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The signal-to-noise ratio of taylorgrams 

It was shown before that the signal-to-noise ratio (𝑆𝑁) of 𝐴, defined as the ratio of the mean and standard deviation of 𝑃(𝐴), is 

𝑆𝑁(𝐴) ≅ √𝑁(1 − 𝑇) when 𝑇 > 0.5. 𝑁 = α 𝐼 𝜏 is the number of the photons illuminating the flow during 𝜏 integration time (temporal 

resolution), 𝛼 a detector-and wavelength-specific constant, and 𝐼 the intensity of the illuminating light.1  

This result is obtained via basic principles considering the quantized nature of light and the fundamentals of photon detectors and 

UV-Vis spectroscopy. To measure the transmission of an analyte and to determine its absorbance, the intensity of the transmitted 

light is measured. Measuring the intensity of light is never instantaneous, but involves a detection time interval 𝜏 > 0. Detecting 

photons is intrinsically random, and the consequence is that the number of photons detected during 𝜏 is a random variable. In other 

words, if one measures the absorbance of a sample 𝑘 times under the very same conditions, one tends to obtain 𝑘 different results. 

This is because even if the intensity of the illumination is completely stable, the probability density of the photon counts follows a 

Poisson distribution. This randomness is an inherent property of classical linear spectroscopy and referred to as shot noise. Accord-

ingly, measuring transmission (𝑇) and absorbance (𝐴) is also probabilistic, and thus noisy. Due to the relatively fine temporal reso-

lution, this stochastic character becomes relevant to Taylor dispersion where a long continuous sequence of short and single meas-

urements is required to resolve the dynamics of the band dispersion, while measuring the transmission of the solvent background may 

be a single and considerably longer measurement. By starting from the Poisson distribution of the photon counts, and by applying the 

rule of transforming random variables, we calculated the probability density of the absorbance when the intensity of illumination is 

precisely known and the influence of particle number density fluctuations2 is negligible: 𝑃(𝐴) = 𝐿𝑛10 ∙ ⅇ−𝑁∙𝑇 ∙ 𝑁𝑢 ∙ 𝑇𝑢/𝛤[𝑢] where 

𝑢 = 𝑁 ∙ 10−𝐴, 𝑁 = α ∙ 𝐼 ∙ 𝜏 is the number of the photons illuminating the flow during 𝜏 integration time, α a detector-and wavelength-

specific constant, 𝐼 the intensity of the illuminating light reaching the flow, 𝑇 the value of the transmission, and 𝛤 the gamma function. 

It can be shown that when 𝑁 > 100, the signal-to-noise ratio (𝑆𝑁) of 𝐴—defined as the ratio of the mean and standard deviation of 

𝑃(𝐴)—is 

(S1)   𝑆𝑁(𝐴) = −𝐿𝑜𝑔10𝑇 ∙ (𝐿𝑜𝑔102 + 2) ∙ √𝑇 ∙ 𝑁 .  

The mean value of the absorbance is equal to −𝐿𝑜𝑔10𝑇, which is in fact the ‘true’ value one would always measure in the absence 

of shot noise. When 𝑇 > 0.5, eq 15 simplifies:  

(S2)   𝑆𝑁(𝐴) ≅ √𝑁 ∙ (1 − 𝑇). 

Therefore, the expected value of 𝑆𝑁 is not a constant over the course of a measurement, and it is the highest at the peak of the 

Taylorgram. The signal-to-noise ratio can be improved by increasing either a) the initial concentration of the sample, b) the capillary 

diameter, c) the detection area, d) the intensity of the illuminating lamp or by decreasing the temporal resolution. The concentration 

can be increased as long as a) the Lambert-Beer law remains applicable and b) inter-particle interactions remain negligible. The 

maximum SN values of the taylorgrams of Figure 1 are shown below. 

 

Figure S1. a) The maximum signal-to-noise ratio of the taylorgrams shown in Figure 1. b) Each SN value was estimated by the best fit of 

eq 1 (dashed line) using a ±5s interval around the center of each taylogram. c) The residuals represent noise, and the dashed lines indicate 

the ±1 standard deviation. The maximum value of the signal-to-noise ratio varies from run to run, and as expected, the absorbance is de-

creasing upon dispersion, and thus SN higher for the shorter residence time (𝐿1 < 𝐿2). 

 

The uncertainty of determining the width and center of a taylorgram 

 0.1 𝑠 ≤ 𝜅 ≤ 10 𝑠 300 𝑠 ≤ 𝑡0 ≤ 1000 𝑠

0.05 𝑠 ≤ 𝜏 ≤ 1 𝑠 10 ≤ 𝑆𝑁 ≤ 200 0.75 ≤  𝑇 ≤ 0.95 𝜏

𝜏

𝑃(𝐴)

4 + 1

𝑅2 > 0.998

𝜅 𝑡0
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Figure S2. Ten simulated taylorgrams of the 100000 with varying width, center, temporal resolution, noise level, and amplitude. We used 

such taylorgrams to determine the expectable precision of measuring 𝜅 and 𝑡0 via fitting eq 1 (black lines). 

 

 

Figure S3. Predicted and actual precision obtained via simulation experiments. The precision of determining 𝜅 and 𝑡0 agree with a Pearson 

correlation coefficient of 0.998 and 0.997, respectively. 

  

Taylor dispersion experiments of BSA 
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Scheme S1. Top: The layout of our TDA instrument, where the basic operation is alike to that of liquid chromatography. 
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Model parameters 

To fit eq 1 against the experimental data, we used unconstrained nonlinear model fit with three parameters: amplitude, residence 

time, and width parameter (κ). The taylograms and the corresponding best fits are shown in Figure 1. The tables below also list the 

coefficient of determination (𝑅2) and the maximum signal-to-noise ratio for each taylorgram. 

----------------------------------------------- 

Meas./Window: 1/1 

Coefficient of determination: 0.999432 

Amplitude: 0.509726 

Residence time: 343.999 s 

Δ(Residence time): 0.00924004 s 

κ: 1.52675 s 

Δκ: 0.0019916 s 

Max. signal-to-noise ratio: 163 

----------------------------------------------- 

Meas./Window: 1/2 

Coefficient of determination: 0.999281 

Amplitude: 0.500775 

Residence time: 629.498 s 

Δ(Residence time): 0.0127473 s 

κ: 1.55351 s 

Δκ: 0.00210706 s 

Max. signal-to-noise ratio: 104 

----------------------------------------------- 

Meas./Window: 2/1 

Coefficient of determination: 0.99992 

Amplitude: 0.514149 

Residence time: 333.144 s 

Δ(Residence time): 0.00869571 s 

κ: 1.46516 s 

Δκ: 0.00185109 s 

Max. signal-to-noise ratio: 178 

----------------------------------------------- 

Meas./Window: 2/2 

Coefficient of determination: 0.999934 

Amplitude: 0.518693 

Residence time: 613.346 s 

Δ(Residence time): 0.0123471 s 

κ: 1.56265 s 

Δκ: 0.00206759 s 

Max. signal-to-noise ratio: 114 

----------------------------------------------- 

Meas./Window: 3/1 

Coefficient of determination: 0.999973 

Amplitude: 0.511152 

Residence time: 339.243 s 

Δ(Residence time): 0.00892978 s 

κ: 1.49932 s 

Δκ: 0.0019139 s 

Max. signal-to-noise ratio: 167 

----------------------------------------------- 

Meas./Window: 3/2 

Coefficient of determination: 0.999979 

Amplitude: 0.503094 

Residence time: 619.746 s 

Δ(Residence time): 0.0123322 s 

κ: 1.5242 s 

Δκ: 0.00202475 s 

Max. signal-to-noise ratio: 117 

----------------------------------------------- 

Meas./Window: 4/1 

Coefficient of determination: 0.999986 

Amplitude: 0.509312 

Residence time: 330.199 s 

Δ(Residence time): 0.0087343 s 

κ: 1.45483 s 

Δκ: 0.00185794 s 
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Max. signal-to-noise ratio: 179 

----------------------------------------------- 

Meas./Window: 4/2 

Coefficient of determination: 0.99999 

Amplitude: 0.512447 

Residence time: 608.022 s 

Δ(Residence time): 0.0121762 s 

κ: 1.53822 s 

Δκ: 0.00202479 s 

Max. signal-to-noise ratio: 131 

----------------------------------------------- 

Meas./Window: 5/1 

Coefficient of determination: 0.999992 

Amplitude: 0.504491 

Residence time: 329.805 s 

Δ(Residence time): 0.00860659 s 

κ: 1.44819 s 

Δκ: 0.00182662 s 

Max. signal-to-noise ratio: 165 

----------------------------------------------- 

Meas./Window: 5/2 

Coefficient of determination: 0.999995 

Amplitude: 0.50832 

Residence time: 606.942 s 

Δ(Residence time): 0.0115633 s 

κ: 1.54251 s 

Δκ: 0.00192755 s 

Max. signal-to-noise ratio: 126 

----------------------------------------------- 

Meas./Window: 6/1 

Coefficient of determination: 0.999995 

Amplitude: 0.507374 

Residence time: 328.783 s 

Δ(Residence time): 0.00865999 s 

κ: 1.44868 s 

Δκ: 0.00184061 s 

Max. signal-to-noise ratio: 184 

----------------------------------------------- 

Meas./Window: 6/2 

Coefficient of determination: 0.999996 

Amplitude: 0.511283 

Residence time: 605.543 s 

Δ(Residence time): 0.0120396 s 

κ: 1.53114 s 

Δκ: 0.00199913 s 

Max. signal-to-noise ratio: 114 

----------------------------------------------- 

Meas./Window: 7/1 

Coefficient of determination: 0.999996 

Amplitude: 0.514707 

Residence time: 328.137 s 

Δ(Residence time): 0.00853297 s 

κ: 1.44155 s 

Δκ: 0.00180967 s 

Max. signal-to-noise ratio: 176 

----------------------------------------------- 

Meas./Window: 7/2 

Coefficient of determination: 0.999997 

Amplitude: 0.518736 

Residence time: 604.791 s 

Δ(Residence time): 0.0115645 s 

κ: 1.53007 s 

Δκ: 0.00192025 s 

Max. signal-to-noise ratio: 125 

----------------------------------------------- 

Meas./Window: 8/1 

Coefficient of determination: 0.999997 

Amplitude: 0.502297 

Residence time: 328.039 s 

Δ(Residence time): 0.00857453 s 

κ: 1.45404 s 

Δκ: 0.00182816 s 

Max. signal-to-noise ratio: 170 
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----------------------------------------------- 

Meas./Window: 8/2 

Coefficient of determination: 0.999998 

Amplitude: 0.506398 

Residence time: 604.613 s 

Δ(Residence time): 0.0116744 s 

κ: 1.53219 s 

Δκ: 0.00194041 s 

Max. signal-to-noise ratio: 119 

 

The viscosity of water as a function of temperature 

𝑅2 = 1 = 38.41 ± 0.44 10−6 Pa s 𝑏 =  432.91 ± 3.02 𝐾−1 𝑐 = 160.4 ± 0.46 𝐾

𝑓−1(𝜂) = 𝑐 + 𝑏/𝐿𝑛(𝜂/𝑎)

Capillary flow temperature by light absorption and heat dissipation 

We construct a simple a model where the sample temperature is influenced by two phenomena: 1) light absorption generating heat 

and 2) loss of heat owing to an imperfect insulation of the system from its environment. Given a moderate temperature difference 

between the capillary flow and its environment (room, housing), the loss of heat can be described by the Fourier law. Furthermore, it 

is a fair assumption that the temperature of the environment was constant during the measurements, and so were and the parameters 

describing heat absorption (𝐴) and heat loss (𝑘). According to these assumptions, we construct the following differential equation 

(S3)   
𝑑𝑇(𝑡)

𝑑𝑡
= 𝐴 − 𝑘(𝑇(𝑡) − 𝑇0)  

with the initial condition of 𝑇(0) = 𝑇0. 

The solution describes the temperature as a function of time: 

(S4)   𝑇(𝑡) =
𝐴

𝑘
(1 − ⅇ−𝑘𝑡) + 𝑇0.  

The total length of a single measurement was nearly 15 minutes, and thus the measurement numbers (1-8) were converted into time 

accordingly. The two parameters 𝐴[°𝐶ℎ−1] and 𝑘[ℎ−1] describe the rate of temperature increase and heat loss. The maximum tem-

perature this system can reach is 𝐴/𝑘 + 𝑇0. 

  

      

Figure S5. The temperature as a function of time, and the best unconstrained nonlinear fit of eq S4 (solid gray line). The parameters are 

𝐴 = 6.07 °𝐶 ℎ−1, 𝑘 = 2.43 ℎ−1, and 𝑇0 = 24.52 °𝐶. The nominal temperature is indicated by the dashed red line. The dashed gray line 

indicates the maximum temperature this system could reach in this series of experiments. 

 

Sampling distributions of normally distributed random variables

Another important concept relevant to the precision of measurements relates to inferential statistics (Figure S6). From this point of 

view, each set of individual experiments performed with nominally identical parameters, usually referred to as repeats, represents a 

random sample drawn from the population. Therefore, the sample statistics, such as the mean and standard deviation vary from sample 

to sample, and the magnitudes of these variations are functions of the sample size, i.e., the number of repeats. These variations can 

be described accurately by the sampling distributions of population mean (𝜇) and population standard deviation (𝜎). (Here 𝜇 = 𝑟 and 

𝜎 = 𝛥𝑟.) When 𝜇 and 𝜎 describe a normal distribution, the sampling distribution of the measured mean is Gaussian with a mean 

equal to the population mean, 𝜇𝑠 =  𝜇, and with a standard deviation equal to 𝜎𝑠 = 𝜎/√𝑛. The latter is called as the standard error of 

the mean, where 𝑛 is the size of the sample. Given that the Gaussian function is symmetric, and the most probable value equals 

exactly 𝜇, the sample mean is an accurate estimate of the population mean, even if the sample size is small. However, this is not the 
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case for precision. Regarding the sampling distribution of the standard deviation 𝑝(𝜎𝑠), it is shown by transforming the 𝜒2-distribution 

with 𝑛 − 1 degrees of freedom that 𝑝(𝜎𝑠) is generally asymmetric:4  

(S5)   𝑝(𝜎𝑠) =
2
3−𝑛
2 ∙ⅇ

−
𝑛𝜎𝑠
2

2𝜎2 ∙𝑛
1
2
(𝑛−1)

∙𝜎1−𝑛∙𝜎𝑠
𝑛−2

(𝑛−1
2
)

 

where   is the Euler gamma function. The expected mean and standard deviation (STD) of 𝑝(𝜎𝑠) are 

(S6)   〈𝜎𝑠〉 = ∫ 𝜎𝑠 𝑝(𝜎𝑠) 𝑑𝜎𝑠
∞

0
= 𝜎√

2

𝑛

 (n/2)

 (𝑛−1
2
)
 

and 

(S7)   √〈𝜎𝑠
2〉 − 〈𝜎𝑠〉

2 = 𝜎√(
𝑠−1

𝑠
−
2 (n/2)2

𝑠 (𝑛−1
2
)
2) 

As shown in Figure S7, sample-to-sample variations have important consequences. First, the expectable measure of precision 〈𝜎𝑠〉 
is a function of the sample size. For example, in the case of triplicates one measures three times, and the standard deviation is used 

as a metric of precision. By calculating the cumulative probability of 𝑝(𝜎𝑠), it is little effort to show that at this sample size the 

measure of precision is not reliable at all. When 𝑛 = 3 the probability that 𝜎𝑠 < 𝜎 is nearly 78%. In other words, the chance of 

underestimating the standard deviation and overestimating the precision is considerable. The chance is 65% when 𝑛 = 10, 57% when 

𝑛 = 50, and 55% when 𝑛 = 100. Second, both repeatability and reproducibility are poor when the sample size is not particularly 

large, because the width of the distribution of 𝜎𝑠 is generally large. For example, when 𝑛 = 3 the width is more than twice as large 

as the mean value (Figure S7b). 

 

Figure S6. The view of inferential statistics on measurement analysis. A single measurement consists of an experiment and its analysis. The 

population is the ensemble of all the realizable measurements described by the given uncertainties. These parameters ultimately define the 

attainable precision of measuring the hydrodynamic radius. In contrast to the population, a sample is usually a small set of individual meas-

urements (replicates), whose statistics display sample-to-sample variations following the corresponding sampling distributions. These sam-

ple-to-sample variations become negligible only when the sample size (𝑛) is large. 

 

 

Figure S7. Sampling distribution of the standard deviation. a) The probability density of the sample standard deviation at different sample 

sizes when the population standard deviation is one. b) The expected sample mean value and sample standard deviation (STD) of  𝑝(𝜎𝑠) as 

a function of the sample size. 

 

The sampling distribution of the relative standard deviation as a function of sample size  (𝛿𝑠 = 𝜎𝑠/𝜇𝑠) was estimated via McKay's 

approximation.5-7 The approximation addresses finite-size samples drawn randomly from a normally distributed population, and de-

fines a variable 𝐾𝑠 being the following function of the sample statistic: 

(S8)   𝐾𝑠(𝛿, 𝑛;  𝛿𝑠) = (1 +
1

𝛿2
)
(𝑛−1)𝛿𝑠

2

1+
𝑛−1

𝑛
𝛿𝑠
2. 

𝛿 and 𝛿𝑠 are the population and sample coefficient of variation, respectively, and 𝑛 is the sample size. McKay showed that when 

𝛿 < 1/3, the PDF of 𝐾𝑠 can be described by a central 2-distribution with 𝑠 − 1 degrees of freedom: 
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(S9)   𝑓𝑛−1(𝐾𝑠) =

{
 

 2
1−𝑛
2 ∙ⅇ

−
𝐾𝑠
2 ∙𝐾𝑠

𝑛−3
2

∫ 𝐾𝑠
𝑛−3
2 ⅇ−𝐾𝑠  𝑑𝐾𝑠

∞

0

 𝐾𝑠 > 0

0 

 

To calculate the probability density of the sample coefficient of variation 𝑝(𝛿𝑠), we transform McKay's approximation, and we 

obtain the sampling distribution of the relative standard deviation of normally distributed random variables where 𝛿 is the population 

parameter and 𝑛 is the sample size.  

(S10)   𝑝(𝛿𝑠) = 𝑓𝑠−1(𝐾𝑠(𝛿𝑠)) × |
𝜕𝐾𝑠

𝜕𝛿𝑠
|

(S11)   𝑝(𝛿, 𝑛; 𝛿𝑠) =

2
3
2
−
𝑛
2  ∙√

(𝛿2+1)
2
(𝑛−1)2𝑛4𝛿𝑠

2

𝛿4((𝑛−1)𝛿𝑠
2+𝑛)

4  ∙ (
(
1

𝛿2
+1)(𝑛−1)𝑛𝛿𝑠

2

(𝑛−1)𝛿𝑠
2+𝑛

)

𝑛−3
2

∙ ⅇ

−
(
1

𝛿2
+1)(𝑛−1)𝑛𝛿𝑠

2

2((𝑛−1)𝛿𝑠
2+𝑛)

 ∫ 𝑥
𝑛−3
2 ⅇ−𝑥𝑑𝑥

∞

0

 

Two-window combination of determining the hydrodynamic radius

When the hydrodynamic radius is measured via the combination of two windows 

(S12)   𝑟 =
4 𝑘𝐵𝑇

𝜋 𝜂 𝑌2

𝜎2
2−𝜎1

2

𝑡2−𝑡1
  

where 𝜎𝑖
2 = 𝜅𝑖𝑡𝑖/2, the corresponding relative error is  

(S13)   
𝛥𝑟

𝑟
= √(

𝛥𝑇

𝑇
)
2

+ (
𝛥𝜂

𝜂
)
2

+ ℎ2 

where 

(S14)   ℎ2 =
𝑡1
2

(𝑡1𝜅1−𝑡2𝜅2)
2 𝛥𝜅1

2 +
𝑡2
2

(𝑡1𝜅1−𝑡2𝜅2)
2 𝛥𝜅2

2 +
𝑡2
2(𝜅1−𝜅2)

2

(𝑡1−𝑡2)
2(𝑡1𝜅1−𝑡2𝜅2)

2 𝛥𝑡1
2 +

𝑡1
2(𝜅1−𝜅2)

2

(𝑡1−𝑡2)
2(𝑡1𝜅1−𝑡2𝜅2)

2 𝛥𝑡2
2.

 
Impact of noise on numerical integration and temporal moments 

By adapting the concept of statistical moments, the temporal moments (mean and variance) are frequently used when characterizing 

multimodal and polydisperse samples and their optical extinction-weighted average radius.8-10 In this case, noise affects the attainable 

precision differently than it affects model-based nonlinear regression. To describe this difference, here we outline a straightforward 

theoretical approach. 

The 𝑛𝑡ℎ temporal moment of a taylorgram calculated as a normalized temporal average on the closed interval capped by 𝑡𝑎 and 𝑡𝑏 

is defined as 

(S15)   〈𝑡𝑛𝐴(𝑡)〉 =
∫ 𝑡𝑛𝐴(𝑡)
𝑡𝑏
𝑡𝑎

𝑑𝑡 

∫ 𝐴(𝑡)
𝑡𝑏
𝑡𝑎

𝑑𝑡
    

where 𝑡𝑎 and 𝑡𝑏 are chosen that way that they contain the peak of the taylorgram (Figure S8a). Furthermore, 𝑡𝑎 and 𝑡𝑏 are chosen 

symmetrically around the center of the peak, i.e. they are at an equal distance from 𝑡0. In experimental practice the taylorgram is not 

continuous in time for 𝐴(𝑡) is recorded with discrete timepoints, and thus, the integration becomes a summation, e.g. 

(S16)   ∫ 𝐴(𝑡)
𝑡𝑏

𝑡𝑎
𝑑𝑡 ≅  𝜏 ∑ 𝐴(𝑡𝑖)

𝑛
𝑖=1  

where 𝜏 is the temporal resolution, 𝑡1 = 𝑡𝑎 and 𝑡1 + 𝑛 𝜏 = 𝑡𝑏. The temporal mean and temporal variance are 

(S17)   𝑀 = 〈𝑡 𝐴〉 = 𝑡0 + 𝜅/2 

and  

(S18)   𝑉 = 〈(𝑡 − 𝑀)2𝐴〉 = 〈𝑡2𝐴〉 − 〈𝑡 𝐴〉2 = (𝑡0 + 𝜅)𝜅/2. 

where from 𝜅 ≅ 2 𝑉/𝑀 when 𝑡0 ≫ 𝜅. 

In the absence of noise, the precision and accuracy are perfect, and there is neither uncertainty nor bias in determining the value of 

𝜅. Accordingly, ∆𝜅 = 0. However, ∆𝜅 does not vanish in the presence of noise. To show this, we consider that the experimentally 

recorded taylorgram may be decomposed into two terms: 

(S19)   𝐴𝜖 = 𝐴 + 𝜖 

where 𝜖 represents additive noise. The origin of 𝜖 is the shot noise and the related Poisson distribution,1 and its probability density 

function 𝑝(𝜖) is practically a gaussian. It is easy to show that 𝑝(𝜖) is practically stationary in time, i.e. the variance of 𝑝(𝜖) is basically 

constant along the taylorgram when the peak absorbance is not too high (i.e. 𝐴 < 0.1). The value of 𝜖 varies randomly along the 

taylorgram, with a zero mean 𝜖̅ = 0 and variance  𝜖2̅̅ ̅ − 𝜖̅2 = 𝜖2̅̅ ̅. The noise in TDA is also uncorrelated, that is 𝜖𝑖𝜖𝑗̅̅ ̅̅ ̅ = 𝜖2̅̅ ̅𝛿𝑖𝑗, where 

𝛿𝑖𝑗 is the Kronecker delta. The overline denotes ensemble average, which is the average over the distribution of the values 𝜖 can take: 

(S20)   𝜖̅ = ∫ 𝜖 𝑝(𝜖) 𝑑𝜖 
∞

−∞
  

and 
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(S21)   𝜖2̅̅ ̅ = ∫ 𝜖2𝑝(𝜖) 𝑑𝜖 
∞

−∞
.  

Following the definition of the signal-to noise ratio (eq S1), it is easy to show that √𝜖2̅̅ ̅ = 𝐴𝑀𝑎𝑥 𝑆𝑁
−1 ≅ 𝐴(𝑡0) 𝑆𝑁

−1. The temporal 

mean and temporal variance of a noisy taylorgram are calculated the same way as above 

(S22)   𝑀𝜖 = 〈𝑡 𝐴𝜖〉 = 〈𝑡(𝐴 + 𝜖)〉 = 〈𝑡 𝐴〉⏟
𝑀

+ 〈𝑡 𝜖〉 = 𝑀 + 〈𝑡 𝜖〉 

(S23)   𝑉𝜖 = 〈𝑡
2𝐴𝜖〉 − 𝑀𝜖

2 

and the expected values are calculated via ensemble averring 

(S24)   𝑀𝜖̅̅ ̅̅ = ∫ 𝑀𝜖  𝑝(𝜖) 𝑑𝜖
∞

−∞
  

(S25)   𝑉𝜖̅ = ∫ 𝑉𝜖  𝑝(𝜖) 𝑑𝜖
∞

−∞
. 

To calculate the expected precision attainable via numerical integration, we need to calculate the ensemble variance of 𝜅𝜖 via the 

ensemble variance of 𝑀𝜖  and 𝑉𝜖 . These two are practically uncorrelated variables, and thus, we can write 

(S26)   ∆𝜅2 = 𝜅𝜖
2̅̅ ̅ − 𝜅𝜖̅̅ ̅

2 ≅  (2𝑉𝜖)
2 ̅̅ ̅̅ ̅̅ ̅̅ ̅  𝑀𝜖

−2 ̅̅ ̅̅ ̅̅ ̅ − (2𝑉𝜖̅̅ ̅̅ )
2(𝑀𝜖

−1̅̅ ̅̅ ̅̅ )
2
.  

We take advantage of the fact that the ensemble variance of the temporal mean is negligible compared to the ensemble variance of 

the temporal variance, that is,  𝑉𝜖
2̅̅̅̅ − 𝑉𝜖̅

2
≫ 𝑀𝜖

2̅̅ ̅̅ − 𝑀𝜖̅̅ ̅̅
2
, and thus, we can express the ensemble average as 

(S27)   ∆𝜅2 ≅ 
 (2𝑉𝜖)

2 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  −(2𝑉𝜖̅̅ ̅)
2

𝑀𝜖̅̅ ̅̅
2 .  

Accordingly, the precision of determining the width parameter is 

(S28)   
∆𝜅

𝜅
≅ √

𝑉𝜖
2̅̅ ̅̅

𝑉𝜖̅̅ ̅
2 − 1. 

To evaluate further eq S28, we perform the following steps: 

(S29)   𝑀𝜖 = 𝑀 + 〈𝑡 𝜖〉 
(S30)   𝑉𝜖 = 〈𝑡

2𝐴𝜖〉 − 𝑀𝜖
2 = 𝑉 + 〈𝑡2𝜖〉 − 〈𝑡 𝜖〉2⏟        

𝑉𝑁

= 𝑉 + 𝑉𝑁  

where the term  

(S31)   𝑉𝑁 = 〈𝑡
2𝜖〉 − 〈𝑡 𝜖〉2  

may be considered as an analogue of the temporal variance of the noise. It is important to point out, that the temporal noise cannot 

be treated as a proper probability density function, because it can take negative values as well. Thus, the term is merely an analogy.  

The ensemble averages are 

(S32)   𝑉𝜖̅ = 𝑉 + 𝑉𝑁̅̅ ̅ 

(S33)   𝑉𝜖̅
2
= 𝑉2 + 2𝑉𝑉𝑁̅̅ ̅ + 𝑉𝑁̅̅ ̅

2
 

and 

(S34)   𝑉𝜖
2̅̅̅̅ = 𝑉2 + 2𝑉𝑉𝑁̅̅ ̅ + 𝑉𝑁

2̅̅̅̅  

thus 

(S35)   
∆𝜅

𝜅
≅

𝑉𝜖
2̅̅ ̅̅ −𝑉𝜖̅̅ ̅

2

𝑉𝜖̅̅ ̅
2 =

𝑉𝑁
2̅̅ ̅̅ −𝑉𝑁̅̅ ̅̅

2

(𝑉+𝑉𝑁̅̅ ̅̅ )
2. 

Finally, we can write the expression of uncertainty into three distinct groups 

(S36)   𝑉𝑁
2̅̅̅̅ − 𝑉𝑁̅̅ ̅

2
= 〈𝑡2𝜖〉2̅̅ ̅̅ ̅̅ ̅̅ − (〈𝑡2𝜖〉̅̅ ̅̅ ̅̅ ̅)

2

⏟          
1.

+ 〈𝑡 𝜖〉4̅̅ ̅̅ ̅̅ ̅ − (〈𝑡 𝜖〉2̅̅ ̅̅ ̅̅ ̅)
2

⏟          
2.

− (2〈𝑡2𝜖〉 ∙ 〈𝑡 𝜖〉2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ − 2〈𝑡2𝜖〉̅̅ ̅̅ ̅̅ ̅ ∙ 〈𝑡 𝜖〉2̅̅ ̅̅ ̅̅ ̅)⏟                    
3.

 

where via eq S15 

(S37)   〈𝑡𝑚𝜖〉𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅ = ∫ (
∫ 𝑡𝑚𝜖
𝑡𝑏
𝑡𝑎

 𝑑𝑡 

∫ (𝐴+𝜖)
𝑡𝑏
𝑡𝑎

 𝑑𝑡
)

𝑛

𝑝(𝜖) 𝑑𝜖
∞

−∞
.  

As it can be seen, the precision of determining 𝜅 is a nontrivial function of the noise level and the width of the integration interval. 

We could not find a straightforward closed-form expression to evaluate eq S37, and therefore, used a numerical approach. Our results 

indicate that the precision scales as 

(S38)   
∆𝜅

𝜅
∝ √ 𝜖2̅̅ ̅ ∙ (𝑡𝑏 − 𝑡𝑎)

5. 

This scaling can be understood by considering that 〈𝑡𝑚𝜖〉𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅ = 〈𝑡𝑚∙𝑛𝜖𝑛〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 〈𝑡𝑚∙𝑛𝜖𝑛̅̅ ̅〉 = 𝜖𝑛̅̅ ̅〈𝑡𝑚∙𝑛〉, and 〈𝑡𝑚∙𝑛〉 ∝ 𝑡𝑚∙𝑛+1. 

Eq S38 means that the precision is improving when the interval of integration becomes shorter, but the precision of numerical 

integration is inferior to model-based parameter fitting. This is because the uncertainty of model-based parameter fitting is weakly 

dependent on the interval chosen—provided that the peak is within the interval capped by 𝑡𝑎 and 𝑡𝑏—while numerical integration is 

not. Indeed, when comparing the model-based fit with the temporal moments obtained via numerical integration, the scaling is evident 

(Figure S8). Finally, it is important to point out that this result is of general validity, and does not depend on the nature of the particle 

system under study, such as multimodality, polydispersity, and nature of optical extinction.  
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Figure S8. a) A BSA taylorgram and the symmetric interval used for analysis. Being symmetric means that |𝑡0 − 𝑡𝑎| =  |𝑡0 − 𝑡𝑏|. b) The 

precision of determining 𝜅 via the temporal moments (Num. Int.) and model-based fitting (Fit). While the latter is practically independent of 

the interval used, numerical integration exhibits a strong increase with the width of the integral. Accordingly, the integration interval should 

be kept as narrow as possible. 
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