum_{i=0}^{D} \max\{i, D+1-i\} + (n-D-2)(2(D+1)-1+(D+1)(n-D-1)) + (n-D-2)(2(D+1)-n-1+(D+1)-2) = \frac{3(D+1)^{2}+(D+1) \mod 2}{2} + (n-D-2)(3D+D(n-D))$$

and

$$\xi^{c}(\mathsf{E}_{n,D,0}) = 2\sum_{i=0}^{D-1} \max\{i, D-i\} + (n-D-1)(2D-1+D(n-D))$$
$$= \frac{3D^{2}+D \mod 2}{2} + (n-D-1)(2D-1+D(n-D)).$$

Simple calculations lead to

$$\xi^{c}(\mathsf{E}_{n,D+1,n-D-2}) - \xi^{c}(\mathsf{E}_{n,D,0}) = n - 2D + (D-1) \mod 2 \ge n - 2\left(\frac{n}{3} + 1\right) = \frac{n}{3} - 2 > 0.$$

Hence, the remaining candidates to maximize the eccentric connectivity index when $n \ge 7$ are M_n and $E_{n,D,n-D-1}$. Let

$$g(n) = \max_{\substack{D = \lceil \frac{n}{3} + 2 \rceil}}^{n-D-1} \xi^{c}(\mathsf{E}_{n,D,n-D-1}).$$

We can rewrite $\xi^{c}(E_{n,D,n-D-1})$ as follows:

$$\xi^{c}(\mathsf{E}_{n,D,n-D-1}) = D^{3} - D^{2}(n + \frac{5}{2}) + D(n^{2} + 5n - 1) - n^{2} - 3n + 4 + D \mod 2.$$

It is then not difficult to show that $g(n) = \xi^{c}(\mathsf{E}_{n,D^{*},n-D^{*}-1})$ with $D^{*} = \lceil \frac{n+1}{3} \rceil + 1$, and simple calculations lead to

$$g(n) = \frac{1}{54}(8n^{3} + 21n^{2} - 36n + \begin{cases} 0 & \text{if } n \mod 6 = 0\\ 6n + 1 & \text{if } n \mod 6 = 1\\ 32 & \text{if } n \mod 6 = 2\\ 27 & \text{if } n \mod 6 = 3\\ 6n + 28 & \text{if } n \mod 6 = 4\\ 59 & \text{if } n \mod 6 = 5 \end{cases}$$

We then have $g(7) = 66 < 68 = \xi^c(M_7)$, which means that M_7 has the largest eccentric connectivity among all graphs with 7 vertices. Also, $g(8) = 96 = \xi^c(M_8)$, which means that both $E_{8,4,3}$ and M_8 have the largest eccentric connectivity index among all graphs with 8 vertices. For graphs of order $n \ge 9$, we have $\frac{8n^3 + 21n^2 - 36n}{54} > 2n^2 - 4n$, which means that $E_{n,D^*,n-D^*-1}$ is the unique graph with largest eccentric connectivity index among all graphs with n vertices. \Box

Note that Tavakoli et al. [4] stated that $g(n) = \xi^c(\mathsf{E}_{n,D,n-D-1})$ with $D = \lceil \frac{n}{3} \rceil + 1$ while we have shown that the best diameter for a given n is $D = \lceil \frac{n+1}{3} \rceil + 1$. Hence for all $n \ge 9$ with $n \mod 3 = 0$, we get a better result. For example, for n = 9, they consider $\mathsf{E}_{9,4,4}$ which has an eccentric connectivity index equal to 132 while g(9)=134.

4. Conclusion

We have characterized the graphs with largest eccentric connectivity index among those of fixed order n and fixed or non-fixed diameter D. It would also be interesting to get such a characterization for graphs with a given order n and a given size m. We propose the following conjecture which is more precise than the one proposed in [5]

Conjecture. Let *n* and *m* be two integers such that $n \ge 4$ and $m \le \binom{n-1}{2}$. Also, let

$$D = \left\lfloor \frac{2n+1 - \sqrt{17 + 8(m-n)}}{2} \right\rfloor \text{ and } k = m - \binom{n-D+1}{2} - D + 1.$$

Then, the largest eccentric connectivity index among all graphs of order n and size m is attained with $E_{n,D,k}$. Moreover,

- if D > 3, then $\xi^{c}(G) < \xi^{c}(\mathsf{E}_{n,D,k})$ for all other graphs G of order n and size m.
- if D = 3 and k = n 4, then the only other graphs G with $\xi^c(G) = \xi^c(\mathsf{E}_{n,D,k})$ are those obtained by considering a path $u_0 u_1 u_2 u_3$, and by joining $1 \le i \le n 3$ vertices of a clique K_{n-4} to u_0, u_1, u_2 and the n 4 i other vertices of K_{n-4} to u_1, u_2, u_3 .

References

- [1] R. Diestel, Graph Theory, second ed., Springer-Verlag, 2000.
- [2] M.J. Morgan, S. Mukwembi, H.C. Swart, On the eccentric connectivity index of a graph, Discrete Math. 311 (2011) 1229-1234.
- [3] V. Sharma, R. Goswani, A.K. Madan, Eccentric connectivity index: A novel highly discriminating topological descriptor for structure property and structure activity studies, J. Chem. Inf. Comput. Sci. 37 (1997) 273–282.
- [4] M. Tavakoli, F. Rahbarnia, M. Mirzavaziri, R. Ashrafi, Complete solution to a conjecture of Zhang-Liu-Zhou, Trans. Comb. 3 (2014) 55–58.
- [5] J. Zhang, Z. Liu, B. Zhou, On the maximal eccentric connectivity indices of graphs, Appl. Math. J. Chin. Univ. 29 (2014) 374–378.