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1. Introduction

Given a collection € of subsets of a ground set E we define a transversal as a subset of E which meets every member of
C. Transversals have an interest for themselves but also for their numerous applications (for instance surveying when € is a
collection of paths from the origin to destination in a graph). Such sets have been extensively studied for various collections
C (see for instance [3] and the chapter 22 in [7]).

A family of problems which follows a similar spirit to transversal problems are the class of edge deletion problems
[1,4,6,8]. In [10] a generalization of transversals called (d-transversals) and a closely related edge deletion problem (d-
blockers) were introduced for matchings; complexity results have been derived and some polynomially solvable cases have
been presented.

For general bipartite graphs finding minimum d-blockers or d-transversals is NP-hard [ 10]. Our purpose in this paper is
to show how minimum d-transversals and minimum d-blockers can be constructed in some specific subclasses of bipartite
graphs: the grid graphs and the trees. For trees, the algorithms to be presented will essentially be based on dynamic
programming. For grid graphs the technique will be different: the structural simplicity of such graphs will allow us to
construct directly d-blockers and d-transversals. Most of the effort will then be spent to show that no smaller subset of
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edges can be a d-blocker or d-transversal. Depending on the parity of parameters m and n describing the size of the grid
graphs, various proof techniques (bounding procedures) will be necessary.

In Section 2, we will recall the basic definitions of d-blocker and d-transversal as well as some results of [ 10]; then we will
introduce specific notations for grid graphs. In Section 3 we will state and prove the formulas giving the sizes of minimum
d-transversals in grid graphs. Section 4 will study minimum d-blockers in grid graphs. Section 5 will be dedicated to the case
of trees (minimum d-transversals and minimum d-blockers) and conclusions will follow in Section 6.

2. Definitions and previous results

All graph theoretical terms not defined here can be found in [2]. Throughout this paper we are concerned with undirected
simple loopless graphs G = (V, E). Amatching M is a set of pairwise non-adjacent edges. A matching M is called maximum
if its cardinality |M| is maximum. The largest cardinality of a matching in G, its matching number, will be denoted by v (G).
Let Po(G) = {[v, w] € E| Y maximum matching M, [v, w] € M} and P;(G) = {[v, w] € E|V maximum matching M,
[v, w] € M}.Avertex v € V is called saturated by a matching M if there exists an edge [v, w] € M. A vertex v € V is called
strongly saturated if for all maximum matchings M, v is saturated by M. We denote by S(G) the set of strongly saturated
vertices of a graph G. We will be interested in subsets of edges which will intersect maximum matchings in G or whose
removal will reduce the matching number by a given number.

We shall say that a subset T C E is a d-transversal of G if for every maximum matching M we have [M N T| > d. Thus a
d-transversal is a subset of edges which intersect each maximum matching in at least d edges.

A subset B C E will be called a d-blocker of G if v(G') < v(G) — d where (' is the partial graph G’ = (V,E \ B). SoBis a
subset of edges whose removal reduces the cardinality of a maximum matching by at least d.

In case where d = 1, a d-transversal or a d-blocker is called a transversal or a blocker, respectively. We remark that
in this case our definition of a transversal coincides with the definition of a transversal in the hypergraph of maximum
matchings of G.

We denote by 84(G) the minimum cardinality of a d-blocker in G and by t4(G) the minimum cardinality of a d-transversal
in G(B(G) and 7(G) in case of a blocker or a transversal). A d-blocker (resp. d-transversal) will be minimum if it is of minimum
size.

Let v be a vertex in graph G. The bundle of v, denoted by w(v), is the set of edges which are incident to v. So |w(v)| = d(v)
is the degree of v. As we will see, bundles play an important role in finding d-transversals and d-blockers.

A grid graph (or shortly a grid) G, , = (V,E) is constructed on vertices x;;, 1 < i < m,1 < j < n; its edge
set consists of horizontal edges hj = [xj,Xij+1]1,1 < j < n— lineachrowi, 1 < i < m, and of vertical edges
vj = [Xj, Xit1;], 1 <i<m— 1,ineach columnj, 1 <j <n.

Notice that Gy, is a bipartite graph; let 8, ‘W be the associated partition of its vertex set. When mn is even, | 8| = |W| =
% and the maximum matchings are perfect (all vertices are saturated), i.e. v(Gp.n) = % When mn is odd, assuming that

the four corners (vertices of degree 2) are in 8, we have | 8| = %“ and |'W| = %’1 so |B| = |W| + 1; every maximum
matching will saturate all vertices but one, i.e. v(Gnn) = |5 ]. Moreover for every vertex v in Bh, there is a maximum
matching saturating all vertices except v.

We give some properties and results concerning d-transversals and d-blockers (see [10] for their proofs).

Property 2.1. In any graph G and for any d > 1, a d-blocker B is a d-transversal.
Property 2.2. In any graph G = (V, E) aset T is a transversal if and only if it is a blocker.

Property 2.3. For any independent set {vq, vo, ..., vg} € S(G) theset T = U?z] w(v;) is a d-transversal.

For the special case of Gy p, a grid graph with a unique row, we have the following.

Property 2.4. Let G, , be a chain on n vertices vy, vy, ..., vy (i.e, E = {[vi, vipq]li=1,...,n—1})and d > 1aninteger. Then
e B4(G) =2d — 1and 74(G) = d if niseven,
e B4(G) = 14(G) = 2dif nis odd.

One can observe from the previous property that for the case where n is even and d > 1 we have t;(G) < B4(G): so a

d-transversal is not necessarily a d-blocker (i.e. the converse of Property 2.1 is not necessarily true).
In case where G is bipartite:

Theorem 2.1. Forevery fixedd € {1, 2, ..., v(G)} finding a minimum d-blocker or a minimum d-transversal is N #-hard even
if Gis bipartite.

3. Minimum d-transversal in grid graphs
We show here how to construct a minimum d-transversal in a grid graph G, ,. In the case where mn is even, the

d-transversals constructed will generally consist of d bundles whose centers form a stable set. In some cases other
constructions will be needed.
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Fig. 1. Example form =n =6.

First, we establish the two following lemmas.

Lemma 3.1. Form = 2, 71(Gy,n) = 2 and t4(Gzn) =3d — 2,2 < d < n = v(Gyp).

Proof. We clearly have 71(G,, ) = 2 by taking the bundle w(x11). Then for 2 < d < n, a d-transversal is obtained by taking
a set of d — 1 bundles w(x11), w(X22), w(X13), W(X24), . .. together with w(xy,) if n is odd or w(x,,) if n is even. This set T
is indeed a d-transversal and it satisfies |T| = 3d — 2. So 74(G,,n) < 3d — 2. But we can construct matchings My, M, M3
such that My N M, = @ and [M3 N (M; U M,)| = 2; so any d-transversal T should satisfy |T N M|, [T N M| > d and
|Tﬂ(M3 \ (M] UMz))l > d—2, ie., |T| > 3d — 2. Here we take M{UM, = {hlla ey hl,n—la VU1n, hZ,n—h hz,n_z, ey h21, U]]}
andM3={v11,v12,...,v1n}. O

Lemma 3.2. Form > 4evenandn > 3, ty(Gnn) = 2d,1 <d < 4.

Proof. For m > 4even,n > 3and 1 < d < 4, ad-transversal T is obtained by taking d bundles of corners (vertices
X11, X1n» Xm1, Xmn); its size |T| is 2d. Every d-transversal T must have |T| > 2d since G, , contains two maximum matchings
My, M, with M; N M, = (. My consists of the odd horizontal edges h;jq, his, his, . . . of each row i (together with the odd
vertical edges vin, Usn, . . . if nis odd); M, consists of the odd vertical edges vy;, v;, . . . of each column j if n is even or of the
even horizontal edges hiy, his, . . . of each row i together with the odd vertical edges v11, v31, ..., Up—1,1 ifnisodd. O

We will now distinguish between three cases: m, n even, m, n odd and m even, n odd.
3.1. mand neven

Lemma 3.3. For m,n > 4withm+n > 10and5 <d <m+n—4, 74g(Gpn) = 3d — 4.

Proof. We construct a set T by taking the four bundles of the corners w(x11), @(X1n), ®(X;m1), @ (xmn) together with d — 4
bundles of vertices of degree 3 forming all together a stable set in Gp, . This is possible since d — 4 < m + n — 8: there
are indeed 2m + 2n — 8 vertices of degree 3 in G, ,. We can take m — 4 such independent vertices in the first and the last
columns and n — 4 in the first and the last rows. Such a set T is a d-transversal with |T| = 3d — 4.

We construct My, M,, M3 with M; N M, = @ and |[M3 N (M; U M,)| = 4 as follows (see Fig. 1):

M; U M; contains all horizontal edges except hy n—1, h3n—1, ..., hm—1n—1 and we also introduce the odd vertical
edges v11, V31, - . ., Um—1,1, the even vertical edges vy,, Uap, - . ., Um—1,n iNto My U M,. M3 consists of the horizontal edges
hi1, h1, h3noa, - .., hm—o n—1 together with the vertical edges vi -1, Vm—1,n-1, V21, V22, V41, Va2, - - - , Um—2,1, Um—2,2, V1in,

Um—1,n and v, Vig, ..., Vin—2 (i=1,3,...,m — 1). We have M3 N (M; U M3) = {h11, Vin, b1, Vm—1). O

Lemma3.4. Form,n>4andm+n—3<d< %,rd(cm,n)=4d—m—n.

Proof. Considernowthatm+n—3 <d < % — 2 with m, n even and at least 4. We construct a set T consisting of the
bundles of the four corners x11, X1, Xm1, Xmn together with m + n — 8 bundles of vertices of degree 3. In addition we take

d — (m+ n — 4) bundles of vertices of degree 4 forming a stable set with the vertices already chosen. This gives a set T with
|T| = 4d — (m + n).
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Ford = % we take all edges, i.e., |T| = |[E| = 2mn — (m + n) = 4d — (m + n) and finally for d = % — 1, we take the
bundles of all vertices on the same side of the bipartition except one vertex of degree 4. This gives |T| = 2mn—(m+n—4) =
4d — (m + n).

Now we can construct matchings My, My, M3, My satisfying M N My, = M3 N Mg = M N Mg = My, N M3 = {,
M; N M3 = mand M, N My = nas follows: My = {vi1, Vi, ..., Vins i = 1,3,5,...,m— 1}, My = {hyj, hyj, ..., hnj; j =
],3,5,...,11— 1},M3 = {Un,vin (l = l,3,5,...,m— 1)} U{h,‘z,hm,...,hi.n_] (l = 1,...,m)},M4 = {hlj,hmj (] =
1,3,5,...,n—=D}U{vy, v4j,...,Um—; = 1,...,n)}. Then clearly My N M3 = {vj1, vin (i = 1,3,5,...,m— 1)} and
M, "My = {hyj, hyj G = 1,3,5,...,n — 1)}. So for every d-transversal T we must have |T| > 4d — (m + n) and the T
constructed above is optimal. O

From Lemmas 3.1-3.4 we obtain the following.

Theorem 3.5. Let G, , be a grid with m and n even. The minimum cardinality of a d-transversal is

1. form=2o0rn=2
(a) tg(Gmp) =2dfor1<d <2
(b) 74(Gp,n) = 3d — 2for3 <d < v(Gpn)
2. form,n>4
(@) t4(Gmp) =2dfor1 <d <4
(b) 14(Gmn) =3d —4for5 <d <m+4n—4and (m,n) # (4, 4)
(c) 7g(Gmp) =4d—m —nform+4+n—3 <d < v(Gpp).

3.2. mandnodd

We are now in the case where m and n are odd. The bipartition (8, W) of Gp, , will be used and we recall that the 4
corners (vertices of degree 2) are in 8. So we have |B| = |W| + 1 = v(Gp,n) + 1. We first prove a general result when m
and n are both odd.

Lemma 3.6. For m, n > 3 every d-transversal T we have |T| > 83—"

Proof. We consider four matchings My, My, M3, M4 as shown in the right part of Fig. 2,i.e, My = {v;, i=1,3,5,..., m —
2 j=1,...,m hy, j=1,3,...,n=2 My ={hy;, j=2,4,....n— 1, v43, j=1,...,nandi = 2,4,...,m— 1},
Ms;={hj, i=1,2,...,mandj=1,3,...,n—=2; vy, i=2,4,....,m—1}and My ={vy1, i=1,3,.... m—=2; hy, i =
1,...,mandj = 2,4, ...,n — 1}. Then we construct four other maximum matchings. Fori = 1, ... 4, the matching M,.;
is obtained from M; by taking the symmetric of M; with respect to the horizontal axis y = ’"T“ Notice that for each edge

e, we have [{My | e € My, k € {1,...,8}}] < 3.So for every d-transversal T we have 3|T| > ", Zzzl |{e} N M| > 8d.
Hence, |T| > ¥. O

Using Lemma 3.6, we get the following two results.

Lemma 3.7. For m,n > 3andd = 1, t4(Gp ) = 3.

Proof. We take the bundle of a vertex of degree 3 in ‘W and we get a 1-transversal T with |[T| =3. O

Lemma3.8. Form,n > 3and2 <d < 3, t4(Gp,n) = 2d + 2.

Proof. We take d 4+ 1 bundles of corners and we get a d-transversal T with |[T| =2d+2. O

Lemma 3.9. Form=n=3andd = 4, 74¢(Gn n) = 12.

Proof. Since v(Gs 3) = 4, a 4-transversal consists of all the twelve edges of G5 5. O

Lemma 3.10. For m,n > 3withm+n>8and4 <d <m+n — 3, 7q¢(Gp ) = 3d — 1.

Proof. We take d + 1 bundles of vertices in B: the bundles of the four corners and d — 3 bundles of vertices of degree
3. This gives a d-transversal T with |T| = 3d — 1. It is minimum since we can construct 3 matchings My, M,, M3 with
IMiNM;| = [M;NM3| = 0and |[M, NMs| = 1bytakingM; = {hy;, j=1,3,5,...,n—=2; h;, j=2,4,6,...,n—1andi =
2,3,....m v, i=2,4,....m=1} My =1{hy, j=2,4,...,n—1; hy, i=2,3,...,m; v, j=3,4,...,nand i =
2,4,...,m—=1}andM; = {v;, j=1,...,nandi=1,3,5,...,m—=2; hy;, j=1,3,5,...,n—2}(seeleft of Fig. 2). Here
we have M, "M3 = {hp,1}. Since there are m+ n — 6 vertices of degree 3 in B, the construction is valid ford < m+n—3. O

Lemma3.11. Form,n>3andm+n—2<d <™= 1;(Gpp) =4d —m —n+2.
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Fig. 2. Matchings form = 5andn = 7.
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Fig. 3. AdancatD;.

Proof. We construct a d-transversal T by taking d + 1 bundles of vertices in B: all the m 4+ n — 2 bundles of vertices
of degree < 3 together with d — (m 4+ n — 3) bundles of vertices of degree 4. This will give a d-transversal T with
IT| = 4d — (m + n — 2). It is minimum since we can construct four matchings M, M, M3, My satisfying M; N M, =
M3 N My = @, [M; N My| = [M, N Ms| = 2= and [My N Ms| = |[Mp N My| = 1. We define (see right of Fig. 2)
My ={vy, i=135...m=2,j=1,....n hy, j=13,....n =2, My = {hyj, j=2,4,...,n—=1; v, j =
1,...,nandi =2,4,....m—1},M3 = {h;, i=1,2,...,mandj = 1,3,...,n—2; vy, i = 2,4,...,m— 1} and
Mg={vh,i=1,3,... . m—2; hy,i=1,...,mandj=2,4,...,n—1}. 0O

From Lemmas 3.7-3.11 and Property 2.4 we get the following.

Theorem 3.12. Let Gy, , be a grid with m and n odd. The minimum cardinality of a d-transversal is

l.form=1orn=1
(@) ©g(Gmn) =2dfor 1 <d < v(Gp,n)
2. form,n>3
(a) T (Gm,n) =3
(b) ©(Gnn) =2d+2for2 <d <3
(€) 14(G33) = 12
(d) tg(Gpp) =3d—1ford <d <m+n-—3and (m,n) # (3,3)
(e) tg(Gmp) =4d—m—n+2form+n—2<d <v(Gpnp)

3.3. meven, nodd
We define a family of partial subgraphs of G, , which play an important role in the following.

Definition 3.13. Let G, , be a grid graph and let 2 < i < m — 2 be an even integer. Then D; = {vi_1j|j = 1,3,...,n} U
{vipikl k=2,4,...,n—1}U{h;|I=1,2,...,n— 1} is called a dancat (short name for a dancing caterpillar [5]).

An example of a dancat is shown in Fig. 3. Notice that a dancat D; contains exactly 2n — 1 edges.
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Fig. 4. Matching My, .

Lemma 3.14. For every maximum matching M in Gp, n, m even and n odd, and every dancat D;, M N D;| = ”J;—]

Proof. Consider a 3-partition of the vertices of Gy, , V = V4 U Vg U Vpp, where V) is the set of vertices incident to at least one
edge in the dancat D;, V,, is the set of vertices not belonging to Vp and lyinginrows 1, 2, ..., i—1,and Vj is the set of vertices
not belonging to Vp and lying in rows i+ 1,i+ 2, ..., m. In V4 there are @ white vertices and % black vertices (see
Fig. 3). Since the white vertices of V4 can only be matched with black vertices of V,, there remain w = ”2;1 black
vertices of V4 to be matched with % white vertices of Vp, leaving ! white vertices of Vp unmatched with the vertices of

2
V,. Similarly, there are "zil black vertices of Vp unmatched with the vertices of V3. Now to get a perfect matching, these %

white unmatched vertices of Vp are matched to the ”zil black unmatched vertices of Vp. O

Let us now introduce a 4-partition of the edge set of G, , which will play an important role in the proofs of the Lemmas
which will follow. We define H; = {v;|j=1,...,ni=1,3,....m—=1}H ={yg|lj=1,....,n;i=2,4,...,m—=2},
Vi={hli=1,....mj=13,...,n=2},V, ={hjli=1,...,m; j = 2,4,...,n— 1}. For each one of these sets,

we define the following maximum matchings: My, = Hj, M{h = H,U{vyli=13,....m—=1U{hli=1,n k=
1,3,...,j—=2,j+1,j+3,...,n—=1P\{vyli=2,4,...,m =2} withjodd, My, = V; U {v|i=1,3,...,m— 1} and
My, =V, U{vy|i=1,3,..., m— 1}. Examples of these matchings are given in Figs. 4 and 5.

Lemma3.15. Form > 4,n=3and5 <d < 5 + 2, 74(Gp3) = 2d.

Proof. We show the following : let M be a perfect matching of G, 3; for each integeri, 1 < i < m — 1,i odd, we have
IM N {vi1, vi3}| > 1. By contradiction, we suppose that there exists an odd integer i, such that M N {vi1, vi3} = @. If v, € M
the subgrid induced by the vertex set Z = {x;|1 < k < i, 1 <j < 3} must contain a perfect matching, which is impossible
since |Z| is odd. If vi, € M, the subgrid induced by the vertex set Z = {xj|1 < k < i,1 < j < 3} \ {xp} must contain a
perfect matching, which is impossible since |Z N 8| = |Z N 'W| — 2.

Ford < % let T = {vai_11, 12i—1,3]/1 < i < d}. From above, it follows that for any perfect matching M we have
[TAM| > d Ford = 5 + 1,let T = {vyi_1,1, v2i-1,3]1 < i < 5} U {hy1, hyz}. For any perfect matching M, if vi; ¢ M
(resp. v13 & M) then hy; € M (resp. hi; € M); thus [M N {vq1, v13, h11, h12}] > 2, and we obtain |T N M| > % + 1.
Ford = 5 +2,letT = {vyi_1,1, 021311 < i < 5} U {hy1, hiz, ht, hyz). For any perfect matching M we have
IM N {vm-1.1, Ym=1.3, hm1, hm2}| = 2, and we obtain [TNM| > % +2.Soin any case T is a d-transversal with |T| = 2d. Since
My, and My, are two disjoint perfect matchings, any d-transversal has at least 2d edges. Thus in each of these three cases T
isminimum. O

Lemma3.16. Fform >4, n=3and 5 +3 <d <m, 1y(Gp3) =3d — 5 — 2.

Proof. We show that any d-transversal T is such that [T| > 3d — % — 2. Let us consider the three perfect matchings My, , My,
and My, : My, and My, are disjoint and |(My, U My,) "My, | = 5 42,50 T has at least 3d — (% + 2) edges.

Let us now show how to construct such a minimum d-transversal T. We take X = d — % — 2 dancats Dy, Dg, . . ., Dox42,
then we add the edges {v1, v13} U {vait1.1, V2ip13lX +1 <i < % — 1} and the four edges hq1, h12, him1, hmo. Note that for
d < mwehaveX < % — 2 and the construction is valid. This gives us a set T such that M N T| = 2X + % —X+2=dfor
every maximum matching M (using arguments of Lemma 3.15). Thus T is a d-transversal. Concerning the cardinality of T,
wehave [T| =5X +2(5 —X)+4=3d—- 5 —2. O

Lemma 3.17. Form >4, n>5and5 <d <m+n—3,74(Gpn) =3d — 4
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Fig. 6. Matching My .

Proof. We construct a set T by taking the bundles of the four corners together with those of d — 4 < m + n — 7 vertices
of degree 3 forming a stable set with the corners. One can always choose such vertices as can be seen easily. This gives a
set T with |T| = 3d — 4 which is a d-transversal. Let My be the matching shown in Fig. 6. Since My, N My, = # and

[(My, UMy,) N M,‘jl | = 4, any d-transversal T’ satisfies |T'| > 3d — 4. Thus T is a minimum d-transversal. O

Lemma3.18. Form>4,n>5andm+n—2<d <™ 4+ 2 4+ "3 7/(Gy,) =4d—m—n—1— | d=min=3) |
=
Proof. Letm > 4,n>5andm+n—2<d <% + 2 4+ =2,
m . .
Let T be a d-transversal. We must clearly have |[H; N T| > dand |V;NT| > d — 7,1 = 1, 2, since the matching My, (resp.
My, ) contains all edges of V; (resp. V) as well as % edges of H;. Now we can transform these inequalities into equalities by
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adding three nonnegative integers x, y1, y» > 0.Thus we obtain: |H{NT| = d+x, |ViNT| = d— %—l—yl, IVoNT| =d— %—l—yz
and [H, NT| = |T| — 3d + m — z, where z = x + y1 + y».

ConsideramatchingM’Hz,j € {3,5,...,n=2}: T containsatleastd— |H,NT|—(n—1) = d—(|T|—-3d+m—z)—(n—1) =
4d —m —n+ 1+ z — |T| edges of Hy in column j, forj = 3,5, ..., n — 2, at least % — ¥, edges of Hy in column 1, and at
least % — y1 edges of H; in column n. Combining all the columns, we get:

n—3
|H1ﬂT|:d—l-xzm—(yl+y2)—|—T(4d—m—n—|—1+z—|T|)

thus,
—@4d—-m—-n+142)>m—-z—d=—-d—-(@mM+n—-3)—(n—3)—z
hence,
|T|—(4d—m—n+1+z)z—(d_(mn;+_3))—z—n%z
finally, 2

IT|>4d —m—n—1
n—3

d—(m+n-3 2
G (o2,
5 n-—3
Sincez,1— 2 >0,[T|>4d—m—-n—1-— L%J.
Let us now show how to construct such a minimum d—t%ansversal T.First we take the four bundles w(x11), w(X1,), ©®(Xm1),
®(Xmp) of the corners together with the n — 3 bundles w(x13), ®(X15), ..., @(X1.n—2) and ©(Xm3), ©(Xms), - - . , O(Xm.p—2)-

Then we add the X = | ©="1=3) | dancats D4, D, . . . , Dox2 as well as the m — 4 — 2X bundles @ (Xax43.1), ©(Xax45.1) - - - »
2

©(Xm-3,1) and ©(Xax13,n), @(Xax45.1), - - - » @(Xm_3,n). Note that ford = T + 2 + ”2;5 and n > 5 we have L%J =
2

L#J = % —2,thusX < % — 2 and the construction is valid. Finally we complete withd — (n +-m — 3 + "2;3X)

bundles (x;) such that |w(x;)| = 4, x; is not incident to a dancat, and i + j is even. This gives us a set T such that
IMNT| =44n— 3—|—X”Jrl +m—-4—-2X+d—-(n+m-3+1" X) = d for every maximum matching M. Thus
T is a d-transversal. Concernmg the cardinality of T, we have the bundles containing 8 + 3(n — 3) + 3(m — 4 — 2X) +
4d—(n+m—-3+12 X)) = 4d — (n + m) — 2nX — 1 edges and the dancats containing (2n — 1)X edges. This gives us
IT| =4d—(n+m)—1— X=4d—(m+n) —1- 003 g

Lemma 3.19. For m > 4, n >5andﬂ+%+%3 <d< %,rd(cm,n) =4d — (m+n) — LT,._:dJ~F0TmZ4,n=3and
2

m+1<d< 14(Gns) =5d— 30 -3

Proof. We will show that no d-transversal T can have 4d — (m + n) — |2 7 J — 1 edges. Equivalently, we show that for
2
any Y C Ewith |[Y] = 4(5 —d) + L : 1 + 1 there is a maximum matching M with [M N Y| > (5 — d) + 1. Since

Y| = 4( —d)+ L : ]+ 1, there is at least one of V4, V5, Hy, H, which contains ( —d) + 1edgesof Y. Ifitis Hy, then
we are done since H; = MH1 is a maximum matching. lf1t 1s Vi (resp. V), we are also done since Vi C My, (resp.V, C My, ).
Hence we may assume that H, contains (m —d)+ L - J + 1 edges of Y. Now ML contains all edges of H, except those

of the column j, j odd. Furthermore there exists an odd column k such that the set of all columns [ # k contams at least
("'" —d) + 1 edges of H, N Y: if y¥ is the number of edges of H, N Y in column j, we would have Dk y <™ _d kodd.By
summing

n
> yrs Y (B )
k=1,k odd j#k =1,k odd

n;];yjf( )
= (=9 = (=) + (305 < (-9 + | 5

which is a contradiction.
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Hence there is a maximum matching M containing % — d + 1edges of H, N'Y and therefore no transversal T can have

IT| <4d — (m+n) — 7_1

Ifn > 5,thenford = 51+ % +— wehaveLz_J—L2 =) 1=72-1 Tn;d 5—1fordz%+%+%3.
N n

Thus the above computation is valid for 77 + Z + 5= " S <d< =
Let us now show how to construct such a minimum d- transversal T. In the case where ™ + + T <d< @ ,we do

the following. We take the two bundles w(x;;1) and w(xp,) together with the n — 2 bundles w(x12) w(X14), - a)(xlyn 1)

and w(Xp3), ®(Xms), . .., ©(Xmn—2). Then we add the X = %_fij dancats Dy, Dy, ..., Dyx (recall that X < % —1)as
T

well as the m — 2 — 2X bundles a)(xzx+2 1), ®(Xax+4.1)s - - ., @(Xm—2,1) and @ (Xax4+2.n), ©®(Xax+4an), - - - » (Xm—2 n). Finally we

complete withd — (n+m—2 + = X) bundles w(x;;) such that |o(x;j)| = 4, x;; is not incident to a dancat and i 4 j is odd.
Here we note that 7" + 7 + "21 5 dimpliesd — (n+m — 2 + “23X) > 0. This gives us a set T such that M N T| =

n+X % +m—2-2X+d—(n+m—-2+ %X) = d for every maximum matching M. Thus T is a d-transversal. Concerning
the cardinality of T, we have the bundles containing 3n—2+43(m—2—2X)+4d—4(n+m—2+ "2;3X) = 4d— (n+m)—2nX

edges and the dancats containing (2n — 1)X edges. This givesus |[T| =4d — (n+m) — X =4d — (m+n) — LmT,,;:dJ.
Now for d = % + % + "2;3 we proceed as follows. We take the n + 1 bundles w(x11), w(x13), ..., wzxm) and

0Xm1), ©®Xm3),s .., ©(Xmp), theX—1 = %—2 dancats Dy, Ds, . .., Dn—> and the ”;—3 bundles w(x22), w(X24), . .., ©(X2.7—3)-

This gives a d-transversal with |[T| =3(n+ 1) — 4 + (m —-2)2n—-1) + 4@ =4d — (m+n) — LmT:;:dJ.
Ifn=3thenform+1<d< 3”‘ we use the first construction; this is possible since X <  — 1. ’ 0O

Having covered all possible cases we are now able to state the following.

Theorem 3.20. Let Gy, , be a grid with m even and n odd. The minimum cardinality of a d-transversal is

1. forn=1

(@) ta(Gp1) =dfor1 <d < % = v(Gm,1)
2. form=2,n>3

(a) 7a(Gon) = 2dfor 1 < d <2

(b) ©4(Ga,n) =3d —2for 3 <d < n=v(Gyn)
3.form>4,n=3

(@) (Gp3) =2dfor1<d <7 +2

(b) 74(Gm3) =3d— 5 —2for 7 +3 <d<m

()rd(Gma)—Sd—f—3form+l<d<3—'"—V(Gm3)
4, form>4,n>5

(a) t4(Gmp) =2dfor 1 <d <4

(b) t4(Gmp) =3d—4for5<d<m+n-3

(©) 1a(Gnn) =4d—m—n—1— [0 | formpn—2<d<m 40405

2

(d) 74(Gm,n) =4d — (M +n) — L%;deor % + % + % <d = v(Gmn)-

2
Proof. 1(a) is Property 2.4. 2(a), 2(b) follow from Lemma 3.1. 3(a) follows from Lemmas 3.2 and 3.15. 3(b) is Lemma 3.16.
3(c) is from Lemma 3.19. 4(a) is Lemma 3.2. 4(b), 4(c), 4(d) are Lemmas 3.17-3.19, respectively. O

4. Minimum d-blocker in grid graphs

We show here how to construct a minimum d-blocker in a grid graph G, ,. We will use both our results on d-transversals
proved in Section 3 and the inequality B4(Gn.n) > 74(Gm.n) Which is an immediate corollary of Property 2.1.

First, we study the case where mn is even. W.L.o.g. we assume that m is even. Recall that in this case v(Gp ) = %

For m > 2, the results will be obtained by constructing four pairwise disjoint matchings (see Fig. 7).

Both M; and M, are perfect matchings: M, consists of the horizontal edges h;q, hs, ..., hi,zL%j—l of each row i, together
with the vertical edges vin, v3g, ..., Um—1,n if n is odd; M, consists of either the vertical edges vyj, v3j, ..., Um—1; Of
each column j if n is even, or of the horizontal edges hi, hi, ..., h;n—1 of each row i together with the vertical edges
V11, U31s - - -, Um—1.1 if 1 is odd. M3 and M, are not perfect matchings: if n is even, M3 consists of the horizontal edges
hiz, hia, . . ., hi n—» of each row i, together with the vertical edges va1, va1, ..., Um—2.1 and van, Van, . .., Un—2.n; if nis odd,
M3 consists of the vertical edges vy, v3j, ..., Um—1j,J = 2, ..., 1n — 1, together with the vertical edges v,1, Va1, ..., Vm—2,1
and vy, Vapn, - . ., Um—z,n. In both cases, [M3| = (mn/2) — 2. Finally, M, consists of the vertical edges vy, v4j, . .., Un—2,js
j=2,...,n—1; we have [My| = (mn/2) —m — n 4+ 2. Note that My U M, U M3 UMy = E(Gp.p).
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Fig. 7. Matchings for n even on the left and for n odd on the right.

Lemma4.1. For d € {1, 2}, if m > 2 is even then Bq(Gm,n) = 2d.

Proof. From Theorems 3.5 and 3.20 we have B4(Gp,n) > 4(Gm.n) = 2d. By taking the bundles of d black corners, we get a
d-blocker with cardinality 2d. O

Lemma4.2. For 3 <d <m+n —2,if m > 2iseven then B4(Gp ) = 3d — 2.

Proof. When m = 2, from Theorems 3.5 and 3.20 we have B4(Gn.n) > t4(Gmn) = 3d — 2. For m > 2, since My, M,
and M3 are pairwise disjoint a d-blocker must have at least d edges in M; and in M, and at least d — 2 edges in M3, thus
Ba(Gm.n) = 3d — 2. For both cases we form a d-blocker of 3d — 2 edges by taking the bundles of two black corners together
with d — 2 bundles of black vertices of degree 3. Note that this is possible sinced < m + n — 2 and therearem +n — 4
disjoint bundles of degree 3. [

Lemmad4.3. Ford > m+n — 2,if m > 2iseven then 84(Gnpn) = 4d — m — n.

Proof. As previously, by considering My, M, and M3, a d-blocker must have at least 3d — 2 edges. In addition, since M, is
disjoint from these three matchings, a d-blocker must have also d — m — n 4+ 2 edges in My and thus at least4d — m — n
edges. We form a d-blocker of 4d — m — n edges by taking the bundles of two black corners together with the m +n — 4
bundles of black vertices of degree 3 and d — m — n + 2 bundles of black vertices of degree 4. [

From Lemmas 4.1-4.3 and Property 2.4 we have:

Theorem 4.4. Let G, , be a grid with mn even. The minimum cardinality of a d-blocker is

l.form=1lorn=1
(a) ﬂd(Gm,n) =2d— 1fOT' 1< d < l)(Gm,n)
2. form>2andn > 2
(a) ﬁd(Gm,n) = deor 1 < d = 2
(b) Ba(Gmp) =3d—2for3<d<m+n-—2
(©) Ba(Gmp) =4d—m—nform+n—1=<d < v(Gpp).

Now, let G, , be a grid graph with both m and n odd. We have he following:

Theorem 4.5. Let G, , be a grid with mn odd. The minimum cardinality of a d-blocker is

l.form=1lorn=1
(a) ﬂd(Gmﬁn) = deOT 1= d = V(Gm,n)
2. form=>3andn > 3
(@) Ba(Gmn) =3 ford=1
(b) Bi(Gmpn) =2d+2for2 <d=<3
(€) Ba(Gmn) =3d—1ford<d<m+n—3andm+n+#6
(d) Ba(Gmp) =4d—m—n+2form+n—2<d < v(Gpypn)

Proof. The case m = 1orn = 1 is stated by Property 2.4. Now, we consider m > 3 and n > 3. By assumption the four
corners are black vertices so |8| = |'W| + 1. First, note that d + 1 bundles of black vertices form a d-blocker. Second,
Bda(Gm.n) = t4(Gp,p)- Third, from Section 3.2 we know that a minimal d-transversal is formed by the d + 1 bundles of black
vertices with the d 4+ 1 smallest degrees. Thus a minimal d-blocker is a minimal d-transversal and its cardinality is given by
Theorem 3.12. O
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5. Minimum d-blocker and d-transversal in trees

In this section we present a dynamic programming approach that allows us to find the cardinality of a minimum d-
transversal and of a minimum d-blocker in polynomial time on trees. We describe the algorithm in details for transversals.
It can easily be adapted for the case of blockers. We begin by giving a property which we shall use later.

Property 5.1. Let G = (V, E) be a graph and Vy, V, a partition of the vertices V such that there is no edge between V; and V,. We
denote by G, = (V1, Eq), resp. G, = (V>, E>), the subgraph of G induced by the vertices of Vi, resp.of V,.Ford € {1,...,v(G)}
we have the following results.

(i) Ba(G) = min{Bi(G1) + Ba—i(G2) | i € {max{0,d — v(Gy)}, ..., min{d, v(Gy)}}}
(ii) 74(G) = min{t;(G1) + t4_i(Go) | i € {max{0, d — v(G,)}, ..., min{d, v(G)}}}.

Proof. (i) Let B C E, By = BN E; and B, = B N E,. The following equality implies the result.
v((V,E\B)) = v((V1, E1 \ B1)) + v((V2, E2 \ B2)).

(ii) We denote by M, M; (resp. M) the sets of all maximum matchings in G, G; (resp. G). The result finally follows from
the following observation.

={M1UM2|M1 EMl,Mz GMz}. O

Let us now introduce some notations and terminology used throughout this section.

Let r be an arbitrary vertex in V. We orient the edges of E away from r in order to get an arborescence T = (V, A) of
rootr.LetD(v) = {w € V | (v, w) € A} = {v1, ..., Vpw) ). To simplify the terminology we say that an (undirected) edge
[v, w] is contained in a directed graph G if either (v, w) or (w, v) is contained in G. Forv € Vanda,b € {1,...,|D(v)|}
with a < b we denote by T;, the subarborescence of T over the vertices {v} U | ;c(,.p{u € V | 3 path from v; touin T}.
Furthermore for v € V we denote by T" the subarborescence of T with root v, i.e., T" = Ty . We denote by E; , the set
of edges contained in Tj .

We can assume that the task is to find the cardinality of a minimum d-transversal in a tree G with Py(G) = P1(G) = @
because of the following observations. If Py(G) # @, we can remove the edges of Py(G) from G since these edges are not
contained in any maximum matching and therefore nor in any minimum d-transversal. The remaining graph is thus a forest.
We can easily determine the cardinality of a minimum d-blocker for a forest if we have already determined the cardinality of
all minimum transversals for its components by using Property 5.1. We therefore assume that the tree G = (V, E) satisfies
Py(G) = (. Additionally it is easy to see that the only remaining case with P;(G) # ¥ corresponds to a graph G consisting of
only one edge which is a trivial case.

For any v € V and q, b e {1,. |D(v)|} with a < b we define a partition of the set of all maximum matchings of G 1nto
two sets :M”;L and M, where M b is the set of all maximum matchmgs in G saturating v with an edge of E} , and M,
is the set of all maximum matchlngs in G not saturating v with an edge of E,

Finally let us define the following two notions where U C E:

m*(Ty,, U) = max ((MNE,)—U|
M e My,

m~ (T, U) = max  ([((MNE;,) —UJ.
Me My,

In other words, m*(T;’b, U) (resp.m™ (T, U)) represents the maximum number of edges of T;, \ U contained in a single
matching ofM”‘Jr (resp M;”;) We use the convention that m™ (T, U) = 0 if r € S(G) since in this case Mq:lz)(r)‘ = (). Note
that no other set Ma b, Or Ma , 1s empty since Py(G) = @.

The cardinality of a minimum d-transversal is smaller than or equal to k if and only if

min max{m™ (T, U), m (T, U)} < v(G) —
\g\_:Ek

We say that a pair (x7, x™) € Z? dominates a pair (y©,y~) € Z?if x* < y*,x~ < y~ and at least one of the two
inequalities is strict. Let X C Z2. We say thatx € X is efficient in X if there is no elementy € X that dominates x. Furthermore
the efficient subset &(X) of X are the elements in X that are efficient in X. -

We define Q;, (k) = {(m™(T? ap U),m(T7,,U)) | U C E, Ul = k} and let Q;,(k) = &(Q,,(k)). In a similar
way to the notation used for subarborescences of T we define Q¥ (k) = Q/ |D(v)‘(k) Furthermore we use the notation

Q) = (Q;(0),...,Q; b(|E '»1)). The algorithm we propose begins by determining Q, , for subarborescences T, , containing
only one arc, i.e., when vp is aleaf of T. Then the elements Q; p corresponding to larger arborescences Ty w1ll be calculated
on the base of sets Q corresponding to smaller arborescences by the following two types of operatlons

OPERATION 1 (Adding an Arc). Determine Qp’p on the base of Q.
OPERATION 2 (Merging Two Subarborescences). Determine Q{:pﬂ on the base of Qﬁp and QpU-H,p-H'
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If we can perform the above two operations, Q" can easily be obtained by calculating first the values of Q for arcs
(v, w) € A, where w is a leaf and then combining them with the two operations. We will now give details on how we
realize OPERATIONS 1 and 2.

The following results describe basic relationships that will be used to describe a simple way of executing OPERATION 1
and OPERATION 2. We start by giving a proposition which will be used in the discussion of OPERATION 1.

Proposition 5.1. Let (v, vp) € A.
If vy, & S(G) we have
(i) (MNE>™ | M € M”* ={MNE» | M€ M’}
(ii) (M NE" | M EM”*} ={MNE» | M e M}.
If v, € S(G) we have
(iii) (M“f = M~
(iv) My, = MO
Proof. (i) The inclusion C follows from M” A+ C MU, Let My € MP>~. We will show that there exists M, € M;j;
with M NEY» = M, NE".IfM; € My ¥ we are done by choosing M, = M;. Otherwise we obtain M, by adding
the edge [v, vp] to M; and removing the edge in M; being adjacent to [v, v,].
(ii) The inclusion < follows trivially from (", < M. Let M be a maximum matching in G that does not saturate
vp (such a matching exists since v, ¢ S(G)) and let M; € M. We will show that there exists M, € gMg;p* with
M, NEY™ = M;NE™.Let M, = (M\ E*)U (M NE™). M, is indeed a matching not containing [v, v,] and satisfying
M, N EY = M; N EY as desired. Furthermore the maximality of My and M imply that M, must be a maximum
matching.
(iii)/(iv) These equations follow from the observation that if every maximum matching saturates v, then the maximum
matchings saturating v, by the edge [v, v,] correspond exactly to the maximum matchings which do not saturate
vp by one of the edges in E*? and vice versa. O

The following two lemmas are consequences of Proposition 5.1.

Lemma 5.2. Let (v,vp) € AU C Eand U’ = U \ {[v, vp]}. Suppose that v, & S(G).
1. If [v, vp] e U we have

(i) m*™(T;,, U) = m™(T*, U")

(ii) m (T; U) = max(m™*(T%, U"), m—(T%, U")).
2. If [v,v U we have

(i) £( U) =1+ m-(T", U)

(iv) m= (T,

PP’

o U) = max(m*(T%, U), m=(T%, U)).

Lemma 5.3. Let (v, vp) € AU C Eand U’ = U \ {[v, vp]}. Suppose that v, € S(G).

1. If [v, vp] € U we have
(i) m* (T2, U) = m(T*, U")
(ii) m™ (T; U) =m*(T%, U").
2. If [v, v£ U we have
(iii) m™( pp,U): 14+ m (T, U)
(iv) m™(T; ,, U) = m*(T*, U).

The next proposition will be used in the discussion of OPERATION 2.

Proposition 5.4. Let v € Vandp € {1, ..., |[D(v)| — 1}. We have
(i)
(MNE},  IMeM )} ={(MNE)UMyNEY, ) | My € M) My € My, o)
U{(M NE} ) UMy NEpy,00) | My € MYy My € My o)

(ii) If ,M]p+1 #+ () we have

{(MNE} P+ | M e =M1 p+1} = {(M; ﬂElvyp) U (M mE;+1p+1) | My € M;Yp_’MZ € Mp+l p—H}
Proof. (i) The inclusion C follows from A, = (M}, ﬂ Mype) U (MY, O Myl ). et My € MY, and
M, € My, .- We will show that there exists M € M ‘py1 satisfying M N El,p+l = (M1 NE{,) UM N Ep+1 p+1)

(the proof for the case My € M}, , M, € EMH] pt11s analogous). Let M = (My \E . ,, 1) U (M mEp+1.p+1)' M is indeed
a matching saturating v by an edge of E} Pt and satisfying M N E{ 1 = (M0 Ef,p) UMy N E;H,pﬂ)' Furthermore the
maximality of M; and M, implies that M is a maximum matching.
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(ii) The inclusion C follows from =M1 1 = M" N ‘Mp+1 s+1- Let My € M ~and M, € ‘Mp+1 o1 We will show that
there exists M € M;,, satisfying M N E1 1 = (MiNE])HU (Mz Eyyipi1)- Let M3 € My, and define
M = (M3 \ E} er]) U (M1 NEY ) UM, N +1,p+1) M is 1ndeed a matching not saturating v by one of the edges in
E} p4q and satisfying M NEY ;= (M1 NEY ) UM NE) ;. ,). Furthermore the maximality of My, M, and M3 implies
that M is a maximum matching. O

The following lemma is a consequence of Proposition 5.4.

Lemma5.5. Let v e V,p e {1,...,|D(v)| — 1} and U C E. Furthermore we define Uy = U ﬂElL"p andU, = U HE;H P
have:

L. m*(TY ), U) = max{m*(T{ ), Up) +m~ (T} 1y, Up), m™(T7,, U + m™ (T 00 U2)}
2. m(T¢ U)y=m (T}, U) + m (T, , .y, U2) if M?:p_ﬂ # () (this corresponds to the case v # r or p # [D(v)| — 1 or

We

1,p+1°
r¢S5(6))
3. m(T¢ b1 U) =0if M7 1 = = (I (this corresponds to the case v =r,p = |D(G)| — 1andr € S(G)).

The following proposition shows how OPERATION 1 can be performed in polynomial time.

Proposition 5.6. Let (v, vy) € Aandk € {1,..., |E; |}.
(i) If vp € S(G) we have
Q0 =¢{@.qg") 1@ q)eQ?k-1}U{(g+ 1.4 (q".q7) €Q*(K)}).
(i) If v, & S(G) we have
Q) =¢€({(g".max{g".g") | (@*.q7) € Q¥ (k— D} U{(g” + 1. max{g".q"}) | (¢".q) € Q" (K)}).
Proof. (i) As a consequence of Lemma 5.3 we have
Q0 =1{@.q)1(@"q)eQPk-DIU{@ +1.9) (@ q)eQ”®)}
which implies
Q) =€(@.q") [ (@".q) eQ?k—DIU{@G +1.q4)|(@".q) €Q®).
The result is finally obtained by observing that
€@, qN 1@ ,q) € QP(k—D}U{@@ +1,4 1 (g%, q7) € Q? (0D
=&({(@,qN) 1@ q) eQrk—D}U{@ +1,49) (@5 q7) €Q” ().
(ii) This part can be proved in the same way as point (i) by using Lemma 5.2 instead of Lemma 5.3. O

The following proposition shows how OPERATION 2 can be performed in polynomial time.

Proposition 57. letveV,pe{l,...,|D(w)| —1}andk € {0, ..., |Elv,p+1|}.
i) If MY 1 () (this corresponds to the case v % r or p # |D(r)| — 1 or r & S(G)) we have

Q) =¢ ( U (max{e] +a5.q7 +a3). a7 +43) | (@].47) € Q0. (3. 0) € QY pya(k— i)}> :

(ii) If M7, = @ (this corresponds to the case v = r, p = |D(r)| — 1and r € S(G)) we have

1pvL
Q]U,p_;_](k) =¢& ( U {(max{ql + qz s q1 + q, } 0) | (q1 P q] ) € Q1 p(l) (qz s q2) € QP-H p+1(k l)})

Proof. Proposition 5.7 can be proven in a similar way as Proposition 5.6 by using Lemma 5.5. O

Notice that if we are not only interested in sizes of minimum d-transversals but also in the transversals themselves, for
every set Q; , (k), we can keep track of a set of edges to remove that corresponds to Q,; (k).

The presented algorithm can easily be adapted to the case of blockers. Wherever we considered a set of maximum
matchings we now consider the set of all matchings. In particular the set Ma b + (respectively Ma b . ) will be replaced by
the set of all matchings in G such that v is saturated (respectively not saturated) with an edge of E - This even simplifies
the algorithm, since at each place where we had to distinguish for some vertex v whether v € S(G) or not, we now
always consider the case v ¢ S(G), because there is no longer a vertex that has to be saturated by all matchings under
consideration. The algorithm runs in exactly the same way as for the case of transversals with slightly simplified rules for
performing OPERATION 1 and 2. Again Propositions 5.6 and 5.7 can be used to perform OPERATION 1 and 2 where OPERATION 1
is always performed by applying (ii) of Proposition 5.6 and OPERATION 2 is performed using always (i) of Proposition 5.7. The
correctness of the algorithm for blockers is easily proven by carrying over the arguments used for the case of transversals.
See [9] for more information of how the presented algorithm for transversals can be adapted to d-blockers and even
generalized to the case of graphs with bounded treewidth.
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5.1. Complexity of the algorithm

The main purpose of this section is to show that the proposed algorithm runs in polynomial time. Therefore, a rather
conservative but simple complexity analysis will be presented. We begin by discussing the complexity of determining 7 (G)
for atree G = (V, E) satisfying Py(G) = P;(G) = . In a second step the case of arbitrary trees G is discussed.

Notice that every set of the type Q;, (k) contains at most |E; ,| + 1 elements since Q; ,(k) < {0, ..., |E;’b|}2 and every

setA C {0,..., |E¢'j’b|}2 with €(A) = A satisfies |A| < |E;,| + 1. Therefore the size of each set Q (k) can be bounded by
o(Vv. '

OPERATION 1 is called once for every edge, i.e., |V| — 1 times. By Proposition 5.6 we have that for some fixed k, Q, (k) can
be determined from Q*» (k — 1) and Q*» (k) in O(|V|) time. Since OPERATION 1 determines Q[Kp(lc) forallk € {0, ..., |E['j,p|},

it can be performed in O(|V|?) time. Therefore, the total time needed for all calls of OPERATION 1 can be bounded by O(|V|3).
For every vertex v, OPERATION 2 is called |D(v)| — 2 times. Therefore the total number of calls of OPERATION 2 is bounded
by O(|V]). By Proposition 5.7 we have that for some fixed k, QﬁPH (k) can be determined from Qﬁp and Q;+1,p+1 ino(|V|?)

time. Since OPERATION 2 determines Qﬁpﬂ (k) forall k € {0, ..., |E{{p+1 [}, it can be performed in O(|V|*) time. Therefore,

the total time needed for all calls of OPERATION 2 can be bounded by O(|V|?).

To determine whether e € Py(G), we remove the vertices incident to e from G. If the matching number of the remaining
graph G’ decreases by only one, then e & Py(G) (we can add e to a maximum matching of G’ and get a maximum matching
of G). Otherwise, e € Py(G) (if e € M for some maximum matching M of G then M \ {e} would be a maximum matching of
G"). Since finding a maximum matching in a tree over n vertices can be done in linear time, the time needed for determining
Py(G) is bounded by O(|V|?).

Let Gy, ..., Gq be the connected components of the graph G \ Py(G). We denote by ny, ..., nq their sizes. By the above
discussion we can determine for every component G;, the vector 7(G;) in O(n?) time. Finally we have to combine the
components to get (G). By Property 5.1, combining two components whose sizes are bounded by n can be done in 0(n?)
time. Therefore, the total time needed to find t(G) from t(G), ..., 7(Gq) can be done in o(|V|?) time.

The total time needed for our algorithm to find all minimum d-transversals of a given tree G can therefore be bounded
by O(|V|?). In this analysis OPERATION 2 is the bottleneck. A more elaborate analysis of the complexity of OPERATION 2 shows
that the time needed for all calls of OPERATION 2 can be bounded by O(|V |*) instead of O(|V|?). However, we expect that the
bound can be further sharpened by improving the way OPERATION 2 is performed.

6. Conclusion

We have determined closed formulas for the minimum size of d-transversals and d-blockers in grid graphs; it may also
be interesting to enumerate those subsets in grid graphs.

For the case of trees we have shown how a minimum d-transversal can be found in polynomial time by using dynamic
programming. The proposed approach can easily be adapted for finding minimum d-blockers.

An interesting direction of research could be the study of blockers and transversals on planar graphs. For this class of
graphs, neither a hardness result nor an efficient algorithm is known to determine blockers and transversals. The hardness
result for blockers and transversals that was presented in [10] uses a reduction that typically leads to non-planar graphs.
Considering planar graphs is furthermore motivated by the fact that some other hard removal problems of a similar nature
can be solved efficiently on planar graphs [9].

Another interesting question would be to study the unicity of such minimum d-blockers and d-transversals. Besides this,
one may replace matchings by 2-matchings or more generally by k-matchings (subset of edges such that every vertex is
adjacent to at most k edges of the subset). Also in an even more general framework one may consider transversals and
blockers of stable sets instead of matchings. Such studies would certainly be motivated by a variety of potential applications
in operations research.
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