Appendix A. Supplementary material Development of resiquimod-loaded modified PLA-based nanoparticles for cancer immunotherapy: a kinetic study Cédric Thauvin^a, Jérôme Widmer^b, Inès Mottas^{a,b}, Sandra Hocevar^a, Eric Allémann^a, Carole Bourquin^{a,b,c,*}, Florence Delie^{a,*} ^aSchool of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Rue Michel-Servet 1, 1211 Geneva, Switzerland ^bChair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 5, 1700 Fribourg, Switzerland ^cFaculty of Medicine, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland *E-mail address:* <u>florence.delie@unige.ch</u> (F. Delie) and <u>carole.bourquin@unige.ch</u> (C. Bourquin) ^{*} Corresponding authors, the authors contributed equally to this work. **Fig. S1.** ¹H NMR spectra of PLA-based polymers. **Fig. S2.** R848-loaded PLA-NP activation of TNF- α release in macrophages. The release of TNF- α from J774 cells was assessed after incubation for 24 h with R848-loaded NP (R848 concentration: 0.1 µg/ml for free R848 and all R848-loaded NP conditions). Each bar represents mean \pm SD, n=3. Data show one representative experiment out of three.