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We theoretically study the high-harmonic generation (HHG) in one-dimensional spin systems. While in
electronic systems the driving by ac electric fields produces radiation from the dynamics of excited charges,
we consider here the situation where spin systems excited by a magnetic field pulse generate radiation via a
time-dependent magnetization. Specifically, we study the magnetic dipole radiation in two types of ferromagnetic
spin chain models, the Ising model with static longitudinal field and the XXZ model, and reveal the structure
of the spin HHG and its relation to spin excitations. For weak laser amplitude, a peak structure appears which
can be explained by time-dependent perturbation theory. With increasing amplitude, plateaus with well-defined
cutoff energies emerge. In the Ising model with longitudinal field, the thresholds of the multiple plateaus in the
radiation spectra can be explained by the annihilation of multiple magnons. In the XXZ model, which retains
the Z2 symmetry, the laser magnetic field can induce a phase transition of the ground state when it exceeds a
critical value, which results in a drastic change of the spin excitation character. As a consequence, the first cutoff
energy in the HHG spectrum changes from a single-magnon to a two-magnon energy at this transition. Our
results demonstrate the possibility of generating high-harmonic radiation from magnetically ordered materials
and the usefulness of high-harmonic signals for extracting information on the spin excitation spectrum.
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I. INTRODUCTION

The dynamics induced by light-matter coupling is an im-
portant problem in optical physics as well as nonequilibrium
condensed matter and statistical physics. The application of
strong laser pulses to a broad range of materials, includ-
ing metals, semiconductors, and superconductors, results in
rich physics and new phenomena, such as collective excita-
tions [1,2], the control of order parameters [3,4], and funda-
mental changes in material properties [5–7]. In particular, the
high-harmonic generation (HHG), which is a nonlinear opti-
cal phenomenon observed in periodically driven systems, is
attracting interest because of the underlying nontrivial charge
dynamics and its technological relevance for attosecond laser
science and the spectroscopy of charge dynamics [8,9].

HHG has originally been observed and studied in atoms
and molecular gases [10,11]. Its mechanism can be under-
stood by the so-called three step model, where tunnel ion-
ization occurs in the presence of a strong electric field, the
released electrons are accelerated by the periodic field, and
eventually recombine with the ionized atoms by emitting
the high-harmonic light [12,13]. Recently the interest in this
field has been renewed by the observation of HHG in var-
ious solids, in particular band insulators [14–24]. Although
the HHG in this case also originates from the dynamics
of excited charges, the spatially periodic arrangement of
atoms in solids leads to qualitative differences compared to
atomic gases. Theoretical studies assuming weak correlations
or employing an effective single particle picture have been
performed to discuss the origin of the HHG in these band
insulators [14,25–40]. (For recent reviews, see Refs. [41–43].)

It has been revealed that HHG originates from the intraband
charge dynamics reflecting the nonparabolic shape of the
bands [14,16,25] and the interband dynamics corresponding
to the recombination of excited charges [28,31,33–35]. Fur-
thermore, the existence of multiple bands and the interfer-
ence between different excitation paths can play an important
role [29,32,34,36]. Even though the details of its mechanism
are still actively discussed, HHG in solids can be used to
obtain important information about these solids, such as band
and lattice structures [14,19–22]. In addition, potential ap-
plications in new high-frequency laser sources are expected
due to the high concentration of atoms compared to atomic
gases [20]. Stimulated by these developments and prospects,
both experimentalists and theorists are making intensive ef-
forts to understand the mechanism of HHG in greater detail
and to explore new classes of materials, e.g., liquids [24,44],
graphene [45,46], topological systems [47], strongly cor-
related systems [48–52], impurity-doped systems [53], and
magnetic metals [54].

In this paper we explore a new avenue for HHG in solids,
by considering the dynamics of the spin degrees of freedom in
magnetic insulators, i.e., quantum spin systems. We theoret-
ically study the excitation of these systems by time-periodic
external magnetic fields, and evaluate the HHG signal result-
ing from the change of the magnetic moments [Fig. 1(a)]. This
setup is relevant for materials with a large charge excitation
gap whose low energy excitations are governed by the spin
degrees of freedom. Recent developments in the field of
metamaterials [55] and plasmonics [56] enable the generation
of strong magnetic field pulses with small electric field, which
can be used to realize the setup considered in our study. The
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FIG. 1. (a) Schematic picture of the HHG from quantum magnets discussed in this paper. The spins are excited by a magnetic field
pulse, and the induced magnetization dynamics results in electromagnetic radiation with high frequency components. (b) Example of the
correspondence between the spin HHG intensity and the spin excitation spectrum (XXZ model with Jxy = 2 and Jz = 10, pulse with � = 1
and B = 4). The thresholds (vertical dashed lines) of the multiple plateaus in the HHG signal correspond to multiples of the magnon excitation
energy at q = 0, see horizontal arrow. (Inset: The shape of the magnetic field for the linearly polarized pulse laser with B = 4 and Ncyc = 9.)
(c) Comparison between the HHG in electronic systems and that in spin systems.

nonequilibrium dynamics of quantum spin systems, especially
the dynamical control of the magnetization by laser fields, has
been intensively studied both in the experimental [3,57,58]
and theoretical communities [59,60]. In Refs. [59,60] the
magnetization dynamics in antiferromagnets has been cal-
culated for laser fields with a frequency comparable to the
exchange coupling. On the other hand, for the study of HHG,
a lower photon energy is advantageous since it results in
spectra with higher energy resolution and thus allows us to
elucidate the excitation structure. In this paper we reveal that
the HHG signal from spin systems can be associated with
elementary spin excitations like magnons, just as the HHG
in electronic systems reflects the dynamics of excited charges
[see Fig. 1(b)]. These results suggest that the spin HHG can be
potentially used as a probe of spin dynamics as well as for new
laser sources in the THz regime. In Fig. 1(c) we summarize
the similarities and differences to HHG in electronic systems,
which are useful to keep in mind in the following discussion.

The present study focuses on one-dimensional ferromag-
netic quantum spin systems described by the Ising model
with longitudinal field and the XXZ model. These models
are simple but fundamental, and can be realized in materials
such as Dy(C2H5SO4)3 · 9H2O, LiTbF4, LiHoF4 [61] and
CoNb2O6 [62]. We numerically investigate the nonequilib-
rium dynamics and the radiation spectrum resulting from the
time-dependent magnetization by means of the infinite time-
evolving block decimation (iTEBD) [63], exact diagonaliza-
tion (ED) calculations, and time-dependent mean-field theory
(tdMF). To understand the relation between the HHG signal
and elementary spin excitations, we also calculate the low-
energy excitation structure of these systems by combining the
density matrix renormalization group (DMRG) [64] and the
time-evolving block decimation (TEBD) [65]. When the laser
field is weak, a peak appears around the energy of the single-
magnon excitation in both models, which can be explained by
time-dependent perturbation theory. With increasing strength
of the laser field, this peak structure changes to a plateau. We
also find indications for multiple plateaus, whose thresholds

are associated with the annihilation of (multiple) elementary
spin excitations (magnons).

This paper is organized as follows. In Sec. II we discuss
general properties of the HHG in quantum spin systems.
Section III presents the HHG signals resulting from the ap-
plication of a linearly polarized laser to Ising models with
longitudinal static field. Section IV is devoted to an analysis of
the HHG signal from the laser application to the XXZ models.
We summarize our results and discuss future extensions in
Sec. V.

II. HHG IN QUANTUM SPIN SYSTEMS

In this section we present the theory of HHG in quantum
spin systems. In usual HHG, the electric field of a laser
pulse induces a change of the electric polarization, which in
turn produces electromagnetic waves. The total instantaneous
radiated power is proportional to |d j(t )/dt |2, where j(t ) is
the electric current. If j(t ) is a polarization current dP(t )/dt
(with P the electric interband polarization), the power is pro-
portional to |d2P(t )/dt2|2. In a similar way, we can consider
the radiation of electromagnetic waves from a time-dependent
magnetic dipole. The total instantaneous radiated power from
the change of a localized magnetic dipole M(t ) is proportional
to |d2M(t )/dt2|2 [66].

To study quantum spin systems in the presence of a time-
dependent magnetic field B(t ) we consider the Hamiltonian

H(t ) = Hspin − B(t ) · Stot, (1)

where Hspin is the spin Hamiltonian and the last term repre-
sents the Zeeman coupling of the spins in the material with
the magnetic field produced by the laser. We calculate the time
evolution of the magnetization M(t ) ≡ 〈Stot (t )〉, where Stot =∑

j S j represents the summation over all spins and Stot (t ) ≡
U −1(t )StotU (t ) (U (t ) = T

∫ t
0 dt ′ exp[−iH(t ′)t ′] is the time

evolution operator with T the time ordering). From this we
obtain the Fourier transform of the magnetization M(ω) =
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∫
dteiωt M(t ) and the radiation power

I ∝ |ω2M(ω)|2.
The symmetry of the system may impose constraints on

the structure of the HHG signal. For example, the inversion
symmetry limits the HHG signal in electronic systems to
odd harmonics. Now, let us consider the case when the
time-dependent Hamiltonian has a symmetry which can be
represented as the combination of time translation and π

rotation around the Sz axis

H(t ) → H(t + Tper/2),
(2)

(Sx, Sy, Sz ) → (−Sx,−Sy, Sz ),

where Tper ≡ 2π/� is the period of the laser. Then, the
magnetization satisfies

Mx(t + Tper/2) = −Mx(t ),

My(t + Tper/2) = −My(t ),

Mz(t + Tper/2) = Mz(t ),

if we assume a time-periodic steady state having the same
symmetry as the Hamiltonian. In this case, the temporal
Fourier transform of Mx becomes 0 for ω = 2n� (n is an
integer) since

Mx(2n�) ∝
∫ Tper

0
dt ei2n�t Mx(t )

=
∫ Tper

2

0
dt ei2n�t [Mx(t ) + Mx(t + Tper/2)] = 0. (3)

In the same way, the temporal Fourier transform of Mz be-
comes 0 for ω = (2n + 1)� (n is an integer) since

Mz[(2n + 1)�] ∝
∫ Tper

0
dt ei(2n+1)�t Mz(t )

=
∫ Tper

2

0
dt ei(2n+1)�t [Mz(t ) − Mz(t + Tper/2)] = 0. (4)

In the case of a finite pulse width, these arguments are strictly
speaking not valid. Still we will see that in practice, these rules
are satisfied except around the HHG peak in the case of weak
laser fields.

In the following two sections, we will use numerical calcu-
lations to study the HHG in specific one-dimensional quantum
spin systems.

III. HHG IN ISING MODELS

Let us start by investigating the HHG in Ising models,
which are among the simplest and most important models of
magnets. In this case, the spin Hamiltonian Hspin in Eq. (1)
explicitly reads

HIsing = −J
∑

j

Sz
jS

z
j+1 − HSz

tot, (5)

where J > 0 is the ferromagnetic exchange coupling and
H > 0 is a static external magnetic field. Sx, Sy, and Sz

are spin-1/2 operators. The ground state of HIsing is a fer-
romagnetic state [〈Sz

j (0)〉 = 1/2 for all j] and this state is
perturbed by the application of a linearly polarized pulse

laser B(t ) = (Bx(t ), 0, 0) in the x direction. Because of the
longitudinal field H > 0, the Z2 symmetry of the system
is broken. Hence, there is no quantum phase transition as
a function of the transverse magnetic field, i.e., the ground
state of the snapshot Hamiltonian H(t ) = HIsing − Bx(t )Sx

tot
remains gapped at any time. Though the main objective of
this section is the theoretical analysis of the magnetization
dynamics and HHG mechanism, the obtained results are rele-
vant for materials having ferromagnetic dipole order such as
Dy(C2H5SO4)3 · 9H2O, LiTbF4 and LiHoF4 [61].

We consider a magnetic field pulse of the form

Bx(t ) =
⎧⎨
⎩

B sin2

(
�t

2Ncyc

)
cos(�t ) (0 < t < Tf ),

0 (otherwise),
(6)

where Tf = 2πNcyc/�, � is the laser frequency, Ncyc is the
number of laser cycles, and B sin2( �t

2Ncyc
) is the envelope of

the pulse. In this paper the parameters are fixed as Ncyc = 9
and � = 1 (� is also used as the energy scale by employing
the units h̄ = c = 1). The magnetic field pulse with B = 4 is
shown in the inset of Fig. 1(b).

In this section the other parameters are set to J = 2 and
H = 6, so that the gap is much larger than � = 1 and heating
effects are suppressed. In addition, since we anticipate that the
width of the plateau in the HHG signal is of the order of the
characteristic energy scales of the spin system, we expect to
observe several harmonics if J and H are chosen large com-
pared to �. The Ising model with smaller longitudinal field
H , where the lifting of the twofold degeneracy and hence the
gap is smaller, is discussed in Appendix C 1. We numerically
calculate the magnetization dynamics and report hereafter the
normalized magnetizations mx,y,z ≡ Mx,y,z/N , where N is the
number of spins. As explained in Sec. II, the radiation power
of a magnetic dipole is proportional to |ω2mα (ω)|2.

Before studying the dynamics induced by the laser field,
we investigate the excitation structure of the equilibrium
system. To study excitations, we numerically calculate the
dynamical structure factor (DSF), which is the imaginary part
of the dynamical susceptibility. The method is as follows. We
first obtain the ground state of the system by the DMRG [64],
and then calculate the retarded correlation function

χαβ (r, t ) = −iϑ (t )
〈[

Sα
r (t ), Sβ

0 (0)
]〉
, (7)

where ϑ (t ) is the step function, by the TEBD method [65] for
finite size systems. The dynamical susceptibility is the Fourier
transform of the retarded correlation function,

χαβ (q, ω) =
∫ ∞

−∞
dt

∑
r

ei(ωt−qr)χαβ (r, t ).

In this paper we consider systems with size N = 120, which
are large enough that finite size effects can be neglected.

The DSFs |Imχ xx(q, ω)| and |Imχ zz(q, ω)| for the ground
state of the Ising model in both longitudinal and transverse
fields

H = HIsing − BSx
tot (8)

with H = 6 are shown in Fig. 2. Equation (8) represents the
snapshot Hamiltonian of H(t ) = HIsing − Bx(t )Sx

tot at some
fixed time t corresponding to Bx(t ) = B. If the transverse field
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FIG. 2. DSFs (a)–(d) |Imχ xx (q, ω)| and (e)–(h) |Imχ zz(q, ω)| for
the Ising model with J = 2 and H = 6.

is not present (B = 0), the spins are completely localized and
there is no dispersion since the Hamiltonian only contains Sz.
The elementary excitation corresponds to a single spin flip,
which has a gap J + H . In the presence of a nonzero trans-
verse field, this flipped spin can propagate and transform into
a magnon. The DSF shown in Fig. 2 represents the magnon
dispersion. In Figs. 2(a)–2(c) a weak intensity is seen at twice
of the energy of the lowest band (single-magnon dispersion).
This corresponds to the two-magnon band. Since the single-
magnon band has a cosine structure E1(q) = c1 + c2 cos(q),
the two-magnon band can be represented as

E2(q) = 2c1 + c2[cos(q′) + cos(q − q′)]

= 2c1 + 2c2 cos

(
q

2

)
cos

(
q − 2q′

2

)
(0 � q′ � 2π )

by considering the momentum conservation, and we obtain

2c1 − 2c2| cos(q/2)| � E2(q) � 2c1 + 2c2| cos(q/2)|. (9)

This feature of the two-magnon band is observed more evi-
dently when the longitudinal field H is weak as mentioned in
Appendix C 1.

In Fig. 3 we show the time evolution of mx and mz

for the Hamiltonian H(t ) = HIsing − Bx(t )Sx
tot with different

FIG. 3. Time evolution of (a) mx and (b) mz calculated by iTEBD
for the Ising model with J = 2 and H = 6.

values of the laser amplitude B = 2, 4, 6, 8. As the numerical
method, we use the iTEBD [63], which utilizes a matrix
product state (MPS) representation. This method enables the
simulation of infinite size systems, i.e., without finite-size
effects, by assuming the translational invariance of the system.
In this paper we take the matrix dimension of the MPS as 100
and the time evolution is performed by the fourth-order Trotter
decomposition with the time step 	t = 0.05. The shape of
the time evolving mx is similar to that of the applied laser
magnetic field [Eq. (6)] for all values of the laser amplitude.
The value of mz drops when |mx| grows, but otherwise the
magnetization in the z direction recovers to mz = 1/2. This
demonstrates that the state of the system closely follows
the ground state of the instantaneous Hamiltonian at each
time. In other words, the laser frequency is slow enough
for an adiabatic time evolution of the magnetization. In the
present case of H 	 J , the gap is large (	�) even for B = 0,
and it increases monotonically with increasing B (Fig. 2).
Thus, transitions to excited states through the Landau-Zener
process are suppressed and the state remains in the snapshot
ground state. However, if B is further increased, the chain will
eventually be disordered after the laser application, similarly
to what is shown in Fig. 15(b) in Appendix C 1.

To investigate the HHG, we plot |ω2mx(ω)|2 and
|ω2mz(ω)|2 on a logarithmic scale in Fig. 4. These
spectra were obtained by first differentiating mx(z)(t )
numerically as m′′x(z)(t ) = [mx(z)(t + 	t ) + mx(z)(t − 	t ) −
2mx(z)(t )]/(	t )2, where 	t is the time step, and then perform-
ing the Fourier transform. In the Fourier transform, we ap-
ply the Blackman window WB(t ) = 0.42 − 0.5 cos(2πt/Tf ) +
0.08 cos(4πt/Tf ) (0 < t < Tf ) and WB(t ) = 0 (otherwise).
The result in Fig. 4 clearly demonstrates the HHG for all
values of B in both magnetization components mx and mz.
Since the system satisfies the symmetry Eq. (2), mx(ω) and
mz(ω) become 0 at ω = 2n� and ω = (2n + 1)� (n is an in-
teger), respectively, for steady states. Although the presented
results are for the transient case, the magnitudes of |ω2mx(ω)|2
and |ω2mz(ω)|2 drop at ω = 2n� and ω = (2n + 1)�, respec-
tively. An exception occurs when B is small and ω is around
the value corresponding to the excitation gap, as can be seen
in Figs. 4(a), 4(b), 4(e), and 4(f) where the spectra exhibit
peaks at ω = 6, 8, 10 in mx(ω) and at ω = 7, 9 in mz(ω) for
B = 2, 4. Since we consider the application of a laser pulse,
the system is in a transient regime and does not reach a
nonequilibrium steady state. Hence the conditions Eqs. (3)
and (4) are not necessarily satisfied. The result for the peak
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FIG. 4. The radiation power from (a)–(d) mx and (e)–(h) mz in
the Ising model with J = 2 and H = 6. The dashed lines correspond
to the mass of a magnon at q = 0 (times integer).

position of the HHG spectra is supported by time-dependent
perturbation theory (Appendix A). The peaks resulting from
the perturbation theory are located at ω = H + J for mx

and at ω = H + J ± � for mz, i.e., they can appear at an
arbitrary frequency (not necessarily an integer multiple of �)
depending on the values of H and J . The validity of the time-
dependent perturbation theory is also confirmed by the scaling
of the radiation intensity with the laser amplitude B. In Fig. 5
we plot |mx(ω)| and |mz(ω)| in the region of small B. |mx(ω)|
and |mz(ω)| at ω = n� scale as Bn, while at ω = H + J ± n�

they scale as Bn+1, which agrees with the prediction from
the perturbation theory presented in Appendix A. This result
indicates that B � 2 is in the perturbative regime.

In Fig. 4, when the field strength is sufficiently large, we
can identify a frequency above which the intensity drops
rapidly as well as multiple plateau structures. We can connect
these cut-off energies with the excitation structures of the
snapshot Hamiltonians, in particular those with the maximum
value of B. In the dispersion relation obtained from the data
in Fig. 2, the energy has a minimum (maximum) at q = 0
(q = π ), and the excitation gap corresponds to the mass of
a magnon at q = 0. We see that the intensity of |ω2mx(ω)|2

FIG. 5. Scaling of the magnitude of the Fourier components for
the magnetizations (a) |mx (ω)| and (b) |mz(ω)| in the region of small
B, in the Ising model with J = 2 and H = 6. The power of B agrees
well with the prediction from the time-dependent perturbation theory.

and |ω2mz(ω)|2 drops above the energies corresponding to
integer multiples of the magnon mass at q = 0, as indicated
by the dashed lines in Fig. 4. This result suggests that for suffi-
ciently large laser field amplitude, there occurs a spontaneous
annihilation of n(= 1, 2, 3, . . .) magnons, which leads to the
emission of light with the frequency n	[B(t )] at time t , where
	 represents the single-magnon energy gap. This situation is
analogous to electron-hole or doublon-holon recombination
in electron systems such as Mott insulators [28,49], where the
radiation originates primarily from the interband transitions.

Further insights can be obtained from a subcycle analysis.
The subcycle Fourier transform of the magnetic moment is
defined as

mx(z)
sub (ω; t∗) ≡

∫
dteiωt mx(z)(t )WG(t ; t∗), (10)

where WG(t ; t∗) = exp [ − (t−t∗ )2

2σ 2 ] (σ = Tper/8) is a Gaussian
window function. (An alternative way to compute time-
dependent spectra is the wavelet analysis. We discuss the
result of the wavelet analysis and the difference to the window
Fourier transform in Appendix E.) In Fig. 6 we show the
subcycle radiation spectrum log10 |ω2mx(z)

sub (ω; t∗)|2 for B = 8
as a color map and the multiple magnon excitation energies
of the snapshot Hamiltonian at t∗ by the solid lines. In the
low-energy region (ω < 10), although |ω2mx(z)

sub (ω; t∗)|2 does
not much depend on t∗, one can roughly identify an enhanced
HHG signal following the one-magnon energy. This is due to

FIG. 6. Color map of the subcycle radiation spectrum
(a) log10 |ω2mx

sub(ω; t∗)|2 and (b) log10 |ω2mz
sub(ω; t∗)|2 for the

Ising model with J = 2, H = 6, and B = 8. The solid lines indicate
the energies of one, two, and three magnons at the corresponding
B(t∗).
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the fact that the single-magnon band changes only little as a
function of the transverse field (see Fig. 2). On the other hand,
in the high-energy region, a high intensity signal is produced
when the magnetic field is strong. In particular, we can clearly
identify an enhanced HHG signal tracking the two-magnon
and three-magnon lines, both in the radiation produced by
the x and z magnetization components. These observations
support the interpretation that the plateaus and their thresholds
in the spin HHG originate from the annihilation of magnons.

We note that our discussion of the spin HHG so far has
been based on the eigenstates or the energy structure of
the snapshot Hamiltonians, as has been done for electronic
systems using the Houston basis [29] or assuming a slowly
changing field [27,49]. To be more specific, let us expand
the wave function as |�(t )〉 = ∑

n αn(t )|�n[B(t )]〉, where
|�n[B(t )]〉 is an eigenstate of the snapshot Hamiltonian with
the eigenenergy En[B(t )], and express the magnetization as

Mx(z)(t ) =
∑
m,n

α∗
m(t )αn(t )〈�m[B(t )]|Sx(z)|�n[B(t )]〉. (11)

We can then classify the contributions to the magnetiza-
tion dynamics according to the character of |�m[B(t )]〉 and
|�n[B(t )]〉. The time dependence of the coefficients αn fol-
lows from

i∂tαn(t ) = En[B(t )]αn(t ) − i
∑
m �=n

[∂t B(t )]Fnm[B(t )]αm(t ),

(12)

where Fnm(B) = 〈�n(B)|∂B|�m(B)〉. If the variation of B(t )
(with excitation frequency �) is slow enough, ∂t B(t ) is
small and En[B(t )] can be approximated as a constant for
a certain time interval. Hence the second term on the right-
hand side of Eq. (12) can be neglected and we can write
αn(t ) ∝ e−iEn[B(t∗ )]t for t around t∗. If these approximations
hold and the time dependence of |�n[B(t )]〉 (and hence
that of 〈�m[B(t )]|Sx(z)|�n[B(t )]〉) is also small enough, the
main contribution to Mx(z)(t ) [Eq. (11)] is proportional to
e−i{En[B(t∗ )]−Em[B(t∗ )]}t for t around t∗, which oscillates with
(multiple) magnon energies. If |�n(B)〉 and |�m(B)〉 differ
by l magnons, the radiation can be interpreted as originating
from an l-magnon annihilation. However, in practice, there
may be contributions from the second term on the right-hand
side of Eq. (12) and the time dependence of |�n[B(t )]〉,
which leads to deviations from the simple magnon picture.
Furthermore, the magnetization curve of the ground states for
the Hamiltonian Eq. (8) is a nonlinear function of B. Since
mx for the ground state with the field B is an odd function,
we see, by replacing B in this equation by B cos(�t ), that the
Fourier component of n� (with n an odd integer) appears in
mx(ω) and its leading order is Bn. This partially explains the
appearance of well-defined frequency components even in the
energy region lower than the excitation gap seen in Fig. 4.

The above results suggest that for the parameters chosen
in this study, the magnon picture is essentially valid and
the dynamics is described in terms of well-ordered magnetic
moments, i.e., the effect of quantum fluctuations is small.
To confirm this point, we perform a tdMF analysis. The
approximation

∑
j Sz

jS
z
j+1 � 2mz

∑
j Sz

j − Nmz2 leads to the

FIG. 7. The Floquet DSF (a) |Imχ xx
F (q, ω)| and (b) |Imχ zz

F (q, ω)|
for the Ising model with J = 2, H = 6, and B = 8.

tdMF Hamiltonian

H̃Ising(t ) = −2Jmz(t )Sz − HSz − B(t )Sx, (13)

where mz(t ) ≡ 〈Sz(t )〉. We solve the Schrödinger equation
with the Hamiltonian (13) by the fifth order Runge-Kutta
method with the Cash-Karp parameters, and calculate the
dynamics of mx(t ) ≡ 〈Sx(t )〉 and mz(t ). The discretized time
step is 	t = 0.05. The result is also shown in Fig. 4. The
curves of |ω2mx(ω)|2 and |ω2mz(ω)|2 calculated by the single
spin dynamics agree well with those calculated by iTEBD up
to the first HHG threshold. Note that there is no rescaling
of the results and the agreement is quantitative. The devia-
tions become larger above the first threshold. This indicates
that correlations between magnons beyond mean-field theory
are essential for the spontaneous recombination of multiple
magnons.

Another useful perspective on HHG can be obtained
from the Floquet picture [40,50]. The spectrum in the Flo-
quet theory is derived from the Floquet DSF |χαβ

F (q, ω)|,
which is calculated in a similar way as |χαβ (q, ω)|. Let us
consider the time-dependent Hamiltonian H(t ; α0) = H0 −
B sin(�t + α0)Sx

tot and represent the ground state of H(0; α0)
by |�(0; α0)〉, where α0 is the phase shift. We calculate the
Floquet retarded correlation function

χ
αβ

F (r, t ; α0) = −iϑ (t )〈�(0; α0)|[Sα
r (t ; α0), Sβ

0

]|�(0; α0)〉
(14)

[cf. Eq. (7)], where Sα
r (t ; α0) = U −1(t ; α0)Sα

0 U (t ; α0) and
U (t ; α0) = T

∫ t
0 dt ′e−iH(t ′;α0 )t ′

. The DSF χ
αβ

F (q, ω; α0) is de-
fined as the Fourier transform of this correlation function, and
we take the average relative to the phase shift α0 over a single
cycle as

χ
αβ

F (q, ω) = 〈
χ

αβ

F (q, ω; α0)
〉
α0

.

Here we take α0 = nπ/8 (n = 0, 1, . . . , 15). In Fig. 7 we
show the Floquet DSF |Imχ

xx(zz)
F (q, ω)| for B = 8. We can

see the appearance of Floquet subbands with an energy split-
ting of 2� rather than �. The subbands of |Imχ xx

F (q, ω)|
are located at (one magnon band) ± (odd integer)� while
those of |Imχ zz

F (q, ω)| are located at (one magnon band) ±
(even integer)�. In |Imχ xx

F (q, ω)|, the Floquet subbands of
the negative energy magnon dispersion appear around ω � 1.
These Floquet DSFs suggest that we can also interpret the
high-harmonic peaks with energy below the magnon mass in
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terms of transitions between Floquet sidebands of the magnon
spectrum.

In this section we have focused on the model with strong
longitudinal field (H 	 J) and large gap. With decreasing
H , the gap decreases and the HHG behavior changes. We
discuss the results of a weak H model (J = 4, H = 2) in
Appendix C 1. The emergence of HHG plateaus with a close
relation to magnon energies can also be observed there.

IV. HHG IN XXZ MODELS

In this section we consider another fundamental model of
quantum magnets, the ferromagnetic XXZ model. The spin
Hamiltonian is

HXXZ =
∑

j

[
Jxy

(
Sx

j S
x
j+1 + Sy

j S
y
j+1

) − JzS
z
jS

z
j+1

]
, (15)

where Jz > Jxy > 0. The difference from the Ising model is
the term Sx

j S
x
j+1 + Sy

j S
y
j+1 = 1

2 (S+
j S−

j+1 + S−
j S+

j+1), which acts
as a kinetic term for the magnons. Note that the spins are com-
pletely frozen in the Ising model without laser. The ground
state of Eq. (15) is a ferromagnetic state for Jz > Jxy > 0 while
it is a gapless Luttinger liquid for |Jz| < |Jxy| [67]. The low
energy excitations of Eq. (15) are magnons with dispersion
E (q) = Jxy cos(q) + Jz. Since the Hamiltonian Eq. (15) does
not include the longitudinal static field HSz

tot , the system has
a Z2 symmetry, and thus a quantum phase transition can be
induced by applying a transverse field.

Here we consider the case where Jxy is weak, Jxy 
 Jz,
which is relevant for the modeling of quasi-one-dimensional
magnetic insulators such as CoNb2O6 [62]. The parameters
are set to Jxy = 2, Jz = 10, and � = 1. We take both Jxy

and Jz to be larger than � so that the HHG plateau contains
several harmonics. For the analysis of the model with strong
Jxy (Jxy � Jz), see Appendix C 2. In Fig. 8 we show the DSF in
the ground state of the XXZ model with a transverse field B,
which corresponds to the snapshot Hamiltonian of the system
under laser irradiation,

H = HXXZ − BSx
tot. (16)

In contrast to the case of the Ising model, the low-energy
excitation spectrum is continuous due to the existence of the
kinetic term. The lower bound of the dispersion at q = 0
decreases with increasing B. The gap closes and a phase
transition happens at Bc � 6. Before the transition (B < Bc),
χ xx shows a stronger intensity than χ zz, because the spins are
primarily aligned in the z direction in the ground state. When
B is small enough, the DSF has a strong intensity near the one
magnon dispersion for B = 0 [i.e., E (q) = Jxy cos(q) + Jz],
and in particular the strongest intensity is found at q = π .
On the other hand, after the transition (B > Bc), the intensity
of χ zz becomes much stronger than χ xx, because the spins
are mainly aligned in the x direction in the ground state, and
the strongest intensity is observed at q = 0. The dispersion
captured by χ zz is sharp, and it can be interpreted as a
single-magnon band in terms of the spin wave theory (see
Appendix B). We also note that the upper bound of the
continuous dispersion at q = 0 captured by χ xx corresponds
to a two-magnon state since its energy is twice the excitation
energy at q = π captured by χ zz for B > Bc.

FIG. 8. DSFs (a)–(e) |Imχ xx (q, ω)| and (f)–(j) |Imχ zz(q, ω)| for
the XXZ model with Jxy = 2 and Jz = 10.

The time evolution of mx and mz calculated by iTEBD is
shown in Fig. 9. The time evolution of mx essentially tracks
the laser magnetic field Eq. (6) for small B, but the shape
changes especially near the peaks of the intensity as B is
increased. Higher frequency components than � appear near
the peaks, and these contribute to the HHG (see the subcycle
analysis below). The time evolution of mz drastically changes
its behavior depending on whether B is smaller or larger than
Bc. For B < Bc, the magnitude of mz decreases when the laser
intensity is strong, otherwise mz � 1/2, which demonstrates
that the state follows the ground state of the snapshot Hamilto-
nian, i.e., the time evolution is almost adiabatic. However, for
B > Bc, mz suddenly decreases from 1/2, which shows that
the system makes transitions to excited states of the snapshot
Hamiltonian.

184303-7



TAKAYOSHI, MURAKAMI, AND WERNER PHYSICAL REVIEW B 99, 184303 (2019)

FIG. 9. Time evolution of (a) mx and (b) mz for the XXZ model
with Jxy = 2 and Jz = 10.

The HHG spectra |ω2mx(ω)|2 and |ω2mz(ω)|2 are shown
in Fig. 10. Here the same Blackman window is used as in
the Ising case. The HHG structure is clear for the weak field
B while it is noisier after the transition. Since the system
satisfies the symmetry Eq. (2), the magnitudes of |ω2mx(ω)|2
and |ω2mz(ω)|2 drop at ω = 2n� and ω = (2n + 1)�, re-
spectively, except that mx(ω) has a peak and mz(ω) has a
dip around ω = 12 for B = 2. This energy corresponds to
the upper bound of the single-magnon band Jxy + Jz, and we
can explain the peaks at ω = Jxy + Jz for mx(ω) and at ω =
Jxy + Jz ± � for mz(ω) in the small B region in terms of the
time-dependent perturbation theory as shown in Appendix A.

As we increase B and leave the perturbative regime, plateau
structures develop in the low-energy region. Again we can
connect these cut-off energies (threshold energies) with the
spin excitation structure. As depicted in Fig. 10, for B < Bc,
the threshold of the HHG plateau corresponds to 	q=0, which
is the upper bound of the dispersion obtained from χ xx at
q = 0. For B > Bc, the threshold of the first HHG plateau is
determined by 2	̃q=π , where 	̃q=π is the excitation gap cor-
responding to χ zz at q = π . This energy scale is not very ap-
parent in |ω2mz(ω)|2 but we can see that |ω2mx(ω)|2 is larger
than |ω2mz(ω)|2 by several orders near the threshold energy
[dashed-dotted lines in Figs. 10(d), 10(e), 10(i), and 10(j)]
and dominates the HHG. Note that for B > Bc, the spins are
mostly aligned in the x direction in the ground state and
Sz works as a spin-flip (magnon generation) operator. Even
though 	q=0 = 2	̃q=π and this mode can also be excited by
the Sx operator, the intensity of χ zz is much larger than that of
χ xx as seen in Fig. 8. Thus it is more natural to regard it as a
two-magnon process.

In the same way as we have done for the Ising model,
we can obtain further insight into the origin of the HHG by
performing a subcycle analysis for the XXZ model. In Fig. 11
we show the subcycle radiation spectrum Eq. (10) for B = 4
and B = 10 (below and above the critical field, respectively).
In the case of B = 4 [Fig. 11(a)], the strong intensity in the
HHG signal follows the single-magnon and two-magnon exci-
tation energy (	q=0 and 2	q=0) of the snapshot Hamiltonian
at each time, which suggests that again the threshold can be
associated with the annihilation of multiple magnons at q = 0
for B < Bc. In the case of B = 10 [Fig. 11(b)], the strong in-
tensity in the HHG signal follows the two-magnon excitation
energy (2	̃q=π ). There is also some additional intensity in the
energy range ω = 25–40 in Fig. 11(b), which may correspond
to higher order excitations such as four magnon processes.

FIG. 10. HHG from (a)–(e) mx and (f)–(j) mz for the XXZ model
with Jxy = 2 and Jz = 10. Dashed lines correspond to 	q=0 (times
integer) and dashed-dotted lines correspond to 2	̃q=π .

To confirm that the threshold of the HHG plateaus cor-
responds to the magnetic excitation structure, especially
magnon modes, we perform an ED calculation for a system of
N = 8 sites. The system size is small, but the ED calculations
reproduce quantitatively the behavior of the HHG spectra
for small B as can be seen in Fig. 10. Although there is a
quantitative deviation from the iTEBD results in the case of
strong B, the HHG signals show a qualitative agreement. In
particular, the threshold energy of the first plateau is the same
for ED and iTEBD. We denote the eigenstates of the snapshot
Hamiltonian at the time when the laser intensity takes the
maximum (tpeak = πNcyc/�) by |�n〉 and their eigenenergies
by En. In Fig. 12(a) we show 〈�n|Sx

tot|�n〉 calculated by ED
for large B. In the present model, even though Sx

tot is not a
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FIG. 11. Color map of the subcycle radiation spectrum
log10 |ω2mx

sub(ω; t∗)|2 for the XXZ model with Jxy = 2 and Jz = 10
under the laser field (a) B = 4 and (b) B = 10. The solid lines
show the single-magnon and two-magnon modes of the snapshot
Hamiltonian at time t∗ in (a) and the two-magnon mode in (b).

conserved quantity, the spins basically align in the Sx direction
in the ground state for large B and the expectation values
〈�n|Sx

tot|�n〉 are almost discretized and distributed around
integer values. The expectation values near −2 are highlighted
with cross markers in Fig. 12. From Fig. 12(a), the energy
threshold of the first HHG plateau corresponds to the upper
bound of the 〈�n|Sx

tot|�n〉 � −2 sector (En − E0 = 24.5).
Since the ground state is in the 〈�n|Sx

tot|�n〉 � −4 sector,
two spins are flipped, i.e., two magnons are generated. In
Fig. 12(b) we plot the quantity

An = |α∗
nα0〈�n|Sx

tot|�0〉|, (17)

where αn ≡ 〈�n|�(tpeak )〉 represents the overlap between the
state at t = tpeak and the nth excited state |�n〉 of the snap-
shot Hamiltonian (|�0〉 is the ground state). This quantity
is directly related to mx through Eq. (11). We see that there
is a strong intensity at the energy En − E0 = 24.5, which
agrees with the threshold energy in Fig. 10(e). Hence we can
conclude that the threshold of the first HHG plateau is dictated
by the two-magnon mode 2	̃q=π . In addition, Fig. 12(b)
suggests that the contribution to the HHG signal mainly comes
from the two-magnon sector (〈�n|Sx

tot|�n〉 � −2).
Further insight into the HHG signal with large B can

be obtained by rewriting the Hamiltonian. Since the spin
alignment axis is Sx in the case of very strong laser field B,
the magnon creation and annihilation operators correspond

FIG. 12. (a) 〈�n|Sx
tot|�n〉 and (b) An [Eq. (17)] calculated by ED

for the model (16) with Jxy = 2, Jz = 10, and B = 10. The arrows
show the energy En − E0 = 24.5. Cross marks are used for the states
in the 〈�n|Sx

tot|�n〉 � −2 sector to demonstrate that the contribution
to the HHG signal comes mainly from this sector.

to S̃± = Sy ± iSz. Using these operators, the Hamiltonian
[Eq. (1) with Eq. (15)] becomes

H = Jxy

∑
j

Sx
j S

x
j+1 + Jxy − Jz

4

∑
j

(S̃+
j S̃−

j+1 + S̃−
j S̃+

j+1)

+ Jxy + Jz

4

∑
j

(S̃+
j S̃+

j+1 + S̃−
j S̃−

j+1) − B(t )Sx
tot. (18)

The S̃+
j S̃+

j+1 + S̃−
j S̃−

j+1 term creates and annihilates magnons
(at large B) in pairs. In the Hamiltonian Eq. (18), the Hilbert
space is separated into the sectors with Sx

tot = (even integer)
and Sx

tot = (odd integer) since the parity of the magnon num-
ber is a conserved quantity. Hence the state remains in the
same sector during the time evolution. The initial state is the
ferromagnetic state, which corresponds to a Schrödinger cat
state in the Sx basis,

⊗ j |↑〉 j = ⊗ j
|Sx = 1/2〉 j + |Sx = −1/2〉 j√

2
.

Thus, this state has weight in both Sx
tot = (even integer) and

Sx
tot = (odd integer) sectors. Mx has nonzero expectation val-

ues for states within the same sector, 〈�even|Sx
tot|�even〉 +

〈�odd|Sx
tot|�odd〉, while Mz has nonzero expectation values

for the states between different sectors, 〈�odd|Sz
tot|�even〉 +

〈�even|Sz
tot|�odd〉. This expression explains why the two-

magnon mode is evident in mx(ω) [Figs. 10(d) and 10(e)]
while it is not apparent in mz(ω) [Figs. 10(i) and 10(j)].

We also analyze the dynamics of this system by means of
the tdMF theory. The mean-field Hamiltonian is

H̃XXZ(t ) = 2Jxy(mx(t )Sx + my(t )Sy) − 2Jzm
z(t )Sz − B(t )Sx.

(19)

The radiation power spectrum calculated by the Hamiltonian
Eq. (19) is shown in Fig. 10. The tdMF result shows a peak
or plateau structure in the HHG spectrum, but quantitatively it
deviates strongly from the iTEBD and ED results, in contrast
to the case of the Ising model. This is due to the strong
quantum fluctuations induced by the S+

j S−
j+1 + S−

j S+
j+1 term,

and implies that the tdMF theory does not provide a good
description of the XXZ model.

V. SUMMARY AND DISCUSSIONS

In this paper we studied HHG in quantum spin systems
driven by a laser magnetic field. When the laser is applied
to magnetic insulators, it drives the magnetic dipole which
generates electromagnetic radiation with power proportional
to |ω2M(ω)|2. We considered two specific but fundamen-
tal quantum spin chain models, the Ising model with static
longitudinal field and the XXZ model. In both cases, when
the magnetic field is strong enough, the spin HHG shows
a (multiple-)plateau structure, which is associated with the
annihilation of (multiple) magnons.

To be more specific, in the Ising model case, the excitation
gap does not close in the presence of a transverse field
since the Z2 symmetry is explicitly broken. When the laser
amplitude is weak enough, the time-dependent perturbation
theory is valid, which explains the appearance of a peak
around the frequency J + H . With increasing laser amplitude,
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the shape of the HHG spectrum changes from a peak structure
to a plateau structure. The subcycle analysis suggests that
the HHG originates from the annihilation of magnons. The
cut-off energies, above which the radiation intensity drops,
correspond to integer multiples of the single-magnon exci-
tation energy at q = 0. Since the magnetic field is stronger
than the interaction, the tdMF theory provides a quantitative
description.

In the XXZ model without longitudinal field, the system
has a Z2 symmetry and a phase transition happens at a
critical value of the transverse field. The structure of the HHG
spectrum changes depending on whether the peak amplitude
of the laser magnetic field is below or above the critical field.
Similarly to the Ising case, when the laser amplitude is small,
the time-dependent perturbation theory is valid and explains
the appearance of a peak around the frequency Jxy + Jz. As the
laser amplitude increases, the peak structure transforms into
a plateau structure. The cutoff energy of this plateau corre-
sponds to the single-magnon mass at q = 0 below the critical
field. When the laser amplitude is larger than the critical field,
the threshold is determined by the two-magnon excitation at
q = π . The subcycle analysis and the ED analysis suggest that
also in the XXZ model case, the annihilation of magnons leads
to the HHG signal. The tdMF approach is not effective in this
model due to the quantum fluctuation caused by the Jxy term.

Now let us discuss the similarities and differences be-
tween the HHG from spin systems and that from insulating
electron systems such as semiconductors and Mott insula-
tors [28,31,49]. In the latter case, a periodic electric field
creates charge carriers (electrons and holes in semiconductors,
and doublons and holons in Mott insulators) and these carriers
move around in response to the applied electric field. The
HHG originates from the dynamics of these charge carriers,
which can be separated into the interband and intraband
current. The interband current corresponds to the creation and
recombination of charge carriers, while the intraband current
represents the contribution from hopping processes which do
not change the number of charge carriers, i.e., where the
carriers remain in the same conduction/valence or Hubbard
band. In contrast, in the spin systems, the magnetic field
can excite magnetic excitations (magnons) but there is no
preferable direction to move since the homogeneous magnetic
field, unlike the electric field, does not produce a spatially
dependent potential. Hence, the HHG signal originating from
the dynamics of the magnetization is analogous to the inter-
band current, while there is no counterpart to the intraband
current. Our finding that the spin HHG is associated with
the annihilation of magnons is reminiscent of the electron
HHG which is dominated by the recombination of charge
carriers [28,49].

Experimentally, the HHG from spins excited by time-
periodic magnetic fields can be realized by choosing large
gap insulating materials, and by taking advantage of meta-
materials to selectively enhance the magnetic field [55]. For
example, CoNb2O6 [62] can be represented as a ferromagnetic
XXZ chain with Jxy 
 Jz, and therefore the discussion in
Sec. IV is relevant for this material, while examples of Ising
magnets (Sec. III) such as Dy(C2H5SO4)3 · 9H2O, LiTbF4

and LiHoF4 are discussed in Ref. [61]. For CoNb2O6, since
the value of Jz(= 10) is 1.94 meV [62], the energy unit

is 0.194 meV = 1.67 T = 2π × 0.0469 THz by noting that
gμBB and h̄� have the dimension of energy, where g � 2 is
the Landé g factor for electron spins, μB = 0.0579 meV/T
is the Bohr magneton, and h̄ = 6.58 × 10−13 meV s. � = 1
and B = 2 thus correspond to � = 2π × 0.0469 THz and
B = 3.34 T, respectively.

Our results demonstrate the possibility of generating high-
harmonic signals in spin systems, which may be utilized for
new laser sources in the THz regime or to obtain informa-
tion about the magnetic excitations of these spin systems
under strong fields. In the present work we focused on one-
dimensional ferromagnets but the fact that the tdMF results
show a similar HHG spectrum strongly suggests that the
HHG signal can also be produced in higher dimensional mag-
nets. Radiation from the magnetic dipole should be possible
also in ferrimagnets and antiferromagnets. Although the total
magnetization is zero in antiferromagnets, the laser magnetic
field produces a net magnetization and a HHG signal can
be expected. Since there exist various kinds of quantum spin
systems, studying these other types of magnetic insulators is
an interesting direction for future research.
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APPENDIX A: TIME-DEPENDENT
PERTURBATION THEORY

In this Appendix we analyze the spin system in the pres-
ence of a laser field using the time-dependent perturbation
theory. The Hamiltonian is

H(t ) = Hspin + V (t ),

where V (t ) represents the laser-matter interaction which is
assumed here for simplicity to have the form

V (t ) =
{

0 (t < 0),
−BSx

tot sin(�t ) (t � 0). (A1)

We switch to the interaction picture. The state and oper-
ator are represented as |�(t )〉I = e+iHspint |�(t )〉 and OI =
eiHspint Oe−iHspint , respectively, where |�(t )〉 and O are the state
and operator in the Schrödinger picture. The equation of
motion becomes

i
d

dt
|�(t )〉I = VI(t )|�(t )〉I,

d

dt
OI = i[Hspin, OI], (A2)

where VI(t ) = eiHspintV (t )e−iHspint . From Eq. (A2) we derive

|�(t )〉I =
(

1 +
∞∑

n=1

(−i)n
∫ t

0
dt1

∫ t1

0
dt2 · · ·

∫ tn−1

0
dtn

× VI(t1) · · ·VI(tn)

)
|�(0)〉I. (A3)
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We denote the eigenenergy and eigenstate of Hspin by En and |ϕn〉, respectively. Let us expand |�(t )〉I in the basis of |ϕn〉,

|�(t )〉I =
∑

n

cn(t )|ϕn〉. (A4)

We substitute (A4) into (A3) and take the inner product with 〈ϕn|, to obtain

cn(t ) = cn(0) − i
∑

m

∫ t

0
dt1Vnm(t1)cm(0) −

∑
m,l

∫ t

0
dt1

∫ t1

0
dt2Vnl (t1)Vlm(t2)cm(0) + · · · , (A5)

where Vnm(t ) = 〈ϕn|VI(t )|ϕm〉 = e−i(Em−En )t 〈ϕn|V (t )|ϕm〉. In the present case,

Vnm(t ) = −Be−i(Em−En )t sin(�t )〈ϕn|Sx
tot|ϕm〉

for t � 0. At t = 0, the system is in the ground state c0(0) = 1 and cn(0) = 0 (n � 1), thus Eq. (A5) becomes

cn(t ) = cn(0) − i
∫ t

0
dt1Vn0(t1) −

∑
l

∫ t

0
dt1

∫ t1

0
dt2Vnl (t1)Vl0(t2) + · · · .

Physical observables are calculated as

〈O〉 = I〈�(t )|OI|�(t )〉I =
∑
m,n

c∗
m(t )cn(t )〈ϕm|eiHspint Oe−iHspint |ϕn〉 =

∑
m,n

c∗
m(t )cn(t )ei(Em−En )t 〈ϕm|O|ϕn〉,

and specifically for the magnetization as

M(x,y,z) = 〈
S(x,y,z)

tot

〉 =
∑
m,n

c∗
m(t )cn(t )ei(Em−En )t 〈ϕm|S(x,y,z)

tot |ϕn〉. (A6)

First we consider the Ising model Hspin = HIsing [Eq. (5)]. The ground state is the configuration with all spins up |ϕ0〉 = |↑↑
· · · ↑〉 and the first excited states |ϕn〉 (n = 1, . . . , N) are single spin flipped states |ϕn〉 = S−

n |ϕ0〉. Since the excitation gap is
En − E0 = H + J (n = 1, . . . , N), we can calculate

c0(t ) = 1 −
∑

l

∫ t

0
dt1

∫ t1

0
dt2V0l (t1)Vl0(t2) + O(B4) = 1 − NB2

4

[
2(H + J )t

4i{(H + J )2 − �2} − e−2i�t − 1

8�(H + J − �)
+ e2i�t − 1

8�(H + J + �)

− �

(H + J )2 − �2

{
e−i(H+J−�)t − 1

2(H + J − �)
− e−i(H+J+�)t − 1

2(H + J + �)

}]
+ O(B4),

cn(t ) = − i
∫ t

0
dt1Vn0(t1) = − iB

4

[
ei(H+J+�)t − 1

H + J + �
− ei(H+J−�)t − 1

H + J − �

]
+ O(B3) (n = 1, . . . , N ).

Hence the magnetization (A6) becomes

Mx =
N∑

n=1

1

2
c∗

n (t )c0(t )ei(H+J )t + c.c. + · · · = NB(H + J )

2{(H + J )2 − �2} sin(�t ) − NB�

2{(H + J )2 − �2} sin[(H + J )t] + O(B3),

Mz = N

2
c∗

0(t )c0(t ) +
N∑

n=1

N − 2

2
c∗

n (t )cn(t ) + · · · = N

2
− NB2

8

[
(H + J )2 + 3�2

{(H + J )2 − �2}2
− cos(2�t )

(H + J )2 − �2

− 2� cos[(H + J − �)t]

(H + J + �)(H + J − �)2
+ 2� cos[(H + J + �)t]

(H + J + �)2(H + J − �)

]
+ O(B4).

For Mx, the order B term contains components with frequency � and H + J , while for Mz, the order B2 term contains components
with frequency 2� and H + J ± �. The full calculation of the O(B3) terms is difficult, but we can see that the c∗

n (t )c0(t )ei(H+J )t

term contains e3i�t and ei(H+J±2�)t . Thus, we can surmise that for Mx, the leading order of frequency n� is Bn (n: odd) and that
of frequency H + J ± n� is Bn+1 (n: even) while for Mz, the leading order of frequency n� is Bn (n: even) and that of frequency
H + J ± n� is Bn+1 (n: odd).

Next we consider the XXZ model Hspin = HXXZ [Eq. (15)], where the laser field is again assumed to be Eq. (A1). The
ground state of HXXZ is the fully polarized ferromagnetic state |ϕ0〉 = |↑↑ · · · ↑〉 and its eigenenergy is E0 = −NJz

4 . Due to the
symmetry breaking, |↓↓ · · · ↓〉 is also a ground state, but we assume that the initial state is |ϕ0〉. The low-energy excited states
are single-magnon states |ϕn〉 = 1√

N

∑N
j=1 ei 2πn

N jS−
j |ϕ0〉 (n = 1, . . . , N) and their eigenenergy is En = − (N−4)Jz

4 + Jxy cos( 2πn
N )
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(n = 1, . . . , N). Noting that

〈ϕn|Sx
tot|ϕ0〉 = 1

2
√

N

N∑
j=1

e−i 2πn
N j =

√
N

2
δnN ,

we obtain

Vn0(t ) = −
√

NB

2
δnN ei(Jxy+Jz )t sin(�t )

for n = 1, . . . , N , where δnN is the Kronecker delta. Thus we derive

c0(t ) = 1 −
∑

l

∫ t

0
dt1

∫ t1

0
dt2V0l (t1)Vl0(t2) + O(B4) = 1 −

∫ t

0
dt1

∫ t1

0
dt2V0N (t1)VN0(t2) + O(B4)

= 1 − NB2

4

[
2(Jxy + Jz )t

4i{(Jxy + Jz )2 − �2} − e−2i�t − 1

8�(Jxy + Jz − �)
+ e2i�t − 1

8�(Jxy + Jz + �)

− �

(Jxy + Jz )2 − �2

{
e−i(Jxy+Jz−�)t − 1

2(Jxy + Jz − �)
− e−i(Jxy+Jz+�)t − 1

2(Jxy + Jz + �)

}]
+ O(B4),

c1(t ) = · · · = cN−1(t ) = O(B3),

cN (t ) = −i
∫ t

0
dt1VN0(t1) = − i

√
NB

4

[
ei(Jxy+Jz+�)t − 1

Jxy + Jz + �
− ei(Jxy+Jz−�)t − 1

Jxy + Jz − �

]
+ O(B3).

Therefore the magnetization (A6) becomes

Mx =
√

N

2
c∗

N (t )c0(t )ei(Jxy+Jz )t + c.c. + · · · = NB(Jxy + Jz )

2{(Jxy + Jz )2 − �2} sin(�t ) − NB�

2{(Jxy + Jz )2 − �2} sin[(Jxy + Jz )t] + O(B3),

(A7)

Mz = N

2
c∗

0(t )c0(t ) + N − 2

2
c∗

N (t )cN (t ) + · · · = N

2
− NB2

8

[
(Jxy + Jz )2 + 3�2

{(Jxy + Jz )2 − �2}2
− cos(2�t )

(Jxy + Jz )2 − �2

− 2� cos[(Jxy + Jz − �)t]

(Jxy + Jz + �)(Jxy + Jz − �)2
+ 2� cos[(Jxy + Jz + �)t]

(Jxy + Jz + �)2(Jxy + Jz − �)

]
+ O(B4). (A8)

Similarly to the case of the Ising model, we can surmise that
for Mx, the leading order of frequency n� is Bn (n: odd) and
that of frequency Jxy + Jz ± n� is Bn+1 (n: even) while for
Mz, the leading order of frequency n� is Bn (n: even) and that
of frequency Jxy + Jz ± n� is Bn+1 (n: odd).

APPENDIX B: SPIN WAVE THEORY

We consider the system

H = Jxy

∑
j

(
Sx

j S
x
j+1 + Sy

j S
y
j+1

) − Jz

∑
j

Sz
jS

z
j+1 − B

∑
j

Sx
j ,

where Jz > Jxy > 0 with general spin S. The number of sites
is N and we consider periodic boundary conditions.

First, let us determine the classical ground state. For B = 0
(large B), the spin is polarized along the Sz (Sx) axis, thus we
can assume that the direction of the spins is in the xz plane,
S j = S(sin φ, 0, cos φ). The energy is

E = NS2(Jxy sin2 φ − Jz cos2 φ) − NSB sin φ

= NS2(Jxy + Jz )

[
sin φ − B

2S(Jxy + Jz )

]2

, (B1)

where the constant term is neglected. The configuration mini-
mizing E is

sin φ = B

2S(Jxy + Jz )
[0 � B � 2S(Jxy + Jz )]

φ = π/2 [B > 2S(Jxy + Jz )]. (B2)

We introduce new spin axes S̃x,y,z
j as Sx

j = cos φS̃x
j +

sin φS̃z
j , Sy

j = S̃y
j , and Sz

j = − sin φS̃x
j + cos φS̃z

j , so that the
spin is polarized along the S̃z

j axis. Next we perform the
Holstein-Primakoff transformation,

S̃z
j = S − n j,

S̃x
j + iS̃y

j =
√

2S

(
1 − n j

2S

)1/2

a j,

S̃x
j − iS̃y

j =
√

2Sa†
j

(
1 − n j

2S

)1/2

,

where a j and a†
j are annihilation and creation operators for

bosons (magnons), and n j ≡ a†
j a j is the number operator.

Expanding in powers of 1/S and retaining terms up to second
order in a j and a†

j yields an expression of the Hamiltonian in

184303-12



HIGH-HARMONIC GENERATION IN QUANTUM SPIN … PHYSICAL REVIEW B 99, 184303 (2019)

FIG. 13. The magnon band structure from the spin wave theory
for the XXZ model with (a) Jxy = 2, Jz = 10 and (b) Jxy = 8, Jz = 10.

terms of magnon operators,

H = S

2

∑
j

[(Jxy cos2 φ − Jz sin2 φ − Jxy)(a ja j+1 + a†
j a

†
j+1)

+ (Jxy cos2 φ − Jz sin2 φ + Jxy)(a ja
†
j+1 + a†

j a j+1)

+ (Jxy sin2 φ − Jz cos2 φ)(S2 − 2Sn j )].

The first order term of a j , a†
j vanishes if one imposes the con-

dition (B2). After the Fourier transform ak = 1√
N

∑
j e−ik ja j ,

a†
k = 1√

N

∑
j eik ja†

j , we obtain

H =
∑
k>0

[ f (k, φ)(aka−k + a†
ka†

−k ) + g(k, φ)(nk + n−k )]

+ f (k, φ)
(
a2

0 + (a†
0)2

) + g(0, φ)n0 + ECL,

where

f (k, φ) = S(Jxy cos2 φ − Jz sin2 φ − Jxy) cos k,

g(k, φ) = S(Jxy cos2 φ − Jz sin2 φ + Jxy) cos k

− 2S(Jxy sin2 φ − Jz cos2 φ) + B sin φ,

and ECL = NS2(Jxy sin2 φ − Jz cos2 φ) − NSB sin φ is the
classical ground state energy [see Eq. (B1)]. Note that
g(k, φ) = g(−k, φ). We then perform the Bogoliubov trans-
formation bk = ak cosh θk + a†

−k sinh θk , ak = bk cosh θk −
b†

−k sinh θk , where tanh 2θk = f (k,φ)
g(k,φ) (θk = θ−k). Finally the

Hamiltonian becomes

H−ECL =
∑

k

[− f (k, φ) sinh 2θk + g(k, φ) cosh 2θk]nk +EQC,

where

EQC = N

2π

∫ π

−π

dk

[
− 1

2
f (k, φ) sinh 2θk

+ 1

2
g(k, φ)(cosh 2θk − 1)

]

is the quantum correction to the classical ground state energy
which is a constant.

The magnon band structure from the spin wave the-
ory − f (k, φ) sinh 2θk + g(k, φ) cosh 2θk is shown in Fig. 13.
The excitation gap closes and the transition happens at
B = Jxy + Jz.

FIG. 14. DSFs (a)–(d) |Imχ xx (q, ω)| and (e)–(h) |Imχ zz(q, ω)|
for the Ising model with J = 4 and H = 2.

APPENDIX C: ADDITIONAL ANALYSIS OF MODELS
WITH DIFFERENT PARAMETERS

1. Ising model with weak static field

In the main text we considered the Ising model with a
strong longitudinal field H 	 J . In this Appendix we study
how the radiation spectrum and the excitation structure are
changed if the static field is weak H 
 J . The parameters are
set to J = 4, H = 2, and � = 1.

The DSFs |Imχ xx(q, ω)| and |Imχ zz(q, ω)| for the ground
states of Eq. (8) are shown in Fig. 14. The low energy
excitation is again a magnon and the shape of the dispersion
is similar to the high field case, but the size of the excitation
gap decreases at first with the introduction of B and then
increases. This behavior is caused by the weak Z2 symmetry
breaking due to the small longitudinal field H . For H = 0, the
Z2 symmetry is recovered and a gap closing (i.e., a quantum
phase transition) happens at the critical field B = Bc. For H >

0, the Z2 symmetry is explicitly broken and the excitation
gap opens at Bc. However the gap size is small for H 
 J ,
and thus the gap size becomes a nonmonotonous function
of B. The continuous spectrum corresponding to the two-
magnon mode [Eq. (9)] appears more evidently in Figs. 14(b)–
14(d) compared with the strong field case. We can see an
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FIG. 15. Time evolution of (a) mx and (b) mz for the Ising model
with J = 4 and H = 2 calculated by iTEBD.

additional excitation between the single-magnon band and the
two-magnon continuum, which is a two-magnon bound state.
When B is small, the energy of this state (two-spin flips on
nearest neighbor sites) is �J + 2H (= 8). With increasing B,
this bound state is strongly hybridized with the two-magnon
continuum and is finally merged into it.

In Fig. 15 we show the time evolution of mx and mz.
For B = 6, the shape of mx(t ) is clearly different from the
sinusoidal curve of the laser field [Eq. (6)] especially near the
peaks, which gives rise to a strong HHG signal. In contrast to
the case of strong static fields, the final value of mz deviates
from the value 1/2 for large B. (This deviation will also
happen in the strong longitudinal field case for large B/H .)
As discussed above, the gap of the system first decreases and
then increases as a function of B, while the Landau-Zener
tunneling happens mainly near the minimum of the gap. Thus,
transitions to excited states of the snapshot Hamiltonian occur,
which results in the drop of the final value of mz from 1/2.

In order to investigate the HHG, we show |ω2mx(ω)|2 and
|ω2mz(ω)|2 in Fig. 16. When B is small, the behavior of the
radiation spectrum is similar to the case of high static field.
The intensity of |ω2mx(ω)|2 and |ω2mz(ω)|2 generically peaks
at ω = (2n + 1)� and ω = 2n� (n: integer), respectively, but
at ω = J + H = 6, |ω2mx(ω)|2 exhibits a local maximum and
|ω2mz(ω)|2 shows a dip. This is consistent with the time-
dependent perturbation theory. When B becomes larger, a
plateau structure appears in the HHG signal and its thresh-
old corresponds to the single-magnon excitation energy (the
dashed lines in Fig. 16) or the energy of the two-magnon
bound state (the dotted lines in Fig. 16). As B is further
increased, the threshold of the HHG plateau changes from the
single-magnon energy to twice of the magnon energy at q = π

(dashed-dotted lines in Fig. 16). This behavior is similar to the
XXZ model with small Jxy (see Sec. IV), where the threshold
corresponds to the single-magnon energy before the transition
and the two-magnon energy after the transition. In the present
case, due to the existence of the longitudinal field H , the
change of the threshold energy scale is not a transition but
a crossover.

We also show the analysis by the tdMF theory with the
Hamiltonian Eq. (13) in Fig. 16. For the weak laser amplitude
B, the agreement between the iTEBD and tdMF theories
is quantitatively good. When B becomes large, the spectra
start to deviate above the single-magnon energy but the
threshold of the HHG plateau is almost the same (B = 2).
For B = 6 [Figs. 16(d) and 16(h)], the HHG signal calcu-

FIG. 16. Radiation power from (a)–(d) mx and (e)–(h) mz for
the Ising model with J = 4 and H = 2. The dashed and dotted
lines represent the mass of the single magnon at q = 0 and that of
the two-magnon bound state, respectively. The dashed-dotted line
corresponds to the energy of two magnons at q = π . The crossover
of the threshold energy from the former to the latter occurs with
increasing B.

lated by the tdMF theory becomes less prominent above the
single-magnon energy (ω � 5) while the threshold is the two-
magnon energy for iTEBD. This result implies that the tdMF
theory can reproduce the single-magnon dynamics but fails to
capture multiple-magnon processes.

In Fig. 17 we show the subcycle radiation spectrum
log10 |ω2mx

sub(ω; t∗)|2 for B = 2 and B = 6. Green and purple
solid lines show the energy of the single magnon at q = 0
and of two magnons at q = π for the snapshot Hamiltonian,
respectively. In Fig. 17(a), some intensity exists between the
two lines, which may be associated with the two-magnon
bound state seen in Figs. 14(a) and 14(b) (around ω = 8–9).
For large laser field amplitude (B = 6), the intensity around
the two-magnon energy becomes prominent. This subcycle
analysis supports the interpretation that the crossover of the
HHG signal is caused by a change of the dynamics from a
single-magnon to a two-magnon dominated process.
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FIG. 17. Color map of the subcycle radiation spectrum
log10 |ω2mx

sub(ω; t∗)|2 for the Ising model with J = 4 and H = 2
under the (a) weak transverse field B = 2 and (b) strong transverse
field B = 6. The solid lines show the single-magnon, two-magnon-
bound state, and two-magnon (with q = π ) state from bottom to top,
respectively, of the snapshot Hamiltonian at time t∗.

2. XXZ model with strong Jxy

We next consider the XXZ model with Jxy stronger than
that in the main text, i.e., Jxy � Jz. The parameters are set to
Jxy = 8, Jz = 10, and � = 1. In Fig. 18 we show the DSF
of the Hamiltonian Eq. (16). The single-magnon dispersion
[E (q) = Jxy cos(q) + Jz for B = 0] splits by the introduction
of the B field. The lower bound of the spectrum at q = 0 de-
creases with increasing B, and the gap closes at Bc � 6, where
a phase transition happens. After the transition, the intensity
of χ zz is stronger than χ xx, but both are still comparable.
The dispersion captured by χ zz has a dip around q = π , a
property which is reproduced by the spin wave theory (see
Appendix B). However, the relation 	̃q=0 = 2	̃q=π (for B >

Bc) does not hold in contrast to the weak Jxy case.
The time evolution of mx and mz calculated by iTEBD is

shown in Fig. 19. The behavior of mx(t ) and mz(t ) is similar
to that in the weak Jxy case. The time evolution of mz is
different depending on whether B is smaller or larger than
Bc. In particular, mz suddenly decreases from 1/2, when B
exceeds Bc.

In Fig. 20 we show the HHG spectra |ω2mx(ω)|2 and
|ω2mz(ω)|2. When B is small, the result is again described
by the time-dependent perturbation theory (Appendix A), and
there is a peak at ω = Jxy + Jz = 18 for mx(ω) and ω = Jxy +
Jz ± � for mz(ω) in the case of B = 2. In contrast to the weak
Jxy case, the threshold of the plateau corresponds to mq=0 for
both B < Bc and B > Bc. Since there is a dip around q = π for
B > Bc as is seen from the dispersions in Figs. 18(i) and 18(j),
the relation 	q=0 = 2	̃q=π does not hold. Hence the energy
scale of the threshold of the plateau corresponds to the mode
excited by the operator Sx

tot.
Figure 21 shows the subcycle radiation spectrum Eq. (10)

for B = 4 and B = 10 (below and above the critical field,
respectively). In the case of B = 4 [Fig. 21(a)], the strong
intensity in the HHG signal follows the single-magnon ex-
citation energy 	q=0 of the snapshot Hamiltonian, which
indicates that the threshold is related to the annihilation of
single magnons at q = 0 for B < Bc. In the case of B = 10
[Fig. 21(b)], the strong intensity in the HHG signal still
roughly follows the energy of 	q=0 and 2	q=0.

To obtain more information on the relation between the
HHG spectra and the excitation structure, we perform ED

FIG. 18. DSFs (a)–(e) |Imχ xx (q, ω)| and (f)–(j) |Imχ zz(q, ω)| for
the XXZ model with Jxy = 8 and Jz = 10.

calculations for a system with N = 8 sites. Although there
is a quantitative deviation from the iTEBD results, the ED
calculations qualitatively reproduce the behavior of the HHG

FIG. 19. Time evolution of (a) mx and (b) mz for the XXZ model
with Jxy = 8 and Jz = 10.
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FIG. 20. HHG from (a)–(e) mx and (f)–(j) mz for the XXZ model
with Jxy = 8 and Jz = 10. Dashed lines correspond to mq=0 (times
integer).

spectra, especially the peaks and plateaus as shown in Fig. 20.
In Fig. 22(a) we show 〈�n|Sx

tot|�n〉 calculated for the eigen-
states of the snapshot Hamiltonian at t = tpeak. Although the
discretization of 〈�n|Sx

tot|�n〉 is not as clear as in the weak
Jxy case and the values are not necessarily close to integers,
the eigenstates can be roughly classified into sectors. In
Fig. 22(b) we plot the quantity An = |α∗

nα0〈�n|Sx
tot|�0〉| [αn ≡

〈�n|�(tpeak )〉] [Eq. (17)]. We see that there is a strong in-
tensity at the energy En − E0 = 20.9, which agrees with the
threshold energy in Figs. 20(e) and 20(j). The eigenstate at
En − E0 = 20.9 belongs to the 〈�n|Sx

tot|�n〉 � −1.5 sector
(depicted by the cross marks in Fig. 22), and this sector is
connected to the 〈�n|Sx

tot|�n〉 � −2 sector in the weak Jxy

case. As is seen from Eq. (18), the hybridization between two

FIG. 21. Color map of the subcycle radiation spectrum
log10 |ω2mx

sub(ω; t∗)|2 for the XXZ model with Jxy = 8 and Jz = 10
under the laser field (a) B = 4 and (b) B = 10. The solid lines
show the single-magnon and two-magnon modes of the snapshot
Hamiltonian at time t∗.

sectors characterized by different eigenvalues of Sx
tot is caused

by the term Jxy+Jz

4

∑
j (S̃

+
j S̃+

j+1 + S̃−
j S̃−

j+1), which becomes
stronger as Jxy is increased. This strong hybridization explains
the results that the values of 〈�n|Sx

tot|�n〉 deviate from integer
and that the state with the energy En − E0 = 20.9 is strongly
excited by the Sx

tot operator. By recalling that 	q=0 is not
equal to 2	̃q=π , this excitation of En − E0 = 20.9 cannot be
regarded as two free magnons created by the Sz operator,
which implies that magnon-magnon interaction effects are
important.

The radiation power spectrum calculated by the tdMF
Hamiltonian Eq. (19) is also shown in Fig. 20. The plateau
structure of the radiation spectrum does not appear in the
tdMF analysis and the high-harmonic signals decay expo-
nentially as the frequency becomes larger. Due to the strong
quantum fluctuations induced by Jxy = 8, the tdMF theory
does not give a good description in this case.

APPENDIX D: SUBTRACTION OF LINEAR RESPONSE

In this Appendix we show the time evolution of mx after
the subtraction of the linear response component in order to
illustrate the origin of high-harmonic generation. First we cal-
culate the magnetization dynamics m0(t ) ≡ 〈Sx(t )〉 under the
weak laser field (6) with B = 0.2 (i.e., in the linear response

FIG. 22. (a) 〈�n|Sx
tot|�n〉 and (b) An [Eq. (17)] calculated by

ED for the model Eq. (16) with Jxy = 8, Jz = 10, and B = 10.
The arrows show the energy En − E0 = 20.9. Cross marks are used
for the states in the 〈�n|Sx

tot|�n〉 � −1.5 sector to demonstrate
that the contribution to the HHG signal comes mainly from this
sector.
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FIG. 23. Time evolution of mx for (a) the Ising model with J = 2
and H = 6 and (b) the XXZ model with Jxy = 2 and Jz = 10 after
the subtraction of the linear response component (B/B0)m0(t ).

regime). Then we subtract this linear response component
from mx(t ). In Fig. 23 mx(t ) − (B/B0)m0(t ) is shown for both
the Ising model with J = 2 and H = 6 and the XXZ model
with Jxy = 2 and Jz = 10. In both models, the discrepancy
from the linear response becomes large near the maxima
of the laser field amplitude, and the nonlinear component
increases with increasing laser intensity. In particular, mx(t ) −
(B/B0)m0(t ) has a nonsinusoidal shape, which is a manifesta-
tion of strong nonlinearity.

APPENDIX E: WAVELET ANALYSIS

In this Appendix we show the time-resolved radiation spec-
tra obtained by a wavelet analysis. This approach is similar to
the subcycle analysis, but in contrast to the latter, the time and
energy resolution depends on ω. In the low energy regime,
the time (t∗) resolution is low and the energy (ω) resolution is
high, while it is the opposite in the high energy regime. The
wavelet transform for the second derivative of the magnetic

FIG. 24. Color map of the wavelet radiation spectrum
log10 |m′′x

W(ω; t∗)|2 for the Ising model with J = 4, H = 2,
and B = 8 (a) and the XXZ model with Jxy = 2, Jz = 10, and
B = 10 (b). The solid lines show (a) the (multiple) single-magnon
modes and (b) the two-magnon (with q = π ) mode of the snapshot
Hamiltonian at time t∗.

moment is defined as

m′′x
W(ω; t∗) ≡

∫
dt

d2mx(t )

dt2
ωFW[ω(t − t∗)],

where

FW(x) = 1√
2πσ

eixe− x2

2σ2 (σ = 10)

is a mother function for the Gabor wavelet. In Fig. 24 we show
the wavelet spectrum |m′′x

W(ω; t∗)|2 for the Ising model with
J = 4, H = 2, and B = 8 and the XXZ model with Jxy = 2,
Jz = 10, and B = 10. In the low-energy region, the signal
is smeared out in the time direction while there are clearly
resolved peaks along the ω direction. In the high energy
region, on the other hand, the structures are smeared out along
the ω axis, while the time evolution of the spectral features can
be well captured.
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