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a b s t r a c t

Weare interested in coloring the edges of amixed graph, i.e., a graph containing unoriented
and oriented edges. This problem is related to a communication problem in job-shop
scheduling systems. In this paper we give general bounds on the number of required
colors and analyze the complexity status of this problem. In particular, we provide N P -
completeness results for the case of outerplanar graphs, as well as for 3-regular bipartite
graphs (even when only 3 colors are allowed, or when 5 colors are allowed and the graph
is fully oriented). Special cases admitting polynomial-time solutions are also discussed.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

A mixed graph GM = (V ,U, E) is a graph containing unoriented edges (set E) as well as oriented edges (set U), referred
to as arcs. This notion was first introduced in [18].

1.1. Related work: Vertex coloring of mixed graphs

Vertex coloring problems inmixed graphs have applications in scheduling, where disjunctive and precedence constraints
have to be taken into account simultaneously. In particular, two variants of the problem have been given most attention in
the literature (see for instance [18,1,2,4–6,8,11,13–17,19]).
In the first problem, simply called mixed graph vertex coloring, the goal is to color the vertices of a mixed graph with a

given number of colors, such that any two adjacent vertices get different colors, and for any arc (x, y), the color of x must
be strictly smaller than the color of y. Notice that a solution only may exist if the oriented part of the mixed graph contains
no oriented circuit. Furthermore, the mixed graph vertex coloring problem is a generalization of the usual coloring problem
in unoriented graphs, and it has been shown to be N P -complete even in planar cubic bipartite graphs (see [14]). In [4–
6] polynomial algorithms are given for the cases of mixed trees and mixed series-parallel graphs. Bounds on the mixed
chromatic number (i.e., the smallest integer for which the mixed graph admits a coloring) are presented in [15]. Finally,
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in [16,17] the unit-time job-shop problem is considered via mixed graph coloring, and branch-and-bound algorithms are
given and tested on randomly generated mixed graphs.
In the secondproblem, knownasweakmixed graph vertex coloring, wehave the previous constraints, butwe allowvertices

linked by an arc to get the same color, i.e., for any arc (x, y) the color of xmust be smaller than or equal to the color of y. In
general, the previously described mixed graph vertex coloring problem can be treated as a special case of the weak version.
Weak mixed graph vertex coloring is also known to be N P -complete in planar cubic bipartite graphs [14]. Bounds on the
mixed chromatic number are presented in [15]. In [19] some algorithms for calculating the exact value of the weak mixed
chromatic number of graphs of order n ≤ 40 and upper bounds for mixed graphs of order larger than 40, are presented.

1.2. Problem formulation and motivation: Edge coloring of mixed graphs

In this paper, we shall consider an edge coloring problem in mixed graphs. More precisely, we want to color the edges
of a mixed graph GM = (V ,U, E) such that any two adjacent edges (oriented and unoriented) get different colors and for
any two adjacent arcs e, e′ ∈ U forming a directed path (e, e′), the color of emust be strictly less than the color of e′. Such a
coloring will be called amixed graph edge coloring. If only k colors are available, we call it amixed graph edge k-coloring. The
smallest integer k for which a graph GM admits a mixed graph edge k-coloring will be called the mixed chromatic index of
GM and denoted by qM(GM). Notice that for a solution to the mixed graph edge coloring problem to exist, the mixed graph
must not contain any oriented circuit. Throughout the rest of the paper we shall assume that this is true. To the best of our
knowledge, the mixed graph edge coloring problem has not been studied before; some basic properties and the motivation
of the problem are discussed below.
Mixed graph edge coloring can be treated as a special case of mixed graph vertex coloring. For a mixed graph GM =

(V ,U, E), we define its mixed line graph L(GM) as the mixed graph having vertex set U ∪ E, arcs (e, e′) connecting all pairs
of elements e, e′ ∈ U such that arc e ends at the start-vertex of arc e′, and unoriented edges connecting all the remaining
pairs of elements of U ∪ E which share at least one vertex. By analogy to the correspondence between an edge coloring of
an undirected graph and a vertex coloring of its line graph, it is evident that a mixed graph edge coloring of GM is proper if,
and only if, the corresponding labeling of the vertices of L(GM) is a proper mixed graph vertex coloring.
Edge coloring of undirected graphs is often used to model certain job-shop scheduling instances consisting of unit-time

tasks assigned to specific pairs of processors [10]. In the case of mixed graphs, it is convenient to look upon an arc from a
node u to a node v as a unit-time data transmission process from u to v, requiring the cooperation of processors u and v,
which cannot simultaneously perform other tasks. Thus, a correct coloring of the directed arcs of the graph corresponds to a
scheduling in which each node first successively receives input data from all incoming arcs, next uses all the collected data
for local computations (assumed to be instantaneous), and finally successively sends the output data along all its outgoing
arcs. The undirected edges of the mixed graph, which only appear in some considerations, correspond to possibly unrelated
two-processor tasks performed in the system, such as mutual self-testing of processors.

1.3. Definitions and notions

Let GM = (V ,U, E) be a mixed graph. We shall denote by l(GM) the number of oriented edges on a longest directed path
in GM , and by∆(GM) the maximum degree of a vertex in GM , i.e., the maximum number of edges (unoriented and oriented)
incident to a same vertex v ∈ V . The outer degree of a vertex v, denoted by degout(v), is defined as the number of oriented
edges (arcs) having v as the start-vertex; analogously, the inner degree of v, denoted by degin(v), is defined as the number
of oriented edges (arcs) with v as the end-vertex. Finally, the inrank of a vertex v, denoted by in(v), is the length, i.e., the
number of arcs, of a longest directed path ending at v. For all graph theoretical terms not defined here, the reader is referred
to [3].

1.4. Contribution and outline of the paper

The rest of the paper is organized as follows:

• In Section 2 we propose lower and upper bounds on the value of the mixed chromatic index of a graph GM , expressed in
terms of l(GM) and∆(GM). Interestingly, for all cases which are not equivalent to undirected edge coloring (l(GM) > 1),
these bounds turn out to be tight, even when GM is a mixed tree having only oriented edges.
• In Section 3we study the complexity of the problemMGEC of determining if qM(GM) ≤ k for amixed graphGM and integer
k given at input. The problem turns out to beN P -complete even if GM is a bipartite outerplanar graph (Section 3), but it
admits a polynomial solution for trees (Section 3.2).
• In Section 4 we consider the edge coloring problem for fully directed graphs (i.e., mixed graphs without unoriented
edges, E = ∅), which appears to be of particular significance from a practical viewpoint. In this case, MGEC is shown to
beN P -complete even in 3-regular bipartite graphs when allowing 5 colors.
• Finally, we consider the complexity of the MGEC problem for bounded values of number of available colors (Section 5).
By a generic argument, the problem is then solvable in polynomial time for partial k-trees, but turns out to be N P -
complete even in 3-regular planar bipartite mixed graphs when allowing 3 colors.
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2. Bounds on the mixed chromatic index

In this section we present some lower and upper bounds on the mixed chromatic index qM(GM). We start with a trivial
lower bound.

Proposition 2.1. Let GM = (V ,U, E) be a mixed graph. Then

qM(GM) ≥ max{l(GM),∆(GM)}.

Proof. Since all arcs on the same path must be assigned different colors, we have qM(GM) ≥ l(GM). Furthermore, all edges
incident to a same vertex must get different colors. Hence qM(GM) ≥ ∆(GM), and thus qM(GM) ≥ max{l(GM),∆(GM)}. �

Now, in order to get an upper bound on the mixed chromatic index qM(GM), we will give an algorithm which colors the
edges of a mixed graph.

Proposition 2.2. Let GM = (V ,U, E) be a mixed graph. Then

qM(GM) ≤
{
l(GM)[∆(GM)− 1] + 1 if l(GM) ≥ 2,
∆(GM)+ 1 if l(GM) ≤ 1.

Proof. If l(GM) ≤ 1, then we just consider all oriented edges as unoriented edges, and thus our problem is equivalent to the
edge coloring problem of an unoriented graph. By Vizing’s theorem (see [20]), at most∆(GM)+ 1 colors are needed.
Suppose now that l(GM) ≥ 2. For each i ∈ {0, 1, . . . , l(GM)−1}, letUi be the set of arcs having a start-vertex vwith inrank

in(v) = i and an end-vertex uwith inrank in(u) = i+ 1. Consider now the oriented partial graph GoM = (V ,
⋃l(GM )−1
i=0 Ui,∅)

ofGM having arcs connecting vertices of adjacent inrank.GoM is clearly bipartite, with vertices of even and odd inrank forming
its two bipartite partitions, respectively. Moreover, since the maximum degree in GoM is at most ∆ = ∆(GM), we conclude
by König’s theorem [9] that we can color the arcs of GoM by using at most∆ colors in such a way that any two adjacent arcs
get different colors (at this step, we do not care about the precedence constraints). Let us denote by c this coloring with
c(e) ∈ {1, . . . ,∆}, ∀e ∈

⋃l(GM )−1
i=0 Ui. Now, the idea is to modify c so as to obtain a coloring c ′ also respecting the precedence

constraints.
The coloring c ′ is constructed as follows. Each arc e ∈ Ui gets color c ′(e) = 1+ (∆− 1)i+[(c(e)+ i− 1) mod ∆], where

c(e) is the color of e obtained in coloring c and the modulo remainder belongs to the range {0, . . . ,∆ − 1}. Notice that for
any two adjacent arcs e ∈ Ui and f ∈ Ui, by the definition of coloring c ′ and the properties of coloring c , we have

c ′(e)− c ′(f ) ≡ (1+ (∆− 1)i+ c(e)+ i− 1)− (1+ (∆− 1)i+ c(f )+ i− 1) mod ∆
≡ c(e)− c(f ) mod ∆
6≡ 0 mod ∆

hence c ′(e) 6= c ′(f ). Thus, it remains to be shown that for any two adjacent arcs e ∈ Ui and f ∈ Ui+1 we have c ′(e) < c ′(f ).
Observe that 1+ (∆− 1)i ≤ c ′(e) ≤ 1+ (∆− 1)(i+ 1) and 1+ (∆− 1)(i+ 1) ≤ c ′(f ) ≤ 1+ (∆− 1)(i+ 2), hence it is
enough to show that c ′(e) 6= c ′(f ). Analogously to the previous case, we have:

c ′(e)− c ′(f ) ≡ (1+ (∆− 1)i+ c(e)+ i− 1)− (1+ (∆− 1)(i+ 1)+ c(f )+ i) mod ∆
≡ c(e)− c(f ) mod ∆
6≡ 0 mod ∆

thus c ′(e) 6= c ′(f ). In this way we have shown that c ′ is a correct edge coloring of GoM ; it is easy to see that c
′ uses at most

l(GM)(∆− 1)+ 1 colors.
We will now extend the coloring c ′ to all arcs from GM in such a way as to preserve the condition that for each edge e

having a start-vertex v with inrank in(v) = i and an end-vertex u with inrank in(u) = j > i + 1, 1 + (∆ − 1)i ≤ c ′(e) ≤
1+(∆−1)j. Notice that this condition immediately implies that precedence constraints are satisfied provided that adjacent
arcs receive different colors. Since for any arc (v, u) from U(GM)\U(GoM)with in(v) = i and in(u) = j, we have j ≥ i+2, the
number of available colors is at least 2∆− 1. Since an arc is adjacent to at most 2(∆− 1) other arcs, colors can be assigned
to arcs from U(GM) \ U(GoM) in a greedy manner; the obtained coloring still uses no more than l(GM)(∆− 1)+ 1 colors.
Finally, notice that by a similar argument, the coloring c ′ can also be extended to all the unoriented edges in E. Indeed,

for all l(GM) ≥ 2, we have l(GM)(∆− 1)+ 1 > 2(∆− 1) allowed colors to choose from for each edge. �

It is worth emphasizing that the above bound is tight even for trees: Fig. 1 presents a fully oriented tree TM = (V ,U,∅)
with ∆(TM) = 4 and l(TM) = 3 for which any proper edge coloring satisfying precedence constraints requires at least
l(GM)[∆(GM) − 1] + 1 = 3(4 − 1) + 1 = 10 colors. Clearly, this example can be easily extended for arbitrary values of ∆
and l ≥ 2.
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Fig. 1. A mixed tree TM = (V ,U,∅)with∆(TM ) = 4 and l(TM ) = 3 requiring 10 colors.

3. Outerplanar graphs—the complexity results

In this section, we prove that the problem of deciding whether a given mixed graph is edge k-colorable isN P -complete
even in the case of mixed bipartite outerplanar graphs. On the other hand, in Section 3.2, we provide a polynomial time
algorithm that solves this problem in mixed trees.

3.1. Hardness in outerplanar graphs

Consider the following decision problem.

Mixed Graph Edge Coloring (MGEC(GM , k)):
Given: A mixed graph GM = (V ,U, E) and a positive integer k > 0.
Question: Does there exist a mixed edge k-coloring of GM?
Since edge coloring in an unoriented graph G = (V , E) is a special case of our problem, MGEC(GM , k) is N P -complete

in general mixed graphs. In the following, we shall prove that MGEC remains N P -complete even for the case of mixed
bipartite outerplanar graphs.

Theorem 3.1. MGEC(GM ,∆(GM) = l(GM)) isN P -complete if GM is a bipartite outerplanar mixed graph.

Proof. The proof is based upon a reduction from the precoloring extension problem on edges, denoted by PrExtEd(G′, p),
which has been shown to beN P -complete in bipartite outerplanar graphs [12]. Recall that in this problem, some edges of
a given graph G′ have a preassigned color, and one has to decide whether this precoloring can be extended to a proper edge
p-coloring of the graph.
Consider an undirected bipartite outerplanar graph G′ = (V ′, E ′), and suppose that some of its edges are precolored with

colors 1, 2, . . . , k. The idea is to transform G′ into a bipartite outerplanar mixed graph GM , with ∆(GM) = l(GM) = k, such
that the precoloring of G′ can be extended to a proper edge k-coloring of the graph if, and only if, edges of GM can be properly
colored with k colors as well.
Let e ∈ E ′ be an edge precolored with color i. The replacement of e is depicted in Fig. 2(a–c). We have the following

properties:

(A) Fig. 2(a):
– If i < k then in any edge k-coloring of Ti-gadget, edge e1 can be assigned neither color i nor i+ 1, 1 ≤ i < k.
– Otherwise, if i = k then in any edge k-coloring of Tk-gadget, edge e1 cannot be assigned color k.

(B) Fig. 2(b): in any edge k-coloring of an STi-gadget, edge e2 must be assigned color i.
(C) Fig. 2(c): color i of e forces the same color i for both edges e3 and e4 in any edge k-coloring.

Replacing all the precolored edges ofG′ in the abovemanner results in themixed graphGM with∆(GM) = l(GM) = k, and
GM remains bipartite and outerplanar. Next, observe that by the construction, all vertices in GM that are present in G′ are of
inner degree 0. Consequently, bearing in mind Property (C), we immediately get that the precoloring of G′ can be extended
to a proper edge k-coloring of the graph if, and only if, edges of GM can be colored with k = ∆(GM) = l(GM) colors. �
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Fig. 2. (a) Ti-gadget. (b) STi-gadget: edge e2 is forced to be assigned color i. (c) Replacement of e preassigned color iwith two STi-gadgets: edges e3 and e4
(which correspond both to an edge e2) are forced to be assigned the same color i.

3.2. The case of trees

For a vertex v ∈ V of a mixed graph GM = (V ,U, E), let U inGM (v) denote the set of oriented edges from U incident to v
and directed towards v; likewise, let UoutGM (v) denote the set of oriented edges incident to v and directed out of v.

Lemma 3.2. Consider a mixed star SM = (V ,U, E) together with an assignment L : (E ∪ U) → 2{1,...,k} of lists to its edges.
It is possible to determine in polynomial time whether SM admits a mixed edge coloring c with the additional constraint that
c(e) ∈ L(e) for all e ∈ E ∪ U.

Proof. Let v be the vertex of Sm with d(v) > 1. Notice that in any mixed coloring of SM the maximum b of the color values
assigned to edges from setU inSM (v)must be strictly smaller than all the color values assigned to edges from setU

out
SM
(v). Hence,

the sought coloring of SM with lists L exists if, and only if, for some value of parameter b ∈ {1, . . . , k}, there exists a list edge
coloring c ′ of the undirected star S = (V ,U ∪E) (we consider all arcs as unoriented edges in S) with lists L′ (i.e., c ′(e) ∈ L′(e)
for all edges) defined as follows:

L′(e) =


L(e) \ {1, . . . , b}, if e ∈ UoutSM (v),
L(e) ∩ {1, . . . , b}, if e ∈ U inSM (v),
L(e), otherwise.

The list edge coloring problem can, however, be solved in polynomial time for undirected stars by reduction to maximum
bipartite matching [22]. Thus we conclude that the list edge coloring problem for mixed trees can be solved in polynomial
time. �

Theorem 3.3. MGEC(GM , k) can be solved in polynomial time if GM is a mixed tree.

Proof. Let TM = (V ,U, E) be a mixed tree and let r be the root. For a vertex v ∈ V , v 6= r , let p(v) denote the parent of v in
the tree, and let ev be the (possibly directed) edge connecting v and p(v). Next, let TM(v) be the mixed subtree of TM having
root p(v), which is induced by vertex p(v), vertex v, and all vertices u ∈ V such that v lies on the chain connecting u and r .
The algorithm proceeds by a standard bottom-up approach. For all vertices v ∈ V , v 6= r , we will compute the set

C(ev) ⊆ {1, . . . , k} of all colors c such that edge ev can receive color c in some mixed edge k-coloring of TM(v). If v is a leaf,
then clearly C(ev) = {1, . . . , k}. Otherwise, let X(v) ⊆ V be the set of children of v, and suppose that all the sets C(eu), for
all u ∈ X(v), are already given; we need to compute set C(ev). Observe that for any integer c ∈ {1, . . . , k}, we have that
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c ∈ C(ev) if, and only if, there exists an edge coloring of the mixed star with center v and leaves X(v), such that each edge
eu of this star, u ∈ X(v), receives a color from list L(eu) defined as follows:

L(eu) =

C(eu) \ {1, . . . , c}, if eu ∈ UoutTM (v) and ev ∈ U inTM (v),
C(eu) \ {c, . . . , k}, if eu ∈ U inTM (v) and ev ∈ UoutTM (v),
C(eu) \ {c}, otherwise.

In this way, taking into account Lemma 3.2, the sets C(e) for all edges of the tree can be computed in polynomial time.
Finally, the tree TM admits an edge k-coloring if and only if the mixed star induced by root r and all its children can be list
edge colored with lists of available colors given as L(e) = C(e) for all edges e; once again, this condition can be checked in
polynomial time by Lemma 3.2. �

4. Fully oriented mixed graphs

In this section we consider the case of fully oriented mixed graph, that is, the case E = ∅. We prove thatMGEC(GM , 5) is
N P -complete even if GM is cubic and bipartite, l(GM) = 3 and E = ∅.
First, let us prove a theorem for (2, 3)-regular bipartite graphs which we shall then use to deriveN P -completeness for

cubic bipartite graphs; we recall that a graph G is (2, 3)-regular if every vertex of G has degree either 2 or 3.

Theorem 4.1. MGEC(GM , 5) isN P -complete if GM is (2, 3)-regular and bipartite, l(GM) = 3, and E = ∅.

Proof. Weuse a reduction from the edge 3-coloring problem, denoted by 3EdCol, which has been shown to beN P -complete
even for 3-regular graphs (see [7]). Recall that in this problem, given a simple cubic graph, one has to decide whether the
edges of the graph can be properly colored with 3 colors.
Consider an undirected 3-regular graph G′ = (V ′, E ′), and let GM = (V ,U, E) be the graph resulting from G′ by applying

the following replacements.

1. Every vertex v ∈ V ′ is replaced by its three copies vA, vB and vC . Vertex vA is called the A-copy of v; likewise, vertices vB
and vC are called the B- and C-copies of v, respectively.

2. Every edge e = [x, y] ∈ E ′ is replaced by a T ABCe -gadget spanned on the relevant vertex copies xA, xB, xC and yA, yB, yC ,
with three distinguished vertices eA, eB and eC (see Fig. 3(a–c)). Vertex eA is called the A-copy of e; likewise, vertices eB
and eC are called the B- and C-copies of e, respectively.

The resulting mixed graph GM is (2, 3)-regular and bipartite, l(GM) = 3, and E = ∅. Furthermore, it has the following
properties:

(i) The number of all A-, B- and C-copies is the same.
(ii) All A-copies have outer degree 3 in GM (and thus they have inner degree 0), while all B- and C-copies have outer degree
0 in GM (and thus they have inner degree 3).

Consider now the T ABCe -gadget for an edge e ∈ E ′. It consists of 5 blocks, called ABC-blocks (see Fig. 3(d) and Fig. 5).
Observe that each of these five ABC-blocks has exactly one A-, one B-, and one C-copy (of a vertex or of an edge) as leaves,
called connectors. Moreover, we have the following property.

Claim 1. In any mixed edge 5-coloring of GM , there exist only three possible colorings of an ABC-block.

Let c be an edge 5-coloring of GM with c(e) ∈ {1, . . . , 5}, ∀e ∈ U ∪ E. Let vA ∈ V be the A-copy of some vertex or edge of
graph G′. By Property (ii), vA is incident (serves as a connector) to exactly three ABC-blocks B1, B2 and B3, and the orientation
of the arcs in an ABC-gadget forces that the colors of the relevant arcs e11, e

2
1, e

3
1 incident to vA must be restricted to 1, 2, 3

(see Fig. 4(a)); w.l.o.g. assume that c(ei1) = i, i = 1, 2, 3. Now, as e
3
1 is assigned color 3, the unique coloring, denoted by α,

is forced for B3: c(e31) = 3, c(e
3
2) = 5, c(e

3
3) = 4 and c(e

3
4) = 5. (See Fig. 4(b).)

Consider now the coloring of block B2 by c; recall that we assumed c(e21) = 2. As vA is any A-copy, we obtain from
Property (i) and the coloring of block B3 that color 5 cannot be used anymore by any arc (of an ABC-block) incident to a B-
or a C-copy, and thus neither by an arc of B2. Consequently, the following unique coloring of B2, denoted by β , is forced:
c(e21) = 2, c(e

2
2) = 4, c(e

2
3) = 3 and c(e

2
4) = 4. (See Fig. 4(c).)

Finally, consider ABC-block B1. Similarly as above, from Property (i) and the colorings of blocks B2 and B3, colors 4, 5
cannot be used by an arc (of an ABC-block) incident to a B- or a C-copy, and thus neither by an arc of B1. Hence there is only
one possible coloring of B1 by c : c(e11) = 1, c(e

1
2) = 3, c(e

1
3) = 2 and c(e

1
4) = 3, which we shall denote by γ . (See Fig. 4(d).)

Therefore, by the above discussion, only three colorings α, β, γ are possible for any ABC-block, and they are depicted in
Fig. 4(b–d).
So suppose now thatMGEC(GM , 5)has a positive answer. Consider amore general illustration of the relevant replacement

of an edge e = [x, y] by T ABCe -gadget depicted in Fig. 5. By the above claim, a careful look at ABC-blocks shows that in any
edge 5-coloring of GM , blocks B1, B4 and B5 must obtain the same type of coloring δ ∈ {α, β, γ }. Furthermore, observe that
by the definition of colorings α, β, γ and the legality of the edge 5-coloring, there are no two ABC-blocks B′ and B′′ colored
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Fig. 3. (a–b) Vertices x and y are replaced by A-, B-, C-copies xA, xB, xC and yA, yB, yC , respectively, and (c) edge e = [x, y] is replaced by a T ABCe -gadget.
(d) An ABC-block.

Fig. 4. (a) ABC-block Bi , and (b–d) its three possible colorings in any edge 5-coloring of GM .

in the same manner (type) and having a vertex (connector) in common. Consequently, by assigning color cδ to edge e and,
according to the same rule, the relevant colors to all the other edges, we obtain a proper edge 3-coloring of G′, that is, a
positive answer to 3EdCol(G′).
Conversely, suppose 3EdCol(G′) has a positive answer. Set f (0) = α, f (1) = β and f (2) = γ , and let e be an edge

of G′ being assigned color i ∈ {0, 1, 2} in an edge 3-coloring of G′. Then in the T ABCe -gadget, which replaced e, the edges
of ABC-blocks B1, B4 and B5 (Ref. Fig. 5) are assigned colors in accordance with coloring f (i), while the edges of blocks B2
and B3 are assigned colors according to colorings f ((i + 1) mod 3) and f ((i + 2) mod 3), respectively. Now, bearing in
mind the properties of colorings α, β and γ , and the legality of edge 3-coloring of G′, one can see that by coloring the T ABCe′ -
gadget according to the same rule for each e′ ∈ E ′, we obtain a proper edge 5-coloring of GM which satisfies the precedence
constraints. �
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Fig. 5. T ABCe -gadget in a simplified form.

It is possible to extend the claim of Theorem 4.1 in order to eliminate vertices of degree 2 from the graph; we then obtain
the following theorem, whose proof is postponed to the Appendix.

Theorem 4.2. MGEC(GM , 5) isN P -complete if GM is cubic and bipartite, l(GM) = 3, and E = ∅.

5. Final remarks
In Section 3 we have shown that the mixed graph edge coloring problem is N P -complete even for the narrow class

of bipartite outerplanar graphs. The proof only holds when the number of allowed colors is unbounded; for the case of
a constant number of colors, one can easily provide a polynomial time algorithm for all mixed partial k-trees by adapting
standard techniques (cf. e.g. [21]). On the other hand, in Section 4we see thatmixed edge coloring of cubic bipartite graphs is
N P -complete even when only 5 colors are allowed, and the graph has oriented edges only. It is interesting to ask about the
complexity of the problemwhen the number of colors is restricted still further. A partial answer is expressed by the following
theorem (the proof makes use of a similar reduction from the precoloring extension problem as that of Theorem 3.1 and it
is postponed to the Appendix).

Theorem 5.1. MGEC(GM , 3) is N P -complete even when GM is restricted to be cubic planar bipartite, l(GM) = 2, and all paths
are vertex disjoint.

However, for fully oriented graphs, the complexity status of edge coloring using 3 or 4 colors, still appears to be open.

Appendix A. proof of Theorem 4.2

Proof. Consider the relevant (2, 3)-regular bipartite graph GM constructed in the proof of Theorem 4.1. Observe that all its
degree 2 vertices are in the same partition, and the number of these vertices is divisible by three. Now, let G∗M = (V

∗,U∗, E∗)
be the graph resulting from connecting all the triples of degree 2 vertices in GM with the gadget depicted in Fig. 6 (triples
are chosen in an arbitrary manner). By the construction, G∗M is cubic and bipartite, with l(G

∗

M) = 3 and E
∗
= ∅. And, taking

into account the proof of Theorem 4.1 and the fact that GM is a subgraph of G∗M , all we need is to prove that 5-colorability of
GM implies 5-colorability of G∗M .
Consider a vertex v of degree 2 in GM . Observe that in any 5-coloring of GM , none of the arcs incident to v is assigned

color 1. This follows from the fact that in(v) = 2, and that the outer degree of v is 1 in GM . Next, consider again the gadget in
Fig. 6. It is 4-colorable in a manner that the arcs incident to vertices x, y, and z are assigned color 1 (one of such colorings is
depicted in the figure). Consequently, bearing in mind the aforementioned observation for any 5-coloring of edges incident
to a degree 2 vertex in GM , one can easily extend edge 5-coloring of GM onto arcs of G∗M : all arcs of G

∗

M that are present in GM
are just colored as in GM , and all the other arcs are colored in the manner depicted in Fig. 6. And thus, edge 5-colorability of
GM implies edge 5-colorability of G∗M . �

Appendix B. proof of Theorem 5.1

Proof. We use a reduction from the precoloring extension problem on edges (PrExtEd), which has been shown to be N P -
complete in cubic planar bipartite graphs with 3 colors (see [12]). Consider an undirected cubic planar bipartite graph
G′ = (V ′, E ′) and suppose that some of its edges are precolored with colors 1, 2 and 3. We will transform G′ into GM by
making the following replacements:
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Fig. 6. Connecting vertices of degree 2.

Fig. 7. The 2-gadget replacing an edge [vi, vj] precolored with color 2.

Fig. 8. The 1-gadget replacing an edge [vp, vq] precolored with color 1.

(i) if [vi, vj] ∈ E ′ is precolored with color 2, we replace it by the gadget shown in Fig. 7; this gadget is called the 2-gadget;
(ii) if [vp, vq] ∈ E ′ is precolored with color 1, we replace it by the gadget shown in Fig. 8, where we attach to the vertices
{b, h}, {d, e} and {g, f } a 2-gadget (i.e., these pairs of vertices correspond to the vertices {vi, vj} in the 2-gadget); this
gadget is called a 1-gadget;

(iii) if [vr , vs] ∈ E ′ is precolored with color 3, we replace it by the gadget shown in Fig. 9, where we attach, as before, a
2-gadget to the vertices {b, h}, {d, e} and {g, f }; this gadget is called a 3-gadget.

The resulting mixed graph GM = (V ,U, E) is clearly cubic planar bipartite and l(GM) = 2. Furthermore, all paths are
vertex disjoint.

Claim 2. In any mixed edge 3-coloring of GM , the edges [vi, a] and [vj, u] in a 2-gadget must be assigned color 2.

First notice that in any mixed edge 3-coloring of GM , arcs (b, d) and (k, n) can only get colors 2 or 3, and arcs (e, f ) and
(o, p) can only get colors 1 or 2. This implies that the cycle ([d, e], [e, n], [n, o], [o, d]) cannot use color 2, and then the
cycle must be colored using twice color 1 and twice color 3. Thus arcs (b, d), (k, n), (e, f ) and (o, p) must all get color 2.
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Fig. 9. The 3-gadget replacing an edge [vr , vs] precolored with color 3.

Consequently, (a, b)will be assigned color 1, and arc (p, u)will be assigned color 3. So edges [p, q], [u, t] and [s, r] get color
1, edges [s, t] and [r, q] color 2, and edges [a, s], [q, t] and [b, r] color 3. This means that both edges [vi, a], [vj, u] are forced
to be assigned color 2. Similarly, (f , g), [h,m], [l, k] and [i, j] are forced to be assigned color 3, (j, k), [l, i], [f ,m] and [g, h]
are forced to be assigned color 1, and finally, edges [l,m], [h, i] and [j, g] are forced to be assigned color 2.

Claim 3. In any mixed edge 3-coloring of GM , the edges [vp, b], [vq, h] (resp. [vs, b], [vr , h]) in a 1-gadget (resp. in a 3-gadget)
must necessarily get color 1 (resp. color 3).

It follows from the fact that all the edges linking the vertices b and h, d and e, as well as g and f to the 2-gadgets have color
2. Notice that once these colors are fixed, the remaining yet uncolored edges in a 1-gadget or a 3-gadget are 3-colorable in
the unique way.
So suppose now that MGEC(GM , 3) has a positive answer. Then, as we have just explained above, edges [vp, b], [vq, h]

have color 1, edges [vi, a], [vj, u] have color 2, and edges [vs, b], [vr , h] have color 3. Thus by replacing each 1-gadget by the
original edge [vp, vq] and coloring it with color 1, each 2-gadget by the original edge [vi, vj] and coloring it with color 2, and
each 3-gadget by the original edge [vr , vs] and coloring it with color 3, we get a positive answer for PrExtEd(G′).
Conversely, if PrExtEd(G′) has a positive answer, then by replacing the precolored edges by the relevant gadgets and by

coloring edges [vp, b], [vq, h] with color 1, edges [vi, a], [vj, u] with color 2 and edges [vs, b], [vr , h] with color 3 will give
us a positive answer forMGEC(GM , 3), since the remaining uncolored edges can be colored in the unique way as explained
above. �
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