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Abstract. An upper dominating set in a graph is a minimal (with
respect to set inclusion) dominating set of maximum cardinality. The
problem of finding an upper dominating set is generally NP-hard, but
can be solved in polynomial time in some restricted graph classes, such
as P4-free graphs or 2K2-free graphs. For classes defined by finitely many
forbidden induced subgraphs, the boundary separating difficult instances
of the problem from polynomially solvable ones consists of the so called
boundary classes. However, none of such classes has been identified so far
for the upper dominating set problem. In the present paper, we discover
the first boundary class for this problem.

1 Introduction

In a graph G = (V,E), a dominating set is a subset of vertices D ⊆ V such that
any vertex outside of D has a neighbour in D. A dominating set D is minimal
if no proper subset of D is dominating. An upper dominating set is a minimal
dominating set of maximum cardinality. The upper dominating set problem
(i.e. the problem of finding an upper dominating set in a graph) is known to
be NP-hard [5]. Moreover, it remains difficult under substantial restrictions, for
instance, for triangle-free graphs and the complements of bipartite graphs [1].
On the other hand, in some particular graph classes, the problem can be solved
in polynomial time, which is the case for bipartite graphs [6], chordal graphs
[10], generalized series-parallel graphs [9], graphs of bounded clique-width [7]
and 2K2-free graphs [1]. What other restrictions are necessary and sufficient for
polynomial-time solvability of the problem? For classes defined by finitely many
forbidden induced subgraphs, this question can be answered through the notion
of boundary classes. This notion was introduced in [2] to study the maximum
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independent set problem and was later applied to many other algorithmic
graph problems (see e.g. [3,4,13]). However, for the upper dominating set
problem no boundary classes have been identified so far. In the present paper,
we reveal the first boundary class for this problem.

The organization of the paper is as follows. In Sect. 2, we introduce basic
definitions, including the notion of a boundary class, and prove some preliminary
results. Section 3 contains the main result of the paper. Finally, in Sect. 4 we
discuss an open problem.

2 Preliminaries

We denote by G the set of all simple graphs, i.e. undirected graphs without loops
and multiple edges. The girth of a graph G ∈ G is the length of a shortest cycle
in G. As usual, we denote by Kn, Pn and Cn the complete graph, the chordless
path and the chordless cycle with n vertices, respectively. Also, G denotes the
complement of G. A star is a connected graph in which all edges are incident to
a same vertex, called the center of the star.

Let G = (V,E) be a graph with vertex set V and edge set E, and let u and v
be two vertices of G. If u is adjacent to v, we write uv ∈ E and say that u and v
are neighbours. The neighbourhood of a vertex v ∈ V is the set of its neighbours;
it is denoted by N(v). The degree of v is the size of its neighbourhood.

A subgraph of G is spanning if it contains all vertices of G, and it is induced
if two vertices of the subgraph are adjacent if and only if they are adjacent in G.
If a graph H is isomorphic to an induced subgraph of a graph G, we say that G
contains H. Otherwise we say that G is H-free. Given a set of graphs M , we denote
by Free(M) the set of all graphs containing no induced subgraphs from M .

A class of graphs (or graph property) is a set of graphs closed under isomor-
phism. A class is hereditary if it is closed under taking induced subgraphs. It
is well-known (and not difficult to see) that a class X is hereditary if and only
if X = Free(M) for some set M . If M is a finite set, we say that X is finitely
defined.

A class of graphs is monotone if it is closed under taking subgraphs (not
necessarily induced). Clearly, every monotone class is hereditary.

In a graph, a clique is a subset of pairwise adjacent vertices, and an indepen-
dent set is a subset of vertices no two of which are adjacent. A graph is bipartite if
its vertices can be partitioned into two independent sets. It is well-known that a
graph is bipartite if and only if it is free of odd cycles, i.e. if and only if it belongs
to Free(C3, C5, C7, . . .). We say that a graph G is co-bipartite if G is bipartite.
Clearly, a graph is co-bipartite if and only if it belongs to Free(C3, C5, C7, . . .).

We complete this part of the section with the following technical lemma,
proved in [1], where a private neighbour of a vertex x ∈ D is a vertex y �∈ D
such that x is the only neighbour of y in D.

Lemma 1. Let G be a connected graph and D a minimal dominating set in G.
If there are vertices in D that have no private neighbour outside of D, then D



can be transformed in polynomial time into a minimal dominating set D′ with
|D′| ≤ |D| in which every vertex has a private neighbour outside of D′.

2.1 Boundary Classes of Graphs

Aswementioned earlier, the notion of boundary classes of graphswas introduced in
[2] to study the maximum independent set problem in hereditary classes. Later
this notion was applied to some other problems of both algorithmic [3,4,13,17]
and combinatorial [14,15,19] nature. Assuming P �= NP , the notion of boundary
classes can be defined, with respect to algorithmic graph problems, as follows.

Let Π be an algorithmic graph problem, which is generally NP-hard. We will
say that a hereditary class X of graphs is Π-tough if the problem is NP-hard for
graphs in X and Π-easy, otherwise. We define the notion of a boundary class
for Π in two steps. First, let us define the notion of a limit class.

Definition 1. A hereditary class X is a limit class for Π if X is the inter-
section of a sequence X1 ⊇ X2 ⊇ X3 ⊇ . . . of Π-tough classes, in which case we
also say that the sequence converges to X.

Example. To illustrate the notion of a limit class, let us quote a result from [20]
stating that the maximum independent set problem is NP-hard for graphs
with large girth, i.e. for (C3, C4, . . . , Ck)-free graphs for each fixed value of k.
With k tending to infinity, this sequence converges to the class of graphs without
cycles, i.e. to forests. Therefore, the class of forests is a limit class for the maxi-
mum independent set problem. However, this is not a minimal limit class for
the problem, which can be explained as follows.

The proof of the NP-hardness of the problem for graphs with large girth is
based on a simple fact that a double subdivision of an edge in a graph G increases
the size of a maximum independent set in G by exactly 1. This operation applied
sufficiently many (but still polynomially many) times allows to destroy all small
cycles in G, i.e. reduces the problem from an arbitrary graph G to a graph G′

of girth at least k. Obviously, if G is a graph of vertex degree at most 3, then
so is G′, and since the problem is NP-hard for graphs of degree at most 3, we
conclude that it is also NP-hard for for (C3, C4, . . . , Ck)-free graphs of degree
at most 3. This shows that the class of forests of vertex degree at most 3 is a
limit class for the the maximum independent set problem. However, it is still
not a minimal limit class, because by the same operation (double subdivisions
of edges) one can destroy small induced copies of the graph Hn shown on the
left of Fig. 1. Therefore, the maximum independent set problem is NP-hard
in the following class for each fixed value of k:

Zk is the class of (C3, . . . , Ck,H1, . . . , Hk)-free graphs of degree at most 3.
It is not difficult to see that the sequence Z3 ⊃ Z4 ⊃ . . . converges to the class

of forests every connected component of which has the form Si,j,� represented
on the right of Fig. 1. Throughout the paper we denote this class by S, i.e. S is
the intersection of the sequence Z3 ⊃ Z4 ⊃ . . ..
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Fig. 1. Graphs Hn (left) and Si,j,� (right).

The above discussion shows that S is a limit class for the maximum inde-
pendent set problem. Moreover, in [2] it was proved that S is a minimal limit
class for this problem.

Definition 2. A minimal (with respect to set inclusion) limit class for a problem
Π is called a boundary class for Π.

The importance of the notion of boundary classes for NP-hard algorithmic
graph problems is due to the following theorem proved originally for the max-
imum independent set problem in [2] (can also be found in [3] in a more
general context).

Theorem 1. If P �= NP, then a finitely defined class X is Π-tough if and only
if X contains a boundary class for Π.

In what follows, we identify the first boundary class for the upper domi-
nating set problem. To this end, we need a number of auxiliary results. The
first of them is the following lemma dealing with limit classes, which was derived
in [2,3] as a step towards the proof of Theorem1.

Lemma 2. If X is a finitely defined class containing a limit class for an NP-
hard problem Π, then X is Π-tough.

The next two results were proved in [12] and [3], respectively.

Lemma 3. The minimum dominating set problem is NP-hard in the class Zk

for each fixed value of k.

Theorem 2. The class S is a boundary class for minimum dominating set
problem.

3 A Boundary Class for Upper Domination

To describe a boundary class for the upper dominating set problem, let us
introduce the following graph transformations. Given a graph G = (V,E), we
denote by



S(G) the incidence graph of G, i.e. the graph with vertex set V ∪ E, where V
and E are independent sets and a vertex v ∈ V is adjacent to a vertex
e ∈ E in S(G) if and only if v is incident to e in G. Alternatively, S(G) is
obtained from G by subdividing each edge e by a new vertex ve. According
to this interpretation, we call E the set of new vertices and V the set of old
vertices. Any graph of the form S(G) for some G will be called a subdivision
graph.

Q(G) the graph obtained from S(G) by creating a clique on the set of old vertices
and a clique on the set of new vertices. We call any graph of the form Q(G)
for some G a Q-graph.

The importance of Q-graphs for the upper dominating set problem is due
to the following lemma, where we denote by Γ (G) the size of an upper dominating
set in G and by γ(G) the size of a dominating set of minimum cardinality in G.

Lemma 4. Let G be a graph with n vertices such that Γ (Q(G)) ≥ 3. Then
Γ (Q(G)) = n − γ(G).

Proof. Let D be a minimum dominating set in G, i.e. a dominating set of size
γ(G). Without loss of generality, we will assume that D satisfies Lemma 1, i.e.
every vertex of D has a private neighbour outside of D. For every vertex u outside
of D, consider exactly one edge, chosen arbitrarily, connecting u to a vertex in
D and denote this edge by eu. We claim that the set D′ = {veu

: u �∈ D} is a
minimal dominating set in Q(G). By construction, D′ dominates E ∪ (V − D)
in Q(G). To show that it also dominates D, assume by contradiction that a
vertex w ∈ D is not dominated by D′ in Q(G). By Lemma 1 we know that w
has a private neighbour u outside of D. But then the edge e = uw is the only
edge connecting u to a vertex in D. Therefore, ve necessarily belongs to D′ and
hence it dominates w, contradicting our assumption. In order to show that D′

is a minimal dominating set, we observe that if we remove from D′ a vertex veu

with eu = uw, u �∈ D, w ∈ D, then u becomes undominated in Q(G). Finally,
since |D′| = n − |D|, we conclude that Γ (Q(G)) ≥ n − |D| = n − γ(G).

Conversely, let D′ be an upper dominating set in Q(G), i.e. a minimal dom-
inating set of size Γ (Q(G)) ≥ 3. Then D′ cannot intersect both V and E, since
otherwise it contains exactly one vertex in each of these sets (else it is not min-
imal, because each of these sets is a clique), in which case |D′| = 2.

Assume first that D′ ⊆ V . Then V − D′ is an independent set in G. Indeed,
if G contains an edge e connecting two vertices in V − D′, then vertex ve is
not dominated by D′ in Q(G), a contradiction. Moreover, V − D′ is a maximal
(with respect to set-inclusion) independent set in G, because D′ is a minimal
dominating set in Q(G). Therefore, V − D′ is a dominating set in G of size
n − Γ (Q(G)) and hence γ(G) ≤ n − Γ (Q(G)).

Now assume D′ ⊆ E. Let us denote by G′ the subgraph of G formed by the
edges (and all their endpoints) e such that ve ∈ D′. Then:

– G′ is a spanning forest of G, because D′ covers V (else D′ is not dominating
in Q(G)) and G′ is acyclic (else D′ is not a minimal dominating set in Q(G)).



– G′ is P4-free, i.e. each connected component of G′ is a star, since otherwise
D′ is not a minimal dominating set in Q(G), because any vertex of D′ corre-
sponding to the middle edge of a P4 in G′ can be removed from D′.

Let D be the set of the centers of the stars of G′. Then D is dominating in G
(since D′ covers V ) and |D| = n − |D′|, i.e. γ(G) ≤ n − Γ (Q(G)), as required. 
�

Lemma 4 together with Theorem 2 suggest the following natural idea about a
boundary class for the upper dominating set problem: it is the class of graphs
Q(G) obtained from graphs G in S. In order to transform this idea into a formal
proof, we need more notations and more auxiliary results.

For an arbitrary class X of graphs, we denote S(X) := {S(G) : G ∈ X}
and Q(X) := {Q(G) : G ∈ X}. In particular, Q(G) is the set of all Q-graphs,
where G is the class of all simple graphs. We observe that an induced subgraph
of a Q-graph is not necessarily a Q-graph. Indeed, in a Q-graph every new vertex
is adjacent to exactly two old vertices. However, by deleting some old vertices
in a Q-graph we may obtain a graph in which a new vertex is adjacent to at
most one old vertex. Therefore, Q(X) is not necessarily hereditary even if X is
a hereditary class. We denote by Q∗(X) the hereditary closure of Q(X), i.e. the
class obtained from Q(X) by adding to it all induced subgraphs of the graphs
in Q(X). Similarly, we denote by S∗(X) the hereditary closure of S(X).

With the above notation, our goal is proving that Q∗(S) is a boundary class
for the upper dominating set problem. To achieve this goal we need the
following lemmas.

Lemma 5. Let X be a monotone class of graphs such that S �⊆ X, then the
clique-width of the graphs in Q∗(X) is bounded by a constant.

Proof. In [16], it was proved that if S �⊆ X, then the clique-width is bounded for
graphs in X. It is known (see e.g. [8]) that for monotone classes, the clique-width
is bounded if and only if the tree-width is bounded. By subdividing the edges
of all graphs in X exactly once, we transform X into the class S(X), where the
tree-width is still bounded, since the subdivision of an edge of a graph does not
change its tree-width. Since bounded tree-width implies bounded clique-width
(see e.g. [8]), we conclude that S(X) is a class of graphs of bounded clique-
width. Now, for each graph G in S(X) we create two cliques by complementing
the edges within the sets of new and old vertices. This transforms S(X) into
Q(X). It is known (see e.g. [11]) that local complementations applied finitely
many times do not change the clique-width “too much”, i.e. they transform a
class of graphs of bounded clique-width into another class of graphs of bounded
clique-width. Therefore, the clique-width of graphs in Q(X) is bounded. Finally,
the clique-width of a graph is never smaller than the clique-width of any of its
induced subgraphs (see e.g. [8]). Therefore, the clique-width of graphs in Q∗(X)
is also bounded. 
�
Lemma 6. Let X ⊆ Q∗(G) be a hereditary class. The clique-width of graphs in
X is bounded by a constant if and only if it is bounded for Q-graphs in X.



Proof. The lemma is definitely true if X = Q∗(Y ) for some class Y . In this case,
by definition, every non-Q-graph in X is an induced subgraph of a Q-graph from
X. However, in general, X may contain a non-Q-graph H such that no Q-graph
containing H as an induced subgraph belongs to X. In this case, we prove the
result as follows.

First, we transform each graph H in X into a bipartite graph H ′ by replacing
the two cliques of H (i.e. the sets of old and new vertices) with independent sets.
In this way, X transforms into a class X ′ which is a subclass of S∗(G). As we
mentioned in the proof of Lemma5, this transformation does not change the
clique-width “too much”, i.e. the clique-width of graphs in X is bounded if and
only if it is bounded for graphs in X ′.

By definition, H ∈ X is a Q-graph if and only if H ′ is a subdivision graph, i.e.
H ′ = S(G) for some graph G. Therefore, we need to show that the clique-width
of graphs in X ′ is bounded if and only if it is bounded for subdivision graphs in
X ′. In one direction, the statement is trivial. To prove it in the other direction,
assume the clique-width of subdivision graphs in X ′ is bounded. If H ′ is not a
subdivision, it contains new vertices of degree 0 or 1. If H ′ contains a vertex
of degree 0, then it is disconnected, and if H ′ contains a vertex x of degree 1,
then it has a cut-point (the neighbour of x). It is well-known that the clique-
width of graphs in a hereditary class is bounded if and only if it is bounded for
connected graphs in the class. Moreover, it was shown in [18] that the clique-
width of graphs in a hereditary class is bounded if and only if it is bounded for
2-connected graphs (i.e. connected graphs without cut-points) in the class. Since
connected graphs without cut-points in X ′ are subdivision graphs, we conclude
that the clique-width is bounded for all graphs in X ′. 
�

Finally, to prove the main result of this paper, we need to show that Q∗(G)
is a finitely defined class. To show this, we first characterize graphs in Q∗(G)
as follows: a graph G belongs to Q∗(G) if and only if the vertices of G can be
partitioned into two (possibly empty) cliques U and W such that

(a) every vertex in W has at most two neighbours in U ,
(b) if x and y are two vertices of W each of which has exactly two neighbours

in U , then N(x) ∩ U �= N(y) ∩ U .

In the proof of the following lemma, we call any partition satisfying (a) and (b)
nice. Therefore, Q∗(G) is precisely the class of graphs admitting a nice partition.
Now we characterize Q∗(G) in terms of minimal forbidden induced subgraphs.

Lemma 7. Q∗(G) = Free(N), where N is the set of eleven graphs consisting of
C3, C5, C7 and the eight graphs shown in Fig. 2.

Proof. To show the inclusion Q∗(G) ⊆ Free(N), we first observe that C3, C5 and
C7 are forbidden in Q∗(G), since every graph in this class is co-bipartite, while
C3, C5, C7 are not co-bipartite. Each of the remaining eight graphs of the set
N is co-bipartite, but none of them admits a nice partition, which is a routine
matter to check.
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Fig. 2. Forbidden graphs for Q∗(G)

To prove the inverse inclusion Free(N) ⊆ Q∗(G), let us consider a graph G in
Free(N). By definition, G contains no C3, C5, C7. Also, since G1 is an induced
subgraph of Ci with i ≥ 9, we conclude that G contains no complements of
odd cycles of length 9 or more. Therefore, G is co-bipartite. Let V1 ∪ V2 be an
arbitrary bipartition of V (G) into two cliques. In order to show that G belongs
to Q∗(G), we split our analysis into several cases.

Case 1: G contains a K4 induced by vertices x1, y1 ∈ V1 and x2, y2 ∈ V2. To
analyze this case, we partition the vertices of V1 into four subsets with respect
to x2, y2 as follows:

A1 is the set of vertices of V1 adjacent to x2 and non-adjacent to y2,
B1 is the set of vertices of V1 adjacent to x2 and to y2,
C1 is the set of vertices of V1 adjacent to y2 and non-adjacent to x2,
D1 is the set of vertices of V1 adjacent neither to x2 nor to y2.

We partition the vertices of V2 with respect to x1, y1 into four subsets A2, B2,
C2, D2 analogously. We now observe the following.

(1) For i ∈ {1, 2}, either Ai = ∅ or Ci = ∅, since otherwise a vertex in Ai and a
vertex in Ci together with x1, y1, x2, y2 induce G2.

According to this observation, in what follows, we may assume, without loss of
generality, that

– C1 = ∅ and C2 = ∅.

We next observe that

(2) Either A1 = ∅ or A2 = ∅, since otherwise a vertex a1 ∈ A1 and a vertex
a2 ∈ A2 together with x1, y1, x2, y2 induce either G1 (if a1 is not adjacent to
a2) or G2 (if a1 is adjacent to a2).



Observation (2) allows us to assume, without loss of generality, that

– A2 = ∅.

We further make the following conclusions:

(3) For i ∈ {1, 2}, |Di| ≤ 1, since otherwise any two vertices of Di together with
x1, x2, y1, y2 induce G3.

(4) If D1 = {d1} and D2 = {d2}, then d1 is adjacent to d2, since otherwise
d1, d2, x1, x2, y1, y2 induce G4.

(5) If A1 ∪ D1 ∪ D2 �= ∅, then every vertex of B1 is adjacent to every vertex
of B2. Indeed, assume, without loss of generality, that z ∈ A1 ∪ D1 and
a vertex b1 ∈ B1 is not adjacent to a vertex b2 ∈ B2. Then the vertices
z, b1, b2, x1, x2, y1 induce either G1 (if z is not adjacent to b2) or G2 (if z is
adjacent to b2).

(6) Either A1 = ∅ or D1 = ∅, since otherwise a vertex in A1 and a vertex in D1

together with x1, y1, x2, y2 induce G1.

According to (6), we split our analysis into three subcases as follows.

Case 1.1: D1 = {d1}. Then A1 = ∅ (by (6)) and every vertex of B1 is adjacent
to every vertex of B2 (by (5)). If D2 = ∅, then U = D1 and W = B1 ∪ B2 is a
nice partition of G (remember that x1, y1 ∈ B1 and x2, y2 ∈ B2).

Now assume D2 = {d2} and denote by B0
1 the vertices of B1 nonadjacent

to d2 and by B1
1 the vertices of B1 adjacent to d2. Similarly, we denote by B0

2

the vertices of B2 nonadjacent to d1 and by B1
2 the vertices of B2 adjacent to

d1. Then |B1
1 ∪ B1

2 | ≤ 1, since otherwise any two vertices of B1
1 ∪ B1

2 together
with x1, x2, d1, d2 induce G2. But then U = D1 ∪ D2 and W = B1 ∪ B2 is a nice
partition of G.

Case 1.2: A1 �= ∅. Then D1 = ∅ (by (6)) and every vertex of B1 is adjacent
to every vertex of B2 (by (5)). In this case, we claim that

(7) every vertex of B2 is either adjacent to every vertex of A1 or to none of
them. Indeed, assume a vertex b2 ∈ B2 has a neighbour a′ ∈ A1 and a
non-neighbour a′′ ∈ A1. Then b2, a

′, a′′, x1, y1, y2 induce G1.

We denote by B0
2 the subset of vertices of B2 that have no neighbours in A1 and

by B1
2 the subset of vertices of B2 adjacent to every vertex of A1. Then

– either |A1| = 1 or |B0
2 | = 1, since otherwise any two vertices of A1 together

with any two vertices of B0
2 and any two vertices of B1 induce G3.

– if D2 = {d2}, then |B1
2 | = 1, since otherwise any two vertices of B1

2 together
with d2, x1, y2 and any vertex a in A1 induce either G1 (if a is not adjacent
to d2)) or G2 (if a is adjacent to d2)).

– if D2 = {d2}, then d2 has no neighbours in B1. Indeed, if d2 has a neighbour
b1 ∈ B1, then vertices b1, d2, x1, x2, y2 together with any vertex a1 ∈ A1 induce
either G1 (if d2 is not adjacent to a1) or G2 (if d2 is adjacent to a1).



Therefore, either U = A1 ∪ D2, W = B1 ∪ B2 (if |A1| = 1) or U = B0
2 ∪ D2,

W = A1 ∪ B1 ∪ B1
2 (if |B0

2 | = 1) is a nice partition of G.

Case 1.3: A1 = ∅ and D1 = ∅. In this case, if D2 �= ∅, then U = D2,
W = B1 ∪ B2 is a nice partition of G, since B1 ∪ B2 is a clique (by (5)). Assume
now that D2 = ∅. If B1 ∪ B2 is a clique, then G has a trivial nice partition.
Suppose next that B1 ∪ B2 is not a clique. If all non-edges of G are incident
to a same vertex, say b (i.e. b is incident to all the edges of G), then U = {b},
W = (B1∪B2)−{b} is a nice partition of G. Otherwise, G contains a pair of non-
edges b′

1b
′
2 �∈ E(G) and b′′

1b′′
2 �∈ E(G) with all four vertices b′

1, b
′′
1 ∈ B1, b′

2, b
′′
2 ∈

B2 being distinct (i.e. b′
1b

′
2 and b′′

1b′′
2 form a matching in G). We observe that

{b′
1, b

′′
1 , b′

2, b
′′
2} ∩ {x1, y1, x2, y2} = ∅, because by definition vertices x1, y1, x2, y2

dominate the set B1 ∪B2. But then b′
1, b

′′
1 , b′

2, b
′′
2 , x1, y1 induce either G2 (if both

b′
1b

′′
2 and b′

2b
′′
1 are edges in G) or G1 (if exactly one of b′

1b
′′
2 and b′

2b
′′
1 is an edge

in G) or G3 (if neither b′
1b

′′
2 nor b′

2b
′′
1 is an edge in G). This completes the proof

of Case 1.

Case 2: G contains no K4 with two vertices in V1 and two vertices in V2. We
claim that in this case V1 ∪ V2 is a nice partition of G. First, the assumption
of case 2 implies that that no two vertices in the same part of the bipartition
V1 ∪ V2 have two common neighbours in the opposite part, verifying condition
(b) of the definition of nice partition. To verify condition (a), it remains to prove
that one of the parts V1 and V2 has no vertices with more than two neighbours
in the opposite part. Assume the contrary and let a1 ∈ V1 have three neighbours
in V2 and let a2 ∈ V2 have three neighbours in V1.

First, suppose a1 is adjacent to a2. Denote by b2, c2 two other neighbours of
a1 in V2 and by b1, c1 two other neighbours of a2 in V1. Then there are no edges
between b1, c1 and b2, c2, since otherwise we are in conditions of Case 1. But now
a1, b1, c1, a2, b2, c2 induce a G3.

Suppose now that a1 is not adjacent to a2. We denote by b2, c2, d2 three
neighbours of a1 in V2 and by b1, c1, d1 three neighbours of a2 in V1. No two
edges between b1, c1, d1 and b2, c2, d2 (if any) share a vertex, since otherwise we
are in conditions of Case 1. But then a1, b1, c1, d1, a2, b2, c2, d2 induce either G5

or G6 or G7 or G8. This contradiction completes the proof of the lemma. 
�

Now we are ready to prove the main result of the paper.

Theorem 3. If P �= NP, then Q∗(S) is a boundary class for the upper domi-
nating set problem.

Proof. From Lemmas 3 and 4 we know that upper domination is NP-hard in
the class Q∗(Zk) for all values of k ≥ 3. Also, it is not hard to verify that the
sequence of classes Q∗(Z1), Q∗(Z2) . . . converges to Q∗(S). Therefore, Q∗(S) is
a limit class for the upper dominating set problem. To prove its minimality,
assume there is a limit class X which is properly contained in Q∗(S). We consider
a graph F ∈ Q∗(S)−X, a graph G ∈ Q(S) containing F as an induced subgraph
(possibly G = F if F ∈ Q(S)) and a graph H ∈ S such that G = Q(H).



From the choice of G and Lemma 7, we know that X ⊆ Free(N ∪ {G}), where
N is the set of minimal forbidden induced subgraphs for the class Q∗(G). Since
the set N is finite (by Lemma 7), we conclude with the help of Lemma 2 that
the upper dominating set problem is NP-hard in the class Free(N ∪{G}). To
obtain a contradiction, we will show that graphs in Free(N ∪{G}) have bounded
clique-width.

Denote by M the set of all graphs containing H as a spanning subgraph.
Clearly Free(M) is a monotone class. More precisely, it is the class of graphs con-
taining no H as a subgraph (not necessarily induced). Since Free(M) is monotone
and S �⊂ Free(M) (as H ∈ S), we know from Lemma 5 that the clique-width is
bounded in Q∗(Free(M)).

To prove that graphs in Free(N ∪ {G}) have bounded clique-width, we will
show that Q-graphs in this class belong to Q∗(Free(M)). Let Q(H ′) be a Q-
graph in Free(N ∪ {G}). Since the vertices of Q(H ′) represent the vertices and
the edges of H ′ and Q(H ′) does not contain G as an induced subgraph, we
conclude that H ′ does not contain H as a subgraph. Therefore, H ′ ∈ Free(M),
and hence Q(H ′) ∈ Q(Free(M)). By Lemma 6, this implies that all graphs in
Free(N ∪ {G}) have bounded clique-width. This contradicts the fact that the
upper dominating set problem is NP-hard in this class and completes the
proof of the theorem. 
�

4 Conclusion

In this paper, we identified the first boundary class for the upper dominating
set problem. Since the problem is NP-hard in the class of triangle-free graphs [1],
we known (by Theorem 1) that there must exist at least one more boundary class
for the problem. Revealing this class is a challenging open question.
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