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Materials

All reagents including Grubbs’ second (G2) and third (G3) generation catalysts, dicyclopentadiene, 7-
norbornadienyl benzoate and ethyl vinyl ether were purchased from Sigma-Aldrich and used without
further purification. All reactions were performed in flame-dried glassware under an inert argon
atmosphere employing standard Schlenk techniques unless otherwise noted. Exo-N-methyl-
norbornenecarboximide (M1)*, exo-N-hexyl-norbornenecarboximide (M3)*, (E)-(3-bromoprop-1-en-
1-yl)cyclohexane?, CTA1® and exo-N-hydroxyethyl-norbornenecarboximide (S1)* were synthesized as
reported previously. Deuterated solvents (CDCls;, CD,Cl,) were purchased from Cambridge Isotope
Laboratories. Deuterated dichloromethane was degassed by three successive freeze-vacuum-thaw
cycles immediately before use. Analytical thin layer chromatography (TLC) was performed on
aluminium sheets coated with silica gel 60 F254 (Merck) and visualised using either UV light (254 nm
or 366 nm) or staining with potassium permanganate. Flash chromatography was performed using

silica gel (SiliCycle, 230-400 mesh, particle size 32-63 pm, 60 A).

Instrumentation

Injections of monomers into reaction mixtures were conducted using a syringe pump (World
Precision Instruments, SP100iZ) equipped with a 20 mL BD syringe and a needle measuring 0.8 mm in
diameter. High-resolution mass spectra (HR-MS) were obtained by electrospray ionization (ESI) on a
Bruker BioApex Il 4.7T mass spectrometer. Low-resolution mass spectra by electrospray ionization
(ESI) were acquired on Bruker Daltonics Esquire HCT mass spectrometer. Electron impact ionization
mass spectra (EI-MS) were run on a gas chromatography - mass spectrometry (GC-MS) instrument
(Thermo Scientific DSQ Il Series Single GC/MS with Trace GC Ultra gas chromatograph and Zebron
capillary GC column (ZB-5MS, 0.25 um, 30 x 0.25 mm)). MALDI-ToF (Matrix Assisted Laser Desorption
lonization Time of Flight) mass spectrometry was conducted on a Bruker ultrafleXtreme instrument
using 2-[(2E)-3-(4-tertbutylphenyl)-2-methylprop-2-enylidene] malononitrile (DCTB) as the matrix
and silver trifluoroacetate as the ionizing salt. Relative molecular weights and molecular weight
distributions were measured by gel permeation chromatography (GPC). For measurements in CHCls,
the GPC was performed using an Agilent Technologies 1260 Infinity Il GPC system, an refractive index
(RI) detector, two MZ-Gel SDplus Linear columns (5 um, 300 x 8.0 mm) and a MZ-Gel SDplus Linear
precolumn (5 um, 50 x 8.0 mm) at a flow rate of 1 mL/min. For measurements in THF, which were
also conducted at a flow rate of 1 mL/min, the GPC instrument was equipped with a Viscotek GPCmax
VE2001 GPC solvent/sample module, a Viscotek UV detector 2600, a Viscotek VE3580 RI
detector and two Viscotek T6000 M columns (7.8 A, 300 mm, 10°-10’ Da). All samples were filtered

through a PTFE syringe membrane filter (0.45 um pore size, VWR) prior to GPC measurements.



Polystyrene standards (Malvern Polycal PS standards, MW from 1 x 10° to 3 x 10°) were used for
calibration. 'H and C NMR spectra were recorded at 298 K on a Bruker Avance 300 NMR
spectrometer (1H NMR 300 MHz, **C NMR 75 MHz) and on a Bruker Avance 400 NMR spectrometer
(*H NMR 400 MHz, **C NMR 101 MHz). NMR signals were referenced to the residual undeuterated
solvent proton signals, which were used as an internal reference. Chemical shifts (§) are reported in
parts per million (ppm) relative to tetramethylsilane. NMR multiplicities are given by the following
abbreviations: s (singlet), d (doublet), t (triplet), g (quartet), m (multiplet), dd (doublet of doublets),
ddd (doublet of doublet of doublets), dt (doublet of triplets), td (triplet of doublets) and dq (doublet

of quartets).

Experimental procedures

Synthesis of (E)-(2-cyclohexylvinyl) benzene (CTAO)

Phosphonium salt (3.46 g, 8.91 mmol, 2 eq) and NaH (60 % dispersion in oil, 0.318 g, 8.02 mmol, 1.8
eq) were dissolved in dry THF (18 mL). The reaction mixture was stirred at room temperature for 20
min and then allowed to cool to 0 °C. Cyclohexanecarboxaldehyde (0.5 g, 4.45 mmol, 1 eq) was
added to the reaction mixture, which was stirred at 0 °C for 2 h. After removal of the solvent in
vacuo, the crude product was purified by column chromatography with hexane as the eluent to give
the product as colourless liquid (0.65 g, 78 % yield). 'H NMR (300 MHz, CDCls): 8 = 7.15-7.40 (m, 5H),
6.29-6.42 (m, 1H), 6.13-6.25 (m, 1H), 2.05-2.24 (m, 1H), 1.62-1.90 (m, 5H), 1.10-1.44 (m, 5H). *°C
NMR (75 MHz, CDCl5): 6 = 139.0, 138.1, 136.8, 128.6, 128.4, 128.2, 127.2, 126.8, 126.7, 126.4, 125.9,
41.1, 36.9, 33.3, 33.0, 26.2, 26.0, 25.7. EI-MS m/z [M]: calculated 186.14, found 186.06.
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Synthesis of bicyclo[2.2.1]hept-2-en-7-0l (S2)

Lithium aluminum hydride (0.572 g, 15.07 mmol) was suspended in dry Et,0 (40 mL) at 0 °C, and a
solution of 7-norbornadienyl benzoate (2 g, 9.42 mmol) in dry Et,0 (8 mL) was added slowly over 15
min. The mixture was stirred at 0 °C for further 5 min. It was then allowed to warm to room
temperature and stirred for 2 hours. The suspension was then cooled to 0 °C and quenched carefully
with saturated Na,SO,4. The crude mixture was dried over anhydrous MgS0O, and filtered through a

filter paper. The filtrate was carefully concentrated in vacuo and purified by column chromatography



(Et,0:pentane 2:8) to yield the product as a white solid (0.98 g, 94 % vyield). 'H NMR (400 MHz,
CDCl3): 8 =5.98 (t, J = 2.1 Hz, 2H), 3.58 (s, 1H), 2.54 (dq, J = 3.8, 2.0 Hz, 2H), 1.78-1.85 (m, 2H), 1.61 (s,
1H), 1.01-1.06 (m, 2H). >C NMR (101 MHz, CDCl5): = 134.5, 82.5, 45.6, 21.3.

'e) OH

LiAIH,4
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Et,0, 0°C-RT, 5 min-2h

Synthesis of 7-(cinnamyloxy)bicyclo[2.2.1]hept-2-ene (S3)

NaH (60 % dispersion in oil, 0.333 mg, 13.91 mmol, 1.5 eq) was suspended in dry Et,0 (70mL). After
cooling to 0 °C, a solution of bicyclo[2.2.1]hept-2-en-7-ol (S2) (1.022 g, 9.27 mmol, 1 eq) in dry Et,0
(10 mL) was added over 15 min and the suspension stirred at 0 °C for 3 hours. Dry DMF (10 mL) was
then added in one portion, followed by dropwise addition of cinnamyl bromide (2.19 g, 11.13 mmol,
1.2 eq) in dry Et,0 (12 mL) over a period of 30 min. The suspension was stirred until all the alcohol S2
was consumed, the progress of which was followed by TLC. The reaction mixture was then quenched
with water and extracted with ethyl acetate (3 x 50 mL). The organic layers were combined, dried
over anhydrous MgSO, and concentrated in vacuo. The crude product was purified by column
chromatography (Et,O:pentane 1:24) to give the compound S3 (1.7 g, 81 % yield) as a yellowish oil.
'H NMR (300 MHz, CDCl5): & = 7.20-7.43 (m, 5H), 6.60 (d, J = 16.0 Hz, 1H), 6.28 (dt, J = 16.0, 6.0 Hz,
1H), 5.95-6.03 (m, 2H), 4.09 (dd, J = 6.0, 1.5 Hz, 2H), 3.32 (s, 1H), 2.71 (dq, J = 3.8, 2.0 Hz, 2H), 1.77-
1.89 (m, 2H), 0.96-1.04 (m, 2H). *C NMR (75 MHz, CDCl): & = 136.8, 134.2, 131.8, 128.5, 127.6,
126.5, 126.5, 88.9, 68.9, 43.5, 21.8. HR-ESI-MS m/z [M + Na]": calculated 249.12499, found

S NaH O
©/\/\Br
7
* Et,0/DMF, 0°C-RT, 3h-12h 4

Synthesis of (E)-7-styryl-2,4a,5,6,7,7a-hexahydocyclopenta[b]pyran (CTA2)

249.12523.

A solution of 7-(cinnamyloxy)bicyclo[2.2.1]hept-2-ene S3 (2 g, 8.84 mmol) in dry, degassed DCM (37
mL) was added to a solution of G1 (2 mol %) in dry, degassed DCM (13 mL). The reaction mixture was
stirred at room temperature for 19 hours. It was then quenched with ethyl vinyl ether (0.2 mL). The

solvent was removed in vacuo and residual solid purified by column chromatography (Et,0:pentane



1:24) to give the product as a white solid (1 g, 50 % yield). 'H NMR (300 MHz, CDCl,): & = 7.15-7.42
(m, 5H), 6.48 (d, J = 15.9 Hz, 1H), 6.20 (dd, J = 15.8, 8.0 Hz, 1H), 5.97 (dq, J = 10.0, 2.0 Hz, 1H), 5.63
(dg, J = 10.1, 2.6 Hz, 1H), 4.25-4.46 (m, 2H), 3.22 (t, J=9.9 Hz, 1H), 2.58-2.74 (m, 1H), 2.25-2.42 (m,
1H), 2.13 (dtd, J = 13.6, 9.8, 7.6 Hz, 1H), 1.87 (dddd, J = 12.2, 9.6, 7.4, 2.6 Hz, 1H), 1.59-1.70 (m, 1H),
1.22-1.40 (m, 1H). *C NMR (75MHz, CDCl5): & = 137.5, 132.6, 130.4, 128.6, 128.4, 126.9, 126.3, 126.1,
84.8,68.3,45.1,41.1, 27.6, 23.6. HR-ESI-MS m/z [M + Na]": calculated 249.12499, found 249.12545.

O\/\/@
E G1 (1.5 mol %)
/
DCM, RT, 19 h

Synthesis of (E)-7-((3-cyclohxylallyl)oxy)bicyclo[2.2.1]-hept-2-ene (S4)

A suspension of NaH (60 % dispersion in oil, 0.145 mg, 6.04 mmol, 1.5 eq) in dry Et,0 (35 mL) was

cooled to 0 °C. Bicyclo[2.2.1]hept-2-en-7-0l S2 (0.444g, 4.03mmol, 1leq) in dry Et,O (5 mL) was then
slowly added over a 15 min period. After stirring the suspension at 0 °C for 3 hours, dry DMF (5 mL)
was added. A mixture of (1-bromoallyl)cyclohexane (9 %) and (E)-(3-bromoprop-1-en-1-
yl)cyclohexane (91 %) (0.982 g, 4.83 mmol, 1.2 eq) in dry diethyl ether (6 mL) was then added
dropwise over a period of 30 min. The reaction mixture was stirred until all the alcohol S2 was
consumed. The progress of the completion of the reaction was followed by TLC. The solution was
guenched with water and extracted with ethyl acetate (3 x 50 mL). The organic layers were
combined, dried over anhydrous MgSQO, and concentrated in vacuo. The crude product was purified
by column chromatography (Et,0:pentane 1:99) to yield the product as a yellowish oil (0.8 g, 85 %
yield). 'H NMR (400 MHz, CDCl5): & = 5.94-6.00 (m, 2H), 5.57-5.66 (m, 1H), 5.43-5.53 (m, 1H), 3.85 (d,
J =6.0 Hz, 2H), 3.24 (s, 1H), 2.66 (dq, J = 3.7, 2.0 Hz, 2H), 1.90-2.02 (m, 1H), 1.62-1.82 (m, 7H), 1.02-
1.33 (m, 5H), 0.93-0.99 (m, 2H). *C NMR (101 MHz, CDCl;): § = 139.7, 134.2, 124.1, 88.7, 69.3, 43.5,
40.3,32.7, 26.2, 26.0, 21.8. HR-ESI-MS m/z [M + Na]": calculated 255.17194, found 255.17202.
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Et,O/DMF, 0°C-RT, 3h-12h




Synthesis of (E)-7-(2-cyclohxylvinyl)-2,4a,5,6,7,7a-hexahydrocyclopenta[b]pyran
(CTA3)

A solution of (E)-7-((3-cyclohxylallyl)oxy)bicyclo[2.2.1]-hept-2-ene S4 (0.7 g, 3.01 mmol) in dry,
degassed DCM (16 mL) was added to a solution of G1 (2 mol %) in dry, degassed DCM (4 mL). The
reaction mixture was stirred at room temperature for 12 hours before being quenched by the
addition of ethyl vinyl ether (0.2 mL). The solvent was removed in vacuo and residual solid purified by
column chromatography (Et,O:pentane 1:99) to give the product as a white solid (0.56 g, 80 % vyield).
'H NMR (400 MHz, CDCl3): & = 5.93 (dq, J = 10.0, 2.0 Hz, 1H), 5.56-5.63 (m, 1H), 5.43-5.51 (m, 1H),
5.29-5.38 (m, 1H), 4.28-4.42 (m, 2H), 3.03-3.12 (m, 1H), 2.41 (tt, J = 10.2, 7.9 Hz, 1H), 2.20-2.31 (m,
1H), 1.88-2.09 (m, 2H), 1.56-1.85 (m, 6H), 1.47 (dddd, J = 13.6, 10.9, 8.1, 2.7 Hz, 1H), 0.99-1.33 (m,
6H). 3C NMR (101 MHz, CDCly): & = 137.1, 129.4, 128.7, 126.2, 84.8, 68.2, 44.6, 41.1, 40.5, 33.2, 33.0,
27.9, 26.3, 26.2, 26.1, 23.5. HR-ESI-MS m/z [M + Na]": calculated 255.17194, found 255.17199.

O\/\/O
E G1 (2 mol %)
4
DCM, RT, 12 h

Synthesis of exo-4-ethyl-N-methyl-7-oxanorbornenecarboximide (M2)

N-Methylmaleimide (2 g, 18 mmol, 1 eq) and 2-ethylfuran (3.79 mL, 36 mmol, 2 eq) were reacted in
dry Et,0 (10 mlL) in a sealed pressure tube under argon atmosphere. The reaction mixture was
heated to 90 °C and stirred for 4 hours. Upon cooling the reaction mixture to -25 °C, white crystals
formed. The crystals were washed four times with Et,0 to yield M2 (1.75 g, 47 % yield). "H NMR (400
MHz, CDCl5): 8 = 6.52 (dt, J = 5.7, 0.8 Hz, 1H), 6.40 (d, J = 5.6 Hz, 1H), 5.21 (d, J = 1.7 Hz, 1H), 2.90-3.04
(m, 4H), 2.78 (d, J = 6.4 Hz, 1H), 1.97-2.17 (m, 2H), 1.14 (t, J = 7.5 Hz, 3H). **C NMR (75 MHz, CDCl3): &
=176.3,174.9, 138.5, 137.0, 92.4, 80.4, 50.6, 48.7, 24.8, 22.6, 9.4.

O o 0
[ oN— . ) N—
O Et,0, 90 °C, 4 h
o) 0

Synthesis of exo-N-triisopropylsilyloxyethyl-norbornenecarboximide (M4)
A solution of exo-N-hydroxyethyl-norbornenecarboximide S1 (2 g, 9.65 mmol, 1 eq) and imidazole

(1.31 g, 19.24 mmol, 2 eq) in dry DCM (30 mL) was cooled to 0 °C. Next, triisopropylsilyl chloride



(2.79 g, 14.47 mmol, 1.5 eq) dissolved in dry DCM (5 mL) was added dropwise over a period of 15
min. The reaction mixture was stirred overnight at room temperature. The suspension was then
filtered, the filtrate concentrated in vacuo and the crude product purified by column
chromatography (ethyl acetate:hexane 1:9) to yield the product as a colourless liquid (2.8 g, 80 %
yield). *"H NMR (300 MHz, CDCl;): & = 6.28 (t, J = 1.7 Hz, 2H), 3.81-3.89 (m, 2H), 3.62-3.70 (m, 2H),
3.23-3.31 (m, 2H), 2.67 (d, J = 1.1 Hz, 2H), 1.45-1.52 (m, 1H), 1.36-1.44 (m, 1H), 0.96-1.10 (m, 21H).
BC NMR (75 MHz, CDCl;): & = 178.0, 137.8, 59.5, 47.8, 45.2, 42.9, 40.9, 17.9, 11.8. ESI-MS m/z [M +
H]": calculated 364.2, found 364.1.
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Synthesis of exo-N-ferrocenylcarbonyloxy-ethyl-norbornenecarboximide (M5)

o}

HO
Fe
0
0 O
% N_/ “OH .-/ N— ©
DCC, DMAP 5 Fe
O DCM/DMF

0 °C-RT, 15 min-ON

Dry DCM (50 mL) and dry DMF (5 mL) were added to a mixture of exo-N-hydroxyethyl-
norbornenecarboximide S1 (3 g, 14.47 mmol, 1 eq), ferrocenecarboxylic acid (3.66 g, 15.91 mmol, 1.1
eq) and 4-dimethylaminopyridine (DMAP, 0.176 g, 1.44 mmol, 0.1 eq). The reaction mixture was
cooled to 0 °C and a solution of N,N'-dicyclohexylcarbodiimide (3.58 g, 17.35 mmol, 1.2 eq) in dry
DCM (10 mL) was added dropwise over a period of 15 min. The reaction mixture was allowed to
warm to room temperature, stirred overnight (ON) and filtered to remove dicyclohexylurea. The
filtrate was concentrated in vacuo and purified by column chromatography (ethyl acetate:hexane
20:80) to give the product as on orange solid (3.18 g, 52 % yield). "H NMR (300 MHz, CDCl;): & = 6.30
(t, J = 1.8 Hz, 2H), 4.69-4.78 (m, 2H), 4.33-4.42 (m, 4H), 4.16-4.26 (m, 5H), 3.82-3.89 (m, 2H), 3.27-
3.35 (m, 2H), 2.73 (d, J = 1.3 Hz, 2H), 1.53 (dt, J = 9.8, 1.5 Hz, 1H), 1.35 (d, J = 9.9 Hz, 1H). *C NMR (75



MHz, CDCl3): & = 177.7, 171.4, 137.8, 71.4, 70.5, 70.1, 69.8, 60.7, 47.8, 45.3, 42.7, 37.8. ESI-MS m/z
[M + H]": calculated 420.1, found 419.9.

Synthesis of exo-N-coumarin-3-carbonyloxy-ethyl-norbornenecarboximide (M6)
Dry DCM (60 mL) was added to a mixture of exo-N-hydroxyethyl-norbornenecarboximide S1 (3 g,
14.47 mmol, 1 eq), coumarin-3-carboxylic acid (2.75 g, 14.47 mmol, 1 eq) and dimethylaminopyridine
(DMAP, 0.176 g, 1.44 mmol, 0.1 eq). The reaction mixture was cooled to 0 °C and a solution of N,N'-
dicyclohexylcarbodiimide (3.28 g, 15.89 mmol, 1.1 eq) in dry DCM (10 mL) was added dropwise over
a period of 15 min. The reaction mixture was allowed to warm to room temperature and stirred
overnight (ON). The progress of the reaction was followed by TLC. Since a small amount of the S1
starting material was still present in the reaction mixture, dry DMF (5 mL) was added and the
suspension was stirred for further 7 hours. After removal of dicyclohexylurea by filtration, the filtrate
was concentrated in vacuo and purified by column chromatography (ethyl acetate:hexane 1:1) to
give M6 (2.63 g, 48 % yield). *H NMR (300 MHz, CDCl;): & = 8.57 (s, 1H), 7.58-7.72 (m, 2H), 7.31-7.41
(m, 2H), 6.28 (t, J = 1.8 Hz, 2H), 4.45-4.57 (m, 2H), 3.87-3.95 (m, 2H), 3.22-3.32 (m, 2H), 2.76 (d, J =
1.2 Hz, 2H), 1.54 (dt, J = 10.0, 1.5 Hz, 1H), 1.35 (d, J = 9.9 Hz, 1H). "*C NMR (75 MHz, CDCls): = 178.0,
162.7, 156.4, 155.3, 149.5, 137.8, 134.5, 129.7, 124.9, 117.9, 117.5, 116.8, 62.2, 48.0, 45.2, 42.9,
37.3. ESI-MS m/z [M + H]": calculated 380.0, found 380.1.

0
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0 °C-RT, 15 min-ON



Catalytic living ring-opening metathesis polymerization with G3
catalyst

A typical procedure for the catalytic living ring-opening metathesis polymerization with G3 catalyst is
described as follows. A Schlenk flask containing monomer M1 (0.45 g, 2.54 mmol, 561.84 eq) and
another Schlenk flask containing a mixture of G3 catalyst (4 mg, 4.52 umol, 1 eq) and chain-transfer
agent CTA# (10-50 eq, see Table 1) were closed, evacuated and backfilled with argon three times. A
solution of the deoxygenated monomer M1 in dry, degassed DCM (4.5-18.0 mL, see Table 1) was
added to a mixture of G3 and CTA# in dry, degassed DCM (1 mL) at room temperature using a syringe
pump (see Table 1). Immediately after the addition of the monomer, active metathesis species were
guenched with ethyl vinyl ether (231 eq). The crude product was concentrated in vacuo, precipiated

into methanol and dried under high vacuum. The polymerzation led to nearly quantitative yields.

@]
n // N—
H o)
[Ru] . R, R,
n
Ri—/ "Ry
@] N @]
CTA# |
G3
room temperature, DCM
CTA1 =R,

Scheme 1: Catalytic living ROMP with Grubbs' third generation catalyst and chain-transfer agents
(CTA1-CTA3).



Table 1: The first part of the table shows detailed conditions for the catalytic living ROMP procedure with G3 catalyst (4 mg, 4.52 pmol, 1 eq) and

monomer M1 (0.45 g, 2.54 mmol, 561.84 eq) in dry, degassed DCM as described on page 8. Polymers prepared under preliminary reaction conditions are

designated as OP1-OP7. Polymers prepared under optimized reaction conditions, on the other hand, are labelled as P1-P5. The second part of the table

shows number average molecular weight (M,) and polydispersity index (D = M,,/M,) values obtained by gel permeation chromatography, whereby
polymers were dissolved either in CHCl; (GPC-CHCI;) or in THF (GPC-THF). When the speed of monomer addition was increased to 10 mL/h (OP4), the
broadening of D was observed due to the accumulation of monomers, resulting in faster propagation rate compared to the reversible chain-transfer rate.

At lower monomer concentration (0.025 g/mL), a better molecular weight control could be achieved since the viscosity of the solution was decreased

thus increasing the reaction rates between propagating ruthenium carbene and macromolecular CTA.

Flow rate CTA M, M, Number of
Monomer ) Monomer: ) b b
monomer with CTA . n-theo (GPC- (GPC- repeat units
Polymer CTA . conc. CTA ratio (GPC- (GPC-
addition respectto [mmol] [kDa] CHCl3) THF) (n)
[g/mL] (n’) CHClI;) THF)
[mL/h] G3 [eq] [kDa] [kDa] (GPC-CHCIy)
OP1 CTA2 0.3 0.100 10 0.0452 56.18 10 20.5 - 115.41 1.26 -
oP2 CTA2 0.5 0.100 10 0.0452 56.18 10 20.7 - 116.54 1.25 -
oP3 CTA2 2 0.100 10 0.0452 56.18 10 20.6 - 115.97 1.27 -
OoP4 CTA2 10 0.100 10 0.0452 56.18 10 19.7 - 110.90 1.56 -
OP5 CTA3 2 0.100 10 0.0452 56.18 10 23.9 - 134.60 1.32 -
OoP6 CTA2 4 0.025 10 0.0452 56.18 10 13.6 - 76.47 1.33 -
oP7 CTAl 2 0.025 10 0.0452 56.18 10 51 - 287.78 1.46 -
P1 CTA2 2 0.025 10 0.0452 56.18 10 13.1 - 73.65 1.24 -
P2 CTA2 2 0.025 20 0.0904 28.09 5 7.6 4.2 42.61 1.29 1.23
P3 CTA2 2 0.025 30 0.1356 18.73 3.3 4.9 3.4 27.37 1.42 1.22
P4 CTA2 2 0.025 40 0.1808 14.04 2.5 3.6 2.9 20.04 1.31 1.16
P5 CTA2 2 0.025 50 0.2261 11.24 2 2.7 2.3 14.96 1.37 1.20
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Figure 1: a, Plot showing linear dependency of the number of repeat units (n) on monomer:CTA2
(n’) ratio in polymers P1-P5. b, GPC traces of polymers P1-P5 dissolved in CHCls.
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Preparation of block-copolymers by catalytic living ring-opening
metathesis polymerization with G3 catalyst

H o]
[Ru]
3

)
7

room temperature, DCM

OJ\/\/
mMN
0}
room temperature, DCM (0] N (6] (@)
G3 |

G

P7

Scheme 2: Block-copolymerization by the catalytic living ROMP with Grubbs' third generation
catalyst and chain-transfer agent CTA2.

The typical procedure for the catalytic living ring-opening metathesis block-copolymerization with G3
catalyst is described as follows. A Schlenk flask containing monomer M1 (0.25 g, 1.41 mmol, 312.13
eq) and another Schlenk flask containing a mixture of G3 catalyst (4 mg, 4.52 umol, 1 eq) and chain-
transfer agent CTA2 (10 eq) were closed, evacuated and backfilled with argon three times. A solution
of the deoxygenated monomer M1 in dry, degassed DCM (10 mL) was added to the mixture of G3
and CTA3 in dry, degassed DCM (1 mL) at room temperature using a syringe pump (flow rate 2 mL/h).
After the addition of the monomer, the crude product was concentrated in vacuo, precipiated into
methanol and dried under high vacuum. The polymer P6 (M, = 8 kDa and D= 1.33) was obtained in

nearly quantitative yields.

For the block-copolymerization, polymer P6 (100 mg, 0.0164 mmol) and catalyst G3 (4 mg, 4.52
pmol) were stirred in dry, degassed DCM (5 mL) for 1 hour. A Schlek flask containing exo-N-hexyl-
norbornenecarboximide M3 (0.15 g, 0.61 mmol) was closed, evacuated and backfilled with argon
three times and dissolved in dry, degassed DCM (6 mL). The M3 solution was added to the mixture of
polymer P6 and catalyst G3 at room temperature using a syringe pump (flow rate 2 mL/h). After
complete addition of the monomer M3, ethyl vinyl ether (231 eq) was added to quench active
metathesis species. The crude product was concentrated in vacuo, precipiated into methanol and

dried under high vacuum to yield polymer P7 (M, = 16 kDa and D = 1.52).

11
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Figure 2: GPC traces of polymer P6 and block-copolymer P7 dissolved in CHCl;.
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Catalytic living ring-opening metathesis polymerization with G2
catalyst

A typical procedure for the catalytic living ring-opening metathesis polymerization with G2 catalyst is
described as follows. A Schlenk flask containing monomer M1 (0.45 g, 2.54 mmol, 561.84 eq) and
another Schlenk flask containing a mixture of G2 catalyst (4 mg, 4.71 umol, 1 eq) and chain-transfer
agent CTA2 (10-40 eq, see Table 2) were closed, evacuated and backfilled with argon three times. A
solution of the deoxygenated monomer M1 in dry, degassed DCM (18 mL) was added to the mixture
of G2 and CTA2 in dry, degassed DCM (1 mL) at room temperature using a syringe pump (flow rate 2
mL/h). Immediately after the addition of the monomer, active metathesis species were quenched
with ethyl vinyl ether (222 eq). The resulting polymers were concentrated in vacuo, precipiated into

methanol and dried under high vacuum. The polymerzation led to nearly quantitative yields.

O

[Ru]

G2

room temperature, DCM

Scheme 3: Catalytic living ROMP with Grubbs' second generation catalyst and chain-transfer agent
CTA2.

Table 2: The table shows the effects of varying the amount of CTA2 on the number average
molecular weights (M,) and polydispersity indices (D = M,/M,). Catalytic living ROMP was
conducted with G2 (4 mg, 4.71 umol, 1 eq) and M1 (0.45 g, 2.54 mmol, 539.17 eq).

CTA2 Number of
. Monomer: M, (GPC- .
with CTA2 ) M theo repeat units P (GPC-
Polymer respect [mmol] CT?nr’:;\tlo [kDa] CHﬁisl)/:]l'lF) (n) CHCI3/THF)

to G2 (GPC-CHCIs)
P8 10 eq 0.0471 53.92 9.6 14.9/- 83.81 1.25/-
P9 20 eq 0.0942 26.96 4.8 7.6/4.4 42.61 1.39/1.25
P10 30 eq 0.1413 17.97 3.2 5.0/3.4 27.94 1.37/1.21
P11 40 eq 0.1884 13.48 2.4 3.5/2.9 19.47 1.40/1.18
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Figure 3: a, Plot showing linear dependency of the number of repeat units (n) on monomer:CTA2
ratio (n’) in polymers P8-P11. b, GPC traces of polymers P8-P11 dissolved in CHCl;.
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One shot catalytic living ring-opening metathesis polymerization

A typical procedure for the one shot catalytic living ring-opening metathesis polymerization with G2
catalyst is described as follows. A Schlenk flask containing monomer M2 (0.3 g, 1.45 mmol, 307.36
eq) was closed, evacuated and backfilled with argon three times. A solution of the deoxygenated
monomer M2 in dry, degassed DCM (18 mL) was added in one portion to the mixture of G2 and CTA2
in dry, degassed DCM (1 mL) and polymerized at room temperature for 24 h. Active metathesis
species were then quenched with ethyl vinyl ether (222 eq). The resulting polymers were

concentrated in vacuo, precipiated into methanol and dried under high vacuum.

) 0

n / N—

[Ru]

G2

room temperature, DCM

Scheme 4: Catalytic living ROMP with Grubbs' second generation catalyst and chain transfer-agent
CTA2.

Table 3: The table shows the effects of varying the amount of CTA2 on the number average
molecular weights (M,) and polydispersity indices (D = M,,/M,). One shot catalytic living ROMP was
conducted with G2 (4 mg, 4.71 umol, 1 eq) and M2 (0.3 g, 1.45 mmol, 307.36 eq).

@ CTA2 Mn?:r(')- Mn (GPC- rI:u:;?irn(i)tfs

E  with cTA2 U7 M THF P ") P (GPC-  Yield

—: respect [mmol] . [kDa] /CHCI;5) THF /CHCl;)  [%]

a to G2 ratio [kDa] (GPC- THF

(n’) /CHCl5)

P12 20 eq 0.0942 15.37 3.2 2.7/2.6 12.91/12.43 1.19/1.44 86
P13 30 eq 0.1413 10.25 2.1 2.1/1.8 10.01/8.56 1.20/1.45 84
P14 40 eq 0.1884 7.68 1.6 1.8/1.4 8.56/6.63 1.17/1.40 85
P15 50 eq 0.2356 6.15 1.28 1.6/1.2 7.60/5.67 1.14/1.35 86
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Figure 4: a, Plots showing linear dependency of the number of repeat units (n) on monomer:CTA2
ratio (n’) in polymers P12-P15. b, GPC traces of polymers P12-P15 dissolved in THF.
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Catalytic living ring opening metathesis polymerization of bulky
monomers with G2 catalyst

A typical procedure for the catalytic living ring-opening metathesis polymerization of bulky
monomers with G2 catalyst is described as follows. A Schlenk flask containing monomer M# (see
Tables 4-6) and another Schlenk flask containing a mixture of G2 catalyst (4 mg, 4.71 umol, 1 eq) and
chain-transfer agent CTA2 (10-20 eq, see Tables 4-6) were closed, evacuated and backfilled with
argon three times. A solution of a deoxygenated monomer M# in dry, degassed DCM (18 mL) was
added to the mixture of G2 and CTA2 in dry, degassed DCM (1 mL) at room temperature using a
syringe pump (see Table 4-6). Immediately after the addition of the monomer, active metathesis
species were quenched with ethyl vinyl ether (222 eq). The crude product was concentrated in

vacuo, precipiated into methanol and dried under high vacuum.

n

[Ru]

G2

room temperature, DCM \rSi

Scheme 5: Catalytic living ROMP of exo-N-triisopropylsilyloxyethyl-norbornenecarboximide M4
with Grubbs' second generation catalyst and chain-transfer agent CTA2.
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Table 4: The table shows the effects of varying the amount of CTA2 and the flow rate of the syringe
pump on the number average molecular weights (M,) and polydispersity indices (P = M,/M,).
Catalytic living ROMP of M4 (0.2 g, 0.55 mmol, 116.79 eq) was conducted with G2 (4 mg, 4.71
pmol, 1 eq) at room temperature. Polymerization of OP8 polymer, on the other hand, was carried
out at -20 °C. Poor molecular weight control and broad molecular weight dispersity were observed
due to low reactivity of propagating carbene at such low temperatures.

g Flow CT.AZ Monomer: M, (GPC- Number .
£ with CTA2 . n-theo of Yield
> rate CTA ratio CHCI5)
S respect [mmol] (") [kDa] [kDa] repeat [%]
a [mL/h] to G2 units (n)
P16 2 10 eq 0.0471 11.68 4.2 3.7 10.55 1.25 87
oP8 2 10 eq 0.0471 11.68 4.2 32.8 90.59 1.66 80
oP9 4 10 eq 0.0471 11.68 4.2 4.1 11.65 1.30 90
P17 2 15eq 0.0706 7.79 2.8 2.9 8.35 1.23 82
P18 2 20 eq 0.0942 5.84 2.1 2.3 6.70 1.39 78
P16
10 -
P17
8 [
]
6- P18
c
4
24
0 T T T T T T T T T T T T
0 1 2 3 4 5 6 7 8 9 0 1 12
P
—P16
b |—P17

15

T r T % T T ) Ll ¥ T % T

— )
16 17 18 19 20 21 22 23
Elution time (min)

Figure 5: a, Plot showing linear dependency of the number of repeat units (n) on monomer:CTA2

ratio (n’) in polymers P16-P18. b, GPC traces of polymers P16-P18 dissolved in CHCls.
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Scheme 6: Catalytic living ROMP of exo-N-ferrocenylcarbonyloxy-ethyl-norbornenecarboximide
(M5) with Grubbs' second generation catalyst and chain transfer-agent CTA2.

G2

Table 5: The table shows the effects of varying the amount of CTA2 and the flow rate of the syringe
pump on the number average molecular weights (M,) and polydispersity indices (D = M,/M,).
Catalytic living ROMP of M5 (0.2 g, 0.477 mmol, 94.5 eq) was conducted with G2 (4 mg, 4.71 umol,
1 eq) at room temperature. The standard errors of the mean M, values were obtained from
triplicate GPC measurements of the respective polymeric samples dissolved in CHCls.

CTA2
o Flow . -
g with  cTaz  Momomer: ., . Vn(GPC- Number Yield
> rate CTA ratio CHCly) of repeat b
S respect [mmol] (") [kDa] [kDa] units (n) [%]
& [mL/h] 562
3.152 7.98 =
P19 2 10 eq 0.0471 10.13 4.2 1.29 95
0.010 0.02
OP10 4 10 eq 0.0471 10.13 4.2 3.345 8.44 1.39 95
2.104 £ 5.48 +
P20 2 15eq 0.0706 6.76 2.8 1.36 93
0.008 0.020
1.548 + 415+
P21 2 20 eq 0.0942 5.06 2.1 1.25 92

0.005 0.01
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Figure 6: a, Plot showing linear dependency of the number of repeat units (n) on monomer:CTA2
ratio (n’), polymers P19-P21. b, GPC traces of polymers P19-P21 dissolved in CHCl;.
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Scheme 7: Catalytic living ROMP of exo-N-coumarin-3-carbonyloxy-ethyl-norbornenecarboximide
M6 with Grubbs' second generation catalyst and chain-transfer agent CTA2.

Table 6: The table shows the effects of varying the amount of CTA2 and the flow rate of the syringe
pump on the number average molecular weights (M,) and polydispersity indices (D = M,/M,).
Catalytic living ROMP of M6 (0.2 g, 0.527 mmol, 111.93 eq) was conducted with G2 (4 mg, 4.71
pmol, 1 eq) at room temperature.

CTA2
o Flow . -
g with  CTAz  Memomer: o Mn(GPC- Number Yield
> rate CTA ratio CHCl) of repeat b
S respect [mmol] (") [kDa] [kDa] units (n) [%]
a [mL/h] to G2
P22 2 10 eq 0.0471 11.19 4.2 3.4 9.36 1.42 95
OP11 4 10 eq 0.0471 11.19 4.2 3.6 9.89 1.44 96
P23 2 15eq 0.0706 7.47 2.8 2.4 6.72 1.40 94
P24 2 20 eq 0.0942 5.60 2.1 1.7 4.88 1.34 92
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Figure 7: Plot showing linear dependency of the number of repeat units (n) on monomer:CTA2
ratio (n’) in polymers P22-P24. b, GPC traces of polymers P22-P24 dissolved in CHCIs.

22



End-capping of the polymer chains with CTAs for the
determination of reaction rate constants by 1TH NMR

A mixture of exo-N-methyl-norbornenecarboximide monomer M1 (16 mg, 0.09 mmol, 20 eq) and
1,3,5-trimethoxybenzene (13 mg) was dissolved in dry, degassed CD,Cl, (0.3 mL) and added in one
portion to a solution of G3 catalyst (4 mg, 4.52 umol, 1 eq) in dry, degassed CD,Cl, (0.2 mL). 1,3,5-
trimethoxybenzene was employed as an NMR standard. M1 and G3 formed a ruthenium carbene
complex (POLY-G3), which was transferred to an NMR tube under argon atmosphere. *H NMR
spectra were recorded before and at various time intervals after the addition of a solution of CTA# in

dry, degassed CD,Cl, (0.3 mL).

(0]
" MN\
[Ru] n[RU]
O (¢]

G3

Jl 10 min (100 % conversion)
I 0 min (0 % conversion)
N
N e . o e e N o e S
195 19.0 185 18.0 175 17.0 16.5 16.0

Chemical Shift (ppm)

Figure 8: Stacked 'H NMR spectra (CD,Cl,, 400 MHz) showing the decreasing POLY-G3 peak around
18.50 ppm and the doublet of the newly formed ruthenium cyclohexyl methylidene species at
18.98 ppm as a result of the reaction between CTA3 (10 eq) and POLY-G3, which was completed
within 10 min.
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Figure 9: Stacked 'H NMR spectra (CD,Cl,, 300 MHz) show that within 10 min POLY-G3 did not react

with exo-cyclic styrenic bond of CTAO (10 eq). 'H NMR spectra of the reactions of CTA1 and CTA2
with POLY-G3 are shown in Figure 2.
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Figure 10: Graph showing reaction rates of CTA1-CTA3 (10 eq) with POLY-G3.
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Figure 11: a, Stacked ‘H NMR spectra (CD,Cl,, 300 MHz) showing the decreasing POLY-G3 peak
around 18.50 ppm and the growing peak of G3 at 19.07 ppm during the reaction between CTA1 (10
eq) and POLY-G3. b, Stacked 'H NMR spectra (CD,Cl,, 300 MHz) also showing the growing G3 peak
at 19.07 ppm during the reaction between CTA2 (1.1 eq) and POLY-G3.
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Figure 12: a, Stacked ‘H NMR spectra (CD,Cl,, 300 MHz) showing the decreasing POLY-G3 peak
around 18.50 ppm and the growing peak of G3 at 19.07 ppm during the reaction between CTA2
(1.5 eq) and POLY-G3. b-c, Stacked *H NMR spectra (CD,Cl,, 300 MHz) showing the newly formed
doublet peak of ruthenium cyclohexyl methylidene complex at 18.98 ppm during the reaction
between either b, CTA3 (1.1 eq) or ¢, CTA3 (1.5 eq) and and POLY-G3. The equilibrium was reached
within 10 minutes as the newly formed ruthenium cyclohexyl methylidene was competing with the
POLY-G3 to react with the remaining amount of CTA3.
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1 N [Ru]o([CTA]p — x)
[CTA]p — [Rulp  ([Ru]y —x)[CTA],

The above equation was used for the rate constant estimation of reactions that follow a second-
order rate law as adapted from Atkins and others®. [Ruj, corresponds to the initial concentration of
POLY-G3, [CTA], refers to the initial concentration of CTA#, x represents the decrease in the
concentration of POLY-G3 at a given time and A is equal to t-k, whereby t stands for time and k is the

second-order rate constant. The backward reactions were not taken into the account.

k=0.0011M1s
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Figure 13: Rate constant estimation of a, the reaction of POLY-G3 with CTA1 (10 eq) (see Figure
11a) b, the reaction of POLY-G3 with CTA2 (1.1 eq) (see Figure 11b).
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Figure 14: Rate constant estimation of the reaction of POLY-G3 with CTA2 (1.5 eq). For the
reactions of CTA3 with POLY-G3, the equilibrium was already reached within 10 min and thus the
rate constants were not calculated (see Figure 12b-c).

Reaction of G3 with CTA3

A solution of the G3 catalyst (4 mg, 4.52 umol, 1 eq) in dry, degassed CD,Cl, (0.5 mL) was transferred
to the NMR tube under argon. 'H NMR spectra were recorded before and at various time intervals

after the addition of a solution of CTA3 (10 eq) in dry, degassed CD,Cl, (0.3 mL).

H CTA3 H
[Ru] O/\/% +  [Ru]
5 |

G3
64 min (64 % conversion)

10 min (64 % conversion)

R 0 min (0 % conversion)

T
19.5 19.0 18.5 18.0 17.5 17.0 16.5 16.0
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Figure 15: Stacked ‘H NMR spectra (CD,Cl,, 300 MHz) showing the newly formed doublet of
cyclohexyl methylidene at 18.98 ppm during the reaction between CTA3 (10 eq) and G3. The
equilibrium was reached within 10 min since ruthenium cyclohexyl methylidene was competing
with G3 to react with the remaining amount of CTA3.
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MALDI-ToF MS data
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Figure 16: MALDI-ToF mass spectrum of P1.
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Figure 17: MALDI-ToF mass spectrum of P2.
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Figure 18: MALDI-ToF mass spectrum of P3.
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Figure 19: MALDI-ToF mass spectrum of P4.
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Figure 20: MALDI-ToF mass spectrum of P5.
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Figure 21: MALDI-ToF mass spectrum of P6.
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4228.88

T T ~ T ~ T T ~ T ~ T T ~ T ~ T T 1T
4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239

4000 6000 8000

m/z

m/z

Figure 22: MALDI-ToF mass spectrum of P8.

Exact mass = 3166.30

e lJUUU

—rT 7T T T T T —— T T
3165 3166 3167 3168 3169 3170 3171 3172 3173 3174

m/z

ol L, ‘.ILLILI

1 1
2000 4000 6000

m/z

Figure 23: MALDI-ToF mass spectrum of P9.

32



Exact mass = 2812.14

2812.05

.

T+ 1 T~ 1 T T 1T "~ 1 1 1T 1T 1
2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820

m/z
'Jl| .AA.IIIIIl‘.‘.‘-I'Illl

1 1
2000 4000

m/z

Figure 24: MALDI-ToF mass spectrum of P10.
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Figure 25: MALDI-ToF mass spectrum of P11.
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Figure 26: MALDI-ToF mass spectrum of P12,
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Figure 27: MALDI-ToF mass spectrum of P13.
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Figure 28: MALDI-ToF mass spectrum of P14,
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Figure 29: MALDI-ToF mass spectrum of P15.
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Figure 30: MALDI-ToF mass spectrum of P16.

Exact mass = 1785.93
1785.81

-

T
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
m/z

| IR

f T
2000 4000

m/z

Figure 31: MALDI-ToF mass spectrum of P17.
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Figure 32: MALDI-ToF mass spectrum of P18.
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Figure 33: MALDI-ToF mass spectrum of P19.
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Figure 34: MALDI-ToF mass spectrum of P20.
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Figure 35: MALDI-ToF mass spectrum of P21.
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Figure 36: MALDI-ToF mass spectrum of P22,
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Figure 37: MALDI-ToF mass spectrum of P23.
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Figure 38: MALDI-ToF mass spectrum of P24,
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1H NMR and 13C NMR spectra
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Figure 39: "H NMR spectrum (CDCl3, 300 MHz) of CTAO.
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Figure 40: *C NMR spectrum (CDCl;, 75 MHz) of CTAO.
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Figure 41: *H NMR spectrum (CDCls;, 400 MHz) of S2.
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Figure 42: *C NMR spectrum (CDCl;, 101 MHz) of S2.
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Figure 43: "H NMR spectrum (CDCl;, 300 MHz) of S3.
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Figure 44: *C NMR spectrum (CDCl;, 75 MHz) of S3.
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Figure 45: "H NMR spectrum (CDCl3, 300 MHz) of CTA2.
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Figure 46: *C NMR spectrum (CDCl;, 75 MHz) of CTA2.
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Figure 47: *H NMR spectrum (CDCls;, 400 MHz) of S4.
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Figure 48: *C NMR spectrum (CDCl;, 101 MHz) of S4.
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Figure 49: "H NMR spectrum (CDCl;, 400 MHz) of CTA3.
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Figure 50: 3¢ NMR spectrum (CDCl;, 101 MHz) of CTA3.
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Figure 51: "H NMR spectrum (CDCl3, 400 MHz) of M2.
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Figure 52: *C NMR spectrum (CDCls;, 75 MHz) of M2.
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Figure 53: "H NMR spectrum (CDCl3, 300 MHz) of M4.
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Figure 54: *H NMR spectrum (CDCl;, 75 MHz) of M4.
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Figure 55: *H NMR spectrum (CDCl;, 400 MHz) of M5.
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Figure 56: *C NMR spectrum (CDCls;, 400 MHz) of M5.
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Figure 57: "H NMR spectrum (CDCl3, 300 MHz) of M6.
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Figure 58: 1*C NMR spectrum (CDCl;, 75 MHz) of M6.
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Figure 59: 'H NMR spectrum (CDCl;, 400 MHz) of P1.
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Figure 60: 'H NMR spectrum (CDCl;, 400 MHz) of P2.
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Figure 61: 'H NMR spectrum (CDCl;, 400 MHz) of P3.
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Figure 62: *H NMR spectrum (CDCls;, 400 MHz) of P4.
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Figure 63: 'H NMR spectrum (CDCl;, 400 MHz) of P5.
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Figure 64: 'H NMR spectrum (CDCl;, 400 MHz) of P6.
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Figure 65: *H NMR spectrum (CDCls;, 400 MHz) of P7.
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Figure 66: 'H NMR spectrum (CDCl;, 400 MHz) of P8.
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Figure 67: *H NMR spectrum (CDCls;, 400 MHz) of P9.
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Figure 68: 'H NMR spectrum (CDCls, 400 MHz) of P10.
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Figure 69: *H NMR spectrum (CDCl;, 400 MHz) of P11.
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Figure 70: *H NMR spectrum (CDCl;, 400 MHz) of P12.
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Figure 71: *H NMR spectrum (CDCl;, 400 MHz) of P13.
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Figure 72: *H NMR spectrum (CDCl;, 400 MHz) of P14.
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Figure 73: *H NMR spectrum (CDCl;, 400 MHz) of P15.
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Figure 74: *H NMR spectrum (CDCl;, 300 MHz) of P16.
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Figure 75: 'H NMR spectrum (CDCl3;, 300 MHz) of P17.
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Figure 76: *H NMR spectrum (CDCl;, 300 MHz) of P18.
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Figure 77: *H NMR spectrum (CDCl;, 300 MHz) of P19.
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Figure 78: *H NMR spectrum (CDCl;, 300 MHz) of P20.
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Figure 79: 'H NMR spectrum (CDCl3;, 300 MHz) of P21.
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Figure 80: 'H NMR spectrum (CDCl3;, 300 MHz) of P22.
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Figure 81: *H NMR spectrum (CDCl;, 300 MHz) of P23.
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Figure 82: *H NMR spectrum (CDCl;, 300 MHz) of P24.
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Figure 83: Photograph of P1 polymer.
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