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a b s t r a c t

Given an undirected graph G = (V , E)with matching number ν(G), a d-blocker is a subset
of edges B such that ν((V , E \ B)) ≤ ν(G) − d and a d-transversal T is a subset of edges
such that every maximum matching M has |M ∩ T | ≥ d. While the associated decision
problem is NP-complete in bipartite graphswe showhow to construct efficientlyminimum
d-transversals and minimum d-blockers in the special cases where G is a grid graph or a
tree.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Given a collection C of subsets of a ground set E we define a transversal as a subset of E which meets every member of
C. Transversals have an interest for themselves but also for their numerous applications (for instance surveying when C is a
collection of paths from the origin to destination in a graph). Such sets have been extensively studied for various collections
C (see for instance [3] and the chapter 22 in [7]).
A family of problems which follows a similar spirit to transversal problems are the class of edge deletion problems

[1,4,6,8]. In [10] a generalization of transversals called (d-transversals) and a closely related edge deletion problem (d-
blockers) were introduced for matchings; complexity results have been derived and some polynomially solvable cases have
been presented.
For general bipartite graphs finding minimum d-blockers or d-transversals is NP-hard [10]. Our purpose in this paper is

to show howminimum d-transversals and minimum d-blockers can be constructed in some specific subclasses of bipartite
graphs: the grid graphs and the trees. For trees, the algorithms to be presented will essentially be based on dynamic
programming. For grid graphs the technique will be different: the structural simplicity of such graphs will allow us to
construct directly d-blockers and d-transversals. Most of the effort will then be spent to show that no smaller subset of
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edges can be a d-blocker or d-transversal. Depending on the parity of parameters m and n describing the size of the grid
graphs, various proof techniques (bounding procedures) will be necessary.
In Section 2, wewill recall the basic definitions of d-blocker and d-transversal aswell as some results of [10]; thenwewill

introduce specific notations for grid graphs. In Section 3 we will state and prove the formulas giving the sizes of minimum
d-transversals in grid graphs. Section 4will studyminimum d-blockers in grid graphs. Section 5will be dedicated to the case
of trees (minimum d-transversals and minimum d-blockers) and conclusions will follow in Section 6.

2. Definitions and previous results

All graph theoretical terms not defined here can be found in [2]. Throughout this paperwe are concernedwith undirected
simple loopless graphs G = (V , E). AmatchingM is a set of pairwise non-adjacent edges. AmatchingM is calledmaximum
if its cardinality |M| is maximum. The largest cardinality of a matching in G, itsmatching number, will be denoted by ν(G).
Let P0(G) = {[v,w] ∈ E| ∀ maximum matching M , [v,w] 6∈ M} and P1(G) = {[v,w] ∈ E| ∀ maximum matching M ,
[v,w] ∈ M}. A vertex v ∈ V is called saturated by amatchingM if there exists an edge [v,w] ∈ M . A vertex v ∈ V is called
strongly saturated if for all maximum matchings M , v is saturated by M . We denote by S(G) the set of strongly saturated
vertices of a graph G. We will be interested in subsets of edges which will intersect maximum matchings in G or whose
removal will reduce the matching number by a given number.
We shall say that a subset T ⊆ E is a d-transversal of G if for every maximummatchingM we have |M ∩ T | ≥ d. Thus a

d-transversal is a subset of edges which intersect each maximummatching in at least d edges.
A subset B ⊆ E will be called a d-blocker of G if ν(G′) ≤ ν(G)− dwhere G′ is the partial graph G′ = (V , E \ B). So B is a

subset of edges whose removal reduces the cardinality of a maximummatching by at least d.
In case where d = 1, a d-transversal or a d-blocker is called a transversal or a blocker, respectively. We remark that

in this case our definition of a transversal coincides with the definition of a transversal in the hypergraph of maximum
matchings of G.
We denote byβd(G) theminimumcardinality of a d-blocker inG and by τd(G) theminimumcardinality of a d-transversal

inG (β(G) and τ(G) in case of a blocker or a transversal). A d-blocker (resp. d-transversal) will beminimum if it is ofminimum
size.
Let v be a vertex in graphG. The bundle of v, denoted byω(v), is the set of edgeswhich are incident to v. So |ω(v)| = d(v)

is the degree of v. As we will see, bundles play an important role in finding d-transversals and d-blockers.
A grid graph (or shortly a grid) Gm,n = (V , E) is constructed on vertices xij, 1 ≤ i ≤ m, 1 ≤ j ≤ n; its edge

set consists of horizontal edges hij = [xij, xi,j+1], 1 ≤ j ≤ n − 1 in each row i, 1 ≤ i ≤ m, and of vertical edges
vij = [xij, xi+1,j], 1 ≤ i ≤ m− 1, in each column j, 1 ≤ j ≤ n.
Notice that Gm,n is a bipartite graph; letB,W be the associated partition of its vertex set. Whenmn is even, |B| = |W | =

mn
2 and the maximum matchings are perfect (all vertices are saturated), i.e. ν(Gm,n) =

mn
2 . When mn is odd, assuming that

the four corners (vertices of degree 2) are inB, we have |B| = mn+1
2 and |W | = mn−1

2 , so |B| = |W | + 1; every maximum
matching will saturate all vertices but one, i.e. ν(Gm,n) = bmn2 c. Moreover for every vertex v in Bh, there is a maximum
matching saturating all vertices except v.
We give some properties and results concerning d-transversals and d-blockers (see [10] for their proofs).

Property 2.1. In any graph G and for any d ≥ 1, a d-blocker B is a d-transversal.

Property 2.2. In any graph G = (V , E) a set T is a transversal if and only if it is a blocker.

Property 2.3. For any independent set {v1, v2, . . . , vd} ⊆ S(G) the set T = ∪di=1 ω(vi) is a d-transversal.

For the special case of G1,n, a grid graph with a unique row, we have the following.

Property 2.4. Let G1,n be a chain on n vertices v1, v2, . . . , vn (i.e., E = {[vi, vi+1]|i = 1, . . . , n−1}) and d ≥ 1 an integer. Then
• βd(G) = 2d− 1 and τd(G) = d if n is even,
• βd(G) = τd(G) = 2d if n is odd.

One can observe from the previous property that for the case where n is even and d > 1 we have τd(G) < βd(G): so a
d-transversal is not necessarily a d-blocker (i.e. the converse of Property 2.1 is not necessarily true).
In case where G is bipartite:

Theorem 2.1. For every fixed d ∈ {1, 2, . . . , ν(G)} finding a minimum d-blocker or a minimum d-transversal isN P -hard even
if G is bipartite.

3. Minimum d-transversal in grid graphs

We show here how to construct a minimum d-transversal in a grid graph Gm,n. In the case where mn is even, the
d-transversals constructed will generally consist of d bundles whose centers form a stable set. In some cases other
constructions will be needed.
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Fig. 1. Example form = n = 6.

First, we establish the two following lemmas.

Lemma 3.1. For m = 2, τ1(G2,n) = 2 and τd(G2,n) = 3d− 2, 2 ≤ d ≤ n = ν(G2,n).

Proof. We clearly have τ1(G2,n) = 2 by taking the bundle ω(x11). Then for 2 ≤ d ≤ n, a d-transversal is obtained by taking
a set of d − 1 bundles ω(x11), ω(x22), ω(x13), ω(x24), . . . together with ω(x1n) if n is odd or ω(x2n) if n is even. This set T
is indeed a d-transversal and it satisfies |T | = 3d − 2. So τd(G2,n) ≤ 3d − 2. But we can construct matchings M1,M2,M3
such that M1 ∩ M2 = ∅ and |M3 ∩ (M1 ∪ M2)| = 2; so any d-transversal T should satisfy |T ∩ M1|, |T ∩ M2| ≥ d and
|T ∩ (M3 \ (M1∪M2))| ≥ d−2, i.e., |T | ≥ 3d−2. Here we takeM1∪M2 = {h11, . . . , h1,n−1, v1n, h2,n−1, h2,n−2, . . . , h21, v11}
andM3 = {v11, v12, . . . , v1n}. �

Lemma 3.2. For m ≥ 4 even and n ≥ 3, τd(Gm,n) = 2d, 1 ≤ d ≤ 4.

Proof. For m ≥ 4 even, n ≥ 3 and 1 ≤ d ≤ 4, a d-transversal T is obtained by taking d bundles of corners (vertices
x11, x1n, xm1, xmn); its size |T | is 2d. Every d-transversal T must have |T | ≥ 2d since Gm,n contains two maximummatchings
M1,M2 with M1 ∩ M2 = ∅. M1 consists of the odd horizontal edges hi1, hi3, hi5, . . . of each row i (together with the odd
vertical edges v1n, v3n, . . . if n is odd);M2 consists of the odd vertical edges v1j, v3j, . . . of each column j if n is even or of the
even horizontal edges hi2, hi4, . . . of each row i together with the odd vertical edges v11, v31, . . . , vm−1,1 if n is odd. �

We will now distinguish between three cases:m, n even,m, n odd andm even, n odd.

3.1. m and n even

Lemma 3.3. For m, n ≥ 4 with m+ n ≥ 10 and 5 ≤ d ≤ m+ n− 4, τd(Gm,n) = 3d− 4.

Proof. We construct a set T by taking the four bundles of the corners ω(x11), ω(x1n), ω(xm1), ω(xmn) together with d − 4
bundles of vertices of degree 3 forming all together a stable set in Gm,n. This is possible since d − 4 ≤ m + n − 8: there
are indeed 2m+ 2n− 8 vertices of degree 3 in Gm,n. We can take m− 4 such independent vertices in the first and the last
columns and n− 4 in the first and the last rows. Such a set T is a d-transversal with |T | = 3d− 4.
We constructM1,M2,M3 withM1 ∩M2 = ∅ and |M3 ∩ (M1 ∪M2)| = 4 as follows (see Fig. 1):
M1 ∪ M2 contains all horizontal edges except h2,n−1, h3,n−1, . . . , hm−1,n−1 and we also introduce the odd vertical

edges v11, v31, . . . , vm−1,1, the even vertical edges v1n, v2n, . . . , vm−1,n into M1 ∪ M2. M3 consists of the horizontal edges
h11, hm1, h3,n−1, . . . , hm−2,n−1 together with the vertical edges v1,n−1, vm−1,n−1, v21, v22, v41, v42, . . . , vm−2,1, vm−2,2, v1n,
vm−1,n and vi3, vi4, . . . , vi,n−2 (i = 1, 3, . . . ,m− 1). We haveM3 ∩ (M1 ∪M2) = {h11, v1n, hm1, vm−1,n}. �

Lemma 3.4. For m, n ≥ 4 and m+ n− 3 ≤ d ≤ mn
2 , τd(Gm,n) = 4d−m− n.

Proof. Consider now that m + n − 3 ≤ d ≤ mn
2 − 2 with m, n even and at least 4. We construct a set T consisting of the

bundles of the four corners x11, x1n, xm1, xmn together with m + n − 8 bundles of vertices of degree 3. In addition we take
d− (m+ n− 4) bundles of vertices of degree 4 forming a stable set with the vertices already chosen. This gives a set T with
|T | = 4d− (m+ n).
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For d = mn
2 we take all edges, i.e., |T | = |E| = 2mn− (m+ n) = 4d− (m+ n) and finally for d =

mn
2 − 1, we take the

bundles of all vertices on the same side of the bipartition except one vertex of degree 4. This gives |T | = 2mn−(m+n−4) =
4d− (m+ n).
Now we can construct matchings M1,M2,M3,M4 satisfying M1 ∩ M2 = M3 ∩ M4 = M1 ∩ M4 = M2 ∩ M3 = ∅,

M1 ∩ M3 = m and M2 ∩ M4 = n as follows: M1 = {vi1, vi2, . . . , vin; i = 1, 3, 5, . . . ,m − 1}, M2 = {h1j, h2j, . . . , hmj; j =
1, 3, 5, . . . , n − 1}, M3 = {vi1, vin (i = 1, 3, 5, . . . ,m − 1)} ∪ {hi2, hi4, . . . , hi,n−1 (i = 1, . . . ,m)}, M4 = {h1j, hmj (j =
1, 3, 5, . . . , n − 1)} ∪ {v2j, v4j, . . . , vm−2,j (j = 1, . . . , n)}. Then clearly M1 ∩ M3 = {vi1, vin (i = 1, 3, 5, . . . ,m − 1)} and
M2 ∩ M4 = {h1j, hmj (j = 1, 3, 5, . . . , n − 1)}. So for every d-transversal T we must have |T | ≥ 4d − (m + n) and the T
constructed above is optimal. �

From Lemmas 3.1–3.4 we obtain the following.

Theorem 3.5. Let Gm,n be a grid with m and n even. The minimum cardinality of a d-transversal is

1. for m = 2 or n = 2
(a) τd(Gm,n) = 2d for 1 ≤ d ≤ 2
(b) τd(Gm,n) = 3d− 2 for 3 ≤ d ≤ ν(Gm,n)

2. for m, n ≥ 4
(a) τd(Gm,n) = 2d for 1 ≤ d ≤ 4
(b) τd(Gm,n) = 3d− 4 for 5 ≤ d ≤ m+ n− 4 and (m, n) 6= (4, 4)
(c) τd(Gm,n) = 4d−m− n for m+ n− 3 ≤ d ≤ ν(Gm,n).

3.2. m and n odd

We are now in the case where m and n are odd. The bipartition (B,W) of Gm,n will be used and we recall that the 4
corners (vertices of degree 2) are in B. So we have |B| = |W | + 1 = ν(Gm,n) + 1. We first prove a general result when m
and n are both odd.

Lemma 3.6. For m, n ≥ 3 every d-transversal T we have |T | ≥ 8d
3 .

Proof. We consider four matchingsM1,M2,M3,M4 as shown in the right part of Fig. 2, i.e.,M1 = {vij, i = 1, 3, 5, . . . ,m−
2; j = 1, . . . , n; hmj, j = 1, 3, . . . , n − 2}, M2 = {h1j, j = 2, 4, . . . , n − 1; vij, j = 1, . . . , n and i = 2, 4, . . . ,m − 1},
M3 = {hij, i = 1, 2, . . . ,m and j = 1, 3, . . . , n− 2; vin, i = 2, 4, . . . ,m− 1} andM4 = {vi1, i = 1, 3, . . . ,m− 2; hij, i =
1, . . . ,m and j = 2, 4, . . . , n − 1}. Then we construct four other maximum matchings. For i = 1, . . . 4, the matchingM4+i
is obtained from Mi by taking the symmetric of Mi with respect to the horizontal axis y = m+1

2 . Notice that for each edge
e, we have |{Mk | e ∈ Mk, k ∈ {1, . . . , 8}}| ≤ 3. So for every d-transversal T we have 3|T | ≥

∑
e∈T
∑8
k=1 |{e} ∩ Mk| ≥ 8d.

Hence, |T | ≥ 8d
3 . �

Using Lemma 3.6, we get the following two results.

Lemma 3.7. For m, n ≥ 3 and d = 1, τd(Gm,n) = 3.

Proof. We take the bundle of a vertex of degree 3 inW and we get a 1-transversal T with |T | = 3. �

Lemma 3.8. For m, n ≥ 3 and 2 ≤ d ≤ 3, τd(Gm,n) = 2d+ 2.

Proof. We take d+ 1 bundles of corners and we get a d-transversal T with |T | = 2d+ 2. �

Lemma 3.9. For m = n = 3 and d = 4, τd(Gm,n) = 12.

Proof. Since ν(G3,3) = 4, a 4-transversal consists of all the twelve edges of G3,3. �

Lemma 3.10. For m, n ≥ 3 with m+ n ≥ 8 and 4 ≤ d ≤ m+ n− 3, τd(Gm,n) = 3d− 1.

Proof. We take d + 1 bundles of vertices in B: the bundles of the four corners and d − 3 bundles of vertices of degree
3. This gives a d-transversal T with |T | = 3d − 1. It is minimum since we can construct 3 matchings M1,M2,M3 with
|M1∩M2| = |M1∩M3| = 0 and |M2∩M3| = 1 by takingM1 = {h1j, j = 1, 3, 5, . . . , n−2; hij, j = 2, 4, 6, . . . , n−1 and i =
2, 3, . . . ,m; vi1, i = 2, 4, . . . ,m − 1},M2 = {h1j, j = 2, 4, . . . , n − 1; hi1, i = 2, 3, . . . ,m; vij, j = 3, 4, . . . , n and i =
2, 4, . . . ,m−1} andM3 = {vij, j = 1, . . . , n and i = 1, 3, 5, . . . ,m−2; hmj, j = 1, 3, 5, . . . , n−2} (see left of Fig. 2). Here
we haveM2∩M3 = {hm1}. Since there arem+n−6 vertices of degree 3 in B, the construction is valid for d ≤ m+n−3. �

Lemma 3.11. For m, n ≥ 3 and m+ n− 2 ≤ d ≤ mn−1
2 , τd(Gm,n) = 4d−m− n+ 2.
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Fig. 2. Matchings form = 5 and n = 7.

Fig. 3. A dancat Di .

Proof. We construct a d-transversal T by taking d + 1 bundles of vertices in B: all the m + n − 2 bundles of vertices
of degree ≤ 3 together with d − (m + n − 3) bundles of vertices of degree 4. This will give a d-transversal T with
|T | = 4d − (m + n − 2). It is minimum since we can construct four matchings M1,M2,M3,M4 satisfying M1 ∩ M2 =
M3 ∩ M4 = ∅, |M1 ∩ M4| = |M2 ∩ M3| = m−1

2 and |M1 ∩ M3| = |M2 ∩ M4| = n−1
2 . We define (see right of Fig. 2)

M1 = {vij, i = 1, 3, 5, . . . ,m − 2; j = 1, . . . , n; hmj, j = 1, 3, . . . , n − 2}, M2 = {h1j, j = 2, 4, . . . , n − 1; vij, j =
1, . . . , n and i = 2, 4, . . . ,m − 1}, M3 = {hij, i = 1, 2, . . . ,m and j = 1, 3, . . . , n − 2; vin, i = 2, 4, . . . ,m − 1} and
M4 = {vi1, i = 1, 3, . . . ,m− 2; hij, i = 1, . . . ,m and j = 2, 4, . . . , n− 1}. �

From Lemmas 3.7–3.11 and Property 2.4 we get the following.

Theorem 3.12. Let Gm,n be a grid with m and n odd. The minimum cardinality of a d-transversal is

1. for m = 1 or n = 1
(a) τd(Gm,n) = 2d for 1 ≤ d ≤ ν(Gm,n)

2. for m, n ≥ 3
(a) τ1(Gm,n) = 3
(b) τd(Gm,n) = 2d+ 2 for 2 ≤ d ≤ 3
(c) τ4(G3,3) = 12
(d) τd(Gm,n) = 3d− 1 for 4 ≤ d ≤ m+ n− 3 and (m, n) 6= (3, 3)
(e) τd(Gm,n) = 4d−m− n+ 2 for m+ n− 2 ≤ d ≤ ν(Gm,n).

3.3. m even, n odd

We define a family of partial subgraphs of Gm,n which play an important role in the following.

Definition 3.13. Let Gm,n be a grid graph and let 2 ≤ i ≤ m − 2 be an even integer. Then Di = {vi−1,j| j = 1, 3, . . . , n} ∪
{vi+1,k| k = 2, 4, . . . , n− 1} ∪ {hi,l| l = 1, 2, . . . , n− 1} is called a dancat (short name for a dancing caterpillar [5]).

An example of a dancat is shown in Fig. 3. Notice that a dancat Di contains exactly 2n− 1 edges.
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Fig. 4. MatchingMH1 .

Lemma 3.14. For every maximum matching M in Gm,n, m even and n odd, and every dancat Di, |M ∩ Di| = n+1
2 .

Proof. Consider a 3-partition of the vertices of Gm,n V = VA ∪ VB ∪ VD, where VD is the set of vertices incident to at least one
edge in the dancatDi, VA is the set of vertices not belonging to VD and lying in rows 1, 2, . . . , i−1, and VB is the set of vertices
not belonging to VD and lying in rows i+ 1, i+ 2, . . . ,m. In VA there are in−2n2 white vertices and in−n−12 black vertices (see
Fig. 3). Since thewhite vertices of VA can only bematchedwith black vertices of VA, there remain (in−n−1)−(in−2n)2 =

n−1
2 black

vertices of VA to be matched with n−12 white vertices of VD, leaving
n+1
2 white vertices of VD unmatched with the vertices of

VA. Similarly, there are n+12 black vertices of VD unmatched with the vertices of VB. Now to get a perfect matching, these
n+1
2

white unmatched vertices of VD are matched to the n+12 black unmatched vertices of VD. �

Let us now introduce a 4-partition of the edge set of Gm,n which will play an important role in the proofs of the Lemmas
which will follow. We define H1 = {vij| j = 1, . . . , n; i = 1, 3, . . . ,m− 1}, H2 = {vij| j = 1, . . . , n; i = 2, 4, . . . ,m− 2},
V1 = {hij| i = 1, . . . ,m; j = 1, 3, . . . , n − 2}, V2 = {hij| i = 1, . . . ,m; j = 2, 4, . . . , n − 1}. For each one of these sets,
we define the following maximum matchings: MH1 = H1, M

j
H2
= (H2 ∪ {vij| i = 1, 3, . . . ,m − 1} ∪ {hik| i = 1, n; k =

1, 3, . . . , j− 2, j+ 1, j+ 3, . . . , n− 1}) \ {vij| i = 2, 4, . . . ,m− 2}with j odd,MV1 = V1 ∪ {vin| i = 1, 3, . . . ,m− 1} and
MV2 = V2 ∪ {vi1| i = 1, 3, . . . ,m− 1}. Examples of these matchings are given in Figs. 4 and 5.

Lemma 3.15. For m ≥ 4, n = 3 and 5 ≤ d ≤ m
2 + 2, τd(Gm,3) = 2d.

Proof. We show the following : let M be a perfect matching of Gm,3; for each integer i, 1 ≤ i ≤ m − 1, i odd, we have
|M ∩ {vi1, vi3}| ≥ 1. By contradiction, we suppose that there exists an odd integer i, such thatM ∩ {vi1, vi3} = ∅. If vi2 6∈ M
the subgrid induced by the vertex set Z = {xkj|1 ≤ k ≤ i, 1 ≤ j ≤ 3}must contain a perfect matching, which is impossible
since |Z | is odd. If vi2 ∈ M , the subgrid induced by the vertex set Z = {xkj|1 ≤ k ≤ i, 1 ≤ j ≤ 3} \ {xi2} must contain a
perfect matching, which is impossible since |Z ∩B| = |Z ∩W | − 2.
For d ≤ m

2 , let T = {v2i−1,1, v2i−1,3|1 ≤ i ≤ d}. From above, it follows that for any perfect matching M we have
|T ∩ M| ≥ d. For d = m

2 + 1, let T = {v2i−1,1, v2i−1,3|1 ≤ i ≤
m
2 } ∪ {h11, h12}. For any perfect matching M , if v11 6∈ M

(resp. v13 6∈ M) then h11 ∈ M (resp. h12 ∈ M); thus |M ∩ {v11, v13, h11, h12}| ≥ 2, and we obtain |T ∩ M| ≥ m
2 + 1.

For d = m
2 + 2, let T = {v2i−1,1, v2i−1,3|1 ≤ i ≤ m

2 } ∪ {h11, h12, hm1, hm2}. For any perfect matching M we have
|M ∩{vm−1,1, vm−1,3, hm1, hm2}| ≥ 2, and we obtain |T ∩M| ≥ m

2 +2. So in any case T is a d-transversal with |T | = 2d. Since
MV1 andMV2 are two disjoint perfect matchings, any d-transversal has at least 2d edges. Thus in each of these three cases T
is minimum. �

Lemma 3.16. For m ≥ 4, n = 3 and m2 + 3 ≤ d ≤ m, τd(Gm,3) = 3d−
m
2 − 2.

Proof. We show that any d-transversal T is such that |T | ≥ 3d− m2 −2. Let us consider the three perfectmatchingsMV1 ,MV2
andM1H2 :MV1 andMV2 are disjoint and |(MV1 ∪MV2) ∩M

1
H2
| =

m
2 + 2, so T has at least 3d− (

m
2 + 2) edges.

Let us now show how to construct such a minimum d-transversal T . We take X = d− m
2 − 2 dancats D4,D6, . . . ,D2X+2,

then we add the edges {v11, v13} ∪ {v2i+1,1, v2i+1,3|X + 1 ≤ i ≤ m
2 − 1} and the four edges h11, h12, hm1, hm2. Note that for

d ≤ mwe have X ≤ m
2 − 2 and the construction is valid. This gives us a set T such that |M ∩ T | = 2X +

m
2 − X + 2 = d for

every maximum matching M (using arguments of Lemma 3.15). Thus T is a d-transversal. Concerning the cardinality of T ,
we have |T | = 5X + 2(m2 − X)+ 4 = 3d−

m
2 − 2. �

Lemma 3.17. For m ≥ 4, n ≥ 5 and 5 ≤ d ≤ m+ n− 3, τd(Gm,n) = 3d− 4.
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Fig. 5. M3H2 (top left),M
n
H2
(top right),MV1 (bottom left),MV2 (bottom right).

Fig. 6. MatchingMVH1 .

Proof. We construct a set T by taking the bundles of the four corners together with those of d − 4 ≤ m + n − 7 vertices
of degree 3 forming a stable set with the corners. One can always choose such vertices as can be seen easily. This gives a
set T with |T | = 3d − 4 which is a d-transversal. Let MVH1 be the matching shown in Fig. 6. Since MV1 ∩ MV2 = ∅ and
|(MV1 ∪MV2) ∩M

V
H1
| = 4, any d-transversal T ′ satisfies |T ′| ≥ 3d− 4. Thus T is a minimum d-transversal. �

Lemma 3.18. For m ≥ 4, n ≥ 5 and m+ n− 2 ≤ d ≤ mn
4 +

m
4 +

n−5
2 , τd(Gm,n) = 4d−m− n− 1− b

d−(m+n−3)
n−3
2
c.

Proof. Letm ≥ 4, n ≥ 5 andm+ n− 2 ≤ d ≤ mn
4 +

m
4 +

n−5
2 .

Let T be a d-transversal. We must clearly have |H1 ∩ T | ≥ d and |Vi ∩ T | ≥ d− m
2 , i = 1, 2, since the matchingMV1 (resp.

MV2 ) contains all edges of V1 (resp. V2) as well as
m
2 edges of H1. Now we can transform these inequalities into equalities by
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adding three nonnegative integers x, y1, y2 ≥ 0. Thuswe obtain: |H1∩T | = d+x, |V1∩T | = d− m2 +y1, |V2∩T | = d−
m
2 +y2

and |H2 ∩ T | = |T | − 3d+m− z, where z = x+ y1 + y2.
Consider amatchingM jH2 , j ∈ {3, 5, . . . , n−2}: T contains at least d−|H2∩T |−(n−1) = d−(|T |−3d+m−z)−(n−1) =

4d − m − n + 1 + z − |T | edges of H1 in column j, for j = 3, 5, . . . , n − 2, at least m2 − y2 edges of H1 in column 1, and at
least m2 − y1 edges of H1 in column n. Combining all the columns, we get:

|H1 ∩ T | = d+ x ≥ m− (y1 + y2)+
n− 3
2

(4d−m− n+ 1+ z − |T |)

thus,
n− 3
2

(|T | − (4d−m− n+ 1+ z)) ≥ m− z − d = −(d− (m+ n− 3))− (n− 3)− z

hence,

|T | − (4d−m− n+ 1+ z) ≥ −
(d− (m+ n− 3))

n−3
2

− 2−
2
n− 3

z

finally,

|T | ≥ 4d−m− n− 1−
(d− (m+ n− 3))

n−3
2

+

(
1−

2
n− 3

)
z.

Since z, 1− 2
n−3 ≥ 0, |T | ≥ 4d−m− n− 1− b

(d−(m+n−3))
n−3
2

c.
Let us now showhow to construct such aminimum d-transversal T . Firstwe take the four bundlesω(x11), ω(x1n), ω(xm1),

ω(xmn) of the corners together with the n − 3 bundles ω(x13), ω(x15), . . . , ω(x1,n−2) and ω(xm3), ω(xm5), . . . , ω(xm,n−2).
Then we add the X = b d−(m+n−3)n−3

2
c dancats D4,D6, . . . ,D2X+2 as well as them−4−2X bundlesω(x2X+3,1), ω(x2X+5,1), . . . ,

ω(xm−3,1) and ω(x2X+3,n), ω(x2X+5,n), . . . , ω(xm−3,n). Note that for d = mn
4 +

m
4 +

n−5
2 and n ≥ 5 we have b

d−(m+n−3)
n−3
2
c =

b
m
2 ×

n−3
2 −

n−1
2

n−3
2

c =
m
2 − 2, thus X ≤

m
2 − 2 and the construction is valid. Finally we complete with d− (n+ m− 3+

n−3
2 X)

bundles ω(xij) such that |ω(xij)| = 4, xij is not incident to a dancat, and i + j is even. This gives us a set T such that
|M ∩ T | = 4 + n − 3 + X n+12 + m − 4 − 2X + d − (n + m − 3 +

n−3
2 X) = d for every maximum matching M . Thus

T is a d-transversal. Concerning the cardinality of T , we have the bundles containing 8 + 3(n − 3) + 3(m − 4 − 2X) +
4(d − (n + m − 3 + n−3

2 X)) = 4d − (n + m) − 2nX − 1 edges and the dancats containing (2n − 1)X edges. This gives us
|T | = 4d− (n+m)− 1− X = 4d− (m+ n)− 1− b d−(m+n−3)n−3

2
c. �

Lemma 3.19. For m ≥ 4, n ≥ 5 and mn4 +
m
4 +

n−3
2 ≤ d ≤

mn
2 , τd(Gm,n) = 4d − (m + n) − b

mn
2 −d
n−1
2
c. For m ≥ 4, n = 3 and

m+ 1 ≤ d ≤ 3m
2 , τd(Gm,3) = 5d−

5m
2 − 3.

Proof. We will show that no d-transversal T can have 4d − (m + n) − b
mn
2 −d
n−1
2
c − 1 edges. Equivalently, we show that for

any Y ⊂ E with |Y | = 4(mn2 − d) + b
mn
2 −d
n−1
2
c + 1 there is a maximum matching M with |M ∩ Y | ≥ (mn2 − d) + 1. Since

|Y | = 4(mn2 − d)+b
mn
2 −d
n−1
2
c+ 1, there is at least one of V1, V2,H1,H2 which contains (mn2 − d)+ 1 edges of Y . If it is H1, then

we are done since H1 = MH1 is a maximummatching. If it is V1 (resp. V2), we are also done since V1 ⊂ MV1 (resp. V2 ⊂ MV2 ).

Hence we may assume that H2 contains (mn2 − d)+ b
mn
2 −d
n−1
2
c + 1 edges of Y . NowM jH2 contains all edges of H2 except those

of the column j, j odd. Furthermore there exists an odd column k such that the set of all columns l 6= k contains at least
(mn2 − d)+ 1 edges of H2 ∩ Y : if y

j is the number of edges of H2 ∩ Y in column j, we would haveΣj6=k yj ≤ mn
2 − d, k odd. By

summing
n∑

k=1,k odd

∑
j6=k

yj ≤
n∑

k=1,k odd

(mn
2
− d

)
n− 1
2

∑
j

yj ≤
(mn
2
− d

) n+ 1
2

|H2 ∩ Y | ≤
(mn
2
− d

) n+ 1
n− 1

=

(mn
2
− d

)
+

(mn
2
− d

) 2
n− 1

<
(mn
2
− d

)
+

⌊
mn
2 − d
n−1
2

⌋
+ 1

which is a contradiction.
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Hence there is a maximummatchingM containing mn2 − d+ 1 edges of H2 ∩ Y and therefore no transversal T can have

|T | < 4d− (m+ n)− b
mn
2 −d
n−1
2
c.

If n ≥ 5, then for d = mn
4 +

m
4 +

n−3
2 , we have b

mn
2 −d
n−1
2
c = b

m
2 ×

n−1
2 −

n−3
2

n−1
2

c =
m
2 −1. So b

mn
2 −d
n−1
2
c ≤

m
2 −1 for d ≥

mn
4 +

m
4 +

n−3
2 .

Thus the above computation is valid for mn4 +
m
4 +

n−3
2 ≤ d ≤

mn
2 .

Let us now show how to construct such a minimum d-transversal T . In the case where mn4 +
m
4 +

n−1
2 ≤ d ≤

mn
2 , we do

the following. We take the two bundles ω(xm1) and ω(xmn) together with the n − 2 bundles ω(x12), ω(x14), . . . , ω(x1,n−1)

and ω(xm3), ω(xm5), . . . , ω(xm,n−2). Then we add the X = b
mn
2 −d
n−1
2
c dancats D2,D4, . . . ,D2X (recall that X ≤ m

2 − 1) as

well as them−2−2X bundlesω(x2X+2,1), ω(x2X+4,1), . . . , ω(xm−2,1) andω(x2X+2,n), ω(x2X+4,n), . . . , ω(xm−2,n). Finally we
complete with d− (n+m− 2+ n−3

2 X) bundles ω(xij) such that |ω(xij)| = 4, xij is not incident to a dancat, and i+ j is odd.
Here we note that mn4 +

m
4 +

n−1
2 ≤ d implies d − (n + m − 2 +

n−3
2 X) ≥ 0. This gives us a set T such that |M ∩ T | =

n+X n+12 +m−2−2X+d−(n+m−2+
n−3
2 X) = d for everymaximummatchingM . Thus T is a d-transversal. Concerning

the cardinality of T , we have the bundles containing 3n−2+3(m−2−2X)+4d−4(n+m−2+ n−32 X) = 4d−(n+m)−2nX

edges and the dancats containing (2n− 1)X edges. This gives us |T | = 4d− (n+m)− X = 4d− (m+ n)− b
mn
2 −d
n−1
2
c.

Now for d = mn
4 +

m
4 +

n−3
2 , we proceed as follows. We take the n + 1 bundles ω(x11), ω(x13), . . . , ω(x1,n) and

ω(xm1), ω(xm3), . . . , ω(xm,n), theX−1 = m
2−2dancatsD4,D6, . . . ,Dm−2 and the

n−3
2 bundlesω(x22), ω(x24), . . . , ω(x2,n−3).

This gives a d-transversal with |T | = 3(n+ 1)− 4+ (m2 − 2)(2n− 1)+ 4
n−3
2 = 4d− (m+ n)− b

mn
2 −d
n−1
2
c.

If n = 3 then form+ 1 ≤ d ≤ 3m
2 we use the first construction; this is possible since X ≤

m
2 − 1. �

Having covered all possible cases we are now able to state the following.

Theorem 3.20. Let Gm,n be a grid with m even and n odd. The minimum cardinality of a d-transversal is

1. for n = 1
(a) τd(Gm,1) = d for 1 ≤ d ≤ m

2 = ν(Gm,1)
2. for m = 2, n ≥ 3
(a) τd(G2,n) = 2d for 1 ≤ d ≤ 2
(b) τd(G2,n) = 3d− 2 for 3 ≤ d ≤ n = ν(G2,n)

3. for m ≥ 4, n = 3
(a) τd(Gm,3) = 2d for 1 ≤ d ≤ m

2 + 2
(b) τd(Gm,3) = 3d− m

2 − 2 for
m
2 + 3 ≤ d ≤ m

(c) τd(Gm,3) = 5d− 5m
2 − 3 for m+ 1 ≤ d ≤

3m
2 = ν(Gm,3)

4. for m ≥ 4, n ≥ 5
(a) τd(Gm,n) = 2d for 1 ≤ d ≤ 4
(b) τd(Gm,n) = 3d− 4 for 5 ≤ d ≤ m+ n− 3
(c) τd(Gm,n) = 4d−m− n− 1− b d−(m+n−3)n−3

2
c for m+ n− 2 ≤ d ≤ mn

4 +
m
4 +

n−5
2

(d) τd(Gm,n) = 4d− (m+ n)−
⌊
mn
2 −d
n−1
2

⌋
for mn4 +

m
4 +

n−3
2 ≤ d ≤ ν(Gm,n).

Proof. 1(a) is Property 2.4. 2(a), 2(b) follow from Lemma 3.1. 3(a) follows from Lemmas 3.2 and 3.15. 3(b) is Lemma 3.16.
3(c) is from Lemma 3.19. 4(a) is Lemma 3.2. 4(b), 4(c), 4(d) are Lemmas 3.17–3.19, respectively. �

4. Minimum d-blocker in grid graphs

We show here how to construct aminimum d-blocker in a grid graph Gm,n. Wewill use both our results on d-transversals
proved in Section 3 and the inequality βd(Gm,n) ≥ τd(Gm,n)which is an immediate corollary of Property 2.1.
First, we study the case wheremn is even. W.l.o.g. we assume thatm is even. Recall that in this case ν(Gm,n) = mn

2 .
Form > 2, the results will be obtained by constructing four pairwise disjoint matchings (see Fig. 7).
BothM1 andM2 are perfect matchings:M1 consists of the horizontal edges hi1, hi3, . . . , hi,2b n2 c−1 of each row i, together

with the vertical edges v1n, v3n, . . . , vm−1,n if n is odd; M2 consists of either the vertical edges v1j, v3j, . . . , vm−1,j of
each column j if n is even, or of the horizontal edges hi2, hi4, . . . , hi,n−1 of each row i together with the vertical edges
v11, v31, . . . , vm−1,1 if n is odd. M3 and M4 are not perfect matchings: if n is even, M3 consists of the horizontal edges
hi2, hi4, . . . , hi,n−2 of each row i, together with the vertical edges v21, v41, . . . , vm−2,1 and v2n, v4n, . . . , vm−2,n; if n is odd,
M3 consists of the vertical edges v1j, v3j, . . . , vm−1,j, j = 2, . . . , n− 1, together with the vertical edges v21, v41, . . . , vm−2,1
and v2n, v4n, . . . , vm−2,n. In both cases, |M3| = (mn/2) − 2. Finally, M4 consists of the vertical edges v2j, v4j, . . . , vm−2,j,
j = 2, . . . , n− 1; we have |M4| = (mn/2)−m− n+ 2. Note thatM1 ∪M2 ∪M3 ∪M4 = E(Gm,n).
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Fig. 7. Matchings for n even on the left and for n odd on the right.

Lemma 4.1. For d ∈ {1, 2}, if m ≥ 2 is even then βd(Gm,n) = 2d.

Proof. From Theorems 3.5 and 3.20 we have βd(Gm,n) ≥ τd(Gm,n) = 2d. By taking the bundles of d black corners, we get a
d-blocker with cardinality 2d. �

Lemma 4.2. For 3 ≤ d ≤ m+ n− 2, if m ≥ 2 is even then βd(Gm,n) = 3d− 2.

Proof. When m = 2, from Theorems 3.5 and 3.20 we have βd(Gm,n) ≥ τd(Gm,n) = 3d − 2. For m > 2, since M1, M2
and M3 are pairwise disjoint a d-blocker must have at least d edges in M1 and in M2 and at least d − 2 edges in M3, thus
βd(Gm,n) ≥ 3d− 2. For both cases we form a d-blocker of 3d− 2 edges by taking the bundles of two black corners together
with d − 2 bundles of black vertices of degree 3. Note that this is possible since d ≤ m + n − 2 and there are m + n − 4
disjoint bundles of degree 3. �

Lemma 4.3. For d > m+ n− 2, if m > 2 is even then βd(Gm,n) = 4d−m− n.

Proof. As previously, by considering M1, M2 and M3, a d-blocker must have at least 3d − 2 edges. In addition, since M4 is
disjoint from these three matchings, a d-blocker must have also d − m − n + 2 edges in M4 and thus at least 4d − m − n
edges. We form a d-blocker of 4d − m − n edges by taking the bundles of two black corners together with the m + n − 4
bundles of black vertices of degree 3 and d−m− n+ 2 bundles of black vertices of degree 4. �

From Lemmas 4.1–4.3 and Property 2.4 we have:

Theorem 4.4. Let Gm,n be a grid with mn even. The minimum cardinality of a d-blocker is

1. for m = 1 or n = 1
(a) βd(Gm,n) = 2d− 1 for 1 ≤ d ≤ ν(Gm,n)

2. for m ≥ 2 and n ≥ 2
(a) βd(Gm,n) = 2d for 1 ≤ d ≤ 2
(b) βd(Gm,n) = 3d− 2 for 3 ≤ d ≤ m+ n− 2
(c) βd(Gm,n) = 4d−m− n for m+ n− 1 ≤ d ≤ ν(Gm,n).

Now, let Gm,n be a grid graph with bothm and n odd. We have he following:

Theorem 4.5. Let Gm,n be a grid with mn odd. The minimum cardinality of a d-blocker is

1. for m = 1 or n = 1
(a) βd(Gm,n) = 2d for 1 ≤ d ≤ ν(Gm,n)

2. for m ≥ 3 and n ≥ 3
(a) βd(Gm,n) = 3 for d = 1
(b) βd(Gm,n) = 2d+ 2 for 2 ≤ d ≤ 3
(c) βd(Gm,n) = 3d− 1 for 4 ≤ d ≤ m+ n− 3 and m+ n 6= 6
(d) βd(Gm,n) = 4d−m− n+ 2 for m+ n− 2 ≤ d ≤ ν(Gm,n).

Proof. The case m = 1 or n = 1 is stated by Property 2.4. Now, we consider m ≥ 3 and n ≥ 3. By assumption the four
corners are black vertices so |B| = |W | + 1. First, note that d + 1 bundles of black vertices form a d-blocker. Second,
βd(Gm,n) ≥ τd(Gm,n). Third, from Section 3.2 we know that a minimal d-transversal is formed by the d+ 1 bundles of black
vertices with the d+ 1 smallest degrees. Thus a minimal d-blocker is a minimal d-transversal and its cardinality is given by
Theorem 3.12. �
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5. Minimum d-blocker and d-transversal in trees

In this section we present a dynamic programming approach that allows us to find the cardinality of a minimum d-
transversal and of a minimum d-blocker in polynomial time on trees. We describe the algorithm in details for transversals.
It can easily be adapted for the case of blockers. We begin by giving a property which we shall use later.

Property 5.1. Let G = (V , E) be a graph and V1, V2 a partition of the vertices V such that there is no edge between V1 and V2. We
denote by G1 = (V1, E1), resp. G2 = (V2, E2), the subgraph of G induced by the vertices of V1, resp. of V2. For d ∈ {1, . . . , ν(G)}
we have the following results.
(i) βd(G) = min{βi(G1)+ βd−i(G2) | i ∈ {max{0, d− ν(G2)}, . . . ,min{d, ν(G1)}}}
(ii) τd(G) = min{τi(G1)+ τd−i(G2) | i ∈ {max{0, d− ν(G2)}, . . . ,min{d, ν(G1)}}}.

Proof. (i) Let B ⊆ E, B1 = B ∩ E1 and B2 = B ∩ E2. The following equality implies the result.

ν((V , E \ B)) = ν((V1, E1 \ B1))+ ν((V2, E2 \ B2)).

(ii) We denote byM,M1 (resp.M2) the sets of all maximum matchings in G,G1 (resp. G2). The result finally follows from
the following observation.

M = {M1 ∪M2 | M1 ∈M1,M2 ∈M2}. �

Let us now introduce some notations and terminology used throughout this section.
Let r be an arbitrary vertex in V . We orient the edges of E away from r in order to get an arborescence T = (V , A) of

root r . Let D(v) = {w ∈ V | (v,w) ∈ A} = {v1, . . . , v|D(v)|}. To simplify the terminology we say that an (undirected) edge
[v,w] is contained in a directed graph G if either (v,w) or (w, v) is contained in G. For v ∈ V and a, b ∈ {1, . . . , |D(v)|}
with a ≤ b we denote by T va,b the subarborescence of T over the vertices {v} ∪

⋃
i∈{a,...,b}{u ∈ V | ∃ path from vi to u in T }.

Furthermore for v ∈ V we denote by T v the subarborescence of T with root v, i.e., T v = T v1,|D(v)|. We denote by E
v
a,b the set

of edges contained in T va,b.
We can assume that the task is to find the cardinality of a minimum d-transversal in a tree G with P0(G) = P1(G) = ∅

because of the following observations. If P0(G) 6= ∅, we can remove the edges of P0(G) from G since these edges are not
contained in anymaximummatching and therefore nor in anyminimum d-transversal. The remaining graph is thus a forest.
We can easily determine the cardinality of aminimum d-blocker for a forest if we have already determined the cardinality of
all minimum transversals for its components by using Property 5.1. We therefore assume that the tree G = (V , E) satisfies
P0(G) = ∅. Additionally it is easy to see that the only remaining case with P1(G) 6= ∅ corresponds to a graph G consisting of
only one edge which is a trivial case.
For any v ∈ V and a, b ∈ {1, . . . , |D(v)|}with a ≤ bwe define a partition of the set of all maximummatchings of G into

two setsMv,+
a,b andMv,−

a,b , whereMv,+
a,b is the set of all maximummatchings in G saturating v with an edge of E

v
a,b andMv,−

a,b
is the set of all maximummatchings in G not saturating v with an edge of Eva,b.
Finally let us define the following two notions where U ⊆ E:

m+(T va,b,U) = max
M ∈Mv,+

a,b

(|(M ∩ Eva,b)− U|)

m−(T va,b,U) = max
M ∈Mv,−

a,b

(|(M ∩ Eva,b)− U|).

In other words,m+(T va,b,U) (resp.m
−(T va,b,U)) represents themaximumnumber of edges of T

v
a,b \U contained in a single

matching ofMv,+
a,b (resp.M

v,−
a,b ). We use the convention thatm

−(T ,U) = 0 if r ∈ S(G) since in this caseMr,−
1,|D(r)| = ∅. Note

that no other setMv,+
a,b orM

v,−
a,b is empty since P0(G) = ∅.

The cardinality of a minimum d-transversal is smaller than or equal to k if and only if

min
U⊆E
|U|=k

max{m+(T ,U),m−(T ,U)} ≤ ν(G)− d.

We say that a pair (x+, x−) ∈ Z2 dominates a pair (y+, y−) ∈ Z2 if x+ ≤ y+, x− ≤ y− and at least one of the two
inequalities is strict. Let X ⊂ Z2.We say that x ∈ X is efficient in X if there is no element y ∈ X that dominates x. Furthermore
the efficient subset E(X) of X are the elements in X that are efficient in X .
We define Q̃ va,b(k) := {(m

+(T va,b,U),m
−(T va,b,U)) | U ⊆ E, |U| = k} and let Q va,b(k) = E(Q̃ va,b(k)). In a similar

way to the notation used for subarborescences of T we define Q v(k) = Q v1,|D(v)|(k). Furthermore we use the notation
Q va,b = (Q

v
a,b(0), . . . ,Q

v
a,b(|E

v
a,b|)). The algorithmwepropose begins by determiningQ

v
p,p for subarborescences T

v
p,p containing

only one arc, i.e., when vp is a leaf of T . Then the elements Q v1,p corresponding to larger arborescences T
v
1,p will be calculated

on the base of sets Q corresponding to smaller arborescences by the following two types of operations.
Operation 1 (Adding an Arc). Determine Q vp,p on the base of Q

vp .
Operation 2 (Merging Two Subarborescences). Determine Q v1,p+1 on the base of Q

v
1,p and Q

v
p+1,p+1.
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If we can perform the above two operations, Q r can easily be obtained by calculating first the values of Q for arcs
(v,w) ∈ A, where w is a leaf and then combining them with the two operations. We will now give details on how we
realize Operations 1 and 2.
The following results describe basic relationships that will be used to describe a simple way of executing Operation 1

and Operation 2. We start by giving a proposition which will be used in the discussion of Operation 1.

Proposition 5.1. Let (v, vp) ∈ A.
If vp 6∈ S(G) we have
(i) {M ∩ Evp | M ∈Mv,+

p,p } = {M ∩ E
vp | M ∈Mvp,−}

(ii) {M ∩ Evp | M ∈Mv,−
p,p } = {M ∩ E

vp | M ∈M}.
If vp ∈ S(G) we have

(iii) Mv,+
p,p =Mvp,−

(iv) Mv,−
p,p =Mvp,+.

Proof. (i) The inclusion⊆ follows fromMv,+
p,p ⊆ Mvp,−. Let M1 ∈ Mvp,−. We will show that there exists M2 ∈ Mv,+

p,p
with M1 ∩ Evp = M2 ∩ Evp . If M1 ∈ Mv,+

p,p we are done by choosing M2 = M1. Otherwise we obtain M2 by adding
the edge [v, vp] toM1 and removing the edge inM1 being adjacent to [v, vp].

(ii) The inclusion ⊆ follows trivially from Mv,−
p,p ⊆ M. Let M be a maximum matching in G that does not saturate

vp (such a matching exists since vp 6∈ S(G)) and let M1 ∈ M. We will show that there exists M2 ∈ Mv,−
p,p with

M2∩Evp = M1∩Evp . LetM2 = (M \Evp)∪ (M1∩Evp).M2 is indeed amatching not containing [v, vp] and satisfying
M2 ∩ Evp = M1 ∩ Evp as desired. Furthermore the maximality of M1 and M imply that M2 must be a maximum
matching.

(iii)/(iv) These equations follow from the observation that if every maximum matching saturates vp, then the maximum
matchings saturating vp by the edge [v, vp] correspond exactly to the maximummatchings which do not saturate
vp by one of the edges in Evp and vice versa. �

The following two lemmas are consequences of Proposition 5.1.

Lemma 5.2. Let (v, vp) ∈ A, U ⊆ E and U ′ = U \ {[v, vp]}. Suppose that vp 6∈ S(G).
1. If [v, vp] ∈ U we have
(i) m+(T vp,p,U) = m

−(T vp ,U ′)
(ii) m−(T vp,p,U) = max(m

+(T vp ,U ′),m−(T vp ,U ′)).
2. If [v, vp] 6∈ U we have
(iii) m+(T vp,p,U) = 1+m

−(T vp ,U)
(iv) m−(T vp,p,U) = max(m

+(T vp ,U),m−(T vp ,U)).

Lemma 5.3. Let (v, vp) ∈ A, U ⊆ E and U ′ = U \ {[v, vp]}. Suppose that vp ∈ S(G).
1. If [v, vp] ∈ U we have
(i) m+(T vp,p,U) = m

−(T vp ,U ′)
(ii) m−(T vp,p,U) = m

+(T vp ,U ′).
2. If [v, vp] 6∈ U we have
(iii) m+(T vp,p,U) = 1+m

−(T vp ,U)
(iv) m−(T vp,p,U) = m

+(T vp ,U).

The next proposition will be used in the discussion of Operation 2.

Proposition 5.4. Let v ∈ V and p ∈ {1, . . . , |D(v)| − 1}. We have
(i)

{M ∩ Ev1,p+1 | M ∈Mv,+
1,p+1} = {(M1 ∩ E

v
1,p) ∪ (M2 ∩ E

v
p+1,p+1) | M1 ∈Mv,+

1,p ,M2 ∈Mv,−
p+1,p+1}

∪ {(M1 ∩ Ev1,p) ∪ (M2 ∩ E
v
p+1,p+1) | M1 ∈Mv,−

1,p ,M2 ∈Mv,+
p+1,p+1}.

(ii) If Mv,−
1,p+1 6= ∅ we have

{M ∩ Ev1,p+1 | M ∈Mv,−
1,p+1} = {(M1 ∩ E

v
1,p) ∪ (M2 ∩ E

v
p+1,p+1) | M1 ∈Mv,−

1,p ,M2 ∈Mv,−
p+1,p+1}.

Proof. (i) The inclusion ⊆ follows from Mv,+
1,p+1 = (Mv,+

1,p ∩ Mv,−
p+1,p+1) ∪ (M

v,−
1,p ∩ Mv,+

p+1,p+1). Let M1 ∈ Mv,+
1,p and

M2 ∈ Mv,−
p+1,p+1. We will show that there exists M ∈ Mv,+

1,p+1 satisfying M ∩ E
v
1,p+1 = (M1 ∩ Ev1,p) ∪ (M2 ∩ E

v
p+1,p+1)

(the proof for the caseM1 ∈Mv,−
1,p ,M2 ∈Mv,+

p+1,p+1 is analogous). LetM = (M1 \E
v
p+1,p+1)∪ (M2∩E

v
p+1,p+1).M is indeed

a matching saturating v by an edge of Ev1,p+1 and satisfyingM ∩ E
v
1,p+1 = (M1 ∩ E

v
1,p)∪ (M2 ∩ E

v
p+1,p+1). Furthermore the

maximality ofM1 andM2 implies thatM is a maximummatching.
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(ii) The inclusion ⊆ follows from Mv,−
1,p+1 = Mv,−

1,p ∩ Mv,−
p+1,p+1. Let M1 ∈ Mv,−

1,p and M2 ∈ Mv,−
p+1,p+1. We will show that

there exists M ∈ Mv,−
1,p+1 satisfying M ∩ E

v
1,p+1 = (M1 ∩ Ev1,p) ∪ (M2 ∩ E

v
p+1,p+1). Let M3 ∈ Mv,−

1,p+1 and define
M = (M3 \ Ev1,p+1) ∪ (M1 ∩ E

v
1,p) ∪ (M2 ∩ E

v
p+1,p+1). M is indeed a matching not saturating v by one of the edges in

Ev1,p+1 and satisfyingM ∩ E
v
1,p+1 = (M1 ∩ E

v
1,p)∪ (M2 ∩ E

v
p+1,p+1). Furthermore the maximality ofM1,M2 andM3 implies

thatM is a maximummatching. �

The following lemma is a consequence of Proposition 5.4.

Lemma 5.5. Let v ∈ V , p ∈ {1, . . . , |D(v)| − 1} and U ⊆ E. Furthermore we define U1 = U ∩ Ev1,p and U2 = U ∩ E
v
p+1,p+1. We

have:
1. m+(T v1,p+1,U) = max{m

+(T v1,p,U1)+m
−(T vp+1,p+1,U2),m

−(T v1,p,U1)+m
+(T vp+1,p+1,U2)}

2. m−(T v1,p+1,U) = m
−(T v1,p,U1)+m

−(T vp+1,p+1,U2) if Mv,−
1,p+1 6= ∅ (this corresponds to the case v 6= r or p 6= |D(v)| − 1 or

r 6∈ S(G))
3. m−(T v1,p+1,U) = 0 if Mv,−

1,p+1 = ∅ (this corresponds to the case v = r, p = |D(G)| − 1 and r ∈ S(G)).
The following proposition shows how Operation 1 can be performed in polynomial time.

Proposition 5.6. Let (v, vp) ∈ A and k ∈ {1, . . . , |Evp,p|}.
(i) If vp ∈ S(G) we have

Q vp,p(k) = E
(
{(q−, q+) | (q+, q−) ∈ Q vp(k− 1)} ∪ {(q− + 1, q+) | (q+, q−) ∈ Q vp(k)}

)
.

(ii) If vp 6∈ S(G) we have

Q vp,p(k) = E
(
{(q−,max{q−, q+}) | (q+, q−) ∈ Q vp(k− 1)} ∪ {(q− + 1,max{q−, q+}) | (q+, q−) ∈ Q vp(k)}

)
.

Proof. (i) As a consequence of Lemma 5.3 we have
Q̃ vp,p(k) = {(q

−, q+) | (q+, q−) ∈ Q̃ vp(k− 1)} ∪ {(q− + 1, q+) | (q+, q−) ∈ Q̃ vp(k)}

which implies

Q vp,p(k) = E({(q−, q+) | (q+, q−) ∈ Q̃ vp(k− 1)} ∪ {(q− + 1, q+) | (q+, q−) ∈ Q̃ vp(k)}).

The result is finally obtained by observing that

E({(q−, q+) | (q+, q−) ∈ Q̃ vp(k− 1)} ∪ {(q− + 1, q+) | (q+, q−) ∈ Q̃ vp(k)})
= E({(q−, q+) | (q+, q−) ∈ Q vp(k− 1)} ∪ {(q− + 1, q+) | (q+, q−) ∈ Q vp(k)}).

(ii) This part can be proved in the same way as point (i) by using Lemma 5.2 instead of Lemma 5.3. �

The following proposition shows how Operation 2 can be performed in polynomial time.

Proposition 5.7. Let v ∈ V , p ∈ {1, . . . , |D(v)| − 1} and k ∈ {0, . . . , |Ev1,p+1|}.
(i) If Mv,−

1,p+1 6= ∅ (this corresponds to the case v 6= r or p 6= |D(r)| − 1 or r 6∈ S(G)) we have

Q v1,p+1(k) = E

( ⋃
i∈{0,...,k}

{(max{q+1 + q
−

2 , q
−

1 + q
+

2 }, q
−

1 + q
−

2 ) | (q
+

1 , q
−

1 ) ∈ Q
v
1,p(i), (q

+

2 , q
−

2 ) ∈ Q
v
p+1,p+1(k− i)}

)
.

(ii) If Mv,−
1,p+1 = ∅ (this corresponds to the case v = r, p = |D(r)| − 1 and r ∈ S(G)) we have

Q v1,p+1(k) = E

( ⋃
i∈{0,...,k}

{(max{q+1 + q
−

2 , q
−

1 + q
+

2 }, 0) | (q
+

1 , q
−

1 ) ∈ Q
v
1,p(i), (q

+

2 , q
−

2 ) ∈ Q
v
p+1,p+1(k− i)}

)
.

Proof. Proposition 5.7 can be proven in a similar way as Proposition 5.6 by using Lemma 5.5. �

Notice that if we are not only interested in sizes of minimum d-transversals but also in the transversals themselves, for
every set Q va,b(k), we can keep track of a set of edges to remove that corresponds to Q

v
a,b(k).

The presented algorithm can easily be adapted to the case of blockers. Wherever we considered a set of maximum
matchings we now consider the set of all matchings. In particular the set Mv,+

a,b (respectively Mv,−
a,b ) will be replaced by

the set of all matchings in G such that v is saturated (respectively not saturated) with an edge of Eva,b. This even simplifies
the algorithm, since at each place where we had to distinguish for some vertex v whether v ∈ S(G) or not, we now
always consider the case v 6∈ S(G), because there is no longer a vertex that has to be saturated by all matchings under
consideration. The algorithm runs in exactly the same way as for the case of transversals with slightly simplified rules for
performingOperation 1 and 2. Again Propositions 5.6 and 5.7 can be used to performOperation 1 and 2whereOperation 1
is always performed by applying (ii) of Proposition 5.6 andOperation 2 is performed using always (i) of Proposition 5.7. The
correctness of the algorithm for blockers is easily proven by carrying over the arguments used for the case of transversals.
See [9] for more information of how the presented algorithm for transversals can be adapted to d-blockers and even
generalized to the case of graphs with bounded treewidth.
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5.1. Complexity of the algorithm

The main purpose of this section is to show that the proposed algorithm runs in polynomial time. Therefore, a rather
conservative but simple complexity analysis will be presented. We begin by discussing the complexity of determining τ(G)
for a tree G = (V , E) satisfying P0(G) = P1(G) = ∅. In a second step the case of arbitrary trees G is discussed.
Notice that every set of the type Q va,b(k) contains at most |E

v
a,b| + 1 elements since Q

v
a,b(k) ⊆ {0, . . . , |E

v
a,b|}

2 and every
set A ⊂ {0, . . . , |Eva,b|}

2 with E(A) = A satisfies |A| ≤ |Eva,b| + 1. Therefore the size of each set Q
v
a,b(k) can be bounded by

O(|V |).
Operation 1 is called once for every edge, i.e., |V |− 1 times. By Proposition 5.6 we have that for some fixed k, Q vp,p(k) can

be determined from Q vp(k− 1) and Q vp(k) in O(|V |) time. Since Operation 1 determines Q vp,p(k) for all k ∈ {0, . . . , |E
v
p,p|},

it can be performed in O(|V |2) time. Therefore, the total time needed for all calls of Operation 1 can be bounded by O(|V |3).
For every vertex v, Operation 2 is called |D(v)| − 2 times. Therefore the total number of calls of Operation 2 is bounded

by O(|V |). By Proposition 5.7 we have that for some fixed k, Q v1,p+1(k) can be determined from Q
v
1,p and Q

v
p+1,p+1 in O(|V |

3)

time. Since Operation 2 determines Q v1,p+1(k) for all k ∈ {0, . . . , |E
v
1,p+1|}, it can be performed in O(|V |

4) time. Therefore,
the total time needed for all calls of Operation 2 can be bounded by O(|V |5).
To determine whether e ∈ P0(G), we remove the vertices incident to e from G. If the matching number of the remaining

graph G′ decreases by only one, then e 6∈ P0(G) (we can add e to a maximum matching of G′ and get a maximum matching
of G). Otherwise, e ∈ P0(G) (if e ∈ M for some maximum matchingM of G thenM \ {e} would be a maximum matching of
G′). Since finding a maximummatching in a tree over n vertices can be done in linear time, the time needed for determining
P0(G) is bounded by O(|V |2).
Let G1, . . . ,Gq be the connected components of the graph G \ P0(G). We denote by n1, . . . , nq their sizes. By the above

discussion we can determine for every component Gi, the vector τ(Gi) in O(n5i ) time. Finally we have to combine the
components to get τ(G). By Property 5.1, combining two components whose sizes are bounded by n can be done in O(n2)
time. Therefore, the total time needed to find τ(G) from τ(G1), . . . , τ (Gq) can be done in O(|V |3) time.
The total time needed for our algorithm to find all minimum d-transversals of a given tree G can therefore be bounded

by O(|V |5). In this analysis Operation 2 is the bottleneck. Amore elaborate analysis of the complexity ofOperation 2 shows
that the time needed for all calls of Operation 2 can be bounded by O(|V |4) instead of O(|V |5). However, we expect that the
bound can be further sharpened by improving the way Operation 2 is performed.

6. Conclusion

We have determined closed formulas for the minimum size of d-transversals and d-blockers in grid graphs; it may also
be interesting to enumerate those subsets in grid graphs.
For the case of trees we have shown how a minimum d-transversal can be found in polynomial time by using dynamic

programming. The proposed approach can easily be adapted for finding minimum d-blockers.
An interesting direction of research could be the study of blockers and transversals on planar graphs. For this class of

graphs, neither a hardness result nor an efficient algorithm is known to determine blockers and transversals. The hardness
result for blockers and transversals that was presented in [10] uses a reduction that typically leads to non-planar graphs.
Considering planar graphs is furthermore motivated by the fact that some other hard removal problems of a similar nature
can be solved efficiently on planar graphs [9].
Another interesting question would be to study the unicity of suchminimum d-blockers and d-transversals. Besides this,

one may replace matchings by 2-matchings or more generally by k-matchings (subset of edges such that every vertex is
adjacent to at most k edges of the subset). Also in an even more general framework one may consider transversals and
blockers of stable sets instead of matchings. Such studies would certainly bemotivated by a variety of potential applications
in operations research.
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